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1 Introduction

A partition of length < n is a vector A € Z! satisfying A; > --- > A, > 0, and its weight
is [\l = A; + -+ + Ay. The monomial symmetric function m,(x) is the sum > x*---x%
where « ranges over all distinct permutations of A. The m, form a Z-basis for the ring A,
of symmetric integral polynomials in x;, ..., x,.

Macdonald [M] has defined certain remarkable polynomials P, (x; g, t) in A,,®Q(q, t)
which can be tersely characterized by the following two properties: First, in the expres-
sion of P, in terms of symmetric monomials, the coefficient of m, is 1. Second, let Ty,
be the “q-shift operator” defined by Tqx f(x1,...,%xn) = f(x1,...,0%4,...,%y); then P, is an

eigenfunction with eigenvalue } I, g*it"~* for the operator D defined by

txi — x5
D := Z Ailx; t)Tqx, where Ailx;t) := H u.
i

For g = 0 and g = t, one gets the Hall-Littlewood polynomial P,(x;t) and the Schur
polynomial s,, respectively, while lim;_,; P(x;t%, t) yields the Jack polynomial P;\“) (x).

Our first result is a generalization of Py(x; q,t) to n “t-parameters.” Thus let T =
(T1,...,Tn) be indeterminates, and put F = Q(q, 7). If p is a partition, write g *t for the
n-tuple (@ " ty,...,q " 1,). We show that for each partition A of length < n there is a
unique (inhomogeneous) polynomial R,(x; g, T) of degree |A| in A, ® F which satisfies

(1) in the expansion of Ry in terms of symmetric monomials, the coefficient of m,

is 1;

(2) Ralg™"t;q,t) = 0 for each partition p # A with |u| < |A|.
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1.1. Theorem. Let Ry(x;q,t) be the polynomial obtained from R,(x; q, T) by specializing

7; = t~™Y; then the top homogeneous component of Ry(x; q,t) is Px(x; q, t). O

This is proved in Section 3, by showing that Rj(x;q,t) is an eigenfunction for a
difference operator D’ closely related to Macdonald's operator.

Our second result concerns a conjecture of Macdonald about P, (x; q, t). We identify
A with its diagram consisting of the lattice points (i, j) € Z? such that 1 < j < A, and X'
denotes the transposed diagram. For s = (i, j) € A the armlength is a(s) = A; — j and the
leglength is 1(s) = A — i, and we put c\(q, t) 1= [ [, (1 — q*t!+1),

The polynomial JA(x; q, t) := calq, t)Pa(X; q, t) has remarkable integrality properties.
Write my(A) for the number of A;'s equal to d. Let S)(x;t) be the basis dual to s, for the
inner product on A, ® Q(t) defined by (PA(x;t), Pu(; 1)) = dau/ TTaxy H?:‘lm(l — t1). Define
the (q, t)-Kostka coefficients Ky,(q, t) by expressing

Tuba,t) =1 ) Kyulq, 1Sa(x; 1),
A
Our second main result, proved in Section 5, is the following.
1.2. Theorem. K,,(q,t)is a polynomial in q and t with integral coefficients. O

Macdonald [M] (8.18?) has conjectured that the coefficients of K,,(q, t) are actu-
ally positive integers, and Garsia and Haiman [GH] have even provided a conjectural
representation-theoretic interpretation. Despite this, it was previously not even known
that the K,,(q, t) were polynomials.

Our proof of Theorem 1.2 actually raises more questions than it answers. In Sec-
tion 4 we introduce a family of inhomogeneous nonsymmetric polynomials G4(x;q,T)
indexed by “compositions” « € Z}. These polynomials are closely connected with a re-
markable representation of the Hecke algebra of the symmetric group, first defined by
Bernstein and Zelevinsky. In Section 2 we collect relevant facts about the Hecke algebra
and this representation.

Using operators from the Hecke algebra, we establish recursion formulas for the
G, and prove a polynomiality result for their coefficients. Now the R, can be obtained
from the G, by a symmetrization in the Hecke algebra, and hence we obtain Theorem 1.2.

We conclude with some remarks about the connection of our results with other
work on the subject.

(a) For general T the polynomials R, should probably be related to the g-Dyson
identity (conjectured by G. Andrews, and proved in [BZ]) and to supersymmetric Schur
functions [M, p. 90], but as yet we have not been able to make a precise connection.

(b) For q = 0, as proved by Lusztig [L1], the polynomials K, (q, t) are closely related
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to the Euler-Poincaré polynomials for the intersection cohomology sheaves on unipotent
conjugacy classes in GL,;, where m = |A| = |u/.

(c) The representation of the Hecke algebra alluded to above can be generalized
and extended to the “extended” affine Hecke algebra [L.2] and even to the “double” affine
Hecke algebra [C] for the Weyl group of an arbitrary root system. Macdonald’s polynomi-
als are also defined in this more general setting, and many of their properties have been
established by Cherednik in this generality.

