
Invent. math. ll0, 409 418 11992) 
/ / / / 2 e / / / / o / / e s  

mathematicae 
*') Springer-Verlag 1992 

Explicit Hilbert spaces for certain unipotent 
representations 

Siddhartha Sahi 
Department of Mathematics, Princeton University, Princeton, NJ 08544, USA 

Oblatum 28-II-1992 

Summary. Let G be the universal cover of the group of automorphisms of a sym- 
metric tube domain and let P = L N  be its Shilov boundary  parabolic subgroup. 
This paper attaches an irreducible unitary representation of G to each of the 
(finitely many) L-orbits on n*. 

The Hilbert space of the representation consists of functions on the orbit which 
are square-integrable with respect to a certain L-equivariant  measure. The repre- 
sentation remains irreducible when restricted to P, and descends to a quotient of 
G which is, at worst, the double cover of a linear group. 

If the L-orbit  is not open (in l~*), the construction gives a unipotent representa- 
tion of G. 

Introduction 

Let G be the universal covering group of the group of automorphisms of a symmet- 
ric tube domain  and let P = L N  be its Shilov boundary  parabolic subgroup. Then 
L has finitely many (coadjoint) orbits on n*, and each orbit (5 has an L-equivariant 
measure d/~. 

The main result of this paper is the construct ion of an irreducible unitary 
representation of G on LZ((5, d/0; or rather on the Hilbert space H consisting of 
those tempered distributions on ~ which are Fourier  transforms of qJd/z for some 

in L2((5, d/~). 
More precisely, we describe a non-unitary character of the opposite parabolic 

/5 and a (.q, K)-submodule  V of the induced representation such that, if we regard 
V as a subspace of C~(rt) (via the Ge l fand-Naimark  decomposit ion and the exp 
map), then we have 

Theorem. V is a dense subspace of H, and the restriction of the norm is (g, K)- 
invariant. 

This work was supported by an NSF grant at Princeton University, and was carried out in part 
during a visit to the Mehta Research Institute, Allahabad, India. 
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We now describe the setting, and our results, in greater detail. 
First of all, the L-orbits on rt* are parametrized by pairs of non-negative 

integers (p,q) whose sum is at most n. If one of p or q is 0, we will say 
that the corresponding orbit is semi-definite, otherwise we will call it an indefinite 
orbit. 

For the semi-definite orbits, the representations are highest weight modules 
whose unitarizability was first proved in [W]. It was shown in [RV], by an explicit 
calculation of the associated reproducing kernel, that these representations admit 
realizations on suitable Hilbert spaces of holomorphic functions on the tube 
domain. 

For  the indefinite orbits the unitarizability of the corresponding representa- 
tions was proved in [G], and one expects to be able to realize these representations 
on appropriate cohomology spaces of certain complex varieties which are not Stein 
manifolds. But in this setting, it is unclear how the inner product should be 
defined-certainly, one will not have anything as nice as a reproducing kernel 
function! 

The point of this paper is that while the cohomology spaces might them- 
selves be somewhat obscure, one can profitably study them via their "boundary 
values", replacing the complex analysis by real analysis. This is similar in spirit 
to [SS]. 

The main problem then is to prove the invariance of the L2-norm with respect 
to a suitable multiplier representation of G. For  the semi-definite orbits this in 
[RV], while if G is classical, it may be deduced from the theory of the oscillator 
representation as in [L]. Various special cases have also been considered before in 
[JV, O, KV] and elsewhere. But none of these methods is sufficiently general for 
our purposes. 

Our  approach consists of exploiting the presence of a one-dimensional lowest 
K-type in V. We first calculate the Fourier transform of the corresponding function 
a and show that it lies in H. The P-invariance of the norm in H is immediate and, 
since G = PK, the G-invariance follows from a certain "uniqueness result" 
for P-invariant norms on H, which in turn is a simple consequence of a recent 
result of Poguntke [P] on the existence of rank 1 projections in the L 1 group 
algebra. 

The method of this paper transcends the exigencies of the situation, and 
subsequent papers will explore two further applications. The first will be to the 
construction of Hilbert spaces for small unipotent representations of a more 
general kind, and the second to a possible extension of the theory of dual pairs to 
certain exceptional groups. 

