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Abstract

We discuss cusp forms occuring on the quotients SLn(Z)\SLn(R)/SOn(R), focus-

ing mainly on the case n = 3. We present an overview of spectral problems on these

discrete quotients as well as automorphic L-functions and some of their analytic prop-

erties. We then address how small the eigenvalues of the Laplace-Beltrami operator

can be on this quotient, and how many many eigenvalues exist. Our answer to the

first question proves part of the archimedean Ramanujan-Selberg conjecture, and our

answer to the second establishes part of a conjecture of Sarnak that Weyl’s law holds

for the cusp forms on SLn(Z)\SLn(R)/SOn(R). The proof of the latter involves

an analysis of Eisenstein series and so we describe their general properties. All tech-

niques center on using the analytic properties of L-functions. We present applications

to representation theory and to the group cohomology of SLn(Z).
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Chapter 1

Introduction

The primary subject of this thesis is the existence of cusp forms on the quotient

SLn(Z)\SLn(R)/SOn(R). Let G = SLn(R), K = SOn(R) (a maximal compact

subgroup), and Hn = G/K, a rank-(n−1) symmetric space. Cuspidal eigenfunctions

are functions φ : Hn → R satisfying four properties

1.0.1 (periodicity) φ(γx) = φ(x) for all γ ∈ Γ = SLn(Z)

1.0.2 (growth) φ ∈ L2(Γ\Hn).

1.0.3 (a Laplace eigenfunction) ∆φ + λφ = 0, where ∆ is the Laplace-Beltrami

operator and λ is φ’s “eigenvalue.”

1.0.4 (cuspidality) If P is a standard, proper parabolic subgroup of G and N is its

unipotent radical, φ’s constant term

φP (x) =
∫

Γ∩N\Γ
φ(nx)dn

vanishes identically.
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We will investigate two basic questions in this thesis: how many cusp forms exist

and how small can their eigenvalues be? We answer the first question by giving the

asymptotic density of eigenvalues, Weyl’s law. The second question was asked by

Selberg, who proved a general lower bound on the cuspidal spectrum of the laplacian

on L2(SL2(Z)\H) and related spaces, and conjectured an optimal bound. To tackle

these problems we use techniques involving L-functions, which are dirichlet series

formed from the Fourier coefficients of cusp forms. L-functions allow us to convert

a spectral problem involving many variables to one of a single complex variable. We

use the analytic properties of L-functions (particularly Rankin-Selberg L-functions)

in a variety of circumstances for both proving that cusp forms exist in abundance

and that they do not occur with certain eigenvalues. In the next two sections we will

describe these two questions in more detail.

1.1 Weyl’s law

Cusp forms are fundamental objects in number theory, geometry, and representation

theory. However, their existence is very subtle. Selberg proved their abundance for

n = 2 by giving an asymptotic count:

Theorem 1.1.1 (Selberg) Let N(T ) be the number of discrete eigenvalues of the

laplacian on L2(SL2(Z)\H) (with multiplicity) ≤ T . Then as T →∞

N(T ) ∼ T

4π
vol(SL2(Z)\H2).

Remark 1.1.2 It is known that, except for the constant function/zero-eigenvalue, the

discrete spectrum consists of cusp forms. Thus Selberg addressed both by the spectral

count.
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Remark 1.1.3 Selberg ([Selberg 1956]) developed his famous trace formula to prove

this theorem. In the ensuing analysis, the spectral count is influenced by the presence

of Eisenstein series, which are present only for non-compact quotients Γ\Hn. For

compact quotients one can easily recover the identical spectral count

N(T ) ∼ T

4π
vol(Γ\H) as T→∞,

which is Weyl’s law. We will hence refer to results of this type as Weyl’s law for the

particular space under consideration.

Remark 1.1.4 For the generic discrete subgroup Γ ⊂ SL2(R) Weyl’s law is almost

certainly false. Indeed, the investigations of Phillips and Sarnak have shown the

Eisenstein series contribution mentioned above is the main term and that the discrete

spectrum is probably finite.

Remark 1.1.5 Sarnak conjectured that, while Weyl’s law and the existence of infi-

nitely-many cusp forms occurs for only very special discrete subgroups Γ ⊂ SL2(R),

it should hold for the cuspidal spectrum by itself on congruence quotients of Hn. More

precisely, the laplacian has both a continuous and a discrete spectrum on L2(Γ\Hn) for

Γ = SLn(Z) or one of its congruence subgroups1, and the discrete spectrum includes

residues from the continuous spectrum in addition to cusp forms.

1If N is a positive integer, the N -th principal congruence subgroup is

Γ(N) = {g ∈ G | g ≡ In×n (mod N) (element by element) },

the kernel of the projection
SLn(Z)→ SLn(Z/NZ).

A congruence subgroup of SLn(Z) is one which contains some principal congruence subgroup. There
are finite-index subgroups of SL2(Z) which are not congruence subgroups, but every finite index
subgroup of SLn(Z) for n ≥ 3 is a congruence subgroup.
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Conjecture 1.1.6 ([Sarnak 1984]) Let Γ be a congruence subgroup of SLn(Z),

Ncusp(T ) = #{λ ≤ T | ∆φ+ λφ = 0 for some cusp form φ}

count the eigenvalues of ∆ on L2(Γ\Hn) (with multiplicity), and let d = dimHn =

n(n+1)
2
− 1. Then

Ncusp(T ) ∼
T d/2

(4π)d/2Γ(1 + d
2
)
vol(Γ\Hn) as T →∞

This is stronger than Weyl’s law in that it holds for the cuspidal spectrum alone,

though often (when n is prime) there are no residual eigenfunctions other than the

constant functions (see [Jacquet],[MœWal]). We prove Sarnak’s conjecture for n = 3

and Γ = SL3(Z), i.e. full level:

Theorem 1.1.7 (= theorem 5.1.1) For n = 3 and Γ = SL3(Z)

Ncusp(T ) ∼
T 5/2

(4π)5/2Γ(7
2
)
vol(Γ\H3) as T →∞.

Of course since 3 is prime N(T ) = Ncusp(T ) + 1.

Remark 1.1.8 This theorem establishes the existence of non-lifted cusp forms for

SL3(Z)\H3. Infinitely many are known via the Gelbart-Jacquet lift (see [GelJac]). In

particular, if N`(T ) is the number of these lifted eigenvalues (counted with multiplicity)

less or equal to T , then N`(T ) ∼ T
48
.
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1.2 Low-lying eigenvalues

The laplacian ∆ has a continuous spectrum on L2(H) consisting of [1/4,∞). It

persists to L2(Γ\H) for Γ = SL2(Z) or a congruence subgroup. Selberg made the

following conjecture to the effect that there are no discrete eigenvalues outside that

range other than 0 (coming from the constants):

Conjecture 1.2.1 (Selberg, 1965 (see [Selberg 1965])) No eigenvalue of a cusp form

on Γ\H is less than 1
4
.

This conjecture has an interpretation in terms of (the Langlands) parameters

associated to a cuspidal eigenfunction φ, µ = (ν,−ν). The eigenvalue λ = 1
4
−ν2 ≥ 0,

so ν is either purely imaginary (equivalently λ ≥ 1/4) or real and |ν| ≤ 1/2 (λ ≤ 1/4).

So Selberg’s conjecture is that φ’s Langlands parameters µ are imaginary.

In higher rank, where Hn replaces H = H2, this is indeed the appropriate gen-

eralization (and in fact also at the finite places in any rank, where it subsumes the

classical Ramanujan conjecture). There are many G-invariant differential operators

on Hn = G/K other than the laplacian and the Langlands parameters describe φ’s

eigenvalue under any of them (see section 5.2). The archimedean Ramanujan-Selberg

conjecture asserts that the Langlands parameters are all imaginary. In particular, if

µ = (µ1, µ2, . . . , µn) are the Langlands parameters of a cusp form φ and ∆φ+λφ = 0,

then

λ =
n3 − n
24

− µ21 + · · ·µ2n
2

.

Here ∆ is normalized to have the continuous spectrum [n
3−n
24

,∞) on both L2(Hn) and

L2(Γ\Hn), and an implication of the archimedean Ramanujan-Selberg conjectures is

that all cuspidal eigenvalues of ∆ on Γ\Hn are ≥ n3−n
24
, though we stress that this is

weaker than the full conjecture for n ≥ 3.

5



Theorem 1.2.2 ([Miller]) For Γ = SLn(Z) every cuspidal eigenvalue of the laplacian

is greater than n3−n
24

, for all n > 1.

This confirms the conjecture at full level, for merely ∆ among the ring of invariant

differential operators. Roelcke ([Roelcke]) and Selberg independently proved this for

n = 2 in 1956. We will present a pictoral proof of this (and more) for n = 3 in section

4.2.

1.3 Background, methods, and related results

The next chapter, 2, is a short summary of spectral problems on SL2(Z)\H. Though

our primary focus is on higher rank spaces, this classical example motivates and has

many features in common with the problems we are examining. We conclude chapter

2 with a list of the major solved and unsolved spectral problems on the upper-half

plane.

The third chapter, 3, gives background information on the geometry of the sym-

metric space Hn. We review the major results of the Langlands’ theory of Eisenstein

series, in particular focusing on their constant terms. The Eisenstein series are part of

the spectral decomposition of the laplacian on SLn(Z)\Hn, and their constant terms

control their size.

Our techniques are all based on using the L-functions of cusp forms. In chapter

4 we will recall the basic properties of these and derive inequalities which can show

certain L-functions and hence the cusp forms they are created from, do not exist.

We will then present applications, including a computation of cuspidal Betti numbers

of SLn(Z)\Hn. Also, we can show that no cusp forms on SL3(Z)\H3 have certain

Langlands parameters, which yields a lower bound on the discrete spectrum of ∆

there, a special case of theorem 1.2.2.
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In the last chapter, 5, we prove Weyl’s law for SL3(Z)\H3 (thm 5.1.1) and recall

some preliminaries of the Selberg trace formula and properties of Eisenstein series for

various parabolic subgroups.
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Chapter 2

The Upper Half Plane

2.1 Maass forms

Let H be the complex upper-half plane {z = x + iy|y > 0}. Any element γ ∈ G =

SL2(R) acts on H as a fractional linear transformation

γ =



a b

c d


 : z 7→

az + b

cz + d
.

This action is transitive and the only elements which act trivially are {±I}. If Γ is

a discrete subgroup of SL2(R), let Γ̄ denote its image in PSL2(R) = SL2(R)/{±I}.

The quotient Γ̄\H is a hyperbolic manifold. For example, any Riemann surface of

genus ≥ 2 can be covered by H and is conformal to Γ\H for some Γ ⊂ PSL2(R).

We are mostly interested in a family of discrete subgroups called congruence sub-

groups. Firstly, the principle congruence subgroups are

Γ(N) =







a b

c d


 ≡



1 0

0 1


 (mod N)|ad− bc = 1




,
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the kernels of the surjective homomorphisms Γ(1) = SL2(Z) → SL2(Z/NZ). A

congruence subgroup is simply a subgroup of SL2(Z) which contains some Γ(N),

N ≥ 1. The congruence subgroups are not co-compact (i.e. Γ̄\H is not compact),

but co-finite (Γ̄\H has finite volume under the G-invariant measure dxdy
y2 ).

These quotients X = Γ̄\H are called modular curves and inherit the G-invariant

line element

ds2 =
dx2 + dy2

y2

and laplacian

∆ = y2
(
∂2

∂x2
+

∂2

∂y2

)

from H. They are hyperbolic surfaces with singularities called cusps. For example,

PSL2(Z)\H is a once-punctured sphere (with conic singularities). This is because

the group SL2(Z) is generated by



1 1

0 1


 and



0 −1

1 0


, which correspond to

the transformations of the upper-half plane H given by

z 7→ z + 1 and z 7→ −1/z.

A fundamental domain is provided by

F = {z ∈ H | |z| ≥ 1, |x| ≤ 1/2}.

2.2 Analysis

Let us stick to the example of “full level,” Γ = PSL2(Z). Good references for this

section are [Terras], volume 1, [Borel 1974], [Bump], and [Sarnak 1995].

An automorphic function f is one which satisfies f(γz) = f(z) for all γ ∈ Γ and
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z ∈ H. The word “automorphic” is used because the fractional linear transformation

γ : H→ H is an invertible conformal mapping of the upper half plane to itself, i.e. a

conformal automorphism.

An automorphic form for us will be an automorphic function φ which is an eigen-

function of the laplacian ∆ and which satisfies the polynomial growth condition that

for some N > 0

f(x+ iy) = O(yN) , x+ iy ∈ F .

We call the eigenvalue of φ the number λ such that ∆φ + λφ = 0, the negative of

what is usually called an eigenvalue. This is because ∆ is negative semi-definite:

integration by parts yields

∫

X
f∆f

dxdy

y2
= −

∫

X
|∇f |2dxdy

y2
,

so the constant functions comprise the null-space of ∆ in L2(X) and all other eigen-

values are positive. Their corresponding eigenfunctions are not only orthogonal to

constants but in fact cuspidal:

∫ 1

0
φ(x+ iy)dx = 0 for all y > 0

as there is no residual spectrum in this case.

The cusp forms have Fourier expansions. Firstly, for fixed y > 0

φ(x+ iy) = φ






1 1

0 1


 (x+ iy)


 = φ(x+ 1 + iy),

10



so

φ(x+ iy) =
∞∑

n=−∞
αn(y)e

2πinx.

