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Interpolation, Integrality, and a

Generalization of Macdonald’s Polynomials

Siddhartha Sahi

1 Introduction

A partition of length ≤ n is a vector λ ∈ Zn+ satisfying λ1 ≥ · · · ≥ λn ≥ 0, and its weight

is |λ| = λ1 + · · · + λn. The monomial symmetric function mλ(x) is the sum
∑
α x

α1
1 · · · xαnn

where α ranges over all distinct permutations of λ. Themλ form a Z-basis for the ring Λn

of symmetric integral polynomials in x1, . . . , xn.

Macdonald [M] has defined certain remarkable polynomials Pλ(x;q, t) inΛn⊗Q(q, t)

which can be tersely characterized by the following two properties: First, in the expres-

sion of Pλ in terms of symmetric monomials, the coefficient of mλ is 1. Second, let Tq,xi
be the “q-shift operator” defined by Tq,xif(x1, . . . , xn) = f(x1, . . . , qxi, . . . , xn); then Pλ is an

eigenfunction with eigenvalue
∑n
i=1 q

λitn−i for the operator D defined by

D :=
∑
i

Ai(x; t)Tq,xi where Ai(x; t) :=
∏
j 6=i

txi − xj
xi − xj .

For q = 0 and q = t, one gets the Hall-Littlewood polynomial Pλ(x; t) and the Schur

polynomial sλ, respectively, while limt→1 Pλ(x; tα, t) yields the Jack polynomial P(α)
λ (x).

Our first result is a generalization of Pλ(x;q, t) to n “t-parameters.” Thus let τ =
(τ1, . . . , τn) be indeterminates, and put F = Q(q, τ). If µ is a partition, write q−µτ for the

n-tuple (q−µ1τ1, . . . , q
−µnτn). We show that for each partition λ of length ≤ n there is a

unique (inhomogeneous) polynomial Rλ(x;q, τ) of degree |λ| in Λn ⊗ F which satisfies

(1) in the expansion of Rλ in terms of symmetric monomials, the coefficient ofmλ

is 1;

(2) Rλ(q−µτ;q, t) = 0 for each partition µ 6= λ with |µ| ≤ |λ|.
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458 Siddhartha Sahi

1.1. Theorem. Let Rλ(x;q, t) be the polynomial obtained from Rλ(x;q, τ) by specializing

τi = t−(n−i); then the top homogeneous component of Rλ(x;q, t) is Pλ(x;q, t).

This is proved in Section 3, by showing that Rλ(x;q, t) is an eigenfunction for a

difference operator D′ closely related to Macdonald’s operator.

Our second result concerns a conjecture of Macdonald about Pλ(x;q, t). We identify

λ with its diagram consisting of the lattice points (i, j) ∈ Z2 such that 1 ≤ j ≤ λi, and λ′

denotes the transposed diagram. For s = (i, j) ∈ λ the armlength is a(s) = λi − j and the

leglength is l(s) = λ′j − i, and we put cλ(q, t) :=∏s∈λ(1− qa(s)tl(s)+1).

The polynomial Jλ(x;q, t) := cλ(q, t)Pλ(x;q, t) has remarkable integrality properties.

Write md(λ) for the number of λi’s equal to d. Let Sλ(x; t) be the basis dual to sλ for the

inner product on Λn ⊗ Q(t) defined by 〈Pλ(x; t), Pµ(x; t)〉 = δλµ/
∏
d≥1

∏md(λ)
j=1 (1 − t j). Define

the (q, t)-Kostka coefficients Kλµ(q, t) by expressing

Jµ(x;q, t) =:
∑
λ

Kλµ(q, t)Sλ(x; t).

Our second main result, proved in Section 5, is the following.

1.2. Theorem. Kλµ(q, t) is a polynomial in q and t with integral coefficients.

Macdonald [M] (8.18?) has conjectured that the coefficients of Kλµ(q, t) are actu-

ally positive integers, and Garsia and Haiman [GH] have even provided a conjectural

representation-theoretic interpretation. Despite this, it was previously not even known

that the Kλµ(q, t) were polynomials.

Our proof of Theorem 1.2 actually raises more questions than it answers. In Sec-

tion 4 we introduce a family of inhomogeneous nonsymmetric polynomials Gα(x;q, τ)

indexed by “compositions” α ∈ Zn+. These polynomials are closely connected with a re-

markable representation of the Hecke algebra of the symmetric group, first defined by

Bernstein and Zelevinsky. In Section 2 we collect relevant facts about the Hecke algebra

and this representation.

Using operators from the Hecke algebra, we establish recursion formulas for the

Gα and prove a polynomiality result for their coefficients. Now the Rλ can be obtained

from theGα by a symmetrization in the Hecke algebra, and hence we obtain Theorem 1.2.

We conclude with some remarks about the connection of our results with other

work on the subject.

(a) For general τ the polynomials Rλ should probably be related to the q-Dyson

identity (conjectured by G. Andrews, and proved in [BZ]) and to supersymmetric Schur

functions [M, p. 90], but as yet we have not been able to make a precise connection.

