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Let m and p1, . . . , pr < m− 2 be positive integers. The set of links of codimension > 2 is the set

Em(tr
k=1Spk ) := {f : tr

k=1 Spk ↪→ Sm}/isotopy

of smooth isotopy classes of smooth embeddings tr
k=1Spk → Sm . Haefliger showed that Em(tr

k=1Spk ) admits the
structure of a finitely generated abelian group and in 1966 he determined its rank in the case of knots, i.e. r = 1.
For r > 1 and for various restrictions on p1, . . . , pr the rank of the group of links can be computed using results of
Haefligher or Nezhinsky .

Our main result determines the rank of the group Em(tr
k=1Spk ) in general. In particular we determine precisely when

Em(tr
k=1Spk ) is finite. We also achieve these tasks for framed links. Our proofs are based on the Haefliger exact

sequence for groups of links and the theory of Lie algebras.

57R52, 57Q45; 55P62, 17B01

1 Introduction

Let m and p1, . . . , pr < m− 2 be positive integers. The set of links in codimension > 2 is the set

Em(tr
k=1Spk) := {f : tr

k=1 Spk ↪→ Sm}/isotopy

of smooth isotopy classes of smooth embeddings f : tr
k=1 Spk ↪→ Sm . This set is a finitely generated abelian

group with respect to componentwise connected summation [10]. In addition to its intrinsic mathematical
interest, the group of links is related to the classification of handlebodies, the mapping class groups of
certain manifolds and to the set of embeddings of more general disjoint unions of manifolds: we discuss
these applications in Section 3.

Up to extension problems, the computation of the group Em(tr
k=1Spk) was reduced to problems in unstably

homotopy theory in the seminal papers of Levine and Haefliger [15, 11, 12]. However, these problems
include the determination of the untable homotopy groups of spheres. Hence one expects that the precise
computation of Em(tr

k=1Spk) is in general extremely difficult.

In this paper we address the following simpler question: what is the rank of the group Em(tr
k=1Spk) and in

particular for which m, p1, . . . , pr is the group Em(tr
k=1Spk) finite? This question is in part motivated by

analogy to rational homotopy theory and also the rational classification of link maps by Koschorke [14, 9].

The main results of this paper give an explicit formula for the rank of the group Em(tr
k=1Spk) (Theorem 1.9)

and also a criterion which determines precisely when the group of Em(tr
k=1Spk) is finite (Corollary 1.8). We

also accomplish the same tasks for the groups of framed links (Section 1.5).

0The third author was supported in part by INTAS grant 06-1000014-6277, Moebius Contest Foundation for Young Scientists and Euler
Foundation.

http://www.ams.org/mathscinet/search/mscdoc.html?code=57R52, 57Q45,(55P62, 17B01)


2 Diarmuid Crowley, Steven C. Ferry and Mikhail Skopenkov

1.1 Previous work

An embedding f : tr
k=1 Spk ↪→ Sm is called a link, its restrictions f : Spk ↪→ Sm are called components. For

one-component links, or knots, the question posed above was answered by Haefliger:

Theorem 1.1 (See [11, Corollary 6.7]) Assume that p < m− 2. The group Em(Sp) has rank 0 or 1: it is
infinite if and only if p + 1 is divisible by 4 and p > 2

3 (m− 2).

Typically one approaches multi-component links by studying the sub-links which are obtained by deleting
one or more components from the original link. In particular, a link is called primary (or Brunnian) if it
becomes trivial after removing any of its components. An example of a primary link is the Borromean rings
[5]. A link has unknotted components, if each of its components is a trivial knot. Denote by Em

P (tr
k=1Spk) and

Em
U(tr

k=1Spk) respectively the subgroups of primary links and links having unknotted components: observe
that these two subgroups coincide for r = 2.

Theorem 1.2 (See [12, Sections 2.4 and 9.3]) Assume that p1, . . . , pr < m−2. Then there are isomorphisms

Em(tr
k=1Spk) ∼= Em

U(tr
k=1Spk)⊕

r⊕
k=1

Em(Spk) ∼=
⊕

S

Em
P (tk∈SSpk),

where the last sum is over all nonempty subsets S ⊂ {1, . . . , r}.

Under certain dimension restrictions Haefliger and Nezhinsky have found explicit descriptions of the isotopy
classes of primary links in terms of homotopy groups of spheres and Stiefel manifolds [11, 12, 16, 23].

For spheres of arbitrary dimensions pk (with each pk < m − 2) Haefliger constructed a fundamental long
exact sequence (see [12, Theorem 1.3], [8, Theorem 1.1]):

(1–1) · · · → Π(q)
m−1

µ−→ Em
U(tr

k=1Spk) λ−→ Λ(q)
(p)

w−→ Π(q)
m−2

µ−→ Em−1
U (tr

k=1Spk−1)→ . . .

