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These are rough slides of the topics/arguments pre-
sented in my graduate course on “Graphs, Spectral The-
ory, and Modular Forms” at Yale University in the Spring
of 2001.

The goal was to study the spectra of the graph laplacian
on k-regular graphs, in particular certain Cayley graphs
introduced by Audrey Terras. From these we deduced
a non-trivial bound for Kloosterman sums:∣∣∣∣∣

p−1∑
x=1

e2πi(ax+bx−1)/p

∣∣∣∣∣ ≤ 21/4p3/4, p prime, p - a, b.

This is enough to prove non-trivial bounds towards the
Ramanujan and Selberg conjectures for GL(2), which
in turn have been used to construct expander graphs.
Later we studied the connection, due to Selberg, be-
tween Kloosterman sums and spectral problems on hy-
perbolic surfaces. The course concluded with equidistri-
bution of horocycles and constant terms of Eisenstein
series (some notes on this can be found on my web-
page).

I wish to thank Jonathan Hibbard, Alexander Lubotzky,
Beth Samuels, and Peter Sarnak for their comments.
These notes were typed from my lecture notes by Mel
Delvecchio; all the errors are solely my responsibility.



OUTLINE OF COURSE

1. Study Terras’ “Euclidean Graphs.”

2. Show from them

|K`(a, b; p)| � p3/4, p - a, b

K`(a, b; p) =
∑

j∈(Z/p)∗, jj̄≡1(p)

e
2πi

p
(aj+b̄j)

for Kloosterman sums, thus circumventing Weil’s deep
work showing |K`| ≤ 2

√
p, which is sharp. (Note the

p3/4 bound is elementary and was originally proven by
Kloosterman in the 20’s). Our proof is just a geometri-
cal rearrangement. There already is a DEEP algebraic-
geometric proof.

3. Prove Selberg’s formula relating the poles of the
“Kloosterman Zeta Function”

∞∑
c=1

K`(m, n, c)

c2s

and relatives to the Laplace spectrum on a modular
curve.

4. Deduce from 3 and 2 that

λ1 ≥
1

4
−

3

82

=
7

64
> 0,

enough for Property τ & expansion.



Property τ

for SL2(Z) with respect to congruence subgroups:

inf{λ1(Γ\H) | Γ congruence} > 0.

Definitions

SL2(Z) ⊇ Γ(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣ n|b, c, a− 1, d− 1

}
= “N-th principal congruence sgp”

= Kernel: SL2(Z) → SL2(Z/N),

hence normal

Γ(1) = SL2(Z)

Γ ⊆ Γ(1) is congruence if it contains some Γ(N), N > 0.

Not all finite index subgroups of SL2(Z) are congruence,
but for SLn(Z), n ≥ 3 they are.



Modular forms are forms/functions on the “modular
curves”

X(N) = Γ(N)\H
H = {x + iy | y > 0}

f(γz) = θ(γ)f(z)

θ = ‘‘multiplier/cocycle′′

E.g. ∆(x + iy) = ∆(z)

= e2πiz
∞∏

n=1

(1− e2πinz)24

=
∞∑

n=1

τ(n)e2πinz

Ramanujan conjectured

|τ(p)| ≤ 2p11/2, p prime

for composite n |τ(n)| �ε n11/2+ε, ε > 0



Example of Modularity:

∆(
az + b

cz + d
) = (cz + d)12∆(z)

↑

weight

Natural Ramanujan conjecture:

Σa(n)qn holomorphic form of weight k

|a(p)| ≤ 2p(k−1)/2

e.g. for elliptic curves (k = 2) agrees with Hasse’s bound
|a(p)| ≤ 2

√
p.

• Trivial bound is pk/2

• Any power pβ, β < k/2 is useful. This is analogous
to Property τ , and can be established through the
Kloosterman sum bounds we will derive.

Best situation - no multiplier

f(γz) = f(z)

- Impossible for Holomorphic Forms, unless constant.