(b) For q = 0, as proved by Lusztig [L1], the polynomialsKλµ(q, t) are closely related
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Interpolation, Integrality, and Macdonald’s Polynomials 459

to the Euler-Poincaré polynomials for the intersection cohomology sheaves on unipotent

conjugacy classes in GLm where m = |λ| = |µ|.
(c) The representation of the Hecke algebra alluded to above can be generalized

and extended to the “extended” affine Hecke algebra [L2] and even to the “double” affine

Hecke algebra [C] for the Weyl group of an arbitrary root system. Macdonald’s polynomi-

als are also defined in this more general setting, and many of their properties have been

established by Cherednik in this generality.

(d) Using our results, it is not too difficult to show that the top terms of Gα are

eigenfunctions of Cherednik’s operators [C] and hence are the “nonsymmetric” Macdonald

polynomials for the case An−1. However, the deeper combinatorial properties of the An−1

case do not seem to follow from the general case. Thus, despite their importance, in the

interest of brevity we have omitted all discussion of Cherednik operators.

(e) The interpolation problems leading toRλ andGα had their genesis in the Capelli

identity of [KS1], [KS2], [S], and in the classical (Jack polynomial) case have been studied

in joint work with F. Knop, the details of which will appear elsewhere. In particular, in

[KnS] we have settled in the affirmative a conjecture of Macdonald about the positivity

and integrality of the coefficients of Jack polynomials.

Added in Proof. After this work was completed,we have learnt informally that Theorem

1.2 has recently been obtained independently by several people, including Garsia-Tesler,

Garsia-Remmel, Knop, and Kirillov-Noumi. It should be instructive to compare their

proofs with ours.

2 Interlude

In this section we review some facts about the symmetric group Sn and its Hecke algebra.

Let si j be the transposition in Sn which interchanges i and j. The set S = {si :=
si i+1} generates Sn, and we write l(w) for the length of a shortest, or reduced, expression

of w as a product of the si’s. This length function satisfies l(sw) = l(w)± 1 for s ∈ S.

Write w > w′ if w = w′si j for some transposition si j and if l(w) > l(w′). The

transitive closure of this relation, still denoted by >, is called the Bruhat order on Sn.

2.1. Proposition. If w′ ≥ w and s ∈ S, then either w′s ≥ w or w′s ≥ ws (or both).

(This is in [H, p. 119] with reversed inequalities. However, as explained on that

page, the transformation w 7→ w0w yields the above form.)

A composition α of length ≤ n is simply a vector in Zn+, and we write |α| =
α1 + · · · + αn. The symmetric group Sn acts on Zn+, and the orbit of α contains a unique

partition α+.
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Definition. For α ∈ Zn+ we define wα in Sn by saying that for i < j, wα(i) < wα( j) unless

αi < αj.

2.2. Lemma. wα is the unique minimal element among the w ∈ Sn satisfying wα = α+.

Proof. Write R := {εi − εj | i 6= j} ⊂ Zn where εi is the ith unit vector. Then R is a

root system of type An−1, and Π := {εi − εj | i < j} is the usual positive subsystem. A

composition β is a partition if and only if for the usual inner product on Zn we have

〈β, γ〉 ≥ 0 for all γ ∈ Π.

By [H, Ch. 1], the length of w ∈ Sn is the cardinality of the set Π(w) := {γ ∈ Π |
w(γ) /∈ Π}, andw is uniquely determined by Π(w). Moreover, it follows from the definition

of wα that Π(wα) consists precisely of those γ in Π for which 〈α, γ〉 < 0.

Now if wα is a partition and γ ∈ Π(wα), then we have 〈wα,wγ〉 = 〈α, γ〉 < 0,which

implies that wγ /∈ Π. Thus Π(w) ⊇ Π(wα) and the result follows.

The dominance order for partitions (of length ≤ n) is defined by writing λ ≥ µ if

|λ| = |µ| and λ1 + · · · + λi ≥ µ1 + · · · + µi for each i < n.

Definition. For α and β in Zn+, we say that α ≥ β if |α| = |β| and either

(1) α+ > β+ in the dominance order, or

(2) α+ = β+ and wβ ≥ wα.

(Note the reversed Bruhat order inequality.)

2.3. Lemma. If α ≥ β and s ∈ S, then either α ≥ sβ or sα ≥ sβ (or both).

Proof. If α+ > β+ or if β ≥ sβ, then α ≥ sβ. So assume α+ = β+ and sβ > β, which

means that l(wsβ) < l(wβ), and hence that l(wsβs) ≤ l(wβ). Since (wsβs)β = β+ we also get

wβ ≤ wsβs. This forces l(wβ) = l(wsβs) and hence wsβ = wβs.
Now α ≥ β implies wβ ≥ wα, so by Proposition 2.1 either wsβ ≥ wα or wsβ ≥ wαs.

Since (wαs)sα = wαα = α+, we have wαs ≥ wsα and the result follows.