The cuspidality condition here is that αn(y) = 0. Secondly, the differential equation

∆φ + λφ = 0 gives two possible families of solutions for αn(y), one of exponential

growth in y and the other of exponential decay. Our polynomial growth assumption

forces

αn(y) =
an
2

√
yKν(2π|n|y),

where an is a real number, λ =
1
4
− ν2, and K is the K-Bessel function. Thus, φ

decays exponentially in the cusp, that is, as =z → ∞ for z ∈ F . One may separate

the spectrum into odd and even parts under z 7→ −z̄ so that the even

φ(x+ iy) =
∞∑

n=1

an
√
yKν(2πny) cos(2πnx)

and the odd

φ(x+ iy) =
∞∑

n=1

an
√
yKν(2πny) sin(2πnx).

Note the odd eigenfunctions are automatically cuspidal.

If n is a positive integer, the Hecke operator Tn : L
2(X)→ L2(X) is defined by

(Tnf)(z) =
1√
n

∑

ad=n,a>0

b mod d

f

(
az + b

d

)
.

The Hecke operators are self-adjoint operators which commute with each other and

the laplacian, and so we may further diagonalize the cusp forms by resolving Laplace

eigenspaces of dimension greater than one by their Hecke eigenvalues. Thus, we now

11



assume our orthonormal set

1√
volX

,φ1, φ2, . . .

consists of Hecke and Laplace eigenforms. Then

a1i(Tnφi)(x) = ainφi(x),

where ain is the n-th Fourier coefficient of φi(x). Renormalize and set a1 = 1 so that

the Hecke eigenvalues are also the coefficients.

The standard L-function formed from φ is defined to be

L(s, φ) =
∞∑

n=1

an
ns
=

∏

p prime
(1− app−s + p−2s)−1,<s > 1.

It can be “completed” by multiplying it by a certain product of gamma functions: let

ε = 1 if φ is odd and ε = 0 if φ is even. Then

Λ(s, φ) = π−sΓ(
s+ ε+ ν

2
)Γ(

s+ ε− ν
2

)L(s, φ)

can be analytically continued to the entire complex plane and has the functional

equation Λ(s, φ) = (−1)εΛ(1− s, φ).

2.3 Fundamental facts and conjectures

In closing, here are some of the main facts and open questions about the cusp forms

on SL2(Z)\H.
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Theorem 2.3.1 (Selberg)

N(T ) = #{λ ≤ T} ∼ T

12

as T →∞.

It was known by Roelcke earlier that the automatically-cuspidal odd eigenfunctions

exist and the number of these between zero and T is Nodd(T ) ∼ T
24
.

Theorem 2.3.2 ([Roelcke],Selberg) The parameter ν =
√

1
4
− λ is always imaginary,

so that λ ≥ 1
4
.

It is a famous unsolved conjecture of Selberg ([Selberg 1965]) that λ ≥ 1
4
for all

congruence subgroups as well.

Conjecture 2.3.3 ([Cartier]) The multiplicity of any eigenvalue in the discrete spec-

trum of ∆ on L2(SL2(Z)\H) is one.

Conjecture 2.3.4 (Generalized Ramanujan Conjecture) For p prime, |ap| ≤ 2.

Conjecture 2.3.5 (Sato-Tate) For a fixed cusp form φ, the ap’s are distributed ac-

cording to the Sato-Tate distribution. Write

ap = 2 cos θp, 0 ≤ θp ≤ π.

Then for any continuous function f : [0, π]→ R

1

#{p ≤ X}
∑

p≤X
f(θp)→

∫ π

0
f(θ)

sin2(θ)

π/2
dθ as X →∞.
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Chapter 3

Algebraic Groups

3.1 Lie group background

Lemma 3.1.1 The group G = SLn(R) has the Iwasawa decomposition G = NAK,

that is, each element g ∈ G can be uniquely written as g = nak, with

n ∈ N =








1 ∗
. . .

0 1








(a nilpotent radical),

a ∈ A =








a1 0

. . .

0 an



| aj > 0





(a maximal torus),

and

k ∈ SOn(R) (a maximal compact subgroup).

Proof: Let g ∈ G. Then ggt is positive-definite and symmetric and so there is an

upper triangular matrix p with positive diagonal entries (i.e. p ∈ NA) such that
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ggt = ppt. The matrix k = p−1g must lie in K = SOn(R) since

ggt = pk(ktpt) = ppt =⇒ kkt = I.

Moreover, if p1k1 = p2k2 then p1 ∈ K ∩NA = {I}, which proves uniqueness. Finally,

every element p of NA can be uniquely expressed as na for some n ∈ N and a ∈ A

by letting a be the diagonal elements of p. 2

The map g 7→ ggt is actually an isometry of the symmetric space Hn = G/K

with Pn, the space of positive-definite symmetric matrices of determinant equal to

one. We can use this to describe the geometry of Hn more easily in terms of the

Pn coordinates, and conclude this section with a summary of it. First note that the

action of G on Hn by left-multiplication

hK
g7→ ghK

becomes similarity in Pn:

hht
g7→ g(hht)gt.

Our coordinates on Pn will be expressed in terms of the symmetric matrices

Y =




y11 · · · yjk
...

. . .
...

ykj · · · ynn



,

dY =




dy11 · · · dyjk
...

. . .
...

dykj · · · dynn



,
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and

∂

∂Y
=




∂
∂y11

· · · 1
2

∂
∂yjk

...
. . .

...

1
2

∂
∂ykj

· · · ∂
∂ynn



.

The invariant metric is

ds2 = trace((Y −1dY )2),

for the similarity

Y 7→ UY U t

induces

dY 7→ UdY U t, Y −1 7→ U t−1

Y −1U−1,

so

(Y −1dY )2 7→ U t−1

(Y −1dY )2U t,

which have the same trace. The invariant volume is given by

dV = det(Y )−
n+1

2

∏

1≤i<j≤n
dyij.

By the same token

trace((Y −1
∂

∂Y
)k), k = 2, . . . , n

are G-invariant differential operators and in fact generate D, the ring of G-invariant

differential operators on Pn. The Laplace-Beltrami operator here is

∆ = trace((Y −1
∂

∂Y
)2).

More detailed information can be found in [Terras], volume II, or [Maass].
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3.1.1 Parabolic subgroups

Fix a partition π = (n1, n2, . . . , nr) of n = n1 + n2 + · · ·+ nr. The standard parabolic

associated to π is

Pπ =








n1︷︸︸︷∗
n2︷︸︸︷∗ · · ·

nr︷︸︸︷∗

0 ∗ . . .
...

...
. . . . . . ∗

0 · · · 0 ∗








= NπMπ,

its nilpotent radical

Nπ =








In1×n1 ∗ ∗ ∗

0 In2×n2 ∗ ∗

0 0
. . . ∗

0 0 · · · Inr×nr








and its Levi component

Mπ =








n1︷︸︸︷∗
n2︷︸︸︷
0 · · ·

nr︷︸︸︷
0

0 ∗ . . .
...

...
. . . . . . 0

0 · · · 0 ∗








.

Thus Pπ consists of those elements of G for which the elements below the diagonal

n1× n1, n2× n2, . . . , nr × nr blocks are zero, Nπ those elements of Pπ whose diagonal

blocks are identity matrices, and Mπ those elements of Pπ which are zero both above

and below the diagonal blocks. The Levi component further decomposes into the

direct product of Aπ and M
′
π =Mπ/Aπ, where Aπ is the connected center of Mπ and
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thus consists of diagonal matrices which are scalar multplies of the identity matrix

in each ni × ni block. Every element m of Mπ can be uniquely factored as m =

m1m2 · · ·mr, with mi ∈ GLni(R). Also, every element of m′ ∈ M ′
π can be uniquely

factored as m′ = m′
1m

′
2 · · ·m′

r, with m
′
i ∈ GL±ni(R) (determinant ±1).

Let aπ be the Lie algebra of Aπ, which is isomorphic to








n1︷ ︸︸ ︷

h1

. . .

h1
n2︷ ︸︸ ︷

h2

. . .

h2

. . .
nr︷ ︸︸ ︷

hr

. . .

hr








Each aπ can be embedded into a0: the vector (n1h1, n2h2, . . . , nrhr) ∈ aπ with

h1 + · · ·+ hr = 0 is sent to the above matrix. This can be reversed by the surjection

from a0 to aπ given by (h1, . . . , hn) 7→ (h1 + · · ·+ hn1 , . . . , hn−nr+1 + · · ·+ hn). There

is a “logarithm” map Hπ from G to aπ given as follows. Let m(g) ∈Mπ be as in the

Langlands decomposition and write m(g) = m1m2 · · ·mr as described above. Then

Hπ(g) = (log | det(m1)|, log | det(m2)|, . . . , log | det(mr)|).
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3.1.2 Roots

There are
(
r
2

)
linear functionals of the form

αi,j




a1

. . .

ar



= ai − aj, i < j

on aπ and αi,j is a root of (Pπ, Aπ) with multiplicity ninj.

These occur as follows. The Lie algebra of Nπ, nπ, has a basis consisting of

{ek,l | n1 + · · ·+ ni−1 < k ≤ n1 + · · ·+ ni, n1 + · · ·+ nj−1 < l ≤ n1 + · · ·+ nj, i < j}.

Here ei,j is shorthand for the n× n matrix with zeroes in every entry except for the

i, j-th, which is one. The Lie algebra nπ acts on aπ by the “adjoint”

ad(y) : x 7→ [y, x] = yx− xy.

A simple calculation shows that

ad(ek,l) : a 7→ (ai − aj)(ek,l),

where n1+ · · ·+ni−1 < k ≤ n1+ · · ·+ni, n1+ · · ·+nj−1 < l ≤ n1+ · · ·+nj, and i < j.

These are just the αi,j from the previous paragraph, and thus occur with multiplicity

ninj. The simple roots among these are αi = αi,i+1. All these roots αi,j are often

called “positive” roots because i < j.

The roots αi,j are generating elements of a
∗, the (real) dual of a. We will sometimes

use the co-roots α∨i,j = (0, . . . , 1, . . . ,−1, . . . , 0), a vector which has 1 in the i-th entry,
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-1 in the j-th, and zeroes everywhere else. A very important element of a∗π is ρπ, half

the sum of the positive roots (with multiplicity). We will often write elements λ of

a∗π as vectors (λ1, . . . , λr) if λ(αi,j) = λi − λj. The maps described at the end of the

last section have obvious generalizations to a∗ through this identification.

3.1.3 Haar measure

How does conjugation by an element of Aπ affect Nπ? Let

n =




In1×n1 N12 · · · N1r

0 In2×n2

. . .
...

...
. . . . . . Nrr−1

0 · · · 0 Inr×nr




and








n1︷ ︸︸ ︷

a1

. . .

a1
n2︷ ︸︸ ︷

a2

. . .

a2

. . .
nr︷ ︸︸ ︷

ar

. . .

ar







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be a typical element of Aπ. Then

ana−1 =




In1×n1 N12
a1

a2
· · · N1r

a1

ar

0 In2×n2

. . .
...

...
. . . . . . Nrr−1

ar−1

ar

0 · · · 0 Inr×nr




and

Nij 7→ Nij
ai
aj
.

The Haar measure on Nπ is
∏
i<j |dNij|, where we use |d(xij)| to denote

∏
i,j dxij.

Thus,

n 7→ ana−1

changes the volume by

dn 7→
∏

i<j

(
ai
aj
)ninjdn = e2ρπ(Hπ(a))dn.

We can use this to describe the Haar measure on G ' Nπ ×Mπ/Kπ × Aπ × K

(Kπ = K∩Mπ) from Haar measures on the four spaces (see [HarishChandra]), denoted

dnπ, dmπ, daπ, dk. We normalize

∫

K
dk =

∫

SLn(Z)∩Nπ\Nπ
dnπ = 1.

Then

∫

G
f(nmak)dg =

∫

K

∫

Aπ

∫

Mπ/Kπ

∫

Nπ
f(nmak)e2ρπ(Hπ(a))dnπdmπdaπdk.
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3.1.4 Automorphic forms and constant terms

Our previous definition of automorphic form on SL2(R) was that of an automorphic

function

ψ : G→ R

such that

ψ(γgk) = ψ(g) for all γ ∈ Γ, k ∈ K, g ∈ G

which was an eigenfunction of the laplacian and all other invariant differential oper-

ators, and which satisfied a polynomial growth condition. This growth condition has

a natural generalization in higher rank. If FN is a compact fundamental domain for

Γ ∩N0\N0, the set

S = FN








a1 0 0

0
. . . 0

0 0 an



| aj > 0,

aj
aj+1

>

√
3

2
, j = 1, . . . , n− 1





K

is an example of a Siegel set. It can be shown that this particular choice of S contains

a fundamental domain for Γ\G and intersects only finitely many other Γ translates of

itself. Thus F , a fundamental domain for Γ\Hn, is not compact and of finite volume

(use the Haar measure from the previous section). In terms of the upper half plane

coordinates, a Siegel domain is given by {x+ iy| − 1
2
≤ x ≤ 1

2
, y ≥

√
3
2
}. Our growth

condition now is that there is a positive integer N such that

f(g) = O(eNH0(g)) for all g ∈ S.
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The constant term of an automorphic form ψ in the parabolic P is defined as

ψP (x) =
∫

Γ∩N\N
ψ(nx)dn.

A cusp form is an automorphic form whose constant terms in every standard proper

parabolic subgroup vanish. As before, there are Hecke operators acting on L2(Γ\Hn)

which are self-adjoint and commute with each other and the laplacian. We shall thus

additionally require our automorphic forms to be Hecke eigenforms as well.

3.1.5 Levi components and Eisenstein series

Fix a partition π as before and consider M ′
π =Mπ/Aπ, which consists of r blocks on

the diagonal. The Langlands decomposition of Pπ is

Pπ = NπMπ =MπNπ = NπAπM
′
π.

An automorphic form φ on

(Γ ∩M ′
π)\M ′

π/(K ∩Mπ)

is really r automorphic forms φi on each block. Moreover, φ is cuspidal on the Levi

Mπ if and only if each φi is.

