ANSWER KEY EXAM #1 2015

2

1. (10 points) Find the equation of the tangent line to the curve with equation $y = x^2 + 7$ that is parallel to the line 2x - y - 3 = 0.

Equation of line is:

Slowe of 2x-y-3=0 is 2. (y=2x-3) 0y=2xSlope of curve 0y=2xSlope of curve = Slope of line 0y=2x=2, 0y=2Point on curve is (1,8) so (y-8)=2(x-1)

2. If the area of a rectangle is 5 and its width is 3 less than twice its length, find the length of its diagonal.

Length of diagonal equals: $Area = 2\omega = 5$ $\omega = 22 - 3$ 2(22 - 3) = 5 $22^2 - 32 - 5 = 0$ $2 = 3 \pm \sqrt{9 + 40} = 3 \pm 7 + 5$ $\omega = 2(\frac{5}{2}) - 3 = 2$ $Area = 2\omega = 5$ $2(2^2 - 3) = 5$ $2(2^2 - 3) = 5$ $2(2^2 - 3) = 5$ $2(2^2 - 3) = 5$ $2(2^2 - 3) = 5$ $2(2^2 - 3) = 5$ $2(2^2 - 3) = 5$ $2(2^2 - 3) = 5$ $2(2^2 - 3) = 3$

3. Show that the equation $\sqrt[3]{x-1} = x^2 - 2$ has at least one solution on the interval (1, 2). Justify your answer.

Justify your answer.

$$f(x) = \sqrt[3]{x-1} - x^2 + 2$$
Continuous because Sum of Polynomial and composition of Polynomial and composition of Polynomial + Power function equation above

$$f(i) = 0 - 1 + 2 > 0$$

$$f(i) = 1 - 4 + 2 < 0$$
By RLT, there is a c in (1,2) with $f(c) = 0$.

4. Find the derivatives. You do not have to simplify your answers once you have finished differentiating.

a.
$$f(x) = \frac{\ln(x)}{1 + 5x^2}$$
. $f'(x) = \frac{(1 + 5x^2) \cdot \frac{1}{x} - \ln(x)}{(1 + 5x^2)^2}$

b.
$$g(t) = \sin(t^2)$$
. $g'(t) = \left(\cos t^2\right) 2 t$

5. The half-life of a sample of radium is 1590 years. If the sample contains 100 grams on February 26, 2015, how much will be left on February 26, 3015?

Amount of radium equals: $A(t) = 1000 \frac{1}{1590} - 1000 \frac{1}{1590}$ $A(1590) = 50 = 1000 \frac{1}{1590}$ $A(1590) = -1000 \frac{1}{1590}$ $A(1590) = -1000 \frac{1}{1590}$ $A(1000) = 1000 \frac{1}{1590}$

6. a. Use the algebraic techniques to find
$$\lim_{x\to 25} \frac{\sqrt{x}-5}{x-25}$$
. Limit equals: \(\frac{1}{10} \)
$$\lim_{x\to 25} \frac{\sqrt{x}-5}{x-25} \cdot \frac{\sqrt{x}+5}{\sqrt{x}+5} = \lim_{x\to 25} \frac{\sqrt{x}-5}{(x-25)(\sqrt{x}+5)} = \lim_{x\to 25} \frac{1}{\sqrt{x}+5} = \lim_{$$

b. Find the derivative of
$$g(x) = \frac{e^2}{1 - \sin(x)}$$
.
$$g'(x) = \frac{e^2 \cos x}{(1 - \sin x)^2}$$
$$\frac{1 - \sin(x) \cdot 0 - e^2 \cdot (-\cos x)}{(1 - \sin x)^2}$$

7a. Find
$$\lim_{x\to 5} \frac{x-5}{x^2-6x+5}$$
. Limit = 1/4

$$\lim_{x\to 5} \frac{(x-5)}{(x-5)(x-1)} = \lim_{x\to 5} \frac{1}{x-1} = \frac{1}{4}$$

b. For what values of c is the function

$$f(x) = \begin{cases} -2x + c & x \le 3\\ \frac{-4}{x - c} & x > 3 \end{cases}$$

continuous for all values of x?

$$\lim_{x\to 3^{-}} f(x) = -2.3 + C$$

$$\lim_{x\to 3^{+}} f(x) = \frac{-4}{3-c}$$

lim f(x) exists when
$$-6+C = \frac{-4}{3-C}$$

$$-6+C = \frac{3-C}{3-C}$$

$$(-6+C)(3-C) = -4$$

$$-C^2 + 9C - 18 = -4$$

$$C^2 - 9C + 14 = 0$$

$$(C-7)(C-2) = 0$$

C=7 cloesn't work because f is discontinuous at X=7. (This is a webwork)

8. a. If
$$y = \frac{x^4}{(\sqrt[3]{x})^3}$$
, find y' . $y' = 3x^2$, $x \neq 0$

$$y = \frac{x^4}{x} = x^3, x \neq 0$$

 $y' = 3x^2, x \neq 0$

I'd be happy with y= 3x2 on This one!

8b. If
$$f(x) = x^3 h(x)$$
 with $h(-2) = 3$ and $h'(-2) = 4$, calculate $f'(-2)$.

$$f'(x) = x^{3}h'(x) + 3x^{2}h(x)$$

$$f'(-2) = (2)^{3} \cdot h'(-2) + 3(-2)^{2}h(-2)$$

$$= -8.4 + 3.4.3 = -32 + 36 \neq 4$$

9. An astronaut standing on the edge of a cliff on the planet Pogo jumps directly upward and observes that on the way down she passes a point one foot above her initial position exactly 4 seconds later. Four seconds after that, she hits the ground at the base of the cliff. What is her initial velocity? How high is the cliff? $h(t) = -\frac{1}{2}gt^2 + v_0t + s_0$, and g = 2 ft/s² near planet Pogo's surface. Hint: What is h(4)? Plugging in gives you an equation that you can solve for v_0 .

Initial velocity: 17/4
Cliff's height is: 30
h(t)= - t2/10, t+50 (from g = 2)
h(4) = h(0)+1 From x.
(h(8) = 0 From **.
-42+No.4+80=02+No.0+80+1
-16+400 = 17 $400 = 17$ $00 = 174$
$-8^{2}+8v_{0}+5_{0}=0$
-82+8.17+53=3
-64+34+50=0
-30 +Se = 0
50=30

10. The graph of a function f(x) is given below

Find all values of x in [-5, 5] where f fails to be a. continuous.

b. differentiable.

$$\chi = -3, 1, 4$$

c. For which values of x is the derivative of f equal to 0?

$$\chi = 3$$

d. Find $\lim_{x\to 1^-} f(x)$ and $\lim_{x\to 1^+} f(x)$.