Definition. The Hecke algebra H of the symmetric group is the associative algebra over

Q(t) generated by 1 and the elements Ts, s ∈ S subject to

(a) T2
s = (1− t)Ts + t;

(b) TsiTsj = TsjTsi for |i− j| > 1;

(c) TsiTsi+1Tsi = Tsi+1TsiTsi+1 .

2.4. Proposition. If w = si1 · · · sik is any reduced expression, then Tsi1 · · · Tsik =: Tw de-

pends only on w. The elements Tw, w ∈ Sn form a Q(t)-basis for H, and we have

(1) TvTw = Tvw if v ∈ Sn and l(vw) = l(v)+ l(w);

(2) TsTw = (1− t)Tw + tTsw if s ∈ S and l(sw) < l(w).
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Interpolation, Integrality, and Macdonald’s Polynomials 461

(This is proved in [H, Ch. 7] for the variant of H satisfying T2
s = (q − 1)Ts + qT1.

However, this becomes (a) of our definition upon setting q = t−1 and Ts = t−1Ts.)

2.5. Lemma. The element C =∑w t
−l(w)Tw satisfies TwC = C for all w ∈W.

Proof. It suffices to establish that TsC = C for s in S. PartitionW =W+
∐
W− according

as l(sw) − l(w) equals +1 or −1. Then sW± = W∓, and we get TsC =
∑
+ t
−l(w)Tsw + (1 −

t)
∑
− t
−l(w)Tw + t

∑
− t
−l(w)Tsw = t

∑
−+(1− t)∑−+∑+ = C.

There is an important representation of H, essentially due to Bernstein and

Zelevinsky (unpublished). For t = 0 the representation was introduced by Bernstein,

I. Gelfand, and S. Gelfand [BGG] and independently by Demazure [D].

Definition. Define Ni := (xi/(xi − xi+1))(1− si) and σi := si + (1− t)Ni.

Observe that if f is a polynomial in {x1, . . . , xn}, then f−sif is divisible by xi−xi+1,

and hence Ni and σi are well-defined operators on Q(t)[x1, . . . , xn].

2.6. Proposition. Tsi 7→ σi extends to a representation of H on Q(t)[x1, . . . , xn].

Proof. It is not too hard to verify (a), (b), and (c) directly. We sketch a proof and the

interested reader can easily supply the details.

For (a), using s2
i = 1, sixi = xi+1si, and sixi+1 = xisi, one checks that Nisi + siNi =

si − 1 and that N2
i = Ni. It follows that σ2

i = (1− t)σi + t.
Part (b) is trivial. For (c), one first checks that σixi = xi+1σi + (1 − t)xi, σixi+1 =

xiσi − (1 − t)xi, and σixj = xjσi, if j 6= i, i + 1. Now write Z = σiσi+1σi − σi+1σiσi+1. Using

the above formulas, one may easily verify that Zxi = xi+2Z, Zxi+2 = xiZ, and Zxj = xjZ
for j 6= i, i+ 2. Since Z(1) = 0, it follows by induction on deg(f) that Z(f) = 0 for all f, and

hence that Z = 0.

For α ∈ Zn+ write xα := xα1
1 · · · xαnn .

2.7. Proposition. (a) If α ≤ γ, then σixα is a combination of xβ with β ≤ γ or β ≤ siγ.

(b) If siα > α, then the coefficient of xsiα in σixα is t.

Proof. We have σixα = xsiα + (1− t)Nixα and

Nix
α = xi

x
αi
i x

αi+1
i+1 − x

αi+1
i x

αi
i+1

xi − xi+1

∏
j 6=i,i+1

x
αj
j .

Let l be the smaller of αi, αi+1, and put k = |αi − αi+1|. Then the monomials xβ

which occur in σixα satisfy βj = αj for j 6= i, i+ 1, and βi = l+ ε, βi+1 = l+ k− ε for some
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0 ≥ ε ≥ k. Thus either β = α or β+ < α+, or else β = siα. Thus (a) follows, in the last case

from Lemma 2.3.

For (b) we note that siα > α means αi < αi+1, and so the coefficient of xsiα in Nixα

is −1. Thus the coefficient in σixα = sixα + (1− t)Nixα is 1+ (1− t)(−1) = t.

3 Symmetric interpolation

Let q, k, and τ = (τ1, . . . , τn) be indeterminates, and put F = Q(q, k, τ). If λ is a partition,

let us write k+ q−λτ for the n-tuple (k+ q−λ1τ1, . . . , k+ q−λnτn).

3.1. Theorem. Symmetric polynomials of degree ≤ d in Λn⊗F are uniquely determined

by prescribing their values on the points k+q−λτ as λ ranges over partitions with |λ| ≤ d.

Proof. Writing p =∑ cλmλ, interpolation gives a square linear system for cλ. It suffices

to prove existence, for which we may assume n ≥ 1 and proceed by induction on n+ d.