(d) Using our results, it is not too difficult to show that the top terms of G, are
eigenfunctions of Cherednik’s operators [C] and hence are the “nonsymmetric” Macdonald
polynomials for the case A,,_;. However, the deeper combinatorial properties of the A,_;
case do not seem to follow from the general case. Thus, despite their importance, in the
interest of brevity we have omitted all discussion of Cherednik operators.

(e) The interpolation problems leading to R) and G, had their genesis in the Capelli
identity of [KS1], [KS2], [S], and in the classical (Jack polynomial) case have been studied
in joint work with F. Knop, the details of which will appear elsewhere. In particular, in
[KnS] we have settled in the affirmative a conjecture of Macdonald about the positivity

and integrality of the coefficients of Jack polynomials.

Added in Proof. After this work was completed, we have learnt informally that Theorem
1.2 has recently been obtained independently by several people, including Garsia-Tesler,
Garsia-Remmel, Knop, and Kirillov-Noumi. It should be instructive to compare their

proofs with ours.

2 Interlude

In this section we review some facts about the symmetric group S,, and its Hecke algebra.
Let si; be the transposition in S,, which interchanges i and j. The set § = {s; :=

siit+1} generates S,,, and we write l(w) for the length of a shortest, or reduced, expression

of w as a product of the s;’s. This length function satisfies l(sw) = l(w) &1 for s € 8.
Write w > w' if w = W's;; for some transposition si; and if lw) > lw'). The

transitive closure of this relation, still denoted by >, is called the Bruhat order on S,,.
2.1. Proposition. If w > w and s € §, then either w's > w or w's > ws (or both). O

(This is in [H, p. 119] with reversed inequalities. However, as explained on that
page, the transformation w +— wow yields the above form.)

A composition « of length < n is simply a vector in Z7, and we write || =
&1 + - - - + &,. The symmetric group S, acts on Z7, and the orbit of « contains a unique

partition oct.
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Definition. For « € ZI we define w, in S, by saying that for i < j, wx(i) < wu(j) unless

o < 0.

2.2. Lemma. w, is the unique minimal element among the w € S, satisfying wa = ot.
O

Proof. Write R := {e; — ¢; | 1 # j} C Z"™ where ¢; is the ith unit vector. Then R is a
root system of type A,_;, and IT := {e; — ¢; | i < j} is the usual positive subsystem. A
composition 3 is a partition if and only if for the usual inner product on Z"™ we have
(B,v)=0forallyell.

By [H, Ch. 1], the length of w € S, is the cardinality of the set TT(w) := {y € TT |
wl(y) ¢ TT}, and w is uniquely determined by TT(w). Moreover, it follows from the definition
of w, that TT(w,) consists precisely of those y in T for which («,y) < 0.

Now if wa is a partition and y € TT(w,), then we have (wa, wy) = («,y) < 0, which
implies that wy ¢ T1. Thus TT(w) 2 TT(w,) and the result follows. ]

The dominance order for partitions (of length < n) is defined by writing A > p if
Al =|wland Ay +---+ A >y +---+ p; foreach i < n.

Definition. For « and {3 in Z}, we say that o« > 3 if || = |3] and either
(1) ™ > p* in the dominance order, or
(2) ™ = B* and wg > wy.

(Note the reversed Bruhat order inequality.)
2.3.Lemma. If a > 3 and s € 8§, then either & > sf3 or s& > sf3 (or both). O

Proof. If ot > Bt orif B > spP, then x > sP. So assume ot = B* and sp > B, which
means that lwsz) < liwg), and hence that lw,gs) < Liwg). Since (wss)p = B+ we also get
wp < wgps. This forces liwg) = Liwsgs) and hence wgg = wgs.

Now o > 3 implies wg > wy, so by Proposition 2.1 either weg > Wy 0T Weg > Wys.

Since (wys)soe = wyot = o™, we have wys > wg, and the result follows. [ |

Definition. The Hecke algebra H of the symmetric group is the associative algebra over
Q(t) generated by 1 and the elements T, s € 8 subject to

@T2=(1-tT+t

(b) Tg; Ts; = Tg; Ty, for [i — j| > 1;

(c) Ty, T, =T, T, Ts

Si+1 'Si Sit+1 i1

2.4. Proposition. If w = s;, ---s;, is any reduced expression, then Tg; --- T

=: T, de-
pends only on w. The elements T,,, w € S;; form a Q(t)-basis for H, and we have

(1) T, T, =T, if v e S, and Lvw) = L{v) + L(w);

(2) TTw = (1 — YTy + Ty if s € S and Usw) < Uw). O
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(This is proved in [H, Ch. 7] for the variant of ¥ satisfying T? = (q — I)T; + qTs.
However, this becomes (a) of our definition upon setting ¢ =t and T, = t1Tj.)