1 Algebraic preliminaries 

1.1 The Lie structure 

For the most part  we will follow the notation of [S]. Let (g, t) be an irreducible 
Hermitian symmetric pair of tube type, and let b s = a s G t s be a maximally split 
Cartan subalgebra of 9. It is known that the restricted root system is of type Cn 
where n = dim(aS). Thus we may choose a basis el . . . . .  e, for (as) * such that 
z(g, a s )  : { + _+ { _+ 2 j}. 
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The root  spaces for __ ei + ~j have a common  dimension which we denote by d. 
The root  spaces for +_ 2ej are one-dimensional. Thus to each 2~3) we may attach 

in a s tandard manner,  an S-triple {h~,ej, f~}, contained in g. These S-triples 
commute,  and {h = Z h j ,  e = Z e j , f =  ~J ) }  is also an S-triple. 

~zi 
The Cayley transform is the element c = exp ~ (e + f )  in Ad(.q,.). Let t = ic(a~), 

then D = t + t '  is a compact Cartan subalgebra for g (and ~); and {7~17~ = c~ (2~:~), 
i = 1 . . . . .  n} is a maximal set of (Harish-Chandra) strongly or thogonal  roots in 

The eigenvalues of ad(h) on ,q are - 2 ,  0 and 2; let fi, l and ~ be the 
corresponding eigenspaces. Then n and fi are abelian and l + u and [ + fi are 
maximal parabolic subalgebras. 

Let G and K be the simply connected groups with Lie algebras fl and I, and let 
P = L N  a n d / 5  = L~7 be the maximal parabolic subgroups of G corresponding to 
1 + n and t + ft. Then G/K is a symmetric tube domain of rank n and G//5 is its 
Shilov boundary.  

N o w  L (resp. K) has a unique positive (resp. unitary) character v (resp./~) whose 
differential is e~ + �9 �9 �9 + e, (resp. 7~ + ' " " + 7,). As remarked in [S], the restric- 
tion of/~ to L ~ K extends to a unique unitary character of L, also denoted by/~, 
which is trivial on the identity component  of L. (This conflicts slightly with our use 
of "d#" for the equivariant measure, but will not  lead to any confusion.) 

1.2 The Jordan structure 

Consider the adjoint  action of I on ~. It is easy to see that the stabilizer of  e is I ~ f. 
Consequently,  the map  x~-+ [x, e] is a l c~ Y-isomorphism between l c~ p and n. 
This enables one to define a commutat ive product  on ~ by setting 
[x l ,  e ]o  [x2, e]  = [ [Xl ,  x2], el. 

It is shown in [K] ,  that with respect to this product,  u becomes a simple, 
formally real, Jordan  algebra with e as the unit, and with L and L c~ K as its 
structure and au tomorphism groups, respectively. The action of  the Cayley trans- 
form can be described in terms of the Jordan  structure and we have 
c ' x  = (e + ix)(e - ix) -1 (see [ K W ]  and [K]).  

The (reduced) norm on n (see [BK, Kap. I I ]  is a polynomial  ~o, of degree n, 
which satisfies ~o(e) = 1 and ~o(I.x) = v-2(l)~o(x) for all 1 in L. 

In a similar manner,  fi becomes a Jordan algebra with f as its unit element. To 
avoid confusion, we will write x for a typical element of u, and y for an element in ft. 
Also we will write 17 for a typical function on n, and ~ for one on ft. 

The Killing form on g gives us a pairing between ~t and fi, which we will denote 
by (,), after normalizing it so that (e , f )  = 1. This pairing satisfies (1" x, 1. y ) = (x, y), 
and allows us to consider ~ as the dual space of  n. 

1.3 Some results f rom [S] 

We will write (zr~.~,l(e,t)) for the induced representation I n d ~ ( / ~ |  ') (nor- 
malized, C~176 By the Gelfand-Naimark decomposi t ion and the exp map, 
I(r t) can be realized on a subspace of Ca(n).  The formulas for the action of P are 
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part icularly simple. N acts by translation, and since the modu la r  function for /5  is 
d 

v -2~ where r = 1 + ~ ( n -  1), we have for l in L 

(1) r t , , , ( 1 ) q ( x )  = ~ ( I ) v ' - ~ ( l ) ~ ( t  - ' . x ) .  