We are now ready for the definition of general Eisenstein series. Start with an

discrete eigenfunction on M ′
π/Kπ (Kπ = Mπ ∩ K) and extend it to Mπ = AπM

′
π =

M ′
πAπ by

φ(m′(g))e(λ+ρπ)(H(g)), λ ∈ a∗C.

(We will often write φ(m(g)) for φ(m′(g)).) This is unchanged by multiplying g by an
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element of Nπ on the left, and the Eisenstein series is defined as the automorphized

E(P, x, φ, λ) =
∑

γ∈Γ∩Pπ\Γ
φ(m(γx))e(λ+ρπ)(H(γx))

for λ where this series converges, which are when <(λ− ρπ)(α∨i ) > 0 for i = 1, . . . , r.

3.2 Basic properties of Eisenstein series

The Eisenstein series can be meromorphically continued to λ ∈ a∗C ([Langlands 1976])

and have no poles for λ ∈ ia∗, where they contribute to the continuous spectrum

([Arthur 1984]). In studying their analytic properties it is essential to consider not

only the parabolic P but all associate parabolics P ′.

Definition Two standard parabolics Pπ and P
′
π are considered to be associate to

each other (denoted P ∼ P ′) if the partition π is a permutation of π′.

Of course both partitions must be of the same length. If π = (n1, n2, . . . , nr) and

π′ = (n′1, n
′
2, . . . , n

′
r) have associate parabolics, then there is an element s ∈ Sr (the

permutation group on r letters) such that n′i = ns(i), i = 1, . . . , r. The collection

of such association permutations is called the Weyl group Ω(π, π ′). Of course, each

element of the Weyl group1 gives rise to an isomorphism of aπ → aπ′ . If s ∈ Ω(π, π′)

then s sends

h = (h1, . . . , hr) ∈ aπ

to

sh = (hs(1), . . . , hs(r)) ∈ aπ′ .

This is a group action if we follow the convention of multiplying permutation repre-

1Often we will refer to this as Ω(P, P ′) or Ω(aP ,aP ′).
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sentations from left to right. For example

(13)(12)(h1, h2, h3) = (13)(h2, h1, h3) = (h3, h1, h2)

= (321)(h1, h2, h3).

Every Weyl group transformation is given by conjugation of a ∈ a with a permutation

matrix:

sh = wshw
−1
s

if ws is the permutation matrix of s ∈ Sr. The above example is




0 0 1

0 1 0

1 0 0







0 1 0

1 0 0

0 0 1







h1 0 0

0 h2 0

0 0 h3







0 1 0

1 0 0

0 0 1







0 0 1

0 1 0

1 0 0




=




0 0 1

1 0 0

0 1 0







h1 0 0

0 h2 0

0 0 h3







0 1 0

0 0 1

1 0 0




=




0 0 1

1 0 0

0 1 0







0 h1 0

0 0 h2

h3 0 0



=




h3 0 0

0 h1 0

0 0 h2



.

We can actually force ws to be an element of K with integral entries by fixing the

sign of at most one entry. It is easy to see that this does not affect the action.

The Weyl group also acts naturally on the dual via the same action. Note that

λ(sh) =
r∑

i=1

λihs(i) =
r∑

i=1

λs−1(i)hi = (s
−1λ)(h).
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We remark that the conjugation sends ei,j 7→ ±es−1(i),s−1(j), the sign depending on

how we choose ws ∈ K(Z).

3.2.1 Examples: n = 2

Here there are only two partitions of 2: π−1 = (2) and π0 = (1, 1), corresponding

to the parabolics P−1 = G and P0 =







∗ ∗

0 ∗







, respectively. The Lie algebra of

a−1 = {0}, so there is nothing to describe. However, the minimal parabolic P0 is

associate to itself by the permutation (12) ∈ S2. The corresponding map a0 → a0 is

just (a,−a) 7→ (−a, a), which is also given by conjugation:




0 1

−1 0






a 0

0 −a






0 −1

1 0


 =



0 −a

a 0






0 −1

1 0


 =



−a 0

0 a


 .

Examples: n=3

Here there are three partitions, which we will call

π−1 = (3), P(3) = P−1 = G,

π0 = (1, 1, 1), P(1,1,1) = P0 =








∗ ∗ ∗

0 ∗ ∗

0 0 ∗








,

π1 = (2, 1), P(2,1) = P1 =








∗ ∗ ∗

∗ ∗ ∗

0 0 ∗








,
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and

π2 = (1, 2), P(1,2) = P2 =








∗ ∗ ∗

0 ∗ ∗

0 ∗ ∗








.

Of these, the minimal parabolic P0 is associate to itself (Ω(π0) = S3) and the maximal

parabolics P1 ∼ P2 are associate (Ω(π1, π2) = {(12)}).

3.2.2 Constant terms

If φ is a Hecke cusp form, the constant term of the Eisenstein series E(P, x, φ, λ) is

zero in any higher rank parabolic, and also in parabolics of the same rank which are

not associate (a theorem of Langlands [Langlands 1976]). The story for parabolics of

higher rank is slightly more complicated.

If P ∼ P ′ are associate parabolics then

EP ′(P, x, φ, λ) =
∫

Γ∩N ′\N ′
E(P, nx, φ, λ)dn

is only a function of M ′ in the x variable and

EP ′(P, x, φ, λ) =
∑

s∈Ω(π,π′)
e(sλ+ρ)(H(m)) [M(s, λ)φ] (x).

The “scattering operators” M(s, λ) are in general difficult to calculate but we will

compute some examples in the next section. Here are some descriptions.

Examples: n = 2, π0 = (1, 1)

The “cusp forms” on the 1 × 1 block are just the constant functions (since the cus-

pidality condition is vacuous – there are no proper parabolics). So the only type of
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Eisenstein series here is

E(P0, x, λ) =
∑

γ∈Γ∩P0\Γ
e(λ+ρ0)(H(γx)).

Since

Ω(π0) = S2 = {e, (12)},

E(P0, x, λ) = e(λ+ρ0)(H(x)) +
ζ∗(λi − λj)

ζ∗(1 + λi − λj)
e(−λ+ρ0)(H(x)),

where ζ∗(s) = π−s/2Γ(s/2)ζ(s) is the completed Riemann zeta function.

Examples: n = 3, π0 = (1, 1, 1)

Again, φ is identically 1 and

EP0(P0, x, λ) =
∑

s∈Ω(π0)=S3

e(sλ+ρ0)(H(x))
∏

1≤i<j≤3

s(i)>s(j)

ζ∗(λi − λj)
ζ∗(1 + λi − λj)

,

a sum of six terms.

Examples: n = 3, π1 = (1, 2)

Starting with a Γ∩M\M/Kπ-cusp form (i.e. a GL2(Z)\H-cusp form, or equivalently

an even SL2(Z)\H-cusp form) φ2 on the 2× 2 block and φ1 = 1 on the 1× 1 block,

E(P1, x, φ, λ) =
∑

γ∈Γ∩P\Γ
e(λ+ρ1)(H(γx))φ(m(γx)).

By Langlands’ theorem

EP0(P1, x, φ, λ) = 0
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and

EP1(P1, x, φ, λ) =
∑

s∈Ω(π1)

e(sλ+ρ1)(H(x))φ(sm(x))
∏

1≤i<j≤2

s(i)>s(j)

Λ(λ1 − λ2, φ1 × φ̃2)
Λ(1 + λ1 − λ2, φ1 × φ̃2)

= e(λ+ρ1)(H(x))φ(m(x))

since Ω(π1) = {e}. Here Λ(s, φi× φ̃j) is a Rankin-Selberg L-function, and in the case

φi = 1 Λ(s, 1 × 1) = ζ∗(s). In general, given two associate parabolics P1 and P2, if

φ(m1(x)) = φ1(m11(x)) · · ·φr(m1r(x)), define a function onM2 corresponding to φ by

φ(sm2(x)) = φ(w−1s m2(x)ws) = φ1(m2s(1)(x)) · · ·φr(m2s(r)(x)).

Then

EP2(P1, x, φ, λ) =
∑

s∈Ω(π1,π2)

e(sλ+ρ2)(H(x))φ(sm(x))
∏

1≤i<j≤2

s(i)>s(j)

Λ(λ1 − λ2, φ1 × φ̃2)
Λ(1 + λ1 − λ2, φ1 × φ̃2)

= e(tλ+ρ2)(H(x))φ(tm(x))
Λ(λ1 − λ2, φ)

Λ(1 + λ1 − λ2, φ)
,

where Ω(π1, π2) = {t} and Λ(s, φ) = Λ(s, φ2 × φ̃2) is the completed standard L-

function of the GL2(Z)\H-cusp form φ (a degree-two L-function) (see chapter 4).

3.3 Why is the constant term formula so simple?

3.3.1 Langlands’ adelic method

In his influential monograph “Euler Products” ([Langlands 1971]), Langlands intro-

duced an adelic method to compute the action ofM(s, λ) on cusp forms. The idea uses
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strong approximation and the correspondance between Hecke eigenforms on Γ\G(R)

(where Γ is a congruence subgroup of SLn(Z)) and those on G(Q)\G(A). If, for λ

fixed, M(s, λ) acts as a scalar on φ adelically, it must act as multiplication by that

same scalar classically. Adelically the computation breaks up into a product of local

integrals at each place, which give the local factors for both the gamma factors (the

infinite place) and the Euler product (the finite places) of the ratio. The reason the

action is scalar has to do with the fact that we have already chosen our basis of cusp

forms to consist of eigenfunctions of not only the laplacian and all other invariant

differential operators, but also of the Hecke operators as well. We shall now present

an outline of Langlands method.

Let KA = SOn(R)×
∏
p<∞ SLn(Zp) be a maximal compact subgroup of SLn(A).

The strong approximation theorem for SLn(A) (see [Humphreys]) asserts that

SLn(A) = SLn(Q)SLn(R)KA. (3.1)

Any cusp form φ on SLn(Z)\SLn(R)/SOn(R) corresponds to a cusp form φ̃ on

SLn(Q)\SLn(A)/KA via the decomposition (3.1) (which is not unique but φ̃ is well-

defined because φ is invariant under SLn(Z) on the left and SOn(R) on the right – see

[Gelbart]). The cuspidality condition is that the constant term
∫
N(Q)\N(A) φ̃(ng)dn

vanishes for any proper standard parabolic P . This process is reversible, i.e. au-

tomorphic forms on SLn(Z)\SLn(R)/SOn(R) correspond to automorphic forms on

SLn(Q)\SLn(A)/KA.

Similarly the logarithm Hπ : SLn(R) → aπ can be extended to SLn(A) just as

before:

H(g) = (log | det(m1)|A, . . . , log | det(mr)|A).
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And so we can extend F (x, φ, λ) = e(λ+ρ)(H(x))φ(m(x)) to SLn(A). This function

is still invariant under the maximal compact KA, and thus F (x, φ, λ) is actually a

function of x ∈ B(A), where B = P0 is often called the “Borel” subgroup.

3.3.2 Narrowing down to the Weyl group

We will compute the constant term

∫

N ′(Q)\N ′(A)
E(P, ng, φ, λ)dn

of the Eisenstein series

E(P, g, φ, λ) =
∑

γ∈P (Q)\G(Q)

F (γg, φ, λ).

For “large” λ where this sum converges absolutely we may interchange the order of

summation and integration:

∫

N ′(Q)\N ′(A)
E(P, ng, φ, λ)dn =

∑

γ∈P (Q)\G(Q)

∫

N ′(Q)\N ′(A)
F (γng, φ, λ)dn

=
∑

γ∈P (Q)\G(Q)/N ′(Q)

∫

γ−1P (Q)γ∩N ′(Q)\N ′(A)
F (γng, φ, λ)dn

because

P (Q)γN ′(Q)n = P (Q)γN ′(Q)n′ ⇐⇒ n′ = N ′(Q)γ−1P (Q)γN ′(Q)n

⇐⇒ n′n−1 ∈ N ′(Q) ∩ γ−1P (Q)γ. (3.2)

Recall that if ws denotes a permutation matrix which represents s ∈ Ω(a0) (so that

wsaw
−1
s permutes a ∈ A0 as s does), then the Bruhat decomposition (see [Humphreys])
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is

G(Q) =
∐

s∈Ω(a0)

B(Q)wsB(Q).

Actually, B(Q)wsB(Q) = B(Q)wsN0(Q) since the Weyl group permutes the en-

tries of the diagonal matrices. Since B is contained in any standard parabolic,

γ ∈ P (Q)\G(Q)/N ′(Q) may be chosen to be of the form wγ ′, γ′ ∈ N0(Q)/N
′(Q).

We shall whittle away the possible choices of w and γ ′. A typical term in the sum

is an integral
∫

γ′−1w−1P (Q)wγ′∩N ′(Q)\N ′(A)
F (wγ′ng, φ, λ)dn. (3.3)

Change variables n 7→ γ ′−1nγ′, and the integral becomes

∫

w−1P (Q)w∩N ′(Q)\N ′(A)
F (wnγ ′g, φ, λ)dn.

Define 0G = M/A (which we called M ′ before, but we will adhere to Langlands’

notation from [Langlands 1971] in this section). Let 0P0 = B ∩M be the minimal

parabolic of 0G and define the (perhaps non-standard) nilpotent radical

0N =0 G ∩ wN ′w−1.