There are (mysteriously) lots of nonholomorphic exam-
ples (crucial for number theory)

∆ = −y2(dx2 + dy2) Laplacian

acts on the space L2(Γ\H)

λ0 = 0 ( constant functions)

λ1 > 0 ( interesting values).

Selberg Conjecture (1965)

λ1(X(N)) ≥
1

4

for any modular curve X(N) = Γ(N)\H

• more generally if Γ is a congruence subgroup

• 1
4

does occur for certain N

• false if Γ not congruence (see result of Buser-Sarnak)

• Property τ is the weaker version where 1/4 is re-
placed by some positive quantity.

• Even τ is false for non-congruence subgroups.



Rayleigh Quotient

∆f(x) = 4 lim
r→0

1

r2

∫
sr

f∫
sr
1

Sr ball of radius r about x.

∫
closed Manifold M (no bdy)

f∆f =

∫
M

‖∆f‖2 ≥ 0

so ∆ ≥ 0 and selfadjoint.∫
M

g∆f =

∫
M

f∆g

λ1(M) = inf
f⊥1

∫
‖∆f‖2∫
|f |2

PICTURE

λ1 → 0 as neck shrinks.

So modular curves have few necks.



Margulis (1975):

first construction of expander graphs X w/similar ex-
pansion property

|∂Y |
|Y |

large for |Y | ≤
|X|
2

.

Then later Lubotzky-Phillips-Sarnak (1986) using mod-
ular forms theory.

This course more of a reverse:

special graphs → modular forms → prove τ , rather than
use τ .



Graph Definitions
Graph Laplacian

Γ = graph

A = adjacency operator matrix

Aij =

{
0 disconnected

1 xi ∼ xj adjacent

Assume always k-regular connected, no loops, no double
edges.

Degree=Valency=k=Number of edges at each vertex.

Laplacian:

∆ = kI−A

(∆f)(x) =
∑
y∼x

[f(x)− f(y)]

(averages still)

• ∆ kills constants (one-dimensional space)

• < ∆f, f > ≥ 0

• Since A symmetric, spec A ⊂ [−k, k]



λ1 = λ∆
1 = first pos eig of ∆

= k-(second largest eig of A).

Ramanujan Condition

λ∆
1 ≥ k − 2

√
k − 1

k-regular Tree spectral density

=
k
√

4(k − 1)− x2

2π(k2 − x2)

PICTURE

Expansion Theorem:

Let c = min{ |∂Y |
|Y | , |Y | ≤

|X|
2
}.

Then

c ≥
1− λ∆

1

k

2
.



Proof. Rayleigh-Ritz

λ1 = max
g⊥1

< Ag, g >

< g, g >
(A symmetric).

Let

f = χW (characteristic function)

g = f − f̄

so < g,1 >= 0.

Then
< Ag, g >

=< Ag, f > − < Ag, f̄ >

‖
0

since

< g, Af̄ >

‖
const.

=< f, Af > − < f̄, Af >

=< f, Af > −f̄2k|X|



Now

2 < Af, f > = 2
∑
x∼y

f(x)f(y)

= −
∑
x∼y

(f(x)− f(y))2 + 2k
∑
x∼X

f(x)

≥ 2k|W | − 2k|∂W |
Thus

λ1 < g, g > ≥ < Ag, g >

‖ ≥ k(|W | − |∂W |)−
k|W |2

|X|

λ1(|W | −
|W |2

|X|
)

since

< g, g > =< f − f̄ , f − f̄ >

=< f, f > −2 < f, f̄ >

+ < f̄, f̄ >

=< f, f > −2
|W |2

|X|
+
|W |2

|X|

= |W | −
|W |2

|X|



So

=⇒ |∂W | ≥ (
|W |2

|X|
− |W |)(1−

λ1

k
)

≥
|W |
2

(1−
λ1

k
)

since

|W | ≤
|X|
2

.