2.5. Lemma. The element C =}  t'™T, satisfies T,,C = C forallw € W. O

Proof. It suffices to establish that T;C = C for s in S. Partition W = W, [ [ W_ according
as lsw) — lw) equals +1 or —1. Then sWy = W4, and we get T,C = Y  t™'™T,, + (1 —
O T 4ty tTWT, =ty +1-9Y _+5,=C. ]

There is an important representation of H, essentially due to Bernstein and
Zelevinsky (unpublished). For t = 0 the representation was introduced by Bernstein,
1. Gelfand, and S. Gelfand [BGG] and independently by Demazure [D].

Definition. Define N; := (xi/(x; — xi+1))(1 — s3) and o7 := s; + (1 — t)Nj.

Observe that if f is a polynomial in {x1,...,x,}, then f —s;f is divisible by x; — xi1,
and hence N; and o; are well-defined operators on Q(t)[xy,..., x4l
2.6. Proposition. T, — o; extends to a representation of H on Q(t)[x,,...,x,]. O

Proof. It is not too hard to verify (a), (b), and (c) directly. We sketch a proof and the
interested reader can easily supply the details.

For (a), using sf =1, six{ = xi418i, and siXxiy; = X;Si, one checks that N;s; + s;N; =
si — 1 and that N2 = N;. It follows that 0? = (1 — t)o; + t.

Part (b) is trivial. For (c), one first checks that oyx; = xi 10y + (1 — t)xq, OiXiy1 =
xi01 — (1 — t)x, and oyx; = %504, if j # 1,1+ 1. Now write Z = 01014101 — 0i+10i0i4+1. Using
the above formulas, one may easily verify that Zx; = xi12Z, Zxiy2 = xiZ, and Zx; = ;2
for j # 1,1+ 2. Since Z(1) = 0, it follows by induction on deg(f) that Z(f) = 0 for all f, and
hence that Z = 0. ]

For & € Z™ write x* := xJ ... x%n,
+ 1 n

2.7. Proposition. (a) If « <y, then o;x* is a combination of x? with p <y or § < s;y.

(b) If sjx > «, then the coefficient of x** in o;x* is t. O

Proof. We have o;x* = x%% 4+ (1 — t)N;x* and

& Xit]1 X1, 4
X X — X X o
Nixoc Xi i M4l i i+1 || Xj]'
X{ — Xi41

4,41
Let 1 be the smaller of «;, i41, and put k = |&; — &;i;1|. Then the monomials xP

which occur in oix* satisfy p; = «; for j #1,i+1, and p; =1+ ¢, fiy1 = 1+ k — e for some
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0 > € > k. Thus either § = x or B < «*, or else B = s;. Thus (a) follows, in the last case
from Lemma 2.3.

For (b) we note that s;ix > « means «; < «;,1, and so the coefficient of x*i* in N;x*
is —1. Thus the coefficient in o;x* = s;x* + (1 — t)N;x*is 1 + (1 — t)(—=1) = t. [ |

3 Symmetric interpolation

Let q, k, and T = (14, ..., T,) be indeterminates, and put F = Q(q, k, 7). If A is a partition,
let us write k + gt for the n-tuple (k + g™ M1y, ..., k+ g *1,).

3.1. Theorem. Symmetric polynomials of degree < d in A, ® F are uniquely determined
by prescribing their values on the points k4 q~*t as A ranges over partitions with |A| < d.
O

Proof. Writing p = >_ cym,, interpolation gives a square linear system for c,. It suffices
to prove existence, for which we may assume n > 1 and proceed by induction on n + d.
Now a partition A of length < n—1 can be regarded as one of length < n by append-
ing a zero. Thus we get a natural, degree-preserving Z-map f — f* from A,_; to A, ex-
tending my(x1,...,X%n_1) = Malx1,...,xs). This satisfies f*(x1,...,xn_1,0) = flx1,...,%Xn_1).
We describe how to choose suitable symmetric polynomials f and g such that

n

px)i=fTxi =k —Tn,...,%Xn —k—Tp) + |:H(Xi — k—’rn)i| glgxy,..., qxn)
i=1

has degree d and assumes prescribed values for x = k + q~*t with |A| < d.

First consider x = k + g1, as A ranges over partitions with |A| < d and A, = 0.
Then x,, — k — 1, = 0 and so the second term vanishes. The first term equals f(x; —
k —Tn,...,Xn_1 — k — T,,) and its argument ranges over the set (—t, + g M1y,...,—T, +
g ™-11,_,). By induction this determines f in n — 1 variables with degree < d.