Now a partition λ of length≤ n−1 can be regarded as one of length≤ nby append-

ing a zero. Thus we get a natural, degree-preserving Z-map f 7→ f+ from Λn−1 to Λn ex-

tending mλ(x1, . . . , xn−1) 7→ mλ(x1, . . . , xn). This satisfies f+(x1, . . . , xn−1, 0) = f(x1, . . . , xn−1).

We describe how to choose suitable symmetric polynomials f and g such that

p(x) := f+(x1 − k− τn, . . . , xn − k− τn)+
[

n∏
i=1

(xi − k− τn)

]
g(qx1, . . . , qxn)

has degree d and assumes prescribed values for x = k+ q−λτ with |λ| ≤ d.

First consider x = k + q−λτ, as λ ranges over partitions with |λ| ≤ d and λn = 0.

Then xn − k − τn = 0 and so the second term vanishes. The first term equals f(x1 −
k − τn, . . . , xn−1 − k − τn) and its argument ranges over the set (−τn + q−λ1τ1, . . . ,−τn +
q−λn−1τn−1). By induction this determines f in n− 1 variables with degree ≤ d.

Now consider the points x = k + q−λτ, as λ ranges over partitions such that

|λ| ≤ d and λn > 0. If d < n, there are no such points and we put g ≡ 0. Otherwise µ =
(λ1−1, . . . , λn−1) ranges over all partitions with |µ| ≤ d−n, and (qx1, . . . , qxn) = qk+q−µτ.
Since each of the factors xi − k − τn = (q−λiτi − τn) is nonzero, by induction, we can find

g with degree ≤ d− n such that p(x) has the desired values at the remaining points.

3.2. Theorem. For each partition λ of length ≤ n there is a unique inhomogeneous

polynomial Rλ(x; k, q, τ) of degree |λ| in Λn ⊗ F which satisfies

(1) in the expansion of Rλ in terms of symmetric monomials, the coefficient ofmλ

is 1;

(2) Rλ(k+ q−µτ) = 0 for each partition µ 6= λ with |µ| ≤ |λ|.
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Proof. By Theorem 3.1, the space of symmetric polynomials satisfying (2) is 1-dimen-

sional (over F). We need to show that the coefficient of mλ for such polynomials is not

identically zero. For this we examine the proof of Theorem 3.1, proceeding by induction

on n+ |λ|.
First suppose λn > 0, put µ = (λ1 − 1, . . . , λn − 1), and put g(x) = q−|µ|Rµ(x;q, kq, τ).

Then Rλ :=∏n
i=1(xi − k− τn)g(qx1, . . . , qxn) satisfies both (1) and (2).

If λn = 0, write λ− = (λ1, . . . , λn−1), τ− = (τ1, . . . , τn−1), and x− = (x1, . . . , xn−1),

and put f(x−) := Rλ− (x−;q,−τn, τ−). By Theorem 3.1, for suitable g, the function Rλ :=
f+(x− k− τn)+∏n

i=1(xi− k− τn)g(qx1, . . . , qxn) satisfies (2). The coefficient ofmλ is zero in

the second term and, by induction and the definition of f+, 1 in the first term.

It follows from the definitions that {Rλ} is a basis (over Q(q, k, τ)) of Λn⊗Q(q, k, τ).

The dependence of Rλ on k is rather mild—it follows from the definition that

Rλ(x;q, k, τ) = Rλ(x1 − k, . . . , xn − k;q, 0, τ). Also, the only “divisions” involved in the con-

struction of Rλ are by expressions of the form (q−mτi − τj) where m > 0 and i ≤ j. Thus

we may specialize τ in any way we like, provided these expressions do not vanish. In

particular, let δ = (n− 1, . . . , 1, 0), and write t−δ for the n-tuple (t−(n−1), . . . , t−1, 1).

Definition. We define Rλ(x;q, t) := Rλ(x;q, 0, t−δ).

We will show that the top homogeneous component of Rλ(x;q, t) is the Macdonald

polynomial Pλ(x;q, t). The following operator plays a key role in the proof of this result.

Definition. We define

D′ :=
∑
i

Ai(x; t)(1− x−1
i )(1− Tq,xi ), where Ai(x; t) :=

∏
j 6=i

txi − xj
xi − xj .

3.3. Lemma. We have (a)
∑
iAi(x; t) =

∑
i t
n−i, and (b)

∑
i x
−1
i Ai(x, t) =

∑
i x
−1
i .

Proof. Let aδ(x) := ∏i< j(xi − xj) =
∑
w∈Sn (−1)wxwδ be the Vandermonde determinant,

and observe that we may rewrite Ai(x; t) = a−1
δ (Tt,xiaδ). For part (a) we have

∑
Tt,xiaδ =∑

i

∑
w∈Sn (−1)wt(wδ)ixwδ, and the result follows by interchanging the order of summation.

For each j > 1, the coefficient of t j in
∑
x−1
i Tt,xiaδ is a skew-symmetric polynomial

of degree < deg(aδ) and so equals zero. Part (b) follows by setting t = 1.