�

Certain Cayley Graphs formed from SL2(Z/N) are ex-
panders because of Selberg’s Theorem (λ1(Γ(N)) ≥ 3

16
)),

and Conjecture (≥ 1/4).

Good lower bounds (e.g. Kim-Sarnak’s λ1 ≥ .23 · · · )
provide nice constructions, but the essential property is
that λ1 is bounded away from zero by a positive quantity.



Warning!: A family of expanders should have fixed
degree.

The point of an expander is to construct an efficient
network which is hard to sever.

One extreme would be to connect n points in a circle,
which only requires n connections, but can be discon-
nected in two cuts.

Another would be the complete graph Kn on n vertices,
formed by connecting all vertices to each other. This
requires ∼ n2/2 connections, but is of course quite sta-
ble.

Expander graphs are as inexpensive as the first and as
stable as the second.

However, if one uses the eigenvalue criteria alone for
expansion, then complete graphs actually qualify as ex-
panders!!!

The non-zero eigenvalues on ∆ on Kn are all exactly n,
exceeding the Ramanujan bound k−2

√
k − 1, k = n−1.

Thus it is imperative that the degree be fixed.



Terras’ Graphs

Cayley Graph

G = < S > finite group

S generating set

with S = S−1

Γ: a graph on G with vertices connecting g1 ∼ g2 if
g1 = sg2, for some s ∈ S.

• Finite analog of Lie group/symmetric space.

• In abelian case, nicer.

• Action of adjacency matrix A is convoution with χS.

Theorem Characters of G (finite abelian) are the eigenfn’s
of ∗χS for any subset S ⊂ G.

Proof: Enough to show for S = {t}, t ∈ G where it gives
definition of a character. �



Terras - model Euclidean R2 by Z/p× Z/p

and

S = {(x, y) | x2 + y2 = 1 (mod p)}
⊇ {(0,±1), (±,1,0)} , so generates.

S = −S.

So ∆ averages ball like it should.

Characters are Eigenfunctions

e

(
ax + by

p

)
, 1 ≤ a, b ≤ p,

Eigs : λ(a,b) =
∑

x2+y2≡1(p)

e

(
ax + by

p

)
like Fourier Transform of char F’n of ball, which is a
Bessel function. Here it should be a Kloosterman sum.

Degree/Valency of Graph is

k = |S| = p− (
−1

p
), p > 2



Eigenvalue Calculation (Stark): The eigenvalues are
Kloosterman sums

λ(a,b) = K`(1,
a2 + b2

4
)(
−1

p
).

Proof:

We first write

pλ(2a,2b) =
∑
r/p

Br(a, b)e(−r),

where

Br(a, b) =
∑

x,y∈Z/p

ep(2(ax + by) + r(x2 + y2))

(= 0 if r ≡ 0)

= G2
1 · ep(−r̄(a2 + b2)), rr̄ ≡ 1(p)

G1 =
∑

y mod p

ep(y
2) = Gauss Sum

since G2
1 =

∑
ep(r[(x + a

r
)2 + (y + b

r
)2])

↑ signs cancel in squaring

The proof follows from the well-known fact due to Gauss
that

G1 =

√
(
−1

p
)p. �



SPECTRUM

p ≡ 1(4) p ≡ 3(4)

(a, b) = (0,0) λ0 = k = p− 1 λ0 = k = p + 1

rest K`(1, a), a 6= 0 −K`(1, a), a 6= 0

mult p− 1 = k mult p + 1 = k

K`(1,0) = −1 mult 2(p− 1)

(An)ij = # of paths connecting xi ↔ xj (includes backtracking)

So
∑

λn
j = n-th moment = # of closed paths on Γ of

length = n (includes backtracking).

Paths of Length 2 — PICTURE

kp2 of them

↗ ↖
valency |Γ|



Paths of Length 3

Triangles multiplication like C

(a, b) · (c.d) = (ac− bd, bc + ad) preserves S

(a, b) · (a, − b) = (1,0)

so can “rotate” a triangle to the position

(a, b)

↗ ↖
(0,0) −→(1,0)

like the configuration of {0,1, eπi/3} in C.