Its lie algebra is generated by matrices ei,j in the lie algebra ofM such that the matrix

es(i),s(j) lies in the lie algebra of N
′. Then the integral decomposes as

∫

(w−1P (Q)w∩N ′(Q))(w−10N(A)w)\N ′(A)

(∫

0N(Q)\0N(A)
F (n1wng, φ, λ)dn1

)
dn. (3.4)

So unless 0N = {I} the inner integral

∫

0N(Q)\0N(A)
e(λ+ρ)(H(n1b))φ(m(n1b))dn1 , bk = wng
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= e(λ+ρ)(H(b))
∫

0N(Q)\0N(A)
φ(m(n1b))dn1 = 0 (3.5)

since φ is a cusp form. (Note cuspidality implies this even for non-standard parabolics

which can be conjugated into standard ones by represenatives of the Weyl group that

are in K ∩G(Z), like 0N might be.)

Hence we need only investigate those w for which 0N = {I}. This is trivially

the case is P is minimal, for then M is diagonal. Also, it implies several cases of

Langlands’ famous theorem that the constant term is zero if P has lower rank than

P ′ or if P and P ′ have the same rank but are not associate. In general, 0B∩wN ′w−1 =

{I} ⇔ wM ′w−1 ⊃ M . If P and P ′ are parabolics of the same rank then we in fact

have equality, or equivalently that wM ′ = Mw. Then in our choice of represenative

of g = wγ ′ we have γ ′ ∈ B(Q)/N ′(Q) and thus can take γ ′ ∈ M ′(Q). But then

wγ′ = γ′′w for some γ ′′ ∈M(Q) ⊂ P (Q), which we can take to be the identity as we

are dividing by this on the left. Further reduction of our options is often possible.

3.3.3 The constant term for associate parabolics

Assume P and P ′ are associate. Then the constant term is

∑

s∈Ω(P ′,P )

∫

w−1
s P (Q)ws∩N ′(Q)\N ′(A)

F (wsng, φ, λ)dn

since wsM
′w−1s = M and two elements of Ω(a0) correspond to the same map in

Ω(P ′, P ) if and only if they differ by an element of Ω(P ) which stabilizes each block

separately, and those permutation matrices are in M(Q) ⊂ P (Q). For the rest of

this section (until the computations) s will be viewed as a permutation in Sr.
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Let us examine

∫

w−1
s P (Q)ws∩N ′(Q)\N ′(A)

F (wsng, φ, λ)dn.

Since we are integrating over N ′(A) we can take g = m′ ∈ M ′. The integral over

w−1s P (Q)ws ∩ N ′(Q)\N ′(A) is over Q\A in some variables and over A in others.

The former are those n1 for which wsn1w
−1
s ∈ N(Q) (since we just eliminated the

possibility of them lying in M) and F ((wsn1w
−1
s )(wsnm

′), φ, λ) = F (wsnm
′, φ, λ) in

these. The measure of Q\A is normalized to be one and so the integral

∫

w−1
s P (Q)ws∩N ′(Q)\N ′(A)

F (wsnm
′, φ, λ)dn =

∫

Nw(A)
F (wnm′, φ, λ)dn,

where Nw denotes the other variables: those n ∈ N ′ such that wsnw
−1
s is not in N .

Its lie algebra is spanned by the elements of blocks ni,j ∈ n′ such that the block

ns−1(i),s−1(j) is not in n.

Change variables n 7→ m′nm′−1 to get

e2ρw(H(m′))
∫

Nw
F (wm′n)dn.

Here ρw is half the sum of the positive roots of Nw. Since w ∈ K, if we set

m = wm′w−1 ∈M, n̄ = wnw−1 ∈ N̄w = wNww
−1

then

F (wm′n, φ, λ) = F (wm′w−1 · wnw−1, φ, λ) = F (mn̄, φ, λ)

34



and the integral is

e2ρw(H(m′))
∫

N̄w
F (mn̄)dn̄ = e(λ+ρ)(H(m))+2ρw(H(m′))

∫

N̄w
e(λ+ρ)(H(n̄))φ(m ·m(n̄))dn̄.

We will study the remaining integral in the next two sections and will finish this

section by showing

(λ+ ρ)(H(m)) + 2ρw(H(m
′)) = (s−1λ+ ρ′)(H(m′)). (3.6)

Write P = Pπ, P
′ = Pπ′ . Since these parabolics are associate, the partitions π and π

′

are permutations of each other. We already gave the condition that the i, j-th block

of N ′ is in Nw if and only if the s
−1(i), s−1(j)-th block is not in N , which can only

happen for s−1(i) > s−1(j). Thus

s−1ρ =
1

2

∑

i<j

s−1(i)<s−1(j)

ρ′ij −
1

2

∑

i<j

s−1(i)>s−1(j)

ρ′ij

=
1

2

∑

i<j

ρ′ij −
∑

i<j

s−1(i)>s−1(j)

ρ′ij

= ρ′ − 2ρw

(here we have used ρ′ij to denote the sum of all the roots from the i, j-th block of N
′).

This completes the proof of (3.6) because (λ + ρ)(H(wm′)) = (s−1λ + s−1ρ). Since

Ω(P, P ′) = Ω(P ′, P )−1 the constant term is now a sum over the Weyl group:

∑

s∈Ω(P,P ′)
e(sλ+ρ

′)(H(m′))
∫

N̄
w−1
s

e(λ+ρ)(H(n̄))φ((ws−1m′ws) ·m(n̄))dn̄.
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3.3.4 Example: n = 2 and the minimal parabolic

Let P = P ′ = P0, the minimal parabolic of SL(2). Here the Weyl group Ω(a0) =

{e, (12)} and

N̄e = {I}, N̄(12) =







1 0

? 1







.

Here φ = 1 and the integral splits as a product of local integrals. This next proposition

determines its value as well as describing how to compute the local integrals which

are used for determining the constant term in general.

Proposition 3.3.1 (Langlands, see [Langlands 1989], pp.130-2)

∫

N̄(A)
F (n̄, λ)dn̄ = c(λ(α∨)), (3.7)

where

c(s) =
ζ∗(s)

ζ∗(s+ 1)
, (3.8)

and

ζ∗(s) = π−s/2Γ(
s

2
)ζ(s). (3.9)

Proof: If p =∞ and

n̄p =



1 0

x 1


 , (3.10)

then we want to find a(n̄p), i.e. an n ∈ N and a ∈ A such that n̄p ∈ naK∞,

K∞ = SO2(R). Such an na must equal



1 n

0 1






α 0

0 1/α


 =



α n/α

0 1/α


 and



α n/α

0 1/α







α 0

n/α 1/α


 =



1 0

x 1






1 x

0 1



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=⇒ 1
α2 = x2 + 1⇐⇒ α = 1√

x2+1
. (3.11)

Thus

a






1 0

x 1





 =




1√
x2+1

0

0
√
x2 + 1


 . (3.12)

So our integrand

F






1 0

x 1





 = (

√
x2 + 1)−(λ+ρ)(α

∨) (3.13)

and

∫

N̄(R)
F






1 0

x 1





 dn̄ =

∫

R
(
√
x2 + 1)−λ(α

∨)−1dx = π1/2
Γ
(
λ(α∨)

2

)

Γ
(
λ(α∨+1)

2

) . (3.14)

For p finite, Kp = SL2(Zp) and we need to find an n and an a such that n̄p ∈ naKp.

Note that



x 0

0 x−1






1 −x−1

0 1






1 0

x 1




=



x 0

0 x−1






0 −x−1

x 1


 =



0 −1

1 x−1


 . (3.15)

So if x ∈ Zp, n̄p is already in K and a(n̄p) = 1; otherwise

a(n̄p) =



x−1 0

0 x


 . (3.16)
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The integral is

∫

N̄(Q)
F (n̄p)dn̄p =

∫

Zp

dx+
∫

Qp−Zp

|x|−(λ+ρ)(α∨)dx

= 1 +
∞∑

n=1

p−n((λ+ρ)(α
∨))(pn − pn−1) = 1 +

(
1− 1

p

) ∞∑

n=1

p−nλ(α
∨)

= 1 +

(
1− 1

p

)
p−λ(α

∨)

1− p−λ(α∨) =
1− p−λ(α∨) + p−λ(α∨) − p−λ(α∨)−1

1− p−λ(α∨)

=
1− p−λ(α∨)−1
1− p−λ(α∨) .

That is the p-th local factor of

ζ(λ(α∨))

ζ(λ(α∨) + 1)
. (3.17)

2

This computation is a cornerstone of all the constant term calculations, for the

L-function emerges from the local integrals. Our constant term is finally just

e(λ+ρ)(H(x)) + e((12)λ+ρ)(H(x))c(λ(α∨)).

3.3.5 Example: n = 3 and maximal parabolics

Let P = P1, P
′ = P2. There is just one Weyl group element, which we can take to

be given by the permuation (13), and

N̄(13) =








1 0 0

0 1 0

? ? 1








.
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We will eventually compute

∫

N̄(13)(Qp)
e(λ+ρ)(H(n̄))φ(m ·m(n̄p))dn̄p

in terms of spherical functions by symmetrizing the integrand over

K0 = G(Zp) ∩ P (Qp)/G(Zp) ∩N(Qp) 'M(Zp)

for p < ∞ (for p = ∞ take just M(R)/KM(R)). Define a measure µM/K on

M(Qp)/K0 by defining the measure of a set E in terms of the measure µN̄ on N̄ :

µM/K(E) = µN̄{n̄ ∈ N̄(Qp) | m(n̄) ∈ E}.

Lemma 3.3.2 ([Langlands 1971]) The measure µM/K is left-invariant under K0, i.e.

µM/K(kE) = µM/K(E). (3.18)

Proof: By definition

µM/K(kE) = µN̄{n̄ ∈ N̄(Qp) | m(n̄) ∈ kE}. (3.19)

Let k̄ be an element of P (Zp) which is in the coset k. Then

k̄n̄k̄−1 = (k̄n(n̄)k̄−1)(k̄m(n̄)k̄−1)(k̄k(n̄)k̄−1) (3.20)

and since k̄k(n̄)k̄−1 is clearly in K and k̄n(n̄)k̄−1 ∈ N since k̄ ∈ P (Zp),

m(k̄n̄k̄−1) = k̄m(n̄)k̄−1. (3.21)
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Thus

{n̄ ∈ N̄(Qp) | m(k̄−1n̄k̄) ∈ E} = {k̄n̄k̄−1 ∈ N̄(Qp) | m(n̄) ∈ E}, (3.22)

which has the same N̄ measure as both E and kE. 2

We can thus define a measure µ on M which is bi-K0-invariant:

µ(E) =
∫

M/K

(∫

K0

χE(mk)dk
)
dµM/K(m). (3.23)

Suppose that (αp,−αp) are the parameters of eigenform φ under the action of the

Hecke algebra at the place p (which, if p =∞, is the algebra of invariant differential

operators described in section 5.2). Then the Hecke parameters of

e(λ+ρ)(H(n̄))φ(mm(n̄p))

are

µp = (λ0 + 1 + αp, λ0 − αp,−2λ0 − 1),

if we write λ = (λ0, λ0,−2λ0). Using the bi-K0-invariance

∫

N(Qp)
e(λ+ρ)(H(n̄p))φ(mm(n̄p))

=
∫

M
e(λ+ρ)(H(m1))φ(mm1)dµ(m1)

= φ(m)
∫

M
e(λ+ρ)(H(m1))φ(m1)dµ(m1)

= φ(m)
∫

N̄(Qp)
eµp(H(n̄p))dn̄.
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We can compute this integral as in the previous cases by rederiving the formula

of Gindikin and Karpelevich (see [Langlands 1971]). First note that




1 0 0

0 1 0

x y 1



=




1 0 0

0 1 0

x 0 1







1 0 0

0 1 0

0 y 1



=




1 0 0

0 1 0

0 y 1







1 0 0

0 1 0

x 0 1



, (3.24)

so




1 0 0

0 1 0

x y 1



∈




1 0 0

0 1 0

0 y 1







1 0 nx

0 1 0

0 0 1







αx 0 0

0 1 0

0 0 1
αx



Kp

=




αx 0 0

0 1 0

0 0 1
αx







1 0 0

0 1 0

0 yαx 1







1 0 nx
α2
x

0 1 0

0 0 1



Kp. (3.25)

Observe that




1 0 0

0 1 0

0 w 1







1 0 z

0 1 0

0 0 1



=




1 0 z

0 1 0

0 w 1



=




1 −zw z

0 1 0

0 0 1







1 0 0

0 1 0

0 w 1



(3.26)
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so modulo Np and Kp,




1 0 0

0 1 0

x y 1



is




αx 0 0

0 1 0

0 0 1
αx







1 0 0

0 1 0

0 yαx 1



=




αx 0 0

0 1 0

0 0 1
αx







1 0 0

0 αyαx 0

0 0 1
αyαx



. (3.27)

If we change variables by y 7→ y
αx
, dy 7→ dy

αx
the integral is

∫

Qp

∫

Qp

αµ1−µ3
x αµ2−µ3

y′ dydx =
∫
Qp
αµ1−µ3−1
x dx

∫
Qp
αµ2−µ3
y dy

=
∫
Qp
α3λ0+αp−1
x dx

∫
Qp
α3λ0−αp−1
y dy. (3.28)

This gives, once performed at all places (φ(m) emerges after each integral),

Λ(3λ0, φ)

Λ(3λ0 + 1, φ)
φ(m), (3.29)

where Λ(s, φ) is the completed standard L-function of φ, a degree-2 L-function. If φ2

is the cusp form on M ′ which is φ on the 2× 2 block, the overall constant term is

Λ(3λ0, φ)

Λ(3λ0 + 1, φ)
e((13)λ+ρ)(H(g))φ2(m2(g)). (3.30)
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Chapter 4

Applications of Positivity to

L-functions

In this chapter we describe certain L-functions and applications of their properties.

Our techniques are based on the analysis of two types of L-functions that can be

attatched to a cusp form φ. Recall that if P = NM is a standard parabolic subgroup

of G and if φ is an automorphic function on Γ\G, φ’s constant term along P is defined

as

φP (x) =
∫

Γ∩N\N
φ(nx)dn.