The K-types  in l(e., t) have multiplicity one and their highest weights are of the 
form e# + ~.a~Ti, where the al are integers with a~ >= . . .  => a,. 

d d 
F o r p + q < n ,  p u t e = ~ ( p - q ) , t =  1 + ~ ( n -  1 - p - q ) , a n d w r i t e ( Z p q ,  lpq) 

for (lr~,,,I(e,t)). Theorem 5 in [S] shows that  lpq has a unitarizable (g, K)-  
subquot ient  Vpv whose K-types  are 

i = l  

If p + q < n, these are the representat ions in Theorem 5C of [S], while for 
p + q = n they are among  those contained in the more  general Theorem 5B. 
Moreover ,  f rom the description of the Jantzen filtration in w of [S], it follows that  
Vpq is a submodule  of  lpq. Thus we may, and will, regard Vpq a s  a subspace of C o~ (~t). 

2 Analytic results 

2.1 Orbits and stabilizers 

Satz XI.5.5. in [ B K ]  shows that  each element in fi is L c~ K-conjugate  to an 
element of  the form rxfl  + . . .  + r,f , ,  where the rj are real numbers ,  unique 
up to permutat ion.  Since L = ( L n K ) A ( L ~  K), it follows that  the elements 
fpq = (Jl + . . .  + J ~ , ) -  ( f , - q + l  + . . .  + f , )  are a set of representatives for the 
L orbits on ft. 

We describe next the stabilizer Spq of fpq in L, or, rather, its Lie algebra %q. For  
the semi-definite orbits, this is calculated in [RV] and the general case may  be 
deduced by passing to the complexification. We omit  the (easy) proof  and content  
ourselves with stating the result. 

If  p + q is equal to n, %q is a real form of ~o  = 1 c~ [. 
I fp  + q is less than n, we proceed as follows: Write  li~ for the (e,i - ej)-root space 

in I. Let 11 (resp. 12) be the subalgebras o f l  spanned by {hi, lij} such that both  (resp. 
neither) o f / a n d j  belong to the set of indices {p + 1, p + 2 . . . . .  n - q }; also let fi be 
the subalgebra  spanned by { lij } such that  i is in this set whitej  is not. Then I2 ~ %q is 
a real form of 12 c~ f, and 

(2) %q = 11 + (12 c~ %q) + ft. 

We also need to consider ~pO n %q with p + q < n, which is (clearly) contained 
in %q. In fact, 12 c~ %o n ~oq is compact ,  and 

(3) %0 ~ ~Oq = ll q- ([2 ~ ~pO m fiOq) q- ft. 

We now calculate the trace of the adjoint  representat ions of %q and %0 n %q. 
F o r  semidefinite orbits, the trace vanishes on the last two factors of(2) and (3), since 
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they are compac t  and nilpotent, respectively. For  indefinite orbits, the second 
factor in (2) is no longer compact ,  but the trace still vanishes on it, since it is 
conjugate to 12 c~ f after complex!lication. 

I f p  + q = n the first factor is missing, and so ~pq is unimodular ,  l fp  + q < n, we 
have to consider the trace of  the adjoint action of 11 on ft. Since the dimension of 
each l~j is d, we see that this trace is d(p + q)(ep + . . .  + c,,_o). It follows that, 

(4) trace(ad~pq) = d(p + q)vl~pq, t r a ce ( ad~po~%q)  = d(p + q)vl%oC~ %q. 

Let us write 6'pq for the L-orbi t  of fp0. The following L e m m a  is crucial: 

Lemma.  I f  p + q < n, then the Soq-orbit of fpo is open and dense in ~:ro. 

This is p robab ly  well known,  but lacking a suitable reference, we shall sketch 
a proof. First of all, let q)l . . . . .  ~o, be the polynomials  defined in Theorem 0 of 
[KS] ,  for example.  (~p, = ~p and the other g,j's are norm functions for smaller 
Jordan  algebras.) 

It is easy to see that the set o f y  in fi for which ~0t(y) . . . . .  q)p(y) are positive, 
and ~0r+~(y ) . . . . .  ~0,(y) = 0, is open and dense in (r)po. Finally, by a procedure  
analogous to Gauss ian  elimination, one may show that exp(%q) acts transitively 
on this set. 