Equations for triangle:

a2 + b2 = 1

(a− 1)2 + b2 = 1

||
a2 + b2 + 1− 2a = 1

p ⇒ a =
1

2
, b = ±“

√
3

2

′′

so no ∆’s if (3
p
) 6= 1 and 2p2 · k otherwise.



Squares.

First, paths of length 4 which involve backtracking.

k2p2 PICTURE

k(k − 1)p2 PICTURE

+ ′s should be p2k(k − 2) also

total p2(3k2 − 3k)

Recall the spectrum is

p ≡ 1(4) p ≡ 3(4)

k = p− 1 k = p + 1

λ′s = k λ′s = k

K`(1, a), a 6= 0 mult k −K`(1, a), a 6= 0

mult 2k mult k



Kloosterman’s Thesis, 1926
Second Moment of Spectrum

kp2

k2 + k

p−1∑
a=1

K`(1, a)2 k2 + k

p−1∑
a=1

K`(1, a)2

+ 2k
p−1∑
a=1

K`(1, a)2 = p2 − 2− k

p−1∑
a=1

K`(1, a)2 = p2 − k

= p2 − 2− p + 1 p2 − p− 1

= p2 − p− 1

Eitherway
p−1∑
a=1

K`(1, a)2 = p2 − p− 1



Third Moment of Spectrum


0 if (3

p
) = −1

2p2k otherwise

k3 + k

p−1∑
a=1

K`(1, a)3 − 2k = 2p2k 2p2k = k3 − k

p−1∑
a=1

K`(1, a)

or 0 or 0
p−1∑
a=1

K`(1, a)3 = 2p2 + 2− k2
p−1∑
a=1

K`(1, a)3 = −2p2 + k2

or 2− k2 or k2

=

(
2p2

0

)
+ 2− p2 + 2p− 1

(
−2p2

0

)
+ p2 + 2p + 1(

2p2

0

)
+ 1− p2 + 2p

Either way

p−1∑
a=1

K`(1, a)3 = (−
3

p
)p2 + 2p + 1

is given by a congruence condition.



Fourth Moment

3p2k(k − 1)

k4 + k

p−1∑
a=1

K`(1, a)4 + 2k k4 + k

p−1∑
a=1

K`(1, a)4

∑
K`(1, a)4 = 3p2(k − 1)− 2− k3 or 3p2(k − 1)− k3

= 3p2(p− 2)− 2− (p− 1)3 3p3 − (p + 1)3

= 3p3 − 6p2 − 2− p3 + 3p2 − 3p + 1 3p3 − p3 − 3p2 − 3p− 1

= 2p3 − 3p2 − 3p− 1 2p3 − 3p2 − 3p− 1

Thus

|K`(1, a)| � p3/4



What about formulas for higher moments?

Really k dominates - expect formula like

kn + k
∑

K`(1, a)n + 2k = kn + kpn/2

∼ pn + pn/2+1

√
-sized error term, hard to get

• Kloosterman, Davenport computed moments di-
rectly.

• An alternative, classical approach is through count-
ing points on algebraic varieties

• Katz has gone furthest, showing the renormalized
Kloosterman sums

{
K`(a, p)

2
√

p
| 1 ≤ a ≤ p− 1}

are distributed according to the semi-circle law

2

π

√
1− x2.

• Livne - deviation related to automorphic forms on
GL(n)!!!

• In some sense, the varieties (and graphs) are “mod-
ular.”



Selberg’s Kloosterman Zeta Function

S(m, n; c) =
∑

ad≡1( mod c)

e(
ma + nd

c
)

Focus on c not prime now.