Now consider the points x = k 4+ q~*1, as A ranges over partitions such that
Al < dand A, > 0. If d < n, there are no such points and we put g = 0. Otherwise u =
(A —1,...,A\y—1) ranges over all partitions with |u| < d—n, and (qxy,..., qx,) = gk+q~"T.
Since each of the factors x; — k — T, = (@71 — T,) is nonzero, by induction, we can find

g with degree < d — n such that p(x) has the desired values at the remaining points. m

3.2. Theorem. For each partition A of length < n there is a unique inhomogeneous
polynomial Ry(x;k, q,7) of degree |A| in A,, ® F which satisfies
(1) in the expansion of R, in terms of symmetric monomials, the coefficient of m,
is 1;
(2) Ra(k 4+ g~ *1) = O for each partition u # A with |u| < |A|. O
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Proof. By Theorem 3.1, the space of symmetric polynomials satisfying (2) is 1-dimen-
sional (over F). We need to show that the coefficient of m, for such polynomials is not
identically zero. For this we examine the proof of Theorem 3.1, proceeding by induction
onmn+ Al

First suppose A, > 0, put p = (A\; — 1,...,A, — 1), and put g(x) = g~ "R, (x; q, kq, 7).
Then Ry =[], (xi — k — Tn)g(gxy, ..., dx,) satisfies both (1) and (2).

If A, = 0, write A_ = (Aq,...,Anz1), T— = (T1,...,Tn-1), and x_ = (X1,...,%Xn-1),
and put f(x_) := Ry_(x_;q,—Tn,T-). By Theorem 3.1, for suitable g, the function R, :=
frix —k — o) + [T, (6 — k — Ta)glax, . . ., qxn) satisfies (2). The coefficient of m, is zero in
the second term and, by induction and the definition of f*, 1 in the first term. ]

It follows from the definitions that {R,} is a basis (over Q(q, k, 7)) of A,, ® Q(q, k, 7).
The dependence of R, on k is rather mild—it follows from the definition that
Ralx;q,k,T) = Ralx; — k,...,xn — k;q,0, 7). Also, the only “divisions” involved in the con-
struction of Ry are by expressions of the form (¢ ™t; — T;) where m > 0 and i < j. Thus
we may specialize T in any way we like, provided these expressions do not vanish. In

particular, let 6 = (m —1,...,1,0), and write t® for the n-tuple (t~™-1 ... t1 1).
Definition. We define Ry(x; g, t) := Ra(x; q,0,t7%).

We will show that the top homogeneous component of Ry(x; g, t) is the Macdonald

polynomial P,(x; q,t). The following operator plays a key role in the proof of this result.
Definition. We define

tx — X
D = 3 Al —x )1 = Ty, where A t) i= [ ——2.

i T
3.3.Lemma. We have (a) Y ; Ai(x;t) = Y ;t"} and (b) 3, x{ 'Ailx, t) = 3 x; . o
Proof. Let asx) := [Tio;(xi — %) = X, (—1)"x*® be the Vandermonde determinant,

and observe that we may rewrite A;(x;t) = agl(TtXi a;s). For part (a) we have )} Ti,,a;5 =
2 i 2 wes, (= 1)Vt™9ix" and the result follows by interchanging the order of summation.

For each j > 1, the coefficient of t/ in _ x{th,Xi as is a skew-symmetric polynomial
of degree < deg(as) and so equals zero. Part (b) follows by setting t = 1. ]

3.4. Lemma. If fis a polynomial of degree < d in A;; ® Q(q, 1), so is D'f. O

Proof. Observe that (1 — Ty )x* = (1 — g*)x* and that this is zero if \; = 0, and thus
xi_l(l — Tyx) maps polynomials to polynomials. If f is a symmetric polynomial, then
2 (T as)(l — x{l)(l — Tqx,)f is skew-symmetric, and dividing by a; we conclude that D’f
is a symmetric polynomial of degree at most deg(f). [ |
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3.5. Lemma. R,(x;q,t)is an eigenfunction of D’ with eigenvalue > t"'— 3 qht"' O

Proof. First observe that D'Ry has degree < |A|. Next, put x = g *t~°. Then Tgxfx) =
f(q~#=¢)t=%), where €; is the ith unit vector in Z%.

If u is a partition, so is p — €;, unless either u; = gy = mori=n,u, = 0. In
the first case we have x; = ¢ ™t """ and x;;; = "™t ""*! thus tx; = xi41 and so A;(x;t)
vanishes. In the second case x, = 1 and so (1 — x{ ') vanishes.

Combining these facts, we deduce that for x = g~ *t° with |u| < ||,

W= {ZAi(X;t)(l —x DRAx) ifp=A

It follows that Ry, is an eigenfunction of D" with eigenvalue ) A;(x; t)(1—x; !) where

x = @~ %, Lemma 3.3 completes the proof. [
We can now prove Theorem 1.1.

