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1 Introduction

In this paper, we are starting a systematic analysis of a class of symmetric polynomials

which, in full generality,was introduced in [Sa]. The main features of these functions are

that they are defined by vanishing conditions and that they are nonhomogeneous. They

depend on several parameters, but we are studying mainly a certain subfamily which is

indexed by one parameter, r. As a special case, we obtain for r = 1 the factorial Schur

functions discovered by Biedenharn and Louck [BL].

Our main result is that for general r these functions are eigenvalues of differ-

ence operators,which are difference analogues of the Sekiguchi-Debiard differential op-

erators. Thus the functions under investigation are nonhomogeneous variants of Jack

polynomials.

More precisely, consider the set of partitions of length n, i.e., sequences of inte-

gers (λi) with λ1 ≥ · · · ≥ λn ≥ 0. The weight |λ| of a partition λ is the sum of its parts λi.

Choose a vector ρ ∈ Cn which has to satisfy a mild condition. Then, for every λ, there is

(up to a constant) a unique symmetric polynomial Pλ of degree at most d which satisfies

the following vanishing condition:

Pλ(µ+ ρ) = 0 for all partitions µ with |µ| ≤ |λ| and µ 6= λ.

This kind of vanishing comes up in the study of invariant differential operators and

Capelli-type identities on multiplicity-free spaces and has been, in special cases, ob-

served by other authors (e.g., [HU], [Ok]).
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474 Knop and Sahi

In full generality,we have basically only one result (beyond their existence) about

the polynomials Pλ, namely, two explicit formulas for Pλ when λ = 1k. From then on, we

only consider ρ = rδ, where r ∈ C and δ = (n− 1, n− 2, . . . , 1, 0).

We prove that these Pλ are simultaneous eigenfunctions of n commuting differ-

ence operators. On the highest homogeneous part of a polynomial, these difference op-

erators act like well-known differential operators: the Sekiguchi-Debiard operators. The

eigenfunctions of those are the Jack polynomials. This has as immediate consequence

that the top homogeneous part of Pλ is a Jack polynomial.

In the later sections, we draw several conclusions from the difference equations.

As an application to the “classical” theory, we give a new proof of the Pieri rule for Jack

polynomials using the polynomials Pλ.

We conclude with a brief discussion of the “integral” form Jλ, which, in the ho-

mogeneous case, is a rescaling of the Pλ by a certain hooklength factor. It turns out that

the corresponding inhomogeneous polynomial seems to have integrality and positivity

properties which generalize a conjecture of Macdonald for the homogeneous case. In

this connection, we have recently proved some integrality and positivity results which

we shall report on elsewhere.

2 The basic construction

The results of this section are essentially in [Sa]. However, in order to keep the develop-

ment self-contained, we give a quick rederivation.

Let us write S(n, d) ⊂ Zn for the set of partitions λ1 ≥ · · · ≥ λn ≥ 0 with |λ| :=∑
λi = d. We say that ρ ∈ Cn is dominant if ρi − ρj 6= −1,−2,−3, . . . for all i < j. Slightly

weakening this condition,we define ρ to be d-dominant if ρi−ρj 6= −1,−2,−3, . . . ,− ⌊d/i⌋
for all i < j where d ∈ N.

Theorem 2.1. For any d ∈ N and ρ ∈ Cn, put M := S(n, d) + ρ ⊆ Cn. Assume ρ is d-

dominant. Then, for every map f: M → C, there is a unique symmetric polynomial f of

degree at most d such that f|M = f.

Proof. For any partition λ ∈ Zn, letmλ be the corresponding monomial symmetric func-

tion in n variables. If we express an arbitrary symmetric function of degree ≤ d in terms

of mλ, then the interpolation problem gives a square system of linear equations for the

coefficients. Hence existence implies uniqueness.

To show existence, we argue by induction on n+d. The case n = 0 is vacuous, so

we assume n ≥ 1.

To any λ ∈ S(n − 1, d) we can append a zero and obtain a partition λ, 0 ∈ S(n, d).
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Difference Equations and Symmetric Polynomials Defined by Their Zeros 475

This way, we can define a map g =∑aλmλ 7→ g+ =∑aλmλ,0. It is an injective map from

symmetric functions in n− 1 variables to symmetric functions in n variables. It has the

property that g+ has the same degree as g, and g+(x1, . . . , xn−1, 0) = g(x1, . . . , xn−1).