A cusp form is an automorphic form φ for which φP (x) ≡ 0 for all proper standard

parabolic subgroups P .
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4.1 L-functions of automorphic forms

The first of these L-functions is the so-called “standard” L-function L(s, φ) which is

a degree-n Euler product formed from the eigenvalues of the Hecke operators on φ:

L(s, φ) =
∏

p

(1− αp1p−s)−1(1− αp2p−s)−1 · · · (1− αpnp−s)−1.

It can be made entire by “completing” it, i.e. multiplying it by an appropriate product

of gamma functions:

Λ(s, φ) =
n∏

j=1

ΓR(s+ νj)L(s, φ),

ΓR(s) = π−s/2Γ
(
s

2

)
.

Then Λ(s, φ) is entire and satisfies the functional equation Λ(1− s, φ) = ±Λ(s, φ̄).

The second type of L-function is the Rankin-Selberg convolution, which is formed

from the coefficients of L(s, φ):

L(s, φ× φ̃) =
∏

p

n∏

j=1

n∏

k=1

(1− αpjαpkp−s)−1.

It can also be completed by multiplying it by appropriate gamma factors:

Λ(s, φ× φ̃) =
n∏

j=1

n∏

k=1

ΓR(s+ µjk)L(s, φ× φ̃).

Both the µjk’s and the νj’s can be computed from the Langlands parameters of the

cusp form φ, which we will call the µj’s (see section 5.2). If φ is unramified at infinity,

for example if it is spherical or almost-spherical – see section 4.2 (as is the case for an

eigenfunction of the laplacian), then µjk = µj + µk. The completed Rankin-Selberg

L-function has the following analytic properties:
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4.1.1 It can be meromorphically continued to the entire complex plane, with only

simple poles at s = 0, 1.

4.1.2 It has the functional equation Λ(s, φ× φ̃) = ±Λ(1− s, φ× φ̃).

Both the standard and Rankin-Selberg L-functions are holomorphic functions of

order one. Let’s be a little more general and consider a completed L-function of

degree m of order one

Λ(s) =
m∏

j=1

ΓR(s+ ηj)L(s),

to cover both cases. It has a Mittag-Leffler expansion since it is of order 1:

Λ′

Λ
(s) =

m∑

j=1

Γ′R
ΓR

(s+ ηj) +
L′

L
(s) = B +

∑

ρ

(
1

s− ρ +
1

ρ

)
+ δ

(
1

s
+

1

s− 1

)
.

Here B is a complex constant, the ρ are the zeroes of Λ(s), δ = 1 if Λ(s) has poles at

s = 0 and 1, and δ = 0 if not. It is known that all zeroes lie betweeen 0 < <(ρ) < 1

(the prime number theorem – see [Shahidi]). The sum over the zeroes is actually only

conditionally convergent – one should sum ρ together with ρ̄. The functional equation

reduces this to

Λ′

Λ
(s) =

∑

ρ

1

s− ρ + δ
(
1

s
+

1

s− 1

)
,

provided the sum is performed correctly. Note that since L(s) is assumed to have an

Euler product, L
′

L
(s) also has a dirichlet series for <s > 1:

−L
′

L
(s) =

∞∑

n=1

cnn
−s.

There is a smoothed version of this, Riemann’s explicit formula (see [Rud-Sar]).

Let {γ} be the zeroes of L( 1
2
+ is), g ∈ C∞c (R), and h(r) =

∫∞
−∞ g(u)e

irudu be the

Fourier transform of g. Weil’s formula reads
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∑
h(γ) =

δ
(
h(− i

2
) + h(

i

2
)
)
+
1

2π

∫ ∞

−∞
h(r)

m∑

j=1

(
Γ′R
ΓR

(
1

2
+ ηj + ir) +

Γ′R
ΓR

(
1

2
+ ηj − ir)

)
dr

−
∞∑

n=1

(
cn√
n
g(log n) +

cn√
n
g(− log n)

)
.

Lemma 4.1.3 (Weil)

1

2π

∫ ∞

−∞
h(r)

Γ′

Γ
(σ + iar)dr = −

∫ ∞

0

(
g(ax)e−σx

1− e−x − g(0)
e−x

x

)
dx.

Since

Γ′R
ΓR

(s) = −1
2
log π +

Γ′

2Γ
(
s

2
),

1

2π

∫ ∞

−∞
h(r)

Γ′R
ΓR

(
1

2
+ ηj + ir)dr

=
1

2π

∫ ∞

−∞
h(r)

(
− log π

2

)
dr +

1

2π

∫ ∞

−∞
h(r)

Γ′

2Γ
(
1

4
+
ηj
2
+
ir

2
)dr

= l(ηj) := −
log π

2
g(0)− 1

2

∫ ∞

0


g(x/2)e

−( 1
4
+
ηj
2
)x

1− e−x − g(0)e−xx

 dx.

If both g and h are even and real on R then the explicit formula can be rewritten as

∑
h(γ) = δ

(
h(− i

2
) + h(

i

2
)
)
+ 2<




m∑

j=1

l(ηj)−
∞∑

n=1

cn√
n
g(log n)


 . (4.1)

4.2 The spherical unitary dual of SL3(R)

The cuspidal eigenfunctions of the laplacian ∆ on X = SL3(Z)\SL3(R)/SO3(R),

together with the constant functions, are the discrete eigenfunctions of ∆ in L2(X).

46



These cuspidal eigenfunctions can be related to irreducible subspaces of L2(Γ\G)

under the action of the right-regular representation (Rgf)(x) = f(xg). This is a

unitary representation; for a description of the unitary dual see [Speh 1981]. Since

∆ commutes with these isometries Rg, by Schur’s lemma it acts as a scalar on the

irreducible subspaces of the action. The cusp forms are related to the irreducible

representations which are spherical or almost-spherical, that is equivalent to induced

representations

IndGL3
B χµ1,µ2,µ3 , B =





b =




b1 ∗ ∗

0 b2 ∗

0 0 b3








,

χ(b) = (sgn(b1))
ε1bµ1

1 (sgn(b2))
ε2bµ2

2 (sgn(b3))
ε3bµ3

3 , εj = 0, 1.

The µj’s parametrize the eigenvalues of φ with respect to all the invariant differential

operators (see section 5.2). For example, if ∆φ+ λφ = 0,

λ = 1− µ21 + µ
2
2 + µ

2
3

2
.

Thus, the problem of describing the discrete, cuspidal spectrum of the invariant dif-

ferential operators is equivalent to describing part of the unitary dual which occurs

in the decomposition of Rg on L
2(Γ\G). We may assume that {µj} = {−µj} because

we are in the unitary dual ([Vakhutinski]) and that µ1 + µ2 + µ3 = 0 because every

element of G has determinant one. This gives two possibilities – either the µj’s are

all imaginary and add to zero:
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tempered (satisfies full Ramanujan-Selberg)

Langlands

parameters
=





µ1 = iy1

µ2 = iy2

µ3 = −iy1 − iy2

(4.2)

λ = 1 + y21 + y1y2 + y
2
2

or two are not imaginary and the third is:

non-tempered (violates full Ramanujan-Selberg)

Langlands

parameters
=





µ1 = x+ iy

µ2 = −x+ iy

µ3 = −2iy

(4.3)

λ = 1 + 3y2 − x2

The archimedean Ramanujan-Selberg conjecture asserts that only the first possi-

bility occurs. An immediate consequence is that λ ≥ 1; however, the converse is not

true.

We will use the explicit formula to prove certain pieces of the unitary dual do not

occur for X. A consequence of our investigations is that λ > 80 for X. We will use

the functions

gp(x) =

(
(1− |x/p|) cos(π|x|/p) + sin(π|x|/p)

π

)
/ cosh(x/2)

which are zero outside of [−p, p], for p > 0 a real parameter, and the Rankin-Selberg

L-functions. We know nothing about the zeroes or coefficients of these but if p < log 2
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the coefficients do not even enter. It is known ([Rud-Sar]) that for the Rankin-Selberg

L-function the cn ≥ 0. Using the fact that hp ≥ 0 in the critical strip (see [Fermigier]

and [Odlyzko]) we may drop these two terms from (4.1) and arrive at the inequality

∫ ∞

−∞
g(x)

(
ex/2 + e−x/2

)
dx+ 2<

m∑

j=1

m∑

k=1

l(µj + µk) ≥ 0. (4.4)

This is an example of the “positivity” technique of [Stark].

For fixed µ1, µ2, µ3 this inequality may be numerically examined. If it is false the

L-function and hence the cusp form it came from cannot exist. We did this for each

of the two pieces of the unitary dual. Each is a two-dimensional fragment and we

indicate on the figures below where the inequality (4.4) is false. It is immediate from

these pictures that λ > 80 (figures 4.1, 4.2), and even > 1000 (figures 4.3, 4.4) on the

non-tempered unitary dual (which conjecturally does not exist anyway).

4.3 Cuspidal cohomology of SLn(Z)

Theorem 4.3.1 For 1 < n < 27

Hp
cusp(SLn(Z);R) = 0, p ≥ 0.

This is to say there are no constant-coefficients cuspidal p-forms which give rise to

cohomology on SLn(Z)\SLn(Z)/SOn(R) for 1 < n < 27 (see [Borel 1974] for defini-

tions and background). We proved in [Miller] using the Mittag-Leffler expansion of

a Rankin-Selberg L-function that this is true for 1 < n < 23; Fermigier ([Fermigier])

proved a similar theorem for GLn using the standard L-function and the smoothed,

explicit formula. We will combine both methods here to go slightly further.

The only way to get cuspidal cohomlogy is from a certain induced representation.
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SL(3,Z) Tempered with p=2

y1-axis

Figure 4.1: The tempered unitary dual (p = 2), with notation as in (4.2). The abcissa
is the y1-axis and the ordinate is the y2-axis. Both y1 and y2 have been taken to be
positive out of symmetry considerations. The shaded area starting from the upper
left corner is where the inequality (4.4) is true; it is false in the other regions towards
the lower left corner. The various shadings other than the darkest in the top left
indicate how false the inequality is.
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SL(3,Z) Tempered with p=5

y1-axis

Figure 4.2: The tempered unitary dual (p = 5). Both x and y can be taken to be
positive because of symmetry. Again, the inequality is true in the dark region in the
upper left and lower right, but false in the other two regions which are closer to the
lower left corner.
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Figure 4.3: The non-tempered unitary dual (p = 2), with notation as in (4.3). The
inequality is true in the upper left and false elsewhere.
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Figure 4.4: The non-tempered unitary dual (p = 5).
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Write n = 2m+ t, where t = 0 or 1 depending on the parity of n. If Dk denotes the

k-th discrete series on GL2 (corresponding to weight-k holomorphic forms), then this

representation is

IndGLnP(2,2,...,2)
(D2, D4, . . . , Dn)

if n is even and is

IndGLnP(1,2,2,...,2)
(1, D3, D5, . . . , Dn)

if n is odd. The Rankin-Selberg parameters µjk of this representation can be easily

computed via the procedure summarized in [Rud-Sar] and as multisets

{µj,k} = {t+ j + k, t− 1 + j + k, |k − j|, 1 + |k − j| | 1 ≤ j, k ≤ m}

∪
omit if t = 0︷ ︸︸ ︷

{0, j, j, j + 1, j + 1 | 1 ≤ j ≤ m} .

We can numerically evaluate the inequality (4.4) (which still applies here) and

show that, for various choices of p, it is in fact false for 1 < n < 27 (see table 4.1).

It is unknown whether or not this vanishing persists, i.e. whether or not for some

n ≥ 27

Hp
cusp(SLn(Z);R) 6= 0.

4.4 The winding number of a degree-2 L-function

This section uses the Mittag-Leffler expansion and hence we will present it here, even

though it will not be needed until the next chapter.
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n p (parameter for test function) How much the inequaity (4.4) holds by
2 2. -3.46794
3 2. -10.4516
4 2. -17.9502
5 2. -26.9594
6 2. -35.5884
7 2. -44.9868
8 2. -53.3743
9 2. -61.9835
10 2. -69.0981
11 2. -76.0017
12 2. -81.0194
13 2. -85.469
14 2. -87.7046
15 2. -89.0686
16 2. -87.936
17 2. -85.6679
18 2. -80.6555
19 2. -74.274
20 2. -64.9277
21 2. -54.0033
22 2. -39.915
23 2. -24.0592
24 2. -4.85866
25 3. -7.95176
26 5. -2.10588

Table 4.1: The numerical proof of the cohomology theorem.
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Proposition 4.4.1 Let φ be a SL2(Z)\H-cusp form with ∆φ + ( 1
4
+ ν2)φ = 0. Its

completed standard L-function is

Λ(s, φ) = ΓR(s+ iν)ΓR(s− iν)
∏

p

(1− αpp−s)−1(1− αpp−s)−1.

Recall that ν > 0. Then

∫ 1+iT

1−iT

Λ′

Λ
(s)ds¿ T log(T + ν).

Proof: From the Mittag-Leffler expansion

Λ′

Λ
(s) =

Γ′R
ΓR

(s+ iν) +
Γ′R
ΓR

(s− iν)−
∞∑

n=1

cnn
−s =

∑

ρ

1

s− ρ.

Let s = 2 + it and take t > 0 without loss of generality. Then since

L′

L
(s) = −

∞∑

n=1

cnn
−s = −2<

∑

p

αpp
−s log p

1− αpp−s
= −2<

∑

p

∞∑

n=1

(αpp
−s)n log p,

the trivial bound |ap| ≤ 2
√
p implies |L′

L
(2 + it)| is uniformly bounded in both t and

ν. By Stirling’s formula

Γ′R
ΓR

(s) = −1
2
log π +

1

2
log s+O(1/|s|)

and

Γ′R
ΓR

(2 + it+ iν) +
Γ′R
ΓR

(2 + it− iν) ≤ log(t+ ν) +O(1).