Obviously

S(m, n; c) = S(n, m; c)

S(am, n; c) = S(m, an; c) if (a, c) = 1

Selberg’s Property

S(m, n; c) =
∑

d|(c,m,n)

d S(
mn

d2
,1;

c

d
)

=
∑

d|(c,m,n)

d
∑

ab≡1( c

d
)

e(
(mn

d2 a + b)d

c
)

Twisted Multiplicativity

S(m, n, qr) = S(q̄m, q̄n, r) · S(r̄m, r̄n; q)

(r, q) = 1

qq̄ ≡ 1(r)

rr̄ ≡ 1(q)



Proof: RHS is∑
ab≡1(r),cd≡1(q)

e(
q̄ma + q̄nb

r
+

r̄mc + r̄nd

q
)

Note that we need only show

(qq̄a + crr̄)(qq̄b + drr̄) ≡ 1(qr).

But this easily follows mod q and mod r. �

Upshot: Bounds on S(m, n; pr) are all that’s needed to
bound S(m, n; c), when c is composite.

We treat only p > 2.



Useful Facts. For any p > 2, ∃g such that g generates
all (Z/pk), any k > 0.

Gauss Sum. If (c,2n) = 1, c > 0∑
t∈Z/c

e(
nt2

c
) = (

n

c
)
√

cεc

εc =

{
1 c ≡ 1 mod 4,

i c ≡ −1 mod 4.

1936. Salie’s Evaluation of Kloosterman Sums to prime
power moduli.

Assume (n, m, c) = 1, where c is a prime power c = pβ,
β > 1, p > 2.

1) K`(n, m, c) = 0 unless

n ≡ `2m(c) for some (`, c) = 1.

2) Otherwise K`(n, `2m, c)

= K`(n, n, c) = 2(
n

c
)
√

c Re [εi e(2n/c)]



Proof. for 1), first write

K`(n, m; pβ+1) =
∑

(x,p)=1,x mod pβ+1

e(
nx + mx−1

pβ+1
)

=

p−1∑
x=0

∑
y∈(Z/pβ)∗

epβ+1(n(pβx + y) +
m

pβx + y
)

(npβx + ny −
mpβx

y2
+

my

y2
)

∑
y∈(Z/pβ)∗

e(ny + my−1)

p−1∑
x=0

e(
x

p
(n−my−2))

0 if


n ≡ m� mod p

m
n ≡ m� mod pβ+1.



For 2), first assume c = p2α

K`(n, n; p2α) =
∑

(x,p)=1,x mod p2α

ec(n(x + x−1)).

Write

x ⇒ x(1 + ypα), x ∈ (Z/p2α), y ∈ Z/pα,

which covers all values pα times.

Inverse becomes: x−1(1− ypα) (mod p)2α

Sum is

=
1

pα

∑
x∈(Z/p2α)∗,y∈Z/pα

e(
n

p2α
(x + x−1) +

ny

p2α
(x− x−1)),

the sum ↗ over y makes x ≡ x−1

which in turn forces

x2 ≡ 1(pα)

x = ±1 + tpα, x−1 = ±1− tpα, t ∈ Z/pα,

and the sum is

=
∑

t∈Z/pα

(e(
2n

p2α
) + e(−

2n

pα
)) = 2pαRe e(

2n

c
).



The Odd Case is similar, using

x(1 + ypα+1)

sum =
∑

x∈(Z/p2α+1)∗,x≡x−1( mod pα)

e(
n(x + x−1)

p2α+1
)

Write

x = ±1 + tpα, x−1 = ±1− tpα, t ∈ Z/pα+1

K`(n, n; p2α+1) = 2 Re
∑

t∈Z(pα+1)

e(
n

p2α+1
(1 + t2p2α))

→ get Gauss sum

For m fixed

S(m, n, c) ≤ d(c) · c1/2(m, n, c)1/2 �ε c1/2+ε,

where d(n) = # of divisors of n.