We will construct f as a function of the form

f(x) = g+(x1 − ρn, . . . , xn − ρn)+
[

n∏
i=1

(xi − ρn)

]
h(x1 − 1, . . . , xn − 1) .

First, let us consider the setM0 of all points x = λ+ρ ∈Mwith λn = 0. Since xn−ρn = 0,

the first term equals g(x1 − ρn, . . . , xn−1 − ρn) and the second term vanishes. If x runs

through M0, then x′ = (x1 − ρn, . . . , xn−1 − ρn) runs through S(n − 1, d) + ρ′, where ρ′ :=
(ρ1 − ρn, . . . , ρn−1 − ρn), which is also d-dominant. By induction, we can find g of degree

≤ d with f(x) = g(x′) = f(x) for all x ∈M0.

Next, we consider the points x ∈ M \M0, i.e., x = λ + ρ ∈ M with λn > 0. These

exist only if d ≥ n. As x runs through these points, (x1 − 1, . . . , xn − 1) will run through

S(n, d − n) + ρ. Since bd/ic ≥ λi ≥ λn > 0 and since ρ is d-dominant, each of the factors

xi − ρn = λi + ρi − ρn is nonzero. By induction, we can find h of degree ≤ d− n such that

h has prescribed values at M \M0.

We assume from now on that ρ is dominant. With the theorem, we are going

to define interpolation polynomials. To get the most convenient normalization, we have

to introduce some more notation: Recall that a partition λ can be represented by its

diagram, i.e., the set of all lattice points (called boxes) (i, j) ∈ Z2 with 1 ≤ i ≤ n and

1 ≤ j ≤ λi. The dual partition λ′ is the one with the transposed diagram. Now, for every

box s, we define the ρ-hooklength to be cρλ(s) := (λi − j+ 1)+ (ρi − ρλ′
j
) and cρλ :=∏s∈λ c

ρ
λ(s).

Definition. For any partition λ ∈ S(n, d), let Pρλ be the unique polynomial in n variables

such that

(1) Pρλ is symmetric;

(2) degPρλ ≤ d;
(3) Pρλ(µ+ ρ) = 0 for all µ ∈ S(n, d), µ 6= λ;
(4) Pρλ(λ+ ρ) = cρλ.
The normalization condition (4) is motivated by the following theorem. In fact,

we could replace (4) by it.

Theorem 2.2. Let Pρλ =
∑
µ: |µ|≤|λ| u

ρ
λµmµ be the expression in terms of monomial sym-

metric functions. Then uρλλ = 1.

Proof. We proceed by induction on n+ |λ|. As in the proof of Theorem 2.1, we express

P
ρ
λ = g+(x1 − ρn, . . . , xn − ρn)+

[
n∏
i=1

(xi − ρn)

]
h(x1 − 1, . . . , xn − 1) .
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476 Knop and Sahi

First assume λn = 0. Put ν := (λ1, . . . , λn−1) and ρ′ := (ρ1 − ρn, . . . , ρn−1 − ρn). Then Theo-

rem 2.1 implies g = aPρ′ν with a ∈ C∗. Now we compare values at x = λ+ ρ. Since cρλ = cρ
′
ν ,

we obtain a = 1 and the assertion follows by induction.

Next, suppose λn > 0. Then Theorem 2.1 impliesg = 0 andh = aPρν(x1−1, . . . , xn−1)

where ν := (λ1 − 1, . . . , λn − 1) and a ∈ C∗. Again, we compare values at x = λ + ρ. The

linear factors are just the ρ-hooklengths for the first column of λ. Thus, a = 1 and the

assertion follows by induction.

Additionally, we get the following reduction formula.

Corollary 2.3. Assume λ is a partition with λn > 0, and let λ∗ := (λ1−1, . . . , λn−1). Then

P
ρ
λ =
∏
i(xi − ρn)Pρλ∗ (x1 − 1, . . . , xn − 1).

3 Special cases

We do not know an explicit formula for Pρλ in general, but several special cases are known.

For arbitrary ρ we have only a formula for λ = 1k. This is the partition with k

ones and (n − k) zeros. The functions Pρ
1k

are important since they are analogues of the

elementary symmetric functions. In particular, they generate the symmetric polynomials

as a ring. Actually, we have two formulas for them.