3.4. Lemma. If f is a polynomial of degree ≤ d in Λn ⊗Q(q, t), so is D′f.

Proof. Observe that (1 − Tq,xi )xλ = (1 − qλi )xλ and that this is zero if λi = 0, and thus

x−1
i (1 − Tq,xi ) maps polynomials to polynomials. If f is a symmetric polynomial, then∑
i(Tt,xiaδ)(1− x−1

i )(1− Tq,xi )f is skew-symmetric, and dividing by aδ we conclude that D′f

is a symmetric polynomial of degree at most deg(f).
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3.5. Lemma. Rλ(x;q, t) is an eigenfunction of D′ with eigenvalue
∑
tn−i −∑qλitn−i.

Proof. First observe that D′Rλ has degree ≤ |λ|. Next, put x = q−µt−δ. Then Tq,xif(x) =
f(q−(µ−εi)t−δ), where εi is the ith unit vector in Zn+.

If µ is a partition, so is µ − εi, unless either µi = µi+1 = m or i = n, µn = 0. In

the first case we have xi = q−mt−n+i and xi+1 = q−mt−n+i+1 thus txi = xi+1 and so Ai(x; t)

vanishes. In the second case xn = 1 and so (1− x−1
i ) vanishes.

Combining these facts, we deduce that for x = q−µt−δ with |µ| ≤ |λ|,

D′Rλ(x) =
{ 0 if µ 6= λ;∑

Ai(x; t)(1− x−1
i )Rλ(x) if µ = λ.

It follows that Rλ is an eigenfunction ofD′with eigenvalue
∑
Ai(x; t)(1−x−1

i ) where

x = q−λt−δ. Lemma 3.3 completes the proof.

We can now prove Theorem 1.1.

Proof of Theorem 1.1. Let us write P for the top homogeneous component of Rλ, and

then the coefficient of mλ in P is 1. Now the top term of D′Rλ is
∑
Ai(x; t)(1 − Tq,xi )P =

(
∑
i t
n−i − D)P where D is Macdonald’s operator. Using Lemma 3.5 we conclude that

DP =∑qλitn−iP.

4 Nonsymmetric interpolation

As before, let q, k, and τ = (τ1, . . . , τn) be indeterminates and put F = Q(q, k, τ). The

nonsymmetric case involves a “twist” by the permutation wα defined in Section 2.

Definition. For α ∈ Zn+, we setα = α(k, q, τ) := k+ q−α(wατ); i.e., αi = k+ q−αi (wατ)i.

We study the interaction of this definition with the following operations on n-

tuples.

Definition. If η = (η1, . . . , ηn) is an n-tuple, we define

(1) η− := (η1, . . . , ηn−1);

(2) Φ−η := (ηn − 1, η1, . . . , ηn−1), Φ+η := (η2, . . . , ηn, η1 + 1);

(3) Φq,kη := (k(1− q)+ qηn, η1, . . . , ηn−1).

4.1. Lemma. For α in Zn+,
(a) if αn = 0 then α− ∈ Zn−1

+ and α− = α−(q, k, τ−);

(b) if αn > 0 then Φ−α ∈ Zn+ and Φq,kα = Φ−α.
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Proof. If αn = 0, then from the definition of wα it is clear that wα(n) = n and that

wα(i) = wα− (i) for i < n, which implies part (a). Next suppose αn > 0, and put β = Φ−(α),

and then Φq,kα = (k+ q−β1 (wατ)n, k+ q−β2 (wατ)1, . . . , k+ q−βn (wατ)n−1).

For i < j < n, αi < αj ≡ βi+1 < βj+1, and thus wα(i) < wα( j) ≡ wβ(i+ 1) < wβ( j+ 1);

and for j = n, αi < αn ≡ βi+1 ≤ β1 so wα(i) < wα(n) ≡ wβ(1) < wβ(i + 1). This means

wβτ = ((wατ)n, (wατ)1, . . . , (wατ)n−1), and part (b) follows.

We can now prove the nonsymmetric analogues of Theorems 3.1 and 3.2.

4.2. Theorem. Polynomials of degree ≤ d in F[x1, . . . , xn] are uniquely determined by

prescribing their values on the points α for α in Zn+ with |α| ≤ d.

Proof. As before, the interpolation problem is a square linear system and existence

implies uniqueness. For existence, we argue by induction on n + d and may assume

n ≥ 1.

We will find suitable polynomials f and g so that

p(x) := f(x1 − k− τn, . . . , xn−1 − k− τn)+ (xn − k− τn)g(Φq,kx)

has prescribed values for x = α with |α| ≤ d.

First consider the points x = α as α ranges over Zn+ with |α| ≤ d and αn = 0. By

Lemma 4.1 (a),we see that xn = k+τn so that the second term vanishes, and also that the

argument of f ranges over α−(q,−τn, τ−) for α− in Zn−1
+ with |α−| ≤ d. By induction this

determines f in n− 1 variables with degree ≤ d.