Selberg’s 1965 paper “On the estimation of Fourier
coefficients of modular forms”

The condition

ad ≡ 1 (mod n)

suggests

(
a b
c d

)
∈ Γ0(n)

Generalized Kloosterman sum:

S(m, n, c,Γ) =
∑

γ=

(
a b
c d

)
∈Γ(N),0≤a<Nc,0≤d<Nc

e(
ma + nd

Nc
)

(before was N = 1) ...

Selberg’s Kloosterman Zeta Function

Z(s, m, n; Γ) =
∞∑

c=1

S(m, n, c,Γ)

|c|2s

has poles at nonconst eigs of Laplacian.



Selberg introduced non-holomorphic Poincaré series for
positive integers m

Pm(z, s) =
∑

γ∈

(
1 NZ

1

)
\Γ(N)

e(
m

N
γ(z))|Im γ(z)|s

=
∑

γ∈

(
1 NZ

1

)
\Γ(N)

= e(
m

N

az + b

cz + d
)

ys

|cz + d|2s

γ =

(
a b
c d

)
Differential Equation

Pm(z, s) = −
4πms

N
(∆ + s(1− s))−1Pm(z, s + 1),

from ∆(yse(mz)) + s(1− s)(yse(mz))

= −4πms(ys+1e(mz))

Inner Product ∫
Γ(N)\H

Um(z, s)Un(z, w)
dxdy

y2

=

∫ ∞

0

∫ N

0

dxdy

y2
e(

m

N
z)ysUn(z, w)

like a Fourier Coefficient, in the classical theory of Poincaré
series.



Via Poisson Summation

= δm,n(4πn)1−s−w̄Γ(s + w̄ − 1)

+
∑ K(m, n, c)

|c|2s

∫ ∞

0

∫ ∞

−∞

yw̄−s

(x2 + 1)s
e[

−m

yc2(x + 1)
− n(xy − cy)]

dxdy

y
.

This uses Poincaré Series idea e.g., Holom Forms of wt
k for Γ(1)

Pm(z) =
∑

γ∈Γ∞\Γ

1

(cz + d)k
e(mγ(z))

Pm(z)−e(mz) =
∞∑

c=1

∑
d∈(Z/C)∗

∑
r∈Z

1

(cz + d + cr)k
e(m

az + b

cz + d + cr
)

=
∞∑

c=1

∑
d∈(Z/C)∗

∑
t∈Z

∫
R

e(−rt)dr

(cz + d + cr)k
e(m[

q

c
−

1

c(cz + d + cr)
])

=
∞∑

c=1

∑
d∈(Z/C)∗

∑
t∈Z

e(
ma + td

c
)

∫
R

e(−rt + m
c(cz+cr)

)

[c(z + r)]k
dr.

The sum over d is a Kloosterman sum, and the integral
is a Bessel function. Adelically, these arise on equal
footing.



Selberg’s Theorem (1965) Let

ZN,m,n(s) =
∑

N |c>0

S(m, n, c)

c2s
, Re s > 1, N ≥ 1.

Then ZN,m,n(s) has a meromorphic continuation to C
with poles at s = 1/2 + ir, where λ = 1/4 + r2 is a
non-zero eigenvalue of the Laplacian ∆ on Γ0(N)\H.

Weil bound |S(m, n, c)| ≤ τ(c)c1/2(c, n)1/2 implies λ ≥
3/16.

The c3/4 bound we derived from the graphs implies λ ≥
7/64.



Bounds for Fourier Coefficients

Using classical Poincaré series Pm,k(z) and Poisson sum
as before, find

Pm,k(z) = e(mz) +
∞∑

n=1

e(nz)cn,

cn =
∞∑

c=1

S(m, n, c)
2π

ikc
(n/m)(k−1)/2Jk−1(4π

√
mn/c).

The Poincaré series {Pm,k(z)|m ≥ 1} span the space of
cusp forms.

Similar analysis uses Kloosterman sum bounds to obtain
non-trivial bounds towards the Ramanujan conjectures
on the sizes of their Fourier coefficients.