Recall that the elementary symmetric function ej(x) and the complete symmetric

function hj(y) are the coefficients of t j in the expansions of E(x, t) = ∏i(1 + txi) and

H(y, t) =∏i(1− tyi)−1, respectively.

Proposition 3.1. Let ρ be dominant and 1 ≤ k ≤ n. Then

P
ρ

1k
=

k∑
j=0

(−1)k− jhk− j(ρk, . . . , ρn)ej(x) =
∑

i1<···<ik

k∏
j=1

(xij − ρij+k− j).

Proof. Denote the first expression by P′, and the second by P′′. We are going to show that

they both satisfy the definition of Pρ
1k

. Both have certainly the right degree and m1k has

the right coefficient.

For the vanishing condition (3), let x = µ+ ρ with |µ| ≤ k and µ 6= 1k. This forces

µk = · · · = µn = 0 and xk = ρk, . . . , xn = ρn. Observe that P′ is precisely the coefficient of tk

in the power series expansion of
∏n
i=1(1+ txi)/

∏n
i=k(1+ tρi). Evaluated at x, this quotient

becomes a polynomial of degree < k, and its kth coefficient P′(x) vanishes. As for P′′, the

index ik in its definition is at least k. Hence the factors for j = k vanish at x,which shows

P′′(x) = 0.
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Difference Equations and Symmetric Polynomials Defined by Their Zeros 477

Finally,we have to show symmetry. This is trivial for P′ but not quite for P′′. First

let n = 2. Then

P′′11 = (x1 − ρ1)+ (x2 − ρ2); P′′12 = (x1 − ρ2)(x2 − ρ2) ,

which are certainly symmetric. Now let n ≥ 3. To make the dependence on ρ and k visible,

we write P′′ = P′′k(x; ρ). Furthermore, let x′, ρ′ (resp. x′′, ρ′′) equal x, ρwhere we dropped the

last (resp. first) component. If we break the defining sum for P′′ up according to whether

ik < n or ik = n, we get

P′′k(x; ρ) = P′′k(x′; ρ′)+ (xn − ρn)P′′k−1(x′; ρ′′).

By induction we see that P′′ is symmetric in x1, . . . , xn−1. If we break the sum up according

to whether i1 = 1 or not, we obtain

P′′k(x; ρ) = P′′k(x′′; ρ′′)+ (x1 − ρk)P′′k−1(x′′; ρ′′).

This shows that P′′ is symmetric in x2, . . . , xn as well.

Remarks. For ρ = r(n− 1, . . . , 1, 0), the expression P′ is essentially due to Wallach while

that for P′′ can be traced back to Capelli. The equality P′ = P′′ can be also proved directly

by using the polynomials ek(x/y) of [M3, p. 58].

For the rest of the paper we specialize to ρ of the form rδ, where r is a complex

number or just an indeterminate and δ := (n−1, . . . , 1, 0). The dominance of ρmeans that

r 6= −p/qwhere p, q are integers such that p, q ≥ 1, and q < n. We shall assume this from

now on.

First we treat the case r = 0. For this we introduce the falling factorial polyno-

mials xm := x(x − 1) · · · (x −m + 1). The factorial monomial symmetric functions mλ are

obtained by replacing each monomial xl11 x
l2
2 . . . x

ln
n in mλ by the corresponding factorial

monomial x
l1

1 x
l2

2 . . . x
ln
n . The following is obvious.

Proposition 3.2. For r = 0, we have P0
λ =mλ.

For r = 1 we get the factorial Schur functions. (See [BL], [M2], and [Ol].) To define

them, we write aδ(x) for the Vandermonde determinant det(x
δj
i ) = ∏i< j(xi − xj). Then the

next result seems to be due to Okounkov [Ok].

Proposition 3.3. For r = 1, we have

Pδλ(x) =
1

aδ(x)
det

(
x
λj+δj
i

)
.
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478 Knop and Sahi

Proof. Since det(x
λj+δj
i ) is a skew-symmetric polynomial, its quotient byaδ is a symmetric

polynomial which is easily seen to have degree |λ|. Now let µ 6= λ and |µ| ≤ |λ|. Since

aδ(µ+δ) 6= 0 for any partitionµ, it remains only to prove the vanishing of det[(µi+δi)λj+δj ] =∑
σ(−1)σ

∏
i(µσ(i) + δσ(i))

λi+δi .

