Fall 2003 Exam # 2

1. (12 points) Find all maxima, minima, and saddles of the function $f(x, y) = x^2 + y^2 + x^2y + 4$.

 $f_x = 2x + 2xy = 2x(y+1)$ and $f_y = 2y + x^2$. $f_x = 0$ if x = 0 or y = -1. Given this, setting $f_y = 0$ shows that the critical points are at (0,0) and $(\pm\sqrt{2},-1)$. We have $f_{xx} = 2 + 2y$, $f_{yy} = 2$, $f_{xy} = 2x$, so $D = 4 + 4y - 4x^2$. This is negative at $(\pm\sqrt{2},-1)$, so these critical points are saddles. D is positive at (0,0) and $f_{xx}(0,0) > 0$, so that critical point is a local minimum.

2. (12 points) Find the maximum and minimum of the function $f(x, y) = x^2 y$ subject to the constraint $x^2 + 2y^2 = 6$.

 $\nabla f = \langle 2xy, x^2 \rangle$ and $\nabla g = \langle 2x, 4y \rangle$. $\nabla f \times \nabla g = \langle 0, 0, 8xy^2 - 2x^3 \rangle$. This is zero when x = 0 or $4y^2 = x^2$. Solving this together with $x^2 + 2y^2 = 6$ gives $(0, \pm \sqrt{3})$ and $(\pm 2, \pm 1)$. The maximum is then 4 at $(\pm 2, 1)$ and the minimum is -4 at $(\pm 2, -1)$.

3. (12 points) Calculate $\int \int_D y \, dA$, where D is bounded by y = x - 1 and $y^2 = 2x + 6$.

This is exactly like Example 3 in section 15.3, except that I changed xy under the integral to y to simplify the arithmetic. The answer is 18.

4. (13 points) Set up the integrals to find the x-coordinate of the center of mass of the solid of constant density that is bounded by $x = y^2$, x = z, z = 0, and x = 1. DO NOT EVALUATE THE INTEGRALS!!!

$$\bar{x} = \frac{\int_{-1}^{1} \int_{y^2}^{1} \int_{0}^{x} x \, dz \, dx \, dy}{\int_{-1}^{1} \int_{y^2}^{1} \int_{0}^{x} dz \, dx \, dy}$$
$$\bar{x} = \frac{\int_{0}^{1} \int_{-\sqrt{x}}^{\sqrt{x}} \int_{0}^{x} x \, dz \, dy \, dx}{\int_{0}^{1} \int_{-\sqrt{x}}^{\sqrt{x}} \int_{0}^{x} dz \, dy \, dx}$$

or

You could also integrate with respect to y first, but that seems needlessly complex. Integrating with respect to x first is much more complicated because it requires two or three separate integrals.

5. (12 points) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is given by $\mathbf{r}(t) = t^2 \mathbf{i} - t^3 \mathbf{j}$, $0 \le t \le 1$, and $\mathbf{F}(x, y) = x^2 y^3 \mathbf{i} - y \sqrt{x} \mathbf{j}$.

$$d\mathbf{r} = \langle 2t, -3t^2 \rangle dt, \text{ so } \mathbf{F} \cdot d\mathbf{r} = (2x^2y^3t - 3y\sqrt{x}t^2)dt = (2(t^2)^2(-t^3)^3 + 3(-t^3)tt^2)dt = (-2t^{14} - 3t^6)dt.$$

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^1 (-2t^{14} - 3t^4)dt = -2/15 - 3/7 = -59/105.$$

6. (14 points) Let $\mathbf{F}(x, y) = e^{2y} \mathbf{i} + (1 + 2xe^{2y}) \mathbf{j}$. Find a function f(x, y) such that $\nabla f = \mathbf{F}$ and use it to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{r}(t) = \sqrt{t} \mathbf{i} + (1 + t^3) \mathbf{j}$, $0 \le t \le 1$. $\frac{\partial f}{\partial x} = e^{2y}$, so $f(x, y) = xe^{2y} + g(y)$. $\frac{\partial f}{\partial y} = 1 + 2xe^{2y} = 2xe^{2y} + g'(y)$, so g(y) = y. We have $f(x, y) = xe^{2y} + y$. $\mathbf{r}(0) = (0, 1)$ and $\mathbf{r}(1) = (1, 2)$. By the fundamental theorem for line integrals, $\int_C \mathbf{F} \cdot d\mathbf{r} = f(1, 2) - f(0, 1) = e^4 + 1$.

7. (13 points) Sketch the region of integration and change the order of integration in $\int_0^1 \int_{y^2}^{2-y} f(x,y) \, dx \, dy.$

8. (12 points) Change the integral $\int_0^3 \int_0^{\sqrt{9-y^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{18-x^2-y^2}} (x^2+y^2+z^2) dz dx dy$ to spherical coordinates. DO NOT EVALUATE THE INTEGRAL!!!

This is the region between a cone and a sphere in the first octant. The intersection of the cone and sphere is $x^2 + y^2 = 9$ in the horizontal plane z = 3. In spherical coordinates, the integral is

$$\int_0^{\pi/2} \int_0^{\pi/4} \int_0^{\sqrt{18}} \rho^4 \sin \phi \, d\rho \, d\phi \, d\theta$$