2.2 Measures and convolution 

In this section, we determine equivariant  measures on the various orbits. The basic 
result for such measures  is the following: 

Suppose G is a Lie group and H is a closed subgroup  whose modular  function 
6n extends to a character of G. Then it is well known (and easy to prove) that  G/H 
has a natural  measure  which t ransforms by the character  6G/c~n of G and satisfies, 
for f e  C~ (G), 

," 
G/H 

Thus it follows from (4) that  (9/,o = L/Spo has an L-equivar iant  m e a s u r e  dlzpq 
which t ransforms by the character  v d~p+qJ. For  p + q < n, this is the measure given 
by (5); however  for p + q = n, (5) gives an invariant measure,  which we adjust by 
multiplying by a suitable power  of the absolute value of the Jordan norm, ~o. 

It  also follows from (4) that  Spq/(Spo c~ Soq) has an Svq-invariant measure. 

For  the rest of  this section, let us fix p and q with p + q < n. To  simplify the 
notat ion slightly, we will write (5, 01, (9'2 for 0pq, ~ro, 6'oq respectively, S, $1, $2 for 
their stabilizers, and dp, dpl ,  dp2 for their equivalent measures. 

Now put C' = (91 x C2, d#' = dpl x d#2, and S' = SI c~ $2, then (5' is "a lmost"  
a single L-orbit.  Indeed, the action of L on (fpo,foo) gives an L-equivar iant  m a p  
from L/S' to (5', and L e m m a  2.1 implies that the complement  of L/S' in (5' is a set of 
/~'-measure zero. 

If  ~p is a function on (5', we define ~ b  to be the function on (5' given by: 

~O(ts)  = j ~(IsS')ds/s.(sS') 
s/s'  

where ds/s, is the S-invariant  measure  on SIS'. 
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N o w  if ~ 1 and ~2 are compact ly  suppor ted  smooth  functions on (91 and (92 then 
we define their "convolut ion"  by ~1 * 11/2 = '(~(11/I )< I / /2)-  It easily checked that  the 
(implicit) integral is convergent  and yields a smooth  function. Moreover  (4) implies 

(6) !l//l*~2d#= (J ~ ~1d/21)(~! ~2d~/2). 

2.3 The Fourier transform 

Let (,) be the L-invariant  pairing between fi and n described in w If dm is 
a tempered  measure  on fi, its Fourier  t ransform is the tempered distr ibution on 
n defined by ~exp(ix,  y)dm(y) .  

For  each orbit, we describe a special "Gauss ian"  function and calculate the 
Four ier  t ransform of the associated measure.  For  the semi-definite orbits (91 and 
(92, the Gaussians  are defined to be e l ( y ) =  e x p ( -  e,y)  and e z ( y ) =  exp(e, y), 
respectively; while for the indefinite orbit  (9, we define its Gauss ian  function by 
means of the convolut ion e = el * e2. 

Since el and e2 are smooth  functions with rapid decay it follows easily that  e is 
a smooth,  L 1 n L~~ on (9. In particular,  ed/~ is a tempered  distribution. We 
will now renormalize d#l ,  d#2, d/~ so that ~1 e ld# l  = ~e2 ezdp2 = ~e ed# = 1. 

Lemma.  The Fourier transform of  edlz is a(x)  = ~o(e - ix)-dP/gqg(e + ix)  -dq/2. 

Proof  We first show that  if x = l 'e,  then 

(7) 5 exp( - x, y)dlJl(y) = ~p(x) -dp/2. C, 
To see this, observe that  ( x , y ) =  ( l ' e , y ) =  (e, 1-1 "y). Consequently,  the left 

side of (7) becomes ~e, exp( - e, 1-1.  y)dl~l(y) = ~e, e l ( y ) d t q ( l ' y )  = v( l) ap. On the 
other  hand, q~(x) -ap/2 = q~(l" e) -ap/2 = v(1) dp, as well. This proves  (7). 

N o w  the L-orbi t  of  e is open in n, and so by analytic continuat ion,  (7) holds if 
we replace x by x'  - ix where x' ~ L .  e, and x e n is arbitrary.  Specializing to x '  = e, 
we get (p(e - ix) -ap/2 = ~e-, exp( - e + ix, y)dl~l(y) = J'c, exp(ix, y)el(y)dl~l(y) .  
This proves  the L e m m a  for q = 0 and the p roof  for p = 0 is analogous.  