If a, b are nonnegative integers, then ab = 0 unless a ≥ b. So the σ-summand

vanishes unless µσ(i) + δσ(i) ≥ λi + δi for all i. Summing over i, we observe that |µ| ≤ |λ|
forces equality for each i,which implies σ(µ+δ) = λ+δ. But this is not possible for µ 6= λ.

Finally we consider the analogue of the complete symmetric functions, i.e., Prδd
where d stands for (d,0, . . . , 0).

Proposition 3.4. For d ≥ 0 we have

Prδd =
(−r
d

)−1∑
ij

n∏
j=1

[( −r
ij−1 − ij

)
(xj − rδj − ij)ij−1−ij

]
where the sum runs through all integer sequences d = i0 ≥ i1 ≥ · · · ≥ in−1 ≥ in = 0.

Proof. Let pd denote the right-hand side. Obviously, it has the right degree d, and the

coefficient of xd1 is one. Next we show that the vanishing condition holds. For this, let

x = µ + rδ with |µ| ≤ |λ| and µ 6= λ. Then every summand of pd is a multiple of y1(y2 −
1) · · · (yd − d + 1) where y1 = · · · = yin−1 = xn − rδn = µn, yin−1+1 = · · · = yin−2 = µn−1,

etc. In particular, the yi are integers with 0 ≤ y1 ≤ · · · ≤ yd ≤ µ1. Now assume that the

product does not vanish, i.e., yi 6= i − 1 for all i. Then we claim yi ≥ i for all i. Indeed,

yi ≥ yi−1 ≥ i − 1 and yi 6= i − 1 imply yi ≥ i. In particular, µ1 ≥ yd ≥ d. But this is not

possible for our choice of µ. This shows pd(x) = 0.

Finally, we have to prove symmetry. We are considering the case n = 2 first. For

this we need two basic facts about falling factorials:

(1) xa (x− a)b = xa+b (which is obvious) and

(2) (x+ y)n =∑n
i=0

(
n
i

)
xiyn−i (the Vandermonde identity).

Letting i0 = d ≥ i1 = i ≥ i2 = 0, we obtain that pd is a multiple of∑
i

( −r
d− i

)
(x1 − r− i)d−i

(−r
i

)
x
i

2.

Applying identity (2), this becomes∑
i, j

(d− i)!(−r)d−i(−r)i (−r− i)d−i− j
j!(d− i− j)!(d− i)!i! x

j

1x
i

2.

Using (1), the coefficient becomes (−r)d−i(−r)d− j/ j!(d − i − j)!i!, which implies symmetry

for pd(x1, x2).
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Difference Equations and Symmetric Polynomials Defined by Their Zeros 479

Now suppose that n ≥ 3. Summing over i = in−1 first, we obtain

pd(x) =
(−r
d

)−1 d∑
i=0

( −r
d− i

)(−r
i

)
x
i
npd−i(x1 − r− i, . . . , xn−1 − r− i) .

By induction we conclude that pd is symmetric in {x1, . . . , xn−1}. Summing over i = i1, we

obtain

pd(x) =
(−r
d

)−1 d∑
i=0

( −r
d− i

)(−r
i

)
(x1 − rδ1 − i)d−ipi(x2, . . . , xn) ,

which proves symmetry in {x2, . . . , xn}. This concludes the proof.

4 Difference operators and Jack polynomials

In this section we deduce a different characterization of the polynomials Prδλ in terms of

difference equations.

Let εi be the ith canonical basis vector inCn. The ith shift operator Ti on functions

is defined by Tif(x) := f(x − εi), and the ith difference operator is ∇i := 1 − Ti. These

operators commute with each other, and Ti,∇i also commute with multiplication by xj

for j 6= i.

Definition. Let t be an indeterminate. For 1 ≤ i, j ≤ n put

∆i j := (xi + t)(xi + r)δj − xδj+1
i Ti, ∆ := det(∆i j), D(t; r) := aδ(x)−1∆.

Since ∆i j and ∆kl commute for i 6= k, the determinant ∆ is well defined. Furthermore,

it maps symmetric polynomials to skew-symmetric ones. Hence D(t; r) is a well-defined

operator acting on the space of symmetric polynomials. We can develop

D(t; r) = D0t
n +D1t

n−1 + · · · +Dn
into a polynomial where Di is a difference operator of order i and D0 = 1.

Example 4.1. For r = 0 we obtain D(t; r) = (t + x1∇1) · · · (t + xn∇n), and hence Di =
ei(x1∇1, . . . , xn∇n).