Here Λ(q)
(p) and Π(q)

m−2 are certain finitely generated abelian groups defined via homomorphisms between the
homotopy groups of appropriate wedges of spheres, see Section 2.1 for their definition. The homomorphisms
λ and µ are defined topologically and we do not consider them in this paper. Rather we note that up to
extension, the group of links is determined by the homomorphism w. Moreover, since w is defined using
Whitehead products, the Haefliger sequence (1–1) reduces the determination of the group E(tr

k=1Spk) to
a problem in unstable homotopy theory and an extension problem. In particular determining the rank of
E(tr

k=1Spk) is reduced to a problem in unstable homotopy theory.

1.2 The main idea

The starting point of our investigation is the following simple but crucial observation:

Lemma 1.3 After tensoring with Q the Haefliger sequence (1–1) splits into the short exact sequences

0→ Em
U(tr

k=1Spk)⊗Q
λ⊗IdQ
−−−−→ Λ(q)

(p) ⊗Q
w⊗IdQ
−−−−→ Π(q)

m−2 ⊗Q→ 0.

The Haefliger sequence (1–1) and Lemma 1.3 are the basis for all the result stated in the remainder of the
introduction. Note that the Haefliger sequence (1–1) itself does not split as in Lemma 1.3 in general; see
Lemma 3.9.
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1.3 Finiteness criteria for the group of links

In this subsection we state criteria which determine precisely when the group Em(tr
k=1Spk) is finite. We

begin with finiteness criteria for primary links and conclude with the general case.

Theorem 1.4 Assume that r > 2 and p1, . . . , pr < m − 2. Then the group Em
P (tr

k=1Spk) is infinite if and
only if the equation (m − p1 − 2)x1 + · · · + (m − pr − 2)xr = m − 3 has a solution in positive integers
x1, . . . , xr .

In case of 2 components the criterion is more complicated. It involves certain finiteness-checking sets
FCS(i, j) ⊂ Z2 which depend only on the parity of i and j which are defined in Table 1 below. A part of
each set is drawn in the table; the rest of the set is obtained by obvious periodicity.

Theorem 1.5 Assume that p1, p2 < m − 2. Then the group Em
P (t2

k=1Spk) is infinite if and only if there
exists a point (x1, x2) ∈ FCS(m− p1,m− p2) such that (m− p1 − 2)x1 + (m− p2 − 2)x2 = m− 3.

The finiteness-checking set can be considered as a nomogram: to establish infiniteness one draws the line
(m− p1 − 2)x1 + (m− p2 − 2)x2 = m− 3 and looks if the line intersects the set FCS(m− p1,m− p2).

Table 1: Definition of the finiteness-checking set FCS(i, j)

FCS(i, j) is the set of pairs (x, y) ∈ Z× Z such that x, y > 0 and at least one of
the following conditions holds —

for i, j even: for i odd, j even: for i, j odd:

• x = 1 and y = 1;

• x = 2 and 2 | y;

• x = 3 and y = 3;

• x = 3 and y ≥ 5;

• x ≥ 4 and y ≥ 4;

• 2 | x and y = 2;

• x ≥ 5 and y = 3.

• x = 1 and y = 1;

• x = 2 and 2 | y + 1;

• x = 3 and y ≥ 2;

• x ≥ 4 and y ≥ 4;

• 4 | x and y = 2;

• 4 | x + 1 and y = 2;

• x ≥ 5 and y = 3.

• x = 1 and y = 1;

• x = 2 and 4 | y + 2;

• x = 2 and 4 | y + 3;

• x ≥ 3 and y ≥ 3;

• 4 | x + 2 and y = 2;

• 4 | x + 3 and y = 2.

x

y

x

y

x

y

For i even, j odd the set FCS(i, j) is obtained from FCS(j, i) by the reflection
with respect to the line x = y.

Corollary 1.6 Assume that 1 < p < m − 2. Then the group Em
P (t2

k=1Sp) is infinite if and only if
(m−3)/(m−p−2) is an integer, which is distinct from 5 for m−p odd, and distinct from 3, 5, 7 for m−p
even.

Example 1.7 Applying Corollary 1.6 and Theorem 1.4 we see that the group E8
U(tr

k=1S5) is infinite if and
only if r ≥ 3. This corrects an error in [18, Corollary 3.18] where it is stated that the group Lb := E8

U(tb
k=1S5)

is infinite if and only if b ≥ 2. Note that [18, Corollary 3.19] should also be modified by changing b ≥ 2
to b ≥ 3.



4 Diarmuid Crowley, Steven C. Ferry and Mikhail Skopenkov

Combining Theorems 1.1–1.5 we obtain the following definitive finiteness criteria for Em(tr
k=1Spk).