Proof of Theorem 1.1. Let us write P for the top homogeneous component of R, and
then the coefficient of m, in P is 1. Now the top term of D'Ry is } Ai(x;t)(1 — Ty )P =
(3", t"* — D)P where D is Macdonald's operator. Using Lemma 3.5 we conclude that
DP =5 gMt"iP. [ |

4 Nonsymmetric interpolation

As before, let q, k, and T = (ty1,...,7,) be indeterminates and put F = Q(q, k, 7). The

nonsymmetric case involves a “twist” by the permutation w, defined in Section 2.
Definition. For o € Z}, we set® = «(k, d,7) := k + g *(wy1); i.e., % = k + g~ (W T);i.

We study the interaction of this definition with the following operations on n-
tuples.

Definition. Ifn = (,...,nn) is an n-tuple, we define
- :=Mm1,...,Mn-1);
2 @ n:=Mn—1,M1,...,Mn1), Pyni=M2,..., M0, + 1)
(3) @gqxn = (k(1 — @) + gnn, M1, - -+, Mn=1)-

4.1. Lemma. For xinZ},
(a) if y =0 then o € Z'7 ' and ®- = &_(q, k, T_);
(b) if o, > 0 then ®_oc € Z% and O x = D_ox. O
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Proof. If «, = 0, then from the definition of w, it is clear that w,(n) = n and that
wy (i) = we_(i) for i < n, which implies part (a). Next suppose &, > 0, and put f = ®_(«),
and then @ @ = (k+ q P weDn, k+ g P2(Wwet)1, ..., k+ g Priwa 1),

Fori< j<mn, o <oy=Ppip1 < Pjr1, and thus wy(i) < wel(j) =weli+1) < wgl(j +1);
and for j = n, o4 < on = Pig1 < P1 50 weli) < wyn) = wg(l) < wgl(i 4 1). This means

WpT = (WeTh, WaT1, ..., (WeTIn—1), and part (b) follows. [ |
We can now prove the nonsymmetric analogues of Theorems 3.1 and 3.2.

4.2. Theorem. Polynomials of degree < d in Flxy,...,x,] are uniquely determined by

prescribing their values on the points & for o in Z% with || < d. O

Proof. As before, the interpolation problem is a square linear system and existence
implies uniqueness. For existence, we argue by induction on n + d and may assume
n>1.

We will find suitable polynomials f and g so that
plx) = flx; =k —Tn, ..., Xno1 — kK — Tn) + (xn — k — 1) g(Dg xx)

has prescribed values for x = & with |x| < d.

First consider the points x = & as « ranges over Z" with || < d and «, = 0. By
Lemma 4.1 (a), we see that x,, = k+ T, so that the second term vanishes, and also that the
argument of f ranges over &_(q, —Ty,T_) for a_ in Z} ! with |_| < d. By induction this
determines f in n — 1 variables with degree < d.

Now consider the points x = «, for « € Z with |¢| < d and «, = 1 > 0. Then
Xn — k — Tn = q~'1; — T, for some 1, and this is nonzero. By Lemma 4.1 (b), the argument
of g ranges over the points 3 for B € ZT with |3| < d — 1. By induction, we can find g with

degree < d — 1 such that p(x) has the desired values at the remaining points. ]

4.3. Theorem. For each ain Z there exists a unique inhomogeneous polynomial G, :=
Gulx;q,k, T) of degree < |«| in Flxy,...,x,] which satisfies

(1) the coefficient of x* in G is 1;

(2) G«(B) = 0 for each B # « in Z} with |B| < |«|. O

Proof. As in the symmetric case, the uniqueness is clear and for existence we examine
the proof of Theorem 4.2, proceeding by induction on n + |«].

If &, > 0,thenlet p = O_« := (xn — 1,1,...,0m-1), and put g(x) = q~* " Gg(x).
Then G := (xn — k — T,)g(®qxx) satisfies both (1) and (2).

If «, = 0, then write f := G,_(x_;q, —Ty,T_). By Theorem 4.2, for suitable g, the
function G4 = f(x) + (xn — k — Tn)g(D4x) satisfies (2). The coefficient of x* is zero in the

second term and, by induction, it is 1 in the first term. [ |
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As before, the specialization T = t™° is well defined and leads to remarkable

functions.
Definition. We define G4(x;q,t) := G4(x;q,0,t™°).

The first basic property of these functions has already been established in the

proof of Theorem 4.3. For ease of future reference we formulate it as a corollary.

4.4. Corollary. Let @4 be the operator @,f(x) := (x, — 1)f(qxn, X1,...,%Xn_1), Suppose x, >
0, and put B = (o — 1,1, ..., 0n_1). Then Gulx;q,1t) = g~ 1D, Glx; g, t). O

Recall from Section 2 that

o =8 +(1— t)L(l —s4)

Xi — Xi41
generate a representation of the Hecke algebra H on Q(t)[xy,...,x,]. (Hence also on
Q(qa t)[X], oo aXn]-)

4,5. Theorem. Write G, for G(x;q,t).
(@) If six = «, then 0;G, = G4 and s;Gy = Gq.