We need the following partial order relation on Zn: we say µ ≤ λ if µ1 + · · · + µi ≤
λ1 + · · · + λi for all 1 ≤ i ≤ n. It has the property that λ is a partition if and only if it is

maximal among all its permutations.

Lemma 4.2. The operator D(t; r) is triangular. More precisely,

D(t; r)mλ ∈
∏
i

(λi + rδi + t)mλ +
∑
µ<λ

C[t]mµ.

In particular, deg D(t; r)f ≤ deg f for every symmetric polynomial f.
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480 Knop and Sahi

Proof. The transition matrix between Schur function sλ and monomial symmetric func-

tions mµ is unitriangular. Hence, it suffices to prove D(t; r)mλ ∈
∏
i(λi + rδi + t)sλ +∑

µ<λ C[t]sµ. Now we multiply by aδ. By definition, aλ+δ = aδsλ is the skew-symmetrization

of xλ+δ. Therefore, it suffices to prove that ∆mλ is a linear combination of monomials xµ

with µ ≤ λ+ δ and that the coefficient of xλ+δ has the indicated form.

For this, observe ∆i j = xδji (xi∇i + rδj + t)+ lower terms in xi, and that xi∇i(xmi ) =
mxmi + lower terms. Thus

∆i jx
m
i = (m+ rδj + t)xm+δji + lower terms in xi.

Expanding the determinant defining ∆, we see that all monomials occurring in ∆mλ are

of the form xµ with µ = σ(λ)+τ(δ)−η,where σ, τ are permutations and η ∈ Nn. All these µ

are ≤ λ+ δ. Furthermore, µ = λ+ δ implies σ(λ) = λ, τ = 1, and η = 0. In particular, only

the diagonal term contributes to xλ+δ. Hence, we obtain

∆mλ ∈
∏
i

(λi + rδi + t)xλ+ρ +
∑
µ<λ+ρ

C[t]xµ.

For I ⊆ {1, . . . , n}, put εI := ∑i∈I εi, and TIf := (
∏
i∈I Ti)f = f(x − εI). Furthermore,

we introduce the functions ϕI(x) := det cIi j(x) where

cIi j :=
{
x
δj+1
i for i ∈ I;

(xi + r)δj for i 6∈ I.
They behave like “cutoff functions.”

Lemma 4.3. Let r 6= 0 and µ be a partition. If µ−εI is not a partition, thenϕI(µ+rδ) = 0.

Proof. Put x = µ+ rδ and assume µ− εI is not a partition. Then there are two cases:

(1) µn = 0 and n ∈ I. Then xn = 0 and the n-th row of cI(x) vanishes. Hence

ϕI(x) = 0.

(2) There is i < n such that i ∈ I, i+ 1 6∈ I, and µi = µi+1. In this case xi = xi+1 + r
and cI has two proportional rows. Hence, again ϕI(x) = 0 and the claim is proved.

Now we prove that each Prδλ is an eigenfunction of D(t; r).

Theorem 4.4. For each partition λ, we have

D(t; r)Prδλ =
∏
i

(λi + rδi + t)Prδλ .

In particular, the action of D(t; r) on symmetric polynomials is diagonalizable with dis-

tinct eigenvalues.
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Difference Equations and Symmetric Polynomials Defined by Their Zeros 481

Proof. In view of Lemma 4.2, it suffices to show that D(t; r)Prδλ satisfies the vanishing

condition. We may exclude the case r = 0 either by direct computation or by continuity.

Since, then, aδ(µ+ rδ) 6= 0 for all partitions µ, we are left with ∆(f).

We can expand ∆ as follows: ∆ =∑I dITI, where dI = detdIi j and

dIi j :=
{
−xδj+1

i for i ∈ I;
(xi + t)(xi + r)δj for i 6∈ I.

Since dI is a multiple of ϕI, Lemma 4.3 holds also for it. Let µ be a partition with |µ| ≤ |λ|,
µ 6= λ. Then ∆Prδλ (µ + rδ) = ∑I dI(µ + rδ)Prδλ (µ − εI + rδ). Since Prδλ satisfies the vanishing

condition, it follows from Lemma 4.3 that dI(µ+rδ)Prδλ (µ−εI+rδ) = 0 for all I. This finishes

the proof of the vanishing condition for D(t; r)Prδλ and of the theorem.