Thus,
∑

ρ

1

1 + |t− γ|2 ¿
∑

ρ

1

s− ρ ≤ log(t+ ν) +O(1).
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It follows that there are no more than O(T log(T + ν)) zeroes with γ ∈ [−T, T ] and

the integral

∫ 1+iT

1−iT

Λ′

Λ
(s)ds =

∫ 1+iT

1−iT

∑

ρ

ds

s− ρ =
∫ 1+iT

1−iT

∑

|γ|≤T+1

ds

s− ρ +
∫ 1+iT

1−iT

∑

|γ|>T+1

ds

s− ρ

¿ T log(T + ν).

Here we are using the principal value of the integrals

∫ 1+iT

1−iT

ds

s− ρ ≤ π

for those zeroes with <ρ = 1, though there actually are not any because of the prime

number theorem (which states that 0 < <ρ < 1 for all zeroes of Λ(s, φ)). 2
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Chapter 5

Weyl’s Law for

SL3(Z)\SL3(R)/SO3(R)

5.1 Introduction

Let G = SL3(R), K = SO3(R), a maximal compact subgroup, and H = the rank-2

symmetric space G/K. If Γ = SL3(Z), a discrete group of isometries, then X = Γ\H

is non-compact (it has one cusp) but has finite volume under the Haar measure of G

(we have normalized the Haar measure on K to be 1). The Laplace-Beltrami operator

∆ on H is invariant under the isometries of G acting on X via left-multplication, and

so ∆ is defined on L2(Γ\H). It has both a continuous spectrum and a discrete

spectrum

0 = λ0 < λ1 ≤ λ2 ≤ · · · ,

and an orthonormal set

φ0 =
1√

vol(X)
, φ1, φ2, . . . ,
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with

∆φj + λjφj = 0.

The zero eigenvalue corresponds to the constant functions whereas the remaining,

positive eigenvalues are from cusp forms φ1, φ2, . . .. The cusp forms are also eigen-

values of all invariant differential operators, as well as the Hecke operators. It is

known that the discrete spectrum is infinite because any SL2(Z)\H-cusp form can

be Gelbart-Jacquet ([GelJac]) lifted to X, and there are infinitely many of these (a

theorem of Selberg).

We will establish the existence of non-lifted eigenvalues by proving Weyl’s law for

the laplacian ∆ on X.

Theorem 5.1.1 Let N(T ) = #{λj ≤ T}. As T →∞

N(T ) ∼ T 5/2vol(X)

(4π)(5/2)Γ(7/2)
.

Remark 5.1.2 Weyl’s law is true for compact manifolds X for any n > 1, but for

the generic Γ not co-compact it is probably false (cf. the work of Phillips-Sarnak for

general non-compact quotients of the hyperbolic plane H). Our theorem confirms a

conjecture of Sarnak (conjecture 1.1.6) which predicts that Weyl’s law holds for any

congruence cover of SLn(Z)\SLn(R)/SOn(R),n > 1.

Remark 5.1.3 The upper bound

lim sup
N(T )

T 5/2
=

vol(X)

(4π)5/2Γ(7/2)

was proven by [Donnelly] for this quotient and more generally for the cuspidal spec-

trum of the laplacian on finite volume quotients of locally symmetric spaces. It is the
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lower bound, and hence the existence, which we will address.

Remark 5.1.4 As alluded to above, Selberg proved Weyl’s law for SL2(Z)\H in the

mid-50’s, via his seminal trace formula ([Selberg 1956]) (which he in fact developed

for this application). However, there are difficulties of non-compactness which make

this approach difficult in higher rank. We will use the spectral expansion of an integral

operator a la Selberg, but only take a partial trace over a compact subset of X. This

is of course insufficient to derive the full trace formula but is strong enough for our

application.

In the next few sections we will discuss the spectral expansion and the truncated

fundamental domain that we will integrate over. We will conclude with the estimates

on the continuous spectrum needed to complete the proof.

5.2 Integral operators on X

Let g ∈ C∞c (K\G/K) (a smooth, bi-K-invariant function of compact support) act

by convolution on L2(G/K):

(Lgf)(x) =
∫

G/K
f(y)g(y−1x)dy.

The convolution operator Lg also acts on f ∈ L2(Γ\G/K) by

(Lgf)(x) =
∫

G/K
f(y)g(y−1x)dy =

∑

γ∈Γ

∫

Γ\G/K
f(γ−1y)g(y−1γx)dy

=
∫

Γ\G/K
f(y)K(x, y)dy,
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where the kernel

K(x, y) =
∑

γ∈Γ
g(y−1γx).

Suppose that g(x) = g(x−1) is real; then Lg is a self-adjoint operator on L
2(Γ\G/K)

which commutes with the laplacian and all other invariant differential operators. Thus

any eigenfunction of ∆ on G/K is not only an eigenfunction of all invariant differential

operators, but also of Lg. There is thus a function ĝ which gives its eigenvalue:

(Lgφ)(x) = ĝ(φ)φ(x).

The eigenvalue ĝ(φ) in fact only depends on a parameter associated to common

eigenfunctions of the ring of invariant differential operators D. Consider D1, D2 ∈ D

with

D1φ = λ1φ and D2φ = λ2φ.

Then (D1 ◦ D2)(φ) = λ1λ2φ, so φ induces a homomorphism of D to C. All such

characters come from the common eigenfunctions

φλ(x) = e(λ+ρ)(H(x)),

where λ ∈ a∗0C, ρ0 is half the sum of the positive roots, and H0(x) is the “logarithm”

from G → a0. Selberg’s uniqueness principle asserts that ĝ depends merely on the

parameter λ, i.e. on the eigenvalues of φ on a set of generators of D (see chapter 3).

This enables us to compute ĝ(λ) explicitly by the example provided by φλ(x). For

since (Lgφλ)(x) = ĝ(λ)φ(x),

ĝ(λ) = (Lgφλ)(1) =
∫

G/K
g(x)e(λ+ρ)(H(x))dx.
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This is the so-called Selberg/Helgason/Harish-Chandra spherical Fourier transform.

5.3 Spectral resolution

The spectrum of the laplacian ∆ on L2(SL3(Z)\H3) consists of a discrete spectrum

and a continuous spectrum. The latter is special to non-compact spaces and we shall

see that it affects the size of the discrete spectrum. We have already discussed the

spectral decomposition but reintroduce it here to reinforce notation. A good reference

is [Arthur 1984].

5.3.1 Discrete spectrum

This has an orthonormal basis B = {φ0, φ1, φ2, . . .} where ∆φj + λjφj = 0 for some

eigenvalue λj ≥ 0. The first eigenfunction φ0 is a constant (corresponding to λ0 = 0)

and all other eigenfunctions φ1, φ2, . . . are cusp forms and have positive eigenvalues.

These are the objects that we want to show exist in abundance, and since the constant

function φ0 is the only non-cusp form among the φj’s it is irrelevant in our asymptotics

whether or not we include it in our spectral count.

5.3.2 Continuous spectrum

This has one- and two-dimensional parts. The two-dimensional part comes from the

minimal parabolic Eisenstein series

E(P0, x, λ) =
∑

γ∈Γ∩P0\Γ
e(λ+ρ)(H(γx)),

where λ ranges over ia∗0, a two-dimensional family.
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The one-dimensional spectrum consists of infinitely-many pieces, each from a max-

imal parabolic Eisenstein series induced from aGL2(Z)\H eigenfunction φ on the Levi

component M of P :

E(P, x, φ, λ) =
∑

γ∈Γ∩P\Γ
e(λ+ρ)(H(γx))φ(m(γx)).

Herem(g) is the Levi factor in the Langlands decomposition G = NMK and λ ranges

over iaP∗, a one-dimensional family. In summary, for each GL2(Z)\H eigenfunction

on either of the two maximal parabolics there corresponds a one-dimensional spec-

trum. The Eisenstein series from different parabolics but which arise from the same

GL2(Z)\H-cusp form are related by a unitary transformation (part of the Langlands

theory – see [Langlands 1976]).

5.4 Partial trace

The kernel of the integral operator Lg, K(x, y) =
∑

γ∈Γ g(y
−1γx) has a spectral ex-

pansion in terms of the discrete spectrum and continuous spectrum as ([Arthur 1984])

K(x, y) =
∑

φj∈B(3)

ĝ(λφj)φj(x)φj(y) +
1

3

∫

ia∗0

∫
ĝ(λ)E(P0, x, λ)E(P0, y, λ)dλ

+
1

2

∑

P maximal

∑

φj a GL2(Z)\H

discrete eigenfunction

∫

iaP ∗
ĝ(λ+ λφj)E(P, x, φj, λ)E(P, y, φj, λ)dλ.

We have used the notation B(3) to distinguish between eigenfunctions on SL3(R) and

on SL2(R). The measure dλ on ia
∗ is taken (see [Arthur 1984]) to be dual (i.e. for

the Fourier transform) to the Lebesgue measure on the vector space a with the basis

{α∨i | i = 1, . . . , r − 1}.
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The Selberg trace formula involves taking the trace of this integral operator, i.e.

integrating K(x, x) over x in a fundamental domain F for Γ\G/K. However, this

integral does not converge because the Eisenstein series become too large in the cusp

(and of course the sum on the left thus diverges as well there). We shall thus take a

partial trace, only over a fixed compact subset FC of F :

∫

FC
K(x, x)dx =

∫

Fc

∑

γ∈Γ
g(x−1γx) =

∫

FC

∑

φj∈B(3)

ĝ(λφj)|φj(x)|2dx

+
1

3

∫

FC

∫ ∫

ia0∗
ĝ(λ)|E(P0, x, λ)|2dλdx

+
1

2

∑

P maximal

∫

FC

∑

φ a GL2(Z)\H

discrete eigenfunction

∫

iaP ∗
ĝ(λ+ λφ)|E(P, x, φ, λ)|2dλdx. (5.1)

We can restrict our choices of g ≥ 0 to those which have ĝ(λ) positive for <λ = 0 and

that decay rapidly at infinity. This, for example, can be arranged by convolving g

with itself. That is, let g1 ∈ C∞c (K\G/K) and recall we are assuming that g1(x−1) =

g1(x) ≥ 0. Now let

g(x) = (Lg1g1)(x) =
∫

G/K
g1(y)g1(y

−1x)dy

and observe

ĝ(λ) =
∫

G/K
g(x)e(λ+ρ)(H(x))dx =

∫

G/K

[∫

G/K
g1(y)g1(y

−1x)dy

]
e(λ+ρ)(H(x))dx

=
∫

G/K

∫

G/K
g1(y)e

(λ+ρ)(H(y))g1(y
−1x)e(λ+ρ)(H(x)−H(y))dxdy

(we will be thinking of G/K as N0A0). Change variables by letting x = yx′ so that
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H(x) = H(y) +H(x′), and the integral splits as ĝ(λ) = ĝ1(λ)
2. Since

ĝ1(λ) =
∫

G/K
g1(x)e(λ+ρ)(H(x))dx =

∫

G/K
g1(x)e

(−λ+ρ)(H(x))dx

=
∫

G/K
g1(x

−1)e(−λ+ρ)(H(x−1))e2ρ(H(x))dx

=
∫

G/K
g1(x)e

(λ+ρ)(H(x))dx

= ĝ1(λ),

ĝ(λ) ≥ 0. Thus, there are some functions in C∞c (K\G/K) which have a positive

spherical transform.

We can thus create an inequality out of the partial trace (5.1) by dropping various

terms. Firstly, for the discrete spectrum terms,

∞∑

j=0

ĝ(λφj)
∫

FC
|φj(x)|2dx ≤

∞ ′∑

j=0

∫

FC
ĝ(λφj)|φj(x)|2dx.

The
∑′ means we only include those cusp forms for which <ĝ(λφj) ≥ 0. Since

∫

FC
|φj(x)|2dx ≤

∫

F
|φj(x)|2 = 1,

the remaining positive terms are

≤
∞ ′∑

j=0

ĝ(λφj).

The orbital integrals are the summands in

∫

FC
K(x, x)dx =

∑

γ∈Γ

∫

FC
g(x−1γx)dx.
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Since g is positive,

∫

FC
K(x, x)dx ≥

∫

FC
g(x−1Ix)dx = g(I)volFC .

This will in fact be the main term because if g has small support, only γ ∈ Γ for

which there is a point x ∈ FC with x−1γx near the identity (i.e. in the support of

g) will have non-zero orbital integrals. By reduction theory, X has a fundamental

domain F with one cusp and a finite polygonal boundary which touches only finitely

many translates of F . Since FC is compact it avoids the cusp and hence all the

elements γ ∈ Γ with non-zero orbital integrals must map some boundary point of FC
to another. Thus only finitely many elements γ ∈ Γ have non-zero orbital integrals,

and these γ all have fixed points in the boundary of FC .

Let us select our family of test functions as

gT (x) = T 5g(xT ),

with g as before. Then for T large gT (x) has small support which shrinks to the

identity as T → ∞. Among <λ = 0, the spherical transform ĝT (λ) is concentrated

in {λ | ‖λ‖ = O(T )}. Also, gT (I) = T 5g(I); we will show that the orbital integrals

∫
gT (x

−1γx)dx = o(T 5), if γ 6= I, and hence that the identity orbital integral is the

main term.

Lemma 5.4.1 If γ 6= I, then

∫

G/K
gT (x

−1γx)dx = o(T 5).

Proof: We already pointed out that γ must fix a point x0, so that γ is locally a
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rotation about x0. By changing variables we see the integrand still has compact

support in x around x0, and so the integral is

≤ max
x∈suppgT

gT (x)vol(suppg̃T )¿
(
T 5max g

)
o(1) = o(T 5),

where g̃T (x) = gT (x
−1γx) (note that to get our constant above we are using the fact

that there are only finitely many elements γ ∈ Γ involved). 2.