Now consider the points x = α, for α ∈ Zn+ with |α| ≤ d and αn = l > 0. Then

xn − k − τn = q−lτi − τn for some i, and this is nonzero. By Lemma 4.1 (b), the argument

of g ranges over the points β for β ∈ Zn+ with |β| ≤ d−1. By induction,we can find gwith

degree ≤ d− 1 such that p(x) has the desired values at the remaining points.

4.3. Theorem. For each α in Zn+ there exists a unique inhomogeneous polynomial Gα :=
Gα(x;q, k, τ) of degree ≤ |α| in F[x1, . . . , xn] which satisfies

(1) the coefficient of xα in Gα is 1;

(2) Gα(β) = 0 for each β 6= α in Zn+ with |β| ≤ |α|.

Proof. As in the symmetric case, the uniqueness is clear and for existence we examine

the proof of Theorem 4.2, proceeding by induction on n+ |α|.
If αn > 0, then let β = Φ−α := (αn − 1, α1, . . . , αn−1), and put g(x) = q−αn+1Gβ(x).

Then Gα := (xn − k− τn)g(Φq,kx) satisfies both (1) and (2).

If αn = 0, then write f := Gα− (x−;q,−τn, τ−). By Theorem 4.2, for suitable g, the

function Gα := f(x) + (xn − k − τn)g(Φq,kx) satisfies (2). The coefficient of xα is zero in the

second term and, by induction, it is 1 in the first term.

 at M
P

I M
athem

atics on A
ugust 8, 2011

im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


466 Siddhartha Sahi

As before, the specialization τ = t−δ is well defined and leads to remarkable

functions.

Definition. We define Gα(x;q, t) := Gα(x;q, 0, t−δ).

The first basic property of these functions has already been established in the

proof of Theorem 4.3. For ease of future reference we formulate it as a corollary.

4.4. Corollary. Let Φq be the operator Φqf(x) := (xn − 1)f(qxn, x1, . . . , xn−1), suppose αn >

0, and put β = (αn − 1, α1, . . . , αn−1). Then Gα(x;q, t) = q−αn+1ΦqGβ(x;q, t).

Recall from Section 2 that

σi := si + (1− t) xi

xi − xi+1
(1− si)

generate a representation of the Hecke algebra H on Q(t)[x1, . . . , xn]. (Hence also on

Q(q, t)[x1, . . . , xn].)

4.5. Theorem. Write Gα for Gα(x;q, t).

(a) If siα = α, then σiGα = Gα and siGα = Gα.

(b) If siα 6= α, then [(1− αi+1/αi)σi + t− 1]Gα is a nonzero multiple of Gsiα.

Proof. First note that we can rewrite

σiGα(x) = xi − txi
xi − xi+1

Gα(x)+ txi − xi+1

xi − xi+1
Gα(six). (∗)

Next we make two crucial observations. First, if βi 6= βi+1, then wsiβ = siwβ and

hence siβ = siβ. Second, if βi = βi+1 = b and wβ(i) = j, say, then wβ(i+ 1) = j+ 1 and so

tβi = tq−bt−(n− j) = q−bt−(n−( j+1)) = βi+1.

Now suppose siα = α and β in Zn+ satisfies |β| ≤ |α| and β 6= α. Then siβ 6= α, and

if we substitute x = β in (∗), then by the above remarks, we see that both terms vanish.

Also, if we substitute x = α, the second term vanishes while the first becomesGα(α). Since

deg(σiGα) = deg(Gα), Theorem 4.2 implies that σiGα = Gα. The implication siGα = Gα is a

formal consequence. Indeed, if f is any function such that σif = f, then we get

0 = σif− f = txi − xi+1

xi − xi+1
(sif− f)

and hence sif− f = 0. This proves (a).

Finally, suppose siα 6= α and |β ≤ |α|, and then by the above remarks we get

σiGα(β) =



0 if β 6= α, siα;

αi − tαi
αi − αi+1

Gα(α) if β = α;

tαi+1 − αi
αi+1 − αi Gα(α) if β = siα.
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Rewriting this, we get

[(αi − αi+1)σi + (t− 1)αi]Gα(β) =
{

0 if β 6= siα;

[αi − tαi+1]Gα(α) if β = siα.

Since αi 6= αi+1, we get αi − tαi+1 6= 0, and part (b) follows from Theorem 4.2.

4.6. Theorem. For a partition λ, let Vλ be the Q(q, t)-span of {Gwλ(x;q, t) | w ∈ Sn}. Then

Vλ is H-invariant, and for each f ∈ Vλ,
∑
t−l(w)Twf is proportional to Rλ(x;q, t).

Proof. Since the σi generate H, part (a) follows immediately from Theorem 4.5.

For part (b), put R = ∑ t−l(w)Twf. By Lemma 2.5, σiR = R for each i, and hence,

as observed in the proof of Theorem 4.5, siR = R, and so R is a symmetric polynomial.