Since the Prδλ form also an eigenbasis for D1, . . . , Dn we obtain the following.

Corollary 4.5. The difference operators D1, . . . , Dn commute pairwise.

Corollary 4.6. Every Prδλ has an expansion of the form mλ +
∑
µ<λ uλµmµ.

Proof. Lemma 4.2 implies that D(t; r) preserves the finite-dimensional space spanned

by {mµ | µ ≤ λ}. Thus, by the theorem, it has an eigenvector with the above expansion,

which by the lemma has the same eigenvalue as Prδλ . So, they are equal.

Now we can make the connection to the Jack polynomials. First, we recall their

definition: for an indeterminate t, consider the differential operators

∆ := det
(
x
δj
i (t+ rδj + xi ∂

∂xi

)
; D(t; r) := a−1

δ ∆.

These operators were introduced by Sekiguchi [Se] and Debiard [De]. Macdonald [M1]

uses them to define the Jack polynomial P(1/r)
λ : it is the unique eigenvector of D(t; r) which

is of the form mλ +
∑
µ<λ aµmλ.

Corollary 4.7. The top homogeneous component of Prδλ is P(1/r)
λ .

Proof. Denote this component by P. As observed in the proof of Lemma 4.2, ∆i j =
x
δj
i (xi∇i + rδj + X)+ lower terms, and xi∇i = xi(∂/∂xi)+ lower terms. Thus D(t; r) acts

on P by a−1
δ det(x

δj
i (xi(∂/∂xi)+ rδj + t)) =D(t; r). Consequently, P is an eigenfunction of the

Sekiguchi-Debiard operator. The assertion follows from Corollary 4.6.

5 The extra vanishing theorem

Corollary 4.6 states that Prδλ contains fewer monomials than it could according to its

definition. In this section we establish a property of Prδλ which is in a way “dual” to that:

we are going to prove that Prδλ vanishes at more points than it should by definition.
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482 Knop and Sahi

Recall that λ ⊂ µ means λi ≤ µi for all i, i.e., the diagrams are contained in each

other. Let P be the set of partitions. A subset S of P is called closed if λ ∈ S, µ ∈ P,

and λ ⊂ µ implies µ ∈ S. For every closed set S, we consider the ideal IS of symmetric

polynomials which vanish at all points µ+ rδ where µ is a partition which is not in S.

Theorem 5.1. Let S ⊆ P be closed. Then the ideal IS is stable under the action of D(t; r).

Proof. Again,we may exclude r = 0 by continuity. Then we have to show that ∆(f)(x) = 0

whenever f ∈ IS and x = µ + rδ with µ ∈ P \ S. As in the proof of Theorem 4.4 it suffices

to consider the products ϕI(x)f(x− εI). Assume this does not vanish. Then µ′ = µ− εI ∈ P

with f(µ′+ rδ) 6= 0. But then µ′ ∈ S, and therefore µ ∈ S, contradicting the choice of µ.

Now we can prove the extra vanishing theorem.

Theorem 5.2. Let λ and µ be partitions with λ 6⊂ µ. Then Prδλ (µ+ ρ) = 0.

Proof. Consider the closed subset S of all µ containing λ. We have to show Prδλ ∈ IS. Now

for generic r, there exist functions in IS which are nonzero at λ + rδ. (For example, the

product of falling factorials
∏
i, j,k(xi − rδj)λk is such a function.) The ideal IS is D(t; r)-

stable. Since D(t; r) is diagonalizable, there must be an eigenfunction of D(t; r) in IS with

this property. But this function must be a multiple of some Prδµ . Then Prδµ (λ+rδ) 6= 0 implies

|µ| ≤ |λ|. Since Prδµ (µ+ rδ) 6= 0, we have λ ⊂ µ. Hence µ = λ.

This can be extended.

Corollary 5.3. Let S ⊆ P be closed. Then IS = ⊕
λ∈S
CPrδλ .

Proof. Since IS is D-stable, there must be a S′ ⊆ P with IS = ⊕λ∈S′CPrδλ . Let λ ∈ S′. Since

Prδλ (λ+ rδ) 6= 0, it cannot be in P \ S. Hence S′ ⊆ S. Conversely, let λ ∈ S and assume there

is a µ ∈ P \Swith Prδλ (µ+ rδ) 6= 0. Then λ ⊂ µ by the extra vanishing theorem. Hence µ ∈ S,
which is impossible. This shows S ⊆ S′.