(b) If sjx # «, then [(1 — &4 /)03 + t — 1]1G4 is a nonzero multiple of G 4. O
Proof. First note that we can rewrite

xi — txq tX{ — Xit1

Gulx) +

Xi — Xi+1 Xi — Xi+1

01Gu(x) = Gulsix). ()
Next we make two crucial observations. First, if 3; # Bi41, then wy g = s;wp and
hence s; B = siB. Second, if B; = Bi;1 = b and wp(i) = j, say, then wg(i+ 1) = j + 1 and so
tB; = tq Pt D) = q P+ = B
Now suppose six = « and {3 in ZT satisfies |B| < || and  # «. Then s;3 # «, and
if we substitute x = f in (%), then by the above remarks, we see that both terms vanish.
Also, if we substitute x = &, the second term vanishes while the first becomes G,(x). Since
deg(0;G,) = deg(G,), Theorem 4.2 implies that 0;G, = G,. The implication s;G, = G, is a
formal consequence. Indeed, if f is any function such that o;f = f, then we get
i — Xitl

tx
O=oif —f=
Xi — Xi+1

(Sif — f)

and hence s;f — f = 0. This proves (a).

Finally, suppose s;x # « and | < |«|, and then by the above remarks we get

0 if B # «, s
o — tog _ .
— — Gyl ifB=c«
O'iGoc(B) = X — K41 B

tXit1 — X

— — Gy(® if B = sicx.
Kit1 — &4
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Rewriting this, we get
[ — Tos1)oi + (£ — VEIGalB) {0 P s
X — ®is1)O0y — Vo — )
v s (% — t11Ga(®  if B = sicx.

Since o # xi11, we get o — togy, # 0, and part (b) follows from Theorem 4.2. [ |

4.6. Theorem. For a partition A, let V), be the Q(q, t)-span of {G,\(x;q,t) | w € S;;}. Then
V) is H-invariant, and for each f € V4, }_ t~'™T, f is proportional to Ry(x;q, t). O

Proof. Since the o; generate JH, part (a) follows immediately from Theorem 4.5.

For part (b), put R = Y t7'"™T,f. By Lemma 2.5, o;R = R for each i, and hence,
as observed in the proof of Theorem 4.5, s;R = R, and so R is a symmetric polynomial.
Since deg(R) < |A|, by Theorem 3.2 it suffices to show that if p is a partition with |pu| < |A|
and p # A, then R(q™*t™®%) = 0. But in this case w, = 1 and i = g *t7%, and so every Gy
vanishes at g *t~%. Thus so does every function in V,, including R. ]

5 Integrality

We now undertake a detailed study of the coefficients of R) and G, with respect to the
monomial bases. This culminates in the proof of Theorem 1.2.
Recall the partial order > defined in Section 2 for the set of « in Z} of a fixed

weight. We now extend this, still writing >, by including the relations « > p if |«| > |B].
5.1. Theorem. The coefficient of x? in G,(x; q,t) is zero unless p < «. O

Proof. The case |«| = 0 is trivial, and we proceed by induction on |«|. Now if sjax > «
and if the result holds for «, then by Lemma 2.3 and Theorem 4.5 it also holds for s;«.

Thus we may assume that « is antidominant, i.e., satisfies a; < --- < ;. We
need to show that if xP with B # « occurs in G, then either p* < a* or |B| < |«].

Let k be the smallest index such that oy = o y; = -+ = &, = q, say, and put
v=@_ )" *lx=(a—1,...,a—1,a,...,00-1). Then, by Corollary 4.4, G, is proportional
to d)g*k“Gy. Thus, if x? occurs in G, then either || < |«| (in which case we are done),
or else there is somen <y with [n| = |y| and = @1‘k+1n.

Since y© > n* and since each coordinate of v is < a — 1, either we have o > n™
(in which case we are done), or else the first n — k + 1 coordinates of n are also a — 1. In
the latter case, since the last k — 1 coordinates of y form an antidominant tuple, we have

either y* >n*, which implies ™ > 3%, or y =1, which gives « = B. ]

For i < j, si; has the reduced expression s;iSiti---Sj_25j—15j—2 - - - Si (and length

2j —2i—1). Hence, in the Hecke algebra, T;; := Tsh. = 040i41 * - - 0j—20j—10j_3 - - - Oj.
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We now prove a refinement of Theorem 4.5 for s;; in the following setting: Suppose
o € Z1 satisfies oq = 0 for some k, and «,, # 0. Let j be the largest integer with «;_; =0,

and let i be any integer such that oy = o411 = - -+ = j_; = 0, and put p = sij«.