Finally, since exp(ix,  Yl + Y2) = exp(ix,  y l ) exp ( i x ,  Y2), (6) gives the identity 

eSexp(ix'y)el*e2(y)dlJ:(c!exp(ix'yl)e~(yl)dl~l)(~exp(ix'y2)e2(Y2)dlJ2)'e2 

from which the L e m m a  follows immediately.  Q E D  

3 The main result 

3.1 Irreducibility on Po 

Let us fix p and q, and put  
d 

rc~,,(l)q(x) = I~(l)v-g{P+q)rl(1-1. x). 

d 
t = l  + ~ ( n - l - p - q ) ,  then (1) gives 
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If r/is the Fourier  transform of a distribution of the form Odt~pq, then an easy 
calculation using the invariance of the pairing, and the equivariance of the measure 

d 
dppq shows that n~,t(l)q is the Fourier  transform of kt"(I)v-~P+qltp(l - ~ "y)dl~vq. 

If H is as in the introduction, it follows that (n~, t, H) is a unitary representation 
of P. 

Lemma.  (n~,t, H)  is irreducible even upon restriction to the identity component Po. 

The argument  is classical and we sketch the proof. Realize n,, t on L2(C ', dfl), via 
the Fourier  t ransform and let T be a bounded intertwining operator.  It suffices to 
show that T must  be a constant. 

The action of N consists of multiplication by characters on C, and since these 
characters separate points, it follows from the Stone-Weierstrass theorem that T is 
itself the operator  of multiplication by a bounded Borel function. Finally, since Lo 
acts transitively on C, we see that this function is a constant,  which proves the 
lemma. 

3.2 The 1 dimensional K-type 

Let us now fix p and q and consider rCpq, lpq, and Vpq as in 1.3. For  simplicity of  
notat ion we suppress the indices. 

The next lemma provides the crucial connection between V and C. 

d 
Lemma.  The function cr (of Lemma 2.3) lies in the K-type -~(p - q)# of  V. 

Proof  Let a .... t be a function in the 1 dimensional K-type (a + e)# in I(e, t). F rom 
(1), we get no, r( l ) t l (x)= t l ( l - l " x ) ,  and thus no, r(1)q) = vZ(l)q~. Since the Cayley 
transform maps lc to fc and 2v to /~, we see that a , ,o , r=q)~(c ' x )  and 
cr . . . . .  = q)~ x). 

Now, for arbitrary t, a .... t is obtained by multiplying cr . . . . .  by the spherical 
function in I(0, t). This spherical function was calculated in Lemma 2.1.3 in IS1] 

d 
and was shown to be rp~'-~)/2(e + xZ). Specializing to t = 1 + ~ (n - 1 - p - q), 

d 
and a + e = ~ (p  - q) we get 

d d 
( 8 )  O" = q)- 4 (P+q)(e -~- X2)qo4(P-q)(c~ x). 

N o w  e + x 2 = (e + ix)(e - ix), and c ' x  = (e + i x ) ( e -  ix)-1,  and while in 
general the norm of the product  of two elements in n is not equal to the product  of  
their norms, this is true for (e + ix) and (e - ix). Thus (8) simplifies to the formula 
of  Lemma 2.3. Q E D  

3.3 The proof  o f  the main theorem 

Let H be as in the introduction, then Lemma 3.2 implies that a belongs to H. Let us 
write (,) for the inner product  on H, and ( , )  for the (g, K)-invariant  form on V. Let 
)r be the (abstract) Hilbert space closure of V with respect to ( , ) .  
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Now let ,~'(G) denote the convolution algebra of smooth L 1 functions on G, 
and consider the subspace W = ~(~ ' (G))a  of gcg. It is easy to see that W consists 
of smooth functions on G, which are therefore determined by their restrictions 
to N. Moreover, since G = PoK and a transforms by a character of K, it follows 
that W =  ~(sJ(Po))a. Since (g,H) is a unitary representation, we see that 
Wc_H. 