To round off this discussion, let us mention the following.

Proposition 5.4. LetΛ be the ring of symmetric polynomials (in n variables). Then every

D-stable ideal of Λ is of the form IS for some closed subset S of P.

Proof. Clearly, every D-stable ideal is of the form ⊕λ∈SCPrδλ . We have to show that S

is closed. For this we need the following weak form of Pieri’s rule proved in the next

section: Let e1 =
∑
i xi. Expand e1P

rδ
λ =

∑
µ aµP

rδ
µ . Then aµ 6= 0 whenever µ = λ + εi ∈ P.

This implies µ = λ + εi ∈ S whenever λ ∈ S and µ ∈ P, which is equivalent to S being

closed.
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6 The dehomogenization operators and the Pieri formula

Both the Prδλ and the Jack polynomials P(1/r)
λ form a basis of the algebra Λ of symmetric

polynomials. In particular, there is a linear isomorphism Ψ: Λ→ Λ which maps P(1/r)
λ to

Prδλ . We are going to show that Ψ can also be described in terms of difference operators.

For this we define the following variant of D:

E := a−1
δ det[(xi + r)δj + txδj+1

i Ti] = 1+ E1t+ · · · + Ent
n.

Let Λd ⊆ Λ be the subspace spanned by all Prδλ with |λ| = d. This is also the space of all

polynomials of degree ≤ d which vanish in all µ+ rδ with |µ| ≤ d− 1.

Lemma 6.1. We have Ek(Λd) ⊆ Λd+k. Moreover, the effect of Ek on the top homogeneous

components is multiplication by the elementary symmetric function ek.

Proof. In the notation of Section 4, Ek has the expansion Ek = a−1
δ

∑
|I|=kϕITI. Hence

Ekf(x) = a−1
δ (x)

∑
|I|=kϕI(x)f(x− εI). Let f ∈ Λd and µ be a partition with |µ| ≤ d+ k− 1 and

x = µ+ rδ. Then we have ϕI(x)f(x− εI) = 0. This means Ekf ∈ Λd+k.
For the top homogeneous terms, TI = 1 and ϕI =

∏
i∈I xi, and hence Ek acts like

multiplication by ek.

Now we can prove the following.

Theorem 6.2. (a) The difference operators E1, . . . ,En commute pairwise.

(b) Letψ: Λ→ C[E1, . . . ,En] be the isomorphism withψ(ek) = Ek. ThenΨ(f) = ψ(f)(1)

(evaluation at 1) for all f ∈ Λ.

Proof. Let Λ(d) be the space of symmetric homogeneous polynomials of degree d. Then

Ψ: Λ(d)
∼→ Λd, and the inverse is given by taking the top homogeneous component. Thus

Lemma 6.1 implies that the following diagram commutes:

Λ(d)
Ψ→ Λd

↓ ek ↓ Ek

Λ(d+k)
Ψ→ Λd+k.

Hence Ψ(ekf) = EkΨ(f) for all f ∈ Λ. This shows (a). Let f(x) = p(e1, . . . , ek). Then Ψ(f) =
Ψ(p(ek)) = p(Ek)Ψ(1) = ψ(f)(1).

As an application of the theory above, we give a new proof of the Pieri rule for

Jack polynomials.

At each lattice point s = (i, j) in the diagram of λ, the lower and upper hooklengths

are defined by cλ(s) = cλ(α; s) := α(λi− j)+(λ′j−i+1), and c′λ(s) = c′λ(α; s) := α(λi− j+1)+(λ′j−i).
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Let µ ⊂ λ. Then X(λ/µ) denotes the set of all boxes (i, j) ∈ λ such that µi = λi and

µ′j < λ
′
j. Then we define

ψ′λ/µ(α) :=
∏

s∈X(λ/µ)

cλ(α; s)/c′λ(α; s)

cµ(α; s)/c′µ(α; s)
.

The Pieri formula is the following identity.

Theorem 6.3. For every partition µ, we have ekP(α)
µ =

∑
λψ
′
λ/µ

(α)P(α)
λ where λ runs over

all partitions of the form µ+ εI for some I ⊂ {1, . . . , n} with |I| = k, i.e., λ− µ is a vertical

k-strip.