5.2. Theorem. Let &, be as above with &; = q7%t™¢, and put e = d +i— j + 1; then

j
V71— g G = (1 — q )T G+ (t—1) ) ' TG .
k=i+1

Proof. Fori < k < j, ax = 0, and so o = t* /™! and B = siSiy1---8j_1 . Writing

{k}=1-a/0=1—q % 4 il and [k] = {kjox + t — 1, by Theorem 4.5 we get
Gp ~[ili+11---[j — 11Gq.

(The notation ~ means “is a nonzero multiple of.”)
Now {k}+t—1=1—q 9t 4*i-1 4+ 1 =1t{k+1}. Also, fori <k < j—2, by
Theorem 4.5, 6,.G, = G, and so [k]G, = t{k + 1}G,. Expanding [j — 11G,, and using this,

we observe that we can pull out a factor of {j — 1} to get
Gp ~ QA+ 11---[j — 210j1Ga + (t = DU i+ 1} - {j — 2)Gq.

For k < j — 2, ox and o0j_; commute, and so 0j_; G4 is invariant under oy. Thus,
expanding [j—2] and arguing as above, we get a three-term expression in which the factor

{j — 2} can be pulled out. Continuing in this manner, we conclude that

j
Gp ~ {iJoi---051Ga + (t = 1) Z "oy 051Gy
k=i+1
Since {i} = 1 — g %t ¢ and since oy fixes G, for i < k < j — 1, we can rewrite this
as

j
Gp ~ (1 - q_at_e)Tichx +(t-1) Z tk_i_lTijcx.
k=i+1
It remains to show that the coefficient of x? on the right side is t/~*(1 — q~%t~¢). By
Theorem 5.1 and Proposition 2.7 (a), the only part of the expression in which x?P occurs

is (1 — g~ %oy - - - 0j_1x*. The result follows from Proposition 2.7 (b). [}

The previous formulas allow us to control the coefficients of G,. The sharpest
results are obtained when « is antidominant. Thus, let A be a partition and let & =
Any -y A1)

5.3. Theorem. The coefficients of c)(q~!,t7!)G, are polynomials in Z[q~!,t,t7!]. O
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Proof. This is obvious if |A| = 0, and we proceed by induction on |A|. Let 1 be the length
of A\, writep =M, — 1,...,A,—1,0,...,0), and put

YZ(Hn)”')ul)z(oa"'aov)\l_]-a"‘a}\l_1))
T]Z()\l—l,...,Al—1,0,...,0).

By induction, c,(q~!,t7!)G, has coefficients in Z[q~!,t,t7!], and we consider how
these change as we go from G, to G, and then to G,.

Now we can transform vy to n as follows: Let v}, be the first nonzero entry of y. For
each j =h,...,n, successively apply the transpositions si; for i = j — (n — 1) to exchange
Yj; = An—j+1 — 1 with the zero entry n — 1 places above it.

Theorem 5.2 applies to this situation, with a = Aq_j;; — 1 and e = n —w,(j) +
(j—m+1)—j+1=1-w,(j)+ 1. It follows that as j ranges from h to n, the pairs (a,e — 1)
range over the arm- and leglengths of the lattice points (k, 1) € A for those k with A at
least 2. Thus 1 — q~%t~¢ ranges over the (q~!,t™!)-hooklengths for these lattice points.
Throwing in terms of the form (1 — t™™) for the remaining hooklengths, we deduce from
Theorem 5.2 that the coefficients of c\(q~!,t7!)G, are in Z[q~*,t, t7'].

Next, by repeated applications of Corollary 4.4, we have

n

GOL = q_lnl H (Xi - ]-)Gn(qxn—l+1) s 0Xny X1, . )Xn—l)-
i=n—1+1

Now if xP occurs in G, then, by Theorem 5.1, we have |B| < |, and it follows that
every coefficient of cy(q!,t )Gy is in Z[q~!, t,t 1. [ ]

We now prove the symmetric version of the previous result.

5.4. Theorem. The coefficients of cy(q~!,t7})R\(x;q,t) are polynomials in Z[q~!,t,t7!].
|

Proof. For a = (An,...,A;), by Theorem 4.6 we know that the sum ) ¢ t7'™T,G, is
proportional to R,. In fact, we can restrict the sum to a certain coset described below.

Thus let I := {s € § | s(A\) = A} (in other words, s; € Iif and only if A; = A1), and let
W1 be the subgroup of S, generated by 1. Then, by [H, p. 19], there is a set W! in S, such
that for every w in W there exist unique u € W' and v € W; such that w = uv. Moreover,
we have l(w) = U(u) + l(v), which implies that T,, = T, T,.

