

1. (11 points) a. Find a vector perpendicular to the plane through the points $A(1, 0, 0)$, $B(2, 0, -1)$, $C(1, 4, 3)$. b. Find the area of $\triangle ABC$.

a. $\vec{AB} = \langle 1, 0, -1 \rangle$, $\vec{AC} = \langle 0, 4, 3 \rangle$, $\vec{AB} \times \vec{AC} = \langle 4, -3, 4 \rangle$.
b. $\frac{1}{2}|\langle 4, -3, 4 \rangle| = \frac{1}{2}\sqrt{41}$.

2. (11 points) Find the velocity and position of a particle that starts at the origin at time $t = 0$ with velocity $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and has acceleration $\mathbf{a}(t) = t\mathbf{i} + \mathbf{j} + t^2\mathbf{k}$.

$$\mathbf{v} = \langle t^2/2 + 1, t + 2, t^3/3 + 1 \rangle, \mathbf{r} = \langle t^3/6 + t, t^2/2 + 2t, t^4/12 + t \rangle$$

3. (11 points) For the curve $\mathbf{r}(t) = \langle t^3/3, t^2/2, t \rangle$, find the unit tangent vector and the curvature.

$$\mathbf{v} = \langle t^2, t, 1 \rangle, \mathbf{T} = \frac{\langle t^2, t, 1 \rangle}{\sqrt{t^4 + t^2 + 1}}$$

$$\mathbf{a} = \langle 2t, 1, 0 \rangle$$

$$|\mathbf{v} \times \mathbf{a}| = | \langle -1, 2t, -t^2 \rangle |$$

$$\kappa = \frac{(1 + 4t^2 + t^4)^{\frac{1}{2}}}{(1 + t^2 + t^4)^{\frac{3}{2}}}$$

4. (11 points) a. Find the angle between the planes $x + y + 2z = 1$ and $x - 2y + z = 1$.

b. Find parametric equations for the line of intersection of these planes.

a. $\cos \theta = \frac{\langle 1, 1, 2 \rangle \cdot \langle 1, -2, 1 \rangle}{\sqrt{6}\sqrt{6}} = \frac{1}{6}$, so $\theta = 80.4^\circ$

b. If $x = 0$, we solve and find that $(1, 0, 0)$ is in the intersection of the planes. The cross product of the normal vectors is $\langle 1, 1, 2 \rangle \times \langle 1, -2, 1 \rangle = \langle 5, 1, -3 \rangle$, so $\mathbf{r}(t) = \langle 1, 0, 0 \rangle + t\langle 5, 1, -3 \rangle$ and $x = 5t + 1$, $y = t$, $z = -3t$ is a set of parametric equations for the intersection.

5. (11 points) Find $\lim_{(x,y) \rightarrow (0,0)} \frac{(x+y)^2}{x^2 + y^2}$ or prove that the limit doesn't exist.

If $x = t$, $y = 0$, the limit is 1 and if $x = y = t$, the limit is 2. Therefore, the limit doesn't exist.

6. (11 points) The radius of a cylinder is increasing at .2 m/s and its height is decreasing at a rate of .1 m/s. How fast is the cylinder's volume changing when $r = 2$ and $h = 3$? ($V = \pi r^2 h$.)

$$\frac{dV}{dt} = 2\pi rh \frac{dr}{dt} + \pi r^2 \frac{dh}{dt}, \text{ so } \frac{dV}{dt} = 2.4\pi - .4\pi = 2\pi \text{ at the time specified.}$$

7. (11 points) Find $\frac{\partial z}{\partial x}$ if $xy^3z^2 + x^3y^2z = x + y^2 + z$.

Set $F(x, y, z) = xy^3z^2 + x^3y^2z - x + y^2 - z$. Then $\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{y^3z^2 + 3x^2y^2z - 1}{2xy^3z + x^3y^2 - 1}$.

8. (11 points) Find the directional derivative of the function $f(x, y, z) = x^2y + x\sqrt{1+z}$ at the point $(1, 2, 3)$ in the direction of $\mathbf{v} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$. Find the maximum rate of change of f at this point.

$$\nabla f = \langle 2xy + \sqrt{1+z}, x^2, x(1+z)^{-\frac{1}{2}} \frac{1}{2} \rangle = \langle 6, 1, \frac{1}{4} \rangle. D_u f = \langle 6, 1, \frac{1}{4} \rangle \cdot \frac{\langle 2, 1, -2 \rangle}{3} = \frac{25}{6}.$$

The maximum rate of change is $|\nabla f| = \sqrt{37\frac{1}{16}}$.

9. (12 points) Find the local maximum and minimum values and saddle points of the function $f(x, y) = x^3 - 6xy + 8y^3$.

$\nabla f = \langle 3x^2 - 6y, -6x + 24y^2 \rangle = 0$ gives us $x^2 = 2y$ and $x = 4y^2$, so $16y^4 = 2y$ and $y = 0$ or $y = \frac{1}{2}$. The critical points are therefore $(0, 0)$ and $(1, \frac{1}{2})$. $D = 144xy - 36$, so $(0, 0)$ is a saddle and $(1, \frac{1}{2})$ is a local minimum.