Proof. Applying Ψ to both sides, it suffices to prove EkP
rδ
µ =

∑
λψ
′
λ/µ

(1/r)Prδλ , summed

over {λ | λ− µ is a vertical k-strip}. In any case, EkPrδµ =
∑
λ aλµP

rδ
λ where λ is a partition

of degree |µ| + k. Evaluating at the point x = λ+ rδ and using the expansion of Ek, we see

that aλµPrδλ (λ+ rδ) = EkP
rδ
µ (x) = aδ(λ+ rδ)−1ϕI(λ+ rδ)Prδµ (µ+ rδ). Hence, it remains to prove

the identity

ψ′λ/µ(1/r) = aδ(λ+ rδ)−1ϕI(λ+ rδ)(crδλ )−1crδµ .

We first calculate crδλ /c
rδ
µ = r|λ|−|µ|c′λ/c

′
µ. Let us put I′ := {i 6∈ I}, J := {λi | i ∈ I} and

J′ = {λi | i ∈ I′}, and, for simplicity, let us write c′λ(i, j) instead of c′λ(1/r; (i, j)). Then it is

easy to see that for i ∈ I, we have c′λ(i, j + 1) = c′µ(i, j) unless j ∈ J′. Similarly, for i ∈ I′,
c′λ(i, j) = c′µ(i, j) unless j ∈ J. Taking these cancellations into account, we get

crδλ
crδµ
= r|λ|c′λ
r|µ|c′µ

= rk
∏
i∈I
c′λ(i, 1)

∏
i∈I, j∈J′

c′λ(i, j+ 1)

c′µ(i, j)

∏
i∈I′, j∈J

c′λ(i, j)
c′µ(i, j)

.

On the other hand, a−1
δ (λ+ rδ)ϕI(λ+ rδ) equals∏

i∈I
(λi + rδi)

∏
i∈I,k∈I′
i<k

(λi + rδi)− (λk + rδk + r)
(λi + rδi)− (λk + rδk)

∏
i∈I,k∈I′
k<i

(λk + rδk + r)− (λi + rδi)
(λk + rδk)− (λi + rδi) .

Now the set {k ∈ I′ | λk = 0} equals {λ′1 + 1, λ′1 + 2, . . . , n}, and for j ∈ J′, we have {k ∈ I′ |
λk = j} = {λ′j+1 + 1, λ′j+1 + 2, . . . , µ′j}. Thus the first two products, which can be rewritten

as ∏
i∈I

(λi + r(n− i))
∏

i∈I,k∈I′,i<k

λi − λk + r(k− i− 1)

λi − λk + r(k− i) ,

become, after cancellation,∏
i∈I

(λi + r(λ′1 − i))
∏
i∈I, j∈J′
(i, j)∈µ

λi − j+ r(λ′j+1 − i)
λi − j+ r(µ′j − i)

= rk
∏
i∈I
c′λ(i, 1)

∏
i∈I, j∈J′

c′λ(i, j+ 1)

c′µ(i, j)
.

Finally, for each j ∈ J, the set {i ∈ I | λi = j} equals {µ′j + 1, µ′j + 2, . . . , λ′j}. Thus, af-
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ter cancellation, the third product
∏

j∈J,k∈I′,k<i
(
λk − λi + r(i− k+ 1)

) (
λk − λi + r(i− k)

)
be-

comes ∏
j∈J,k∈I′
(k, j)∈µ

λk − j+ r(λ′j − k+ 1)

λk − j+ r(µ′j − k+ 1)
=
∏
i∈I′, j∈J

cλ(i, j)

cµ(i, j)
.

Since

ψ′λ/µ(1/r) =
∏
i∈I′, j∈J

cλ(i, j)/c′λ(i, j)
cµ(i, j)/c′µ(i, j)

,

the result follows.

7 Scholium

We close with a conjecture on the “integral” form of the Jack polynomial. In the homoge-

neous case, this is the function J(α)
λ = cλ(α)P(α)

λ . In the inhomogeneous situation, consider

the function

Jrδλ (x) := (−1)|λ|cλ(1/r)Prδλ (−x).

Various computations suggest the following extension of a conjecture of Macdon-

ald for Jαλ .

Conjecture. Put α = 1/r, and write Jrδλ =
∑
µ≤λ α

|µ|−|λ|aλµ(α)mµ. Then aλµ is a polynomial

in α with positive integral coefficients.

Recently,we have proved Macdonald’s original conjecture as well as the integral-

ity part of the above conjecture. We shall report on these developments elsewhere.
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