Thus W is a subspace of H c~ ~ ,  and carries two rc(Po)-invariant forms. By the 
Lemma in the appendix, it follows that there is an d(Po)- invar iant  subspace W' of 
W, such that the two forms are proportional on W'. Since W' is dense in H, by 
considering its closure, we get an isometric, Po-invariant, imbedding of H into ~'ff. 
Finally, since W is G-invariant, and ~,o is an irreducible representation of G, W is 
dense in ~ ;  and since W __ H, it follows that H = ~'4ts 

3.4 Concluding comments 

d 
1. The K-types of Vpq were described in 1.3. If 4 (p - q) is an integer the representa- 

tion actually descends to the adjoint group. I f~  (p - q) is a half-integer, we still get 

a linear group, but if ~ (p - q) is a quarter integer the representation is that of  

a metaplectic double cover. For G = Sp(n, R) we have d = 1, and H10 is the 
holomorphic part of the oscillator representation. 

2. By combining Lemma 3.2 with Theorem 1 of [M],  it may be shown that the 
associated variety of Hpq is the coadjoint G-orbit containing Opq. One may also 
check that if p + q < n, then Hpq is a unipotent representation in the sense of IV]. 

3. If p + q = n, then the orbit (~pq is open, and 2.2 shows that there is a one- 
parameter  family of L-equivariant measures and Hilbert spaces. These spaces carry 
natural unitary representations of P and one may ask which of these extend to G. 
The answer, which is quite subtle, may be obtained by combining Theorems 5A 
and B of [S] with the techniques of this paper. 

4. The group G is generated by P together with the element i = exp(e - f ) ,  
which acts on the Jordan algebra by inversion, and generalizes the conformal 
inversion operator in Minkowski space. One can check that for r t in Ca(n),  

~pq(l)rt(x) = Zpq(x)r/( - x - 1), 

where )~vq is a certain fractional power of the norm function. Our main result is 
equivalent to the unitarity of this operator on Hpq. 

Appendix 

Let Po be a connected Lie group of type 1, with modular function 6, and let 
d denote the convolution algebra of smooth functions in LI(Po). Then ,~' is 

a , -algebra with respect to the operation f*(p) =f(p-1)6(p-1).  

Proposition. [P] If(n, H) is an irreducible unitary representation of Po, then there is 
a function f in  d ,  w i t h f = f *  such that n( f)  is an (orthogonal) projection of rank t. 
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Write (,) for the inner product on H. Then, as observed by R. Howe, this 
proposition implies the following uniqueness result for (,). 

Lemma.  Let W be an non-zero, ,.cJ-invariant, (necessarily dense) subspaee o[ H, 
and let ~ , )  be any ,~-invariant inner product on 14/. Then there is a non-zero, 
.~-invariant, (necessarily dense) subspace W' of  W such that ~, ) is proportional to (,) 
on W'. 

Proof Choose  f as in the p ropos i t ion  and fix v @ 0 in the range of re(f). Since Wis  
dense in H, we can find a u in W such that  (u, v) + 0. Now f = f *  implies that  
(n ( f )u ,  v) = (u, ~z(f)v) = (u, v) 4= O. Consequent ly ,  7r(f)u + O, and so g ( f ) u  must 
be a non-zero mult iple  of  v. It follows that  v belongs to W. 

Let ~ = {v, v)/(v, v), we claim that  (w, v)  = c~(w, v) for all w in IV. Indeed, 
the left side is ( w , ~ ( f ) v ) =  ( r r ( f * ) w , v ) =  { ~ ( f ) w , v ) .  (The first equal i ty  
follows from the invariance of  ( , ) ,  and the second holds since f = f * . )  
Similarly, (w, v ) =  (w, g ( f ) v ) =  (~( f )w ,  v). Since 7r(f)w is a mult iple  of v, the 
claim follows. 

N o w  if h is any function in ~/,  then ( w , = ( h ) v ) = ( n ( h * ) w , v ) =  
c~(~z(h*)w, v) = e(w, rc(h)v). The Lemma follows upon put t ing W' = =(~g)v. Q E D  

(It was po in ted  out  by N. Wal lach  that  if one considers subspaces that  are 
merely Po-invariant ,  then one can construct  n o n - p r o p o r t i o n a l  Po-invariant  inner 
products .)  
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