FALL 2003 FINAL EXAM 1. (12 points) If $\mathbf{v} = \langle 1, 2, 3 \rangle$ and $\mathbf{w} = \langle -1, 1, 2 \rangle$ a. Find $\mathbf{v} \cdot \mathbf{w}$. (Ans. 7) b. Find $\mathbf{v} \times \mathbf{w}$. (Ans. $\langle 1, -5, 3 \rangle$.)

2. (14 points) Find the equation of the plane through (6, 0, -2) which contains the line $\mathbf{r}(t) = \langle 4, 3, 7 \rangle + t \langle -2, 5, 4 \rangle.$ (Ans. 33(x-6) + 10y + 4(z+2) = 0.)

3. (16 points) Find the tangential and normal components of the acceleration vector if $\mathbf{r}(t) = \langle 1+t, t^2-2t \rangle$. You get a two point bonus if your (correct) answers are vectors. (Ans. $\mathbf{a}_T = \frac{4t-4}{1+(2t-2)^2} \langle 1, 2t-2 \rangle$, $\mathbf{a}_N = \frac{-2}{1+(2t-2)^2} \langle 2t-2, -1 \rangle$.)

4. (14 points) If
$$e^{xz} - e^{zx^2} = 1$$
, find $\frac{\partial z}{\partial x}$. (Ans. $-\frac{ze^{xz} - 2xze^{x^2z}}{xe^{xz} - x^2e^{x^2z}}$.)

5. (16 points) Find the equations of the tangent plane and normal line to the surface $z = \ln(x + 2y)$ at the point (3, -1, 0). (Ans. -(x - 3) - 2(y + 1) + z = 0, $\mathbf{r}(t) = \langle 3, -1, 0 \rangle + t \langle -1, -2, 1 \rangle$.)

6. (14 points) Find the local maxima, minima, and saddle points for $f(x, y) = x^2 + y^2 + x^2y + 4$. (Ans. Local min (0,0), saddles $(\pm\sqrt{2}, -1)$.)

7. (14 points) Change the order of integration in $\int_{1}^{2} \int_{0}^{\ln x} f(x, y) dy dx$. (Ans. $\int_{0}^{\ln 2} \int_{e^{y}}^{2} f(x, y) dx dy$.)

8. (14 points) Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$, above the xy-plane, and inside the cylinder $x^2 + y^2 = 2x$. (Ans. $\frac{3\pi}{2}$.)

9. (16 points) If $\mathbf{F}(x, y) = \langle 3 + 2xy, x^2 - 3y^2 \rangle$, find a function f such that $\mathbf{F} = \nabla f$. Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is given by $\mathbf{r}(t) = e^t \sin(t) \mathbf{i} + e^t \cos(t) \mathbf{j}, \ 0 \le t \le \pi$. (Ans. $e^{3\pi} + 1$.)

10. (14 points) Set up a triple integral to find the volume of the solid bounded by the cylinder $x = y^2$ and the planes z = 0 and x + z = 1. YOU DO NOT NEED TO EVALUATE THIS INTEGRAL!! (Ans. $\int_{-1}^{1} \int_{y^2}^{1} \int_{0}^{1-x} dz \, dx \, dy$ or $\int_{0}^{1} \int_{-\sqrt{x}}^{\sqrt{x}} \int_{0}^{1-x} dz \, dx \, dy$.)

11. (14 points) Find $\int \int_{S} \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F} = x^{3} \mathbf{i} + y^{3} \mathbf{j} + z^{3} \mathbf{k}$ and S is the sphere $x^{2} + y^{2} + z^{2} =$ 9. (Ans. $\frac{4\pi \cdot 3^{6}}{5}$. Use the Divergence Theorem.)

12. (14 points) Evaluate $\oint_C (3y - e^{\sin x}) dx + (7x + \sqrt{y^4 + 1}) dy$, where C is the boundary of the rectangle $0 \le x \le 2$, $0 \le y \le 3$. (Ans. 24.)

13. (14 points) Find $\int \int_S z \, dS$, where S is the surface with parametric equations $x = \cos(u), \ y = \sin(u), \ z = v, \ 0 \le u \le 2\pi, \ 0 \le v \le 2$. (Ans. 4π .)

14. (14 points) Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = \langle 2z, 4x, 5y \rangle$ and C is the curve of intersection of z = x + 4 and $x^2 + y^2 = 4$. C is oriented clockwise as viewed from above. (Ans. 4π . There's an extra "-" sign coming from the clockwise orientation.)

BONUS PROBLEM (5 POINTS) If f and g are twice differentiable functions, show that $\nabla^2(fg) = f\nabla^2 g + g\nabla^2 f + 2\nabla f \cdot \nabla g.$