Now by Theorem 4.5, T,F, = F,, thus pulling out a factor of }_ t~', we conclude
that ) .1 t7"WT, G, is proportional to Ry. Now, by Theorem 5.1, the only term which con-
tains x* corresponds to the unique element u, such that u,x = A, and by Proposition 2.7
(b) the coefficient of x* in T, x* is t'®o),
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Thus Ry is equal to Y 1 t7"WT,G. Since T,, preserves the space of polynomials

with coefficients in Z[q~!, t,t!], the theorem follows from Theorem 5.3. [ ]
Finally we prove that Ky,(q,t) € ZIq, tl.

Proof of Theorem 1.2. Since by Theorem 1.1 P, is the top homogeneous component of
Ry, we conclude that for each A the coefficients of cy(q~1,t~Y)Pa(x; q,t) are in Z[q~!,t7 !, t].

Now by [M, p. 324], Pa(x;q71,t7!) = P.(x; q, t). Replacing q,t by their inverses, we
deduce that the coefficients of J»(x; q,t) are in Z[q, t,t!].

By [M, p. 364], for partitions of a fixed weight k > 0, the transition matrix from
the S, (x;t) basis to the m, basis has entries in Z[t] and its determinant is Hl)\l:k cA(0, 1),
which is a product of terms of the form 1 — t¢ for various integers d > 0.

Applying the inverse transition matrix and clearing denominators, we deduce
that for each A and p there are polynomials K'(q,t) € Z[q,t] and K”(t) € Z[t] such that
Kau(q,t) = K'(g,1)/K"(t), and K” is a product of terms of form t* and 1 —t¢. Thus the lowest
coefficient of K” is 1, and for t € C with |t| # 0, 1, K,,(q, t) is a polynomial in q.

However, by [M, p. 354], Ki.(q,1t) = Ky (t, q) where, as usual, A’ and p’ denote the
transposed partitions. Applying the previous remarks to Ky,/(t, q), we conclude that it,
and hence K,,(q,1), is a polynomial in t for generic q. This means K"(t) divides K'(q, t).

Since the lowest coefficient of K” is 1, we conclude that Ky, € Zlq, tl. [ |

Acknowledgments

The author was partially supported by a National Science Foundation grant at Rutgers University.
Parts of this research were carried out at the Mittag-Leffler Institute, Stockholm, and at the Institute
for Advanced Study, Princeton. I would like to thank both places for their hospitality.

The present paper owes a lot to the ideas introduced by F. Knop in our joint work [KnS] for
the classical case, and for this I would like to thank him.

References

[BGG] 1. Bernstein, I. Gelfand, and S. Gelfand, Schubert cells and the cohomology of G/P, Russ.
Math. Surveys 28 (1973), 1-26.

[BZ] D. Bressoud and D. Zeilberger, A proof of Andrews’ q-Dyson conjecture, Discrete Math. 54
(1985), 201-224.

[C] 1. Cherednik, Nonsymmetric Macdonald polynomials, Internat. Math. Res. Notices 1995,
483-515.

[D] M. Demazure, Désingularization des variétés de Schubert généralizés, Ann. Sci. Ecole Norm.
Sup. (4) 7 (1974), 53-88.

TTOZ ‘g 1snbny uo sonewayle |diAl Je 6io°sfeuinolpioyxouiwi woiy papeojumoq


http://imrn.oxfordjournals.org/

[GH]

(H]

[KnS]

[XS1]

[KS2]
[L1]

(L2]
M]

(s

Interpolation, Integrality, and Macdonald'’s Polynomials 471

A. Garsia and M. Haiman, A graded representation model for Macdonald'’s polynomials,
Proc. Nat. Acad. Sci. U.S.A. 90 (1993), 3607-3610.

J. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Stud. Adv. Math. 29, Cam-
bridge Univ. Press, Cambridge, 1990.

F. Knop and S. Sahi, A recursion and a combinatorial formula for Jack polynomials, to
appear.

B. Kostant and S. Sahi, The Capelli identity, tube domains, and the generalized Laplace
transform, Adv. Math. 106 (1991), 411-432.

, Jordan algebras and Capelli identities, Invent. Math. 112 (1993), 657-664.

G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. Math. 42 (1981),
169-178.

, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), 599-685.
1. Macdonald, Symmetric Functions and Hall Polynomials, 2d ed., Oxford Univ. Press, New
York, 1995.

S. Sahi, “The spectrum of certain invariant differential operators associated to a Hermitian

symmetric space” in Lie theory and Geometry, Progr. Math. 123, Birkhduser, Boston, 1994,
569-576.

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903, USA,;

sahi@math.rutgers.edu

TTOZ ‘g 1snbny uo sonewayle |diAl Je 6io°sfeuinolpioyxouiwi woiy papeojumoq


http://imrn.oxfordjournals.org/

	Interpolation, Integrality, and a  Generalization of Macdonald's Polynomials
	1. Introduction
	2. Interlude
	3. Symmetric interpolation
	4. Nonsymmetric interpolation
	5. Integrality
	Acknowledgments
	References