Since deg(R) ≤ |λ|, by Theorem 3.2 it suffices to show that if µ is a partition with |µ| ≤ |λ|
and µ 6= λ, then R(q−µt−δ) = 0. But in this case wµ = 1 and µ = q−µt−δ, and so every Gwλ

vanishes at q−µt−δ. Thus so does every function in Vλ, including R.

5 Integrality

We now undertake a detailed study of the coefficients of Rλ and Gα with respect to the

monomial bases. This culminates in the proof of Theorem 1.2.

Recall the partial order ≥ defined in Section 2 for the set of α in Zn+ of a fixed

weight. We now extend this, still writing ≥, by including the relations α ≥ β if |α| > |β|.

5.1. Theorem. The coefficient of xβ in Gα(x;q, t) is zero unless β ≤ α.

Proof. The case |α| = 0 is trivial, and we proceed by induction on |α|. Now if siα ≥ α
and if the result holds for α, then by Lemma 2.3 and Theorem 4.5 it also holds for siα.

Thus we may assume that α is antidominant, i.e., satisfies α1 ≤ · · · ≤ αn. We

need to show that if xβ with β 6= α occurs in Gα, then either β+ < α+ or |β| < |α|.
Let k be the smallest index such that αk = αk+1 = · · · = αn = a, say, and put

γ = (Φ−)n−k+1α = (a−1, . . . , a−1, α1, . . . , αk−1). Then, by Corollary 4.4, Gα is proportional

to Φn−k+1
q Gγ. Thus, if xβ occurs in Gα, then either |β| < |α| (in which case we are done),

or else there is some η < γ with |η| = |γ| and β = Φn−k+1
+ η.

Since γ+ ≥ η+ and since each coordinate of γ is ≤ a − 1, either we have α+ > η+

(in which case we are done), or else the first n− k+ 1 coordinates of η are also a− 1. In

the latter case, since the last k− 1 coordinates of γ form an antidominant tuple, we have

either γ+ > η+, which implies α+ > β+, or γ = η, which gives α = β.

For i < j, si j has the reduced expression sisi+1 · · · sj−2sj−1sj−2 · · · si (and length

2 j− 2i− 1). Hence, in the Hecke algebra, Ti j := Tsi j = σiσi+1 · · ·σj−2σj−1σj−2 · · ·σi.
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We now prove a refinement of Theorem 4.5 for si j in the following setting: Suppose

α ∈ Zn+ satisfies αk = 0 for some k, and αn 6= 0. Let j be the largest integer with αj−1 = 0,

and let i be any integer such that αi = αi+1 = · · · = αj−1 = 0, and put β = si jα.

5.2. Theorem. Let α,β be as above with αj = q−at−d, and put e = d+ i− j+ 1; then

t j−i(1− q−at−e)Gβ = (1− q−at−e)Ti jGα + (t− 1)
j∑

k=i+1

tk−i−1Tk jGα.

Proof. For i ≤ k < j, αk = 0, and so αk = tk− j+1, and β = sisi+1 · · · sj−1α. Writing

{k} = 1− αj/αk = 1− q−at−d−k+ j−1 and [k] = {k}σk + t− 1, by Theorem 4.5 we get

Gβ ∼ [i][i+ 1] · · · [ j− 1]Gα.

(The notation ∼ means “is a nonzero multiple of.”)

Now {k} + t − 1 = 1 − q−at−d−k+ j−1 + t − 1 = t{k + 1}. Also, for i ≤ k ≤ j − 2, by

Theorem 4.5, σkGα = Gα and so [k]Gα = t{k + 1}Gα. Expanding [ j− 1]Gα, and using this,

we observe that we can pull out a factor of { j− 1} to get

Gβ ∼ [i][i+ 1] · · · [ j− 2]σj−1Gα + (t− 1)t j−i−1{i+ 1} · · · { j− 2}Gα.

For k < j − 2, σk and σj−1 commute, and so σj−1Gα is invariant under σk. Thus,

expanding [ j−2] and arguing as above,we get a three-term expression in which the factor

{ j− 2} can be pulled out. Continuing in this manner, we conclude that

Gβ ∼ {i}σi · · ·σj−1Gα + (t− 1)
j∑

k=i+1

tk−i−1σk · · ·σj−1Gα.

Since {i} = 1− q−at−e and since σk fixes Gα for i ≤ k < j− 1, we can rewrite this

as

Gβ ∼ (1− q−at−e)Ti jGα + (t− 1)
j∑

k=i+1

tk−i−1Tk jGα.

It remains to show that the coefficient of xβ on the right side is t j−i(1−q−at−e). By

Theorem 5.1 and Proposition 2.7 (a), the only part of the expression in which xβ occurs

is (1− q−at−e)σi · · ·σj−1x
α. The result follows from Proposition 2.7 (b).

The previous formulas allow us to control the coefficients of Gα. The sharpest

results are obtained when α is antidominant. Thus, let λ be a partition and let α =
(λn, . . . , λ1).