Remark 5.4.2 Were Γ co-compact then our spectral expansion would not include the

contributions of the continuous spectrum (as it is special to non-compact quotients)

and we could take the full trace by letting FC = F . We would conclude

T 5g(I)vol(F) ∼
∞ ′∑

j=1

ĝT (λφj) as T →∞.

Weyl’s law holds for the compact case, and since g and ĝ can be taken from such

a broad range of functions, it is equivalent to that last asymptotic expression. We

will use this fact instead of rederiving the tauberian argument which shows this and

the exact constants involved, though were we to do this the preceding analysis of the

orbital integrals would have been unneccesary.

Proof of Weyl’s Law (theorem 5.1.1): For our case, where Γ = SL3(Z) is not

co-compact, the contributions of the continuous spectra have the same sign as the

spectral count
∑′ ĝT (λφ). In general it is impossible to decouple the two, but we will

here by showing the continuous spectra terms contribute Oε(T
2+ε). Thus our partial

trace inequality becomes

T 5g(I)vol(FC) ≤
∞ ′∑

j=0

ĝT (λφj) + o(T
5), (5.2)
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or equivalently

lim inf
N(T )

T 5/2
≥ volFC
(4π)5/2Γ(7/2)

.

Choosing a sequence of compact sets FCi whose union is F the right-hand side can

be replaced by

volF
(4π)5/2Γ(7/2)

.

The same upper bound for lim sup N(T )

T 5/2 was proven by Donnelly and so we conclude

N(T ) ∼ vol(SL3(Z)\SL3(R)/SO3(R))

(4π)5/2Γ(7/2)
T 5/2.

2

5.5 The truncated fundamental domain FC

Let us now describe the choice of truncated FC we will integrate over to bound

the continuous spectrum terms. The rank-2 group G has 2 positive simple roots

Σ = {α1, α2} ⊂ a∗0,

α1







h1 0 0

0 h2 0

0 0 h3






= h1 − h2 , α2







h1 0 0

0 h2 0

0 0 h3






= h2 − h3.

There is a third positive root α3 = α1 + α2 = ρ0 =
1
2
(α1 + α2 + α3). Let c > 0 be a

large positive parameter and

C = c
(
n− 1
2

,
n− 3
2

, · · · , 1− n
2

)
∈ a0.
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Define

FC = {x ∈ F | (2α1 + α2)(H(x)− C), (α1 + 2α2)(H(x)− C) ≤ 0}.

The reason for this somewhat-odd defination is that it matches some defintions in the

next section.

The main difficulty of the trace formula in higher rank for non-compact quotients

is that the Eisenstein series are not square-integrable. We will modify them by sub-

tracting their constant terms from various parabolics

EP (x) =
∫

Γ∩N\N
E(nx, φ, λ)dn

near infinity so as to make E(x, φ, λ) square-integrable for <λ(α∨i ) ≥ 0.1 The modified

Eisenstein series (ΛCE)(x, λ) will agree with E(x, λ) in FC and so

∫

FC
|E(x, λ)|2dx ≤

∫

F
|(ΛCE)(x, λ)|2dx,

the latter of which we will be able to explicitly calculate via the Langlands inner-

product formula. Note that we can bound the integral of |E(x, λ)|2 over any compact

set, as any of these is contained in some FC for c large enough. Thus our overall

argument does not depend on the actual choice or shape of FC .
1Of course we can only truncate E(x, φ, λ) for values of λ where it is defined, i.e. away from the

poles.
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5.6 The truncated Eisenstein series ΛCE

For any standard parabolic Pπ let

∆P = ∆π = {αi ∈ Σ | αi 6= 0 on aπ}.

Recall that {α∨1 , α∨2 } is a basis of a0.

Let τ̂P (x) be the characteristic function of

{x = c1α
∨
1 + c2α

∨
2 ∈ a0 | ci > 0,∀αi ∈ ∆P}.

That is, τ̂P0 is the characteristic function of

{x = c1α
∨
1 + c2α

∨
2 ∈ a0 | c1, c2 > 0},

τ̂P1 of {x = c1α
∨
1 + c2α

∨
2 ∈ a0 | c2 > 0},

τ̂P2 of {x = c1α
∨
1 + c2α

∨
2 ∈ a0 | c1 > 0},

and

τ̂G of a0.

The truncation of an automorphic form ψ is a sum over all parabolic subgroups

(ΛCψ)(x) :=
∑

P

(−1)dimA
∑

γ∈Γ∩P\Γ
τ̂P (H(γx)− C)

∫

Γ∩N\N
ψ(nγx)dn

=
∑

P

(−1)dimA
∑

γ∈Γ∩P\Γ
τ̂P (H(γx)− C)ψP (γx),

which itself is clearly an automorphic form. It can be proven that it also decays
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rapidly in the cusp because of the way its constant terms have been removed (see

[Arthur 1980]). Note that if ψ is a cusp form to begin with, all its constant terms

ψP ≡ 0 in proper parabolics and thus ΛCψ = ψ.

Theorem 5.6.1 Langlands inner product formula ([Langlands 1966], [Arthur 1980])

∫

Γ\G/K

[
(ΛCE)(P, x, φ, λ1)

] [
(ΛCE)(P, x, φ, λ2)

]
dx

=
∑

P∼P ′ associate
vol(a′/ < α∨ | α ∈ ∆P ′ >)×

∑

s1,s2∈Ω(a,a′)

e(s1λ1+s2λ2)(C)

∏
α∈∆P

(s1λ1 + s2λ2)(α∨)
(M(s1, λ1)φ,M(s2, λ2)φ).

The last expression (ψ, ψ′) is an inner product over Γ ∩M ′\M ′.

For our purposes we will only need to deal with standard parabolic subgroups of

SL3(R), and we already described the operatorsM(s, λ). Hence up to the lattice-area

constant, the inner product is

∑

P∼P ′

∑

s1,s2∈Ω(a,a′)

e(s1λ1+s2λ2)(C)

∏
α∈∆P

(s1λ1 + s2λ2)(α∨)
×

∏

1≤i<j≤r

s(i)>s(j)

L(λ1i − λ1j , φi × φ̃j)
L(1 + λ1i − λ1j , φi × φ̃j)

∏

1≤k<l≤r

s(k)>s(l)

L(λ2k − λ2l , φk × φ̃l)
L(1 + λ2k − λ2l , φk × φ̃l)

.

This is a generalization of the Maass-Selberg relations, which are for the the minimal

parabolic Eisenstein series on SL2(R) – various approaches to them can be found in

[Borel 1974] and [Terras], vol. I.
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5.7 The minimal parabolic Eisenstein series

Recall that these are

E(P0, x, λ) =
∑

γ∈Γ∩P0\Γ
e(λ+ρ)(H(γx)), λ ∈ ia∗0.

The L-functions involved in the right-hand side of the Langlands inner product for-

mula are (completed) Riemann zeta functions ζ∗(s) = π−s/2Γ( s
2
)ζ(s). Let

c(s) =
ζ∗(s)

ζ∗(s+ 1)
=

π−s/2Γ( s
2
)ζ(s)

π−(s+1)/2Γ( s+1
2
)ζ(s+ 1)

so that the inner product (up to the volume constant) is

∑

s1,s2∈Ω(a0)

e(s1λ1+s2λ2)((c,0,−c))

(s1λ1 + s2λ2)((1,−1, 0))(s1λ1 + s2λ2)((0, 1,−1))
×

∏

1≤i<j≤3

s1(i)>s1(j)

c(λ1i − λ1j)
∏

1≤k<l≤3

s1(k)>s1(l)

c(λ2k − λ2l). (5.3)

Now take λ1 = (it1, it2, it3) + (ε, 0,−ε) = λ2 with ti real and t1 + t2 + t3 = 0. This

expression is a constant multiple of an integral which converges for ε ≥ 0. Thus, by

the dominated convergence theorem it too must have a limiting value when ε→ 0 or

at any other singularity – i.e. all its singularities in ε ≥ 0 are removable2.

Note that the numerator of each term is unitary when ε = 0 by the functional

equation ζ∗(s) = ζ∗(1− s) and the fact that ζ∗(s) is real for s ∈ R:

|c(it)| =
∣∣∣∣∣
ζ∗(it)

ζ∗(1 + it)

∣∣∣∣∣ =
∣∣∣∣∣
ζ∗(it)

ζ∗(−it)

∣∣∣∣∣ =
∣∣∣∣∣
ζ∗(it)

ζ∗(it)

∣∣∣∣∣ = 1.

We can also control the derivatives:

2Again one must stay away from the pole of c(s) at s = 1.
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Lemma 5.7.1 For any n ≥ 0 and ε > 0, dn

dtn
c(it) = Oε(t

ε).

Proof: Since |c(it)| = 1 it suffices to bound the derivates of log(c(it)). For example,

−c
′

c
(s) = − log π + 1

2

Γ′

Γ

(
1− s
2

)
1

2
+
Γ′

Γ

(
1 + s

2

)
+
ζ ′

ζ
(1− s) + ζ ′

ζ
(1 + s).

Because of the quotient rule

(
f (n)

f

)′
=
f (n+1)

f
− f (n)

f

f ′

f
,

any repeated derivate of log(f) is a polynomial in f ′

f
, · · · , f (n)

f
. We have that

ζ(n)

ζ
(1 + it) = Oε(t

ε)

(see [Titchmarsh] for an upper bound on the derivates and a lower bound on ζ(1+it)),

and

Γ(n)

Γ
(
1

2
+ it) = Oε(t

ε),

which is immediate from the expansion

Γ′

Γ
(s) = −1

s
−

∞∑

n=1

(
1

n+ s
− 1
n

)
− γ

(γ is Euler’s constant 0.57721566490153286061 · · ·). 2

For the generic choice of λ, (5.3) has singularities only involving ε’s in the de-

nominators. Since (5.3) has a limiting value at ε = 0, it is a constant multiple of a

derivative of the singular terms involved at ε = 0. All these derivates are Oε(T
ε) for

‖λ‖ ≤ T by the lemma. Keep in mind that C is a fixed constant and thus irrelevant.

For the singular values of λ ∈ ia0 the same is also true. At most two derivatives
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ever need to be taken, and a third to interpolate nearby the singularities (when the

denominators are large, the expression is trivially small since the numerators have

modulus one). Thus, the inner product is Oε(T
ε).

Finally, to estimate the contribution of the two-dimensional continuous spectrum

in the partial trace (5.1)

∫

ia0∗

∫
ĝT (λ)

∫

FC
|E(P0, x, λ)|2dxdλ

as T →∞ it is sufficient (by a tauberian argument) to estimate

∫ iT

α1(λ)=−iT

∫ iT

α2(λ)=−iT

∫

FC
|E(P0, x, λ)|2dxdλ¿ε

∫ T

−T

∫ T

−T
T εdλ¿ε T

2+ε.

5.8 The maximal parabolic Eisenstein series in-

duced from cusp forms

Recall that G = SL3(R) has 2 standard maximal parabolics:

P1 =








∗ ∗ ∗

∗ ∗ ∗

0 0 ∗








and P2 =








∗ ∗ ∗

0 ∗ ∗

0 ∗ ∗








with Levi components

M1 =








∗ ∗ 0

∗ ∗ 0

0 0 ∗








and M2 =








∗ 0 0

0 ∗ ∗

0 ∗ ∗








,
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each isomorphic to GL2(R). If we divide these by their split components A we get

M ′ = M/A ' GL±2 (R). The maximal parabolic Eisenstein series are induced from

Γ ∩M ′\M ′/(M ′ ∩K) cusp forms, which are just GL2(Z)\H-cusp forms. These are

precisely the even SL2(Z)\H-cusp forms. For each GL2(Z)\H-cusp form φ we can

make eigenfunctions φ1 and φ2 on the Levi subgroups M
′
1 and M

′
2, respectively, and

Eisenstein series

E(P1, φ1, x, λ1) =
∑

γ∈Γ∩P1\Γ
φ1(m1(γx))e

(λ1+ρ1)(H1(γx)),

and

E(P2, φ2, x, λ2) =
∑

γ∈Γ∩P2\Γ
φ2(m2(γx))e

(λ2+ρ2)(H2(γx)).

Here mi(g) ∈ Mi is from the Langlands decomposition G = NMAK and Hi is the

“logarithm” to ai. Also λi ∈ ia∗i and ρi is half the sum of the positive roots of ai.

There is a functional equation due to Langlands relating the two Eisenstein series

on different parabolics induced from the same GL2(Z)\H-cusp form. If t is the unique

element in Ω(a1, a2) (which associates P1 to P2), then

E(P1, φ1, x, λ) =M(t, φ, λ)E(P2, φ2, tx, tλ)

where |M(t, φ, λ)| = 1 for λ ∈ ia1∗ and tx and tλ are images under the association

map induced by t. So in the partial trace (5.1)

1

2

∑

P

∑

φ

∫

iaP ∗
ĝ(λφ)

∫

FC
|E(P, x, φ, λ)|2dxdλ =

∑

φ

∫

ia1∗
ĝ(λφ)

∫

FC
|E(P1, x, φ, λ)|2dxdλ

and we only need to deal with the P1 Eisenstein series, though our argument also

works for P2 just as easily.
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We will prove

Proposition 5.8.1 Let α be the root α1,2 ∈ a∗1. Then

∫ iT

α(λ)=−iT

∫

FC
|E(P1, x, φ, λ)|2dxdλ¿ε (T + |λφ|)1+ε.

By a tauberian argument, this will imply the total contribution

∑

φ

∫

ia1∗
ĝ(λφ)

∫

FC
|E(P1, x, φ, λ)|2dxdλ¿ε

∑

|λφ|≤T

∫ iT

α(λ)=−iT

∫

FC
|E(P1, x, φ, λ)|2dxdλ

¿ε

∑

|λφ|≤T
(T + |λφ|)(1+ε) ¿ T (2+ε).

Here we have used the Weyl upper bound for GL2(Z)\H-cusp forms N(T ) = O(T 2).

(Note ∆φ+ ( 1
4
+
‖λφ‖2

2
)φ = 0.)

Proposition 5.8.2 Let α be as in the previous proposition andM(t, φ, λ) be the ratio

of completed L-functions

Λ(α(λ), φ)

Λ(1 + α(λ), φ)
.

Note that M(t, φ, λ)M(t, φ,−λ) = 1 by the functional equation of Λ(s, φ). Then

∫

FC
|E(P1, x, φ, λ)|2dx =

M ′

M
(t, φ, λ) +O(c)

up to a constant.

This proposition implies the previous one by lemma 4.4.1, where we bounded the

winding number of M . It itself is an application of the Langlands inner product

formula

e(λ+λ̄)(C)

(λ+ λ̄)(α∨)
+

e(tλ+tλ̄)(C)

(tλ+ tλ̄)(α∨)
|M(t, φ, λ)|2 = e2<λ(C) − e−2<λ(C)|M(t, φ, λ)|2

2<λ(α∨) .
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The denominator will have a singularity when <λ = 0, so this expression is thus a

derivative of the numerator, up to a constant (keep in mind that M is unitary when

<λ = 0).

5.9 The maximal parabolic Eisenstein series in-

duced from the constant function

We still need to examine the contribution of

E(P1, x, 1, λ) =
∑

γ∈Γ∩P1\Γ
e(λ+ρ1)(H1(γx)) , λ ∈ ia∗1

to the partial trace formula. We will demonstrate

Proposition 5.9.1 Let α = α1,2 ∈ a∗1. For T large

∫ λ(α∨)=iT

λ(α∨)=−iT

∫

FC
|E(P1, x, 1, λ)|2dxdλ = O(T log T ).

This, again by a tauberian argument, is sufficient and is the last step needed to

prove Weyl’s law. We will prove the proposition by expressing E(P1, x, 1, λ) as a

residue of the minimal parabolic Eisenstein series E(P0, x, λ) on SL3(R). After all,

the constant function on SL2(R) is itself a residue of the minimal parabolic Eisenstein

series E(P0, x, λ) at the pole λ = α, the unique positive root of a0. We have used

different normalizations arising from the volumes of GL2(Z)\H and SL3(Z)\H3, but

these are irrelevant for our theorem as all we need is an order-of-magnitude estimation.
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5.9.1 Notation

Decompose any H ∈ a0 as

H = H1 +H⊥,

where α1(H1) = 0, i.e. H ∈ a1. Similarly, write any λ ∈ a∗0 as

λ = λ1 + λ⊥, λ1(α
∨
1 ) = 0 (λ ∈ a∗1).

If H = (h1, h2, h3) then H1 = (h1+h2

2
, h1+h2

2
, h3) and H⊥ = (h1−h2

2
, h2−h1

2
, 0). Also,

ρ = ρ1 +
1
2
α1. Let P

(2)
0 be the minimal standard parabolic of SL2(R) and recall

m′
1(x) ∈ M ′

1 denotes the Levi component from the Langlands decomposition P =

NM ′A.

Lemma 5.9.2 The minimal parabolic Eisenstein series can be written as a maximal

parabolic Eisenstein series induced from the minimal parabolic Eisenstein series on

SL2(R):

E(P0, x, λ) = E(P1, x, E(P
(2)
0 ,m′

1(·), λ⊥), λ1).

Proof: This is an unfolding argument:

E(P0, x, λ) =
∑

γ∈Γ∩P0\Γ
e(λ+ρ0)(H0(γx))

=
∑

γ∈Γ∩P1\Γ

∑

δ∈Γ∩P0\Γ∩P1

e(λ+ρ0)(H0(δγx)).

Note that for any y ∈ G

(λ+ ρ0)(H0(δy)) = (λ1 + λ⊥ + ρ1 +
1

2
α1)(H1(δy) +H⊥(δy))
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= (λ1 + ρ1)(H1(δy)) + (λ⊥ +
1

2
α1)(H⊥(δy))

and that for δ ∈ P1, H1(δy) = H1(y). Thus

E(P0, x, λ) =
∑

γ∈Γ∩P1\Γ
e(λ1+ρ1)(H(γx))

∑

δ∈Γ∩P0\Γ∩P1

e(λ⊥+
1
2
α1)(H⊥(δγx)),

which is

E(P1, x, E(P
(2)
0 ,m′

1(·), λ⊥), λ1)

since

Γ ∩ P0\Γ ∩ P1 ' Γ∞\SL2(Z).

2

Corollary 5.9.3 Up to a constant

E(P1, x, 1, λ) = Resλ⊥= 1
2
α1
E(P0, x, λ)

and

(ΛCE)(P1, x, 1, λ) = Resλ⊥= 1
2
α1
(ΛCE)(P0, x, λ).

We can use the Maass-Selberg relations for E(P0, x, λ) to conclude that we need only

bound the residue of

∑

s1,s2∈Ω(a0)

e(s1λ1+s2λ2)(C)

∏2
i=1(s1λ1 + s2λ2)(α

∨
i )

∏

1≤i<j≤3
1≤k<l≤3

s1(i)>s1(j)

s2(k)>s2(l)

c(λ1i − λ1j)c(λ2k − λ2l)

when λ1 − 1
2
α1, λ2 − 1

2
α1 ∈ ia1.
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5.9.2 Analysis of the polar terms

Let us take

λ1 =

(
it+ ε+

1

2
+
iδ

2
, it+ ε− 1

2
− iδ

2
,−2it− 2ε

)
= λ2.

Poles at δ = 0 can only occur in terms which have

(s1λ1 + s2λ2)(α
∨
1 ) = 0 , (s1λ1 + s2λ2)(α

∨
2 ) = 0,

or c(s) evaluated at s = 1. We will of course only be interested in terms which have

double poles, since we are investigating the integral of the square of the residue of

E(P0, x, λ).

We shall require the following bounds on c(s) and its derivative:

Lemma 5.9.4 For t ∈ R

(i) : c(
1

2
+ it) = O(1).

(ii) :
d

dε

(
ζ∗(3

2
+ it+ ε)

ζ∗(3
2
+ it− ε)

)
|ε=0= O(log t).

Proof: (i) Recall

c(s) =
√
π
Γ( s

2
)

Γ( s+1
2
)

ζ(s)

ζ(s+ 1)
.

By Stirling’s formula ∣∣∣∣∣
Γ(1

4
+ it

2
)

Γ(3
4
+ it

2
)

∣∣∣∣∣ ∼
√
2

t
as t→∞

and by the convexity bound ζ( 1
2
+ it) = O(t1/4) (better bounds can be obtained).

Also, taking the logarithm of the Euler product of ζ(s) we find

− log ζ(3
2
+ it) =

∑

p prime
log(1− p−3/2−it) = O(1),
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which proves (i). Differentiating,

ζ ′

ζ
(
3

2
+ it) = −

∑

p

p−3/2−it log p

1− p−3/2−it = O(1)

also. So

ζ∗′

ζ∗
(
3

2
+ it) = −1

2
log π +

1

2

Γ′

Γ
(
3

4
+
it

2
) +

ζ ′

ζ
(
3

2
+ it) = O(log t),

proving (ii). 2

Terms which have poles from c when δ = 0

Observe that

λ11 − λ12 = 1 + iδ,

λ11 − λ13 = 3it+ 3ε+
1

2
+
iδ

2
,

and

λ12 − λ13 = 3it+ 3ε−
1

2
− iδ

2
,

so these poles only occur for the permutations which swap 1 and 2, namely (12), (321),

and (13). First, the diagonal terms are

e(2ε−1,2ε+1,−4ε)(c,0,−c)

(6ε+ 1)(−2) c(1 + iδ)c(1− iδ)

+
e(2ε−1,−4ε,2ε+1)(c,0,−c)

(−6ε− 1)(6ε− 1) |c(3it+ 3ε+
1

2
+
iδ

2
)c(1 + iδ)|2

+
e(−4ε,2ε−1,2ε+1)(c,0,−c)

(−2)(−6ε+ 1) |c(3it+ 3ε− 1
2
− iδ

2
)c(3it+ 3ε+

1

2
+
iδ

2
)c(1 + iδ)|2.
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Set ε = 0 to put the Eisenstein series on the line <λ1 = 1
2
α:

e−c

−2 c(1 + iδ)c(1− iδ) + e
−2cc(3it+

1

2
+
iδ

2
)c(−3it+ 1

2
− iδ

2
)c(1 + iδ)c(1− iδ)

+
e−c

−2 c(3it−
1 + iδ

2
)c(3it+

1 + iδ

2
)c(1− iδ)×

c(−3it− 1− iδ
2

)c(−3it+ 1− iδ
2

)c(1 + iδ).

Its double residue is

¿ 1 + |c(1
2
+ 3it)|2 ¿ 1

by lemma 5.9.4. (Recall that the residue of c(s) at s = 1 is a fixed constant.)

The non-diagonal terms (for t large – we are only interested in asymptotics) reduce

to bounding the products of the c’s, which up to constants are:

For s1 = (12), s2 = (321):

c(1 + iδ)c(−3it+ 1
2
− iδ

2
)c(1− iδ),

for s1 = (12), s2 = (13):

c(1 + iδ)c(−3it+ 1
2
− iδ

2
)c(−3it− 1

2
+
iδ

2
)c(1− iδ),

and for s1 = (13), s2 = (321)

c(1 + iδ)c(3it− 1
2
− iδ

2
)c(3it+

1

2
+
iδ

2
)c(−3it+ 1

2
− iδ

2
)c(1− iδ).
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After taking the double residue these are also O(1), noting that

|c(1
2
+ it)c(−1

2
+ it)| =

∣∣∣∣∣
c(1

2
+ it)

c(1
2
− it)

∣∣∣∣∣ = 1.

Thus the terms which have poles from c when δ = 0 contribute O(1) to the inner

product.

Terms which have Singularities in their Denominators

These are terms where either

(s1λ1 + s2λ2)(α
∨
1 ) or (s1λ1 + s2λ2)(α

∨
2 )

vanish for δ = 0. For t large this is only possible when the entries of

λ1(ε = 0) = (it+
1

2
, it− 1

2
,−2it) and λ2(ε = 0) = (−it+

1

2
,−it− 1

2
, 2it)

match to vanish, which forces s1 = s2(12).

We will add the six terms together and first take the δ → 0 limit to get the double

residue. Afterwards, by taking the ε→ 0 limit we will get the actual contribution to

the continuous spectrum.

Recall

λ1 = (it+ ε+
1

2
+
iδ

2
, it+ ε− 1

2
− iδ

2
,−2it− 2ε)

and

λ2 = (−it+ ε+
1

2
− iδ

2
,−it+ ε− 1

2
+
iδ

2
, 2it− 2ε).

The six terms are
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e× (12) : e
(2ε+iδ,2ε−iδ,−4ε)(c,0,−c)

(6ε− iδ)(2iδ) c(1− iδ)

(12)× e : e
(2ε−iδ,2ε+iδ,−4ε)(c,0,−c)

(6ε+ iδ)(−2iδ) c(1 + iδ)

(23)× (321) : e
(2ε+iδ,−4ε,2ε−iδ)(c,0,−c)

(−6ε+ iδ)(6ε+ iδ) c(3it+ 3ε−
1

2
− iδ

2
)c(−3it+ 3ε+ 1

2
− iδ

2
)c(1− iδ)

(321)× (23) : e
(2ε−iδ,−4ε,2ε+iδ)(c,0,−c)

(−6ε− iδ)(6ε− iδ) c(3it+ 3ε+
1

2
+
iδ

2
)c(1 + iδ)c(−3it+ 3ε− 1

2
+
iδ

2
)

(13)× (123) : e
(−4ε,2ε−iδ,2ε+iδ)(c,0,−c)

(−2iδ)(−6ε+ iδ) c(3it+ 3ε+
1

2
+
iδ

2
)c(3it+ 3ε− 1

2
− iδ

2
)

×c(−3it+ 3ε− 1
2
+
iδ

2
)c(1 + iδ)c(−3it+ 3ε+ 1

2
− iδ

2
)

(123)× (13) : e
(−4ε,2ε+iδ,2ε−iδ)(c,0,−c)

(2iδ)(−6ε− iδ) c(3it+ 3ε− 1
2
− iδ

2
)c(3it+ 3ε+

1

2
+
iδ

2
)

×c(−3it+ 3ε− 1
2
+
iδ

2
)c(−3it+ 3ε+ 1

2
− iδ

2
)c(1− iδ).

Its double residue at δ = 0 (up to a constant) is

e6εc

ε
− e−6εc

ε
c(3it+ 3ε− 1

2
)c(3it+ 3ε+

1

2
)c(−3it+ 3ε− 1

2
)c(−3it+ 3ε+ 1

2
)
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(the (321)− (23) terms only have single poles). This can be rewritten as

1

ε

(
e6εc − e−6εc ζ

∗(−1
2
+ 3it+ 3ε)

ζ∗(3
2
+ 3it+ 3ε)

ζ∗(−1
2
− 3it+ 3ε)

ζ∗(3
2
− 3it+ 3ε)

)

=
1

ε

(
e6εc − e−6εc ζ

∗(3
2
− 3it− 3ε)

ζ∗(3
2
− 3it+ 3ε)

ζ∗(3
2
+ 3it− 3ε)

ζ∗(3
2
+ 3it+ 3ε)

)
,

which by lemma 5.9.4 is O(log T ).

THE END
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