5.3. Theorem. The coefficients of cλ(q−1, t−1)Gα are polynomials in Z[q−1, t, t−1].
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Proof. This is obvious if |λ| = 0, and we proceed by induction on |λ|. Let l be the length

of λ, write µ = (λ1 − 1, . . . , λl − 1, 0, . . . , 0), and put

γ = (µn, . . . , µ1) = (0, . . . , 0, λl − 1, . . . , λ1 − 1),

η = (λl − 1, . . . , λ1 − 1, 0, . . . , 0).

By induction, cµ(q−1, t−1)Gγ has coefficients in Z[q−1, t, t−1], and we consider how

these change as we go from Gγ to Gη and then to Gα.

Now we can transform γ to η as follows: Let γh be the first nonzero entry of γ. For

each j = h, . . . , n, successively apply the transpositions si j for i = j− (n− l) to exchange

γj = λn− j+1 − 1 with the zero entry n− l places above it.

Theorem 5.2 applies to this situation, with a = λn− j+1 − 1 and e = n − wγ( j) +
( j−n+ l)− j+ 1 = l−wγ( j)+ 1. It follows that as j ranges from h to n, the pairs (a, e− 1)

range over the arm- and leglengths of the lattice points (k, 1) ∈ λ for those k with λk at

least 2. Thus 1 − q−at−e ranges over the (q−1, t−1)-hooklengths for these lattice points.

Throwing in terms of the form (1− t−m) for the remaining hooklengths, we deduce from

Theorem 5.2 that the coefficients of cλ(q−1, t−1)Gη are in Z[q−1, t, t−1].

Next, by repeated applications of Corollary 4.4, we have

Gα = q−|η|
n∏

i=n−l+1

(xi − 1)Gη(qxn−l+1, . . . , qxn, x1, . . . , xn−l).

Now if xβ occurs in Gη, then, by Theorem 5.1,we have |β| ≤ |η|, and it follows that

every coefficient of cλ(q−1, t−1)Gα is in Z[q−1, t, t−1].

We now prove the symmetric version of the previous result.

5.4. Theorem. The coefficients of cλ(q−1, t−1)Rλ(x;q, t) are polynomials in Z[q−1, t, t−1].

Proof. For α = (λn, . . . , λ1), by Theorem 4.6 we know that the sum
∑
w∈Sn t

−l(w)TwGα is

proportional to Rλ. In fact, we can restrict the sum to a certain coset described below.

Thus let I := {s ∈ S | s(λ) = λ} (in other words, si ∈ I if and only if λi = λi+1), and let

WI be the subgroup of Sn generated by I. Then, by [H, p. 19], there is a set WI in Sn such

that for every w in W there exist unique u ∈WI and v ∈WI such that w = uv. Moreover,

we have l(w) = l(u)+ l(v), which implies that Tw = TuTv.
Now by Theorem 4.5, TvFα = Fα, thus pulling out a factor of

∑
t−l(v), we conclude

that
∑
u∈WI t−l(u)TuGα is proportional to Rλ. Now, by Theorem 5.1, the only term which con-

tains xλ corresponds to the unique element uo such that uoα = λ, and by Proposition 2.7

(b) the coefficient of xλ in Tuox
α is tl(uo).
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Thus Rλ is equal to
∑
u∈WI t−l(u)TuGα. Since Tw preserves the space of polynomials

with coefficients in Z[q−1, t, t−1], the theorem follows from Theorem 5.3.

Finally we prove that Kλµ(q, t) ∈ Z[q, t].

Proof of Theorem 1.2. Since by Theorem 1.1 Pλ is the top homogeneous component of

Rλ, we conclude that for each λ the coefficients of cλ(q−1, t−t)Pλ(x;q, t) are in Z[q−1, t−1, t].

Now by [M, p. 324], Pλ(x;q−1, t−1) = Pλ(x;q, t). Replacing q, t by their inverses, we

deduce that the coefficients of Jλ(x;q, t) are in Z[q, t, t−1].

By [M, p. 364], for partitions of a fixed weight k ≥ 0, the transition matrix from

the Sλ(x; t) basis to the mλ basis has entries in Z[t] and its determinant is
∏
|λ|=k cλ(0, t),

which is a product of terms of the form 1− td for various integers d > 0.

Applying the inverse transition matrix and clearing denominators, we deduce

that for each λ and µ there are polynomials K′(q, t) ∈ Z[q, t] and K′′(t) ∈ Z[t] such that

Kλµ(q, t) = K′(q, t)/K′′(t), and K′′ is a product of terms of form ta and 1− td. Thus the lowest

coefficient of K′′ is 1, and for t ∈ C with |t| 6= 0, 1, Kλµ(q, t) is a polynomial in q.

However, by [M, p. 354], Kλµ(q, t) = Kλ′µ′ (t, q) where, as usual, λ′ and µ′ denote the

transposed partitions. Applying the previous remarks to Kλ′µ′ (t, q), we conclude that it,

and hence Kλµ(q, t), is a polynomial in t for generic q. This means K′′(t) divides K′(q, t).

Since the lowest coefficient of K′′ is 1, we conclude that Kλµ ∈ Z[q, t].
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