Corollary 1.8 Assume that p1, . . . , pr < m− 2. Then the group Em(tr
k=1Spk) is infinite if and only if there

is a subsequence (k1, . . . , ks) ⊂ (1, . . . , r) satisfying one of the following conditions:

• s = 1, 4 | pk1 + 1, and m < 3pk1/2 + 2;
• s = 2 and there is (x1, x2) ∈ FCS(m−pk1 ,m−pk2) such that (m−pk1−2)x1 + (m−pk2−2)x2 = m−3;
• s ≥ 3 and the equation (m − pk1 − 2)x1 + · · · + (m − pks − 2)xs = m − 3 has a solution in positive

integers.

1.4 Formuli for the rank of the group of links

In this subsection we state results on ranks of the groups of links. We give an explicit formula for the ranks
of the groups Em

P (tr
k=1Spk) and Em(tr

k=1Spk) in Theorem 1.9 below. The formula for primary links asserts
that the rank equals to the number of solutions of the equation from Theorem 1.4 counted with certain
“multiplicities” m(x1, . . . , xr). As a corollary to Theorem 1.9, we obtain a formula for the rank of the group
of links with components having the same dimension (Theorem 1.10). Some computations are shown in
Table 2 below. There is a computer application available based on Theorem 1.9 which computes these ranks
in general [25].

To state our results we need the following notation. For a finitely generated abelian group G denote by rk G
its rank. Denote by N the set of positive integers. The Möbius function is defined by the formula:

µ(i) =


1, if i = 1;

(−1)k, if i = q1 q2 . . . qk is a product of distinct primes;
0, if i is not square free.

Denote by gcd(x1, . . . , xr) the greatest common divisor of integers x1 , . . . , xr . Denote:

g(x1, . . . , xr) = (m− p1 − 2)x1 + · · ·+ (m− pr − 2)xr,(1–2)

d(x1, . . . , xr) =
(−1)g(x1,...,xr)

x1 + · · ·+ xr

∑
i | gcd(x1,...,xk)

µ(i)(−1)g(x1,...,xr)/i ·
(
(x1 + · · ·+ xr)/i

)
!

(x1/i)! · · · (xr/i)!
,(1–3)

m(x1, . . . , xr) = d(x1 − 1, x2, . . . , xr) + · · ·+ d(x1, x2, . . . , xr − 1)− d(x1, x2 . . . , xr).(1–4)

Set d(0, . . . , 0) = 1 and d(x1, . . . , xr) = 0, if at least one of the numbers x1, . . . , xk is negative. For each
positive integer t define the following polynomials in the indeterminate r :

(1–5) wt(r) =
1
t

∑
i|t

µ(i)rt/i and wt,s(r) =

{
wt(r) + wt/2(r), if s is odd and t = 2 mod 4;
wt(r), otherwise.

Set wt,s(r) = 0, if t 6∈ N. Set

cp,m =

{
1, if 4 | p + 1 and m < 3p/2 + 2;
0, otherwise.

Set δi,j = 1, if i = j, and δi,j = 0 — otherwise.

Theorem 1.9 Assume that r > 1 and p1, . . . , pr < m− 2. Then

(1–6) rk Em
P (tr

k=1Spk) =
∑

x1,...,xr∈N : g(x1,...,xr)=m−3

m(x1, . . . , xr).

(1–7) rk Em(tr
k=1Spk) =

∑
x1,...,xr∈N∪{0} : g(x1,...,xr)=m−3

m(x1, . . . , xr) +
r∑

k=1

(
cpk,m − δ2(m−3)/(m−pk−2),5−(−1)m−pk

)
.
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It is not obvious when the sum (1–6) equals zero; see Section 2.3.

Theorem 1.10 Assume that 1 < p < m− 2. Denote by t = (m− 3)/(m− p− 2). Then

rkEm(tr
k=1Sp) = r ·

(
wt−1,m−p(r) + cp,m − δ2t,5−(−1)m−p

)
− wt,m−p(r).

If t is an integer then this expression is a polynomial in r of degree t .

Corollary 1.11 The rank of the group Em
P (Sm−3 t Sm−3) tends to infinity as m tends to infinity.

Table 2: The ranks of the groups Ep+l+k
P (Sp t Sp+k) for p ≤ 5.

p 1 2 3 4 5
l ≥ 3 3 ≥ 4 3 4 ≥ 5 3 4 5 ≥ 6 3 4 5 6 ≥ 7

0 0 1 0 2 1 0 1 0 1 0 0 0 0 1 0
k 1 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0

2 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0
≥ 3 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0

1.5 Framed links

Let l1, . . . , lr be integers such that 0 ≤ lk ≤ m− pk for each k = 1, . . . , r . Denote by

Em(tr
k=1Spk × Dlk) := { f : tr

k=1 Spk × Dlk ↪→ Sm }/isotopy

the set of smooth isotopy classes of smooth orientation preserving embeddings tr
k=1Spk ×Dlk ↪→ Sm — for

lk 6= m−pk any embedding Spk×Dlk ↪→ Sm is considered to be orientation preserving. For p1, . . . , pr < m−2
the set Em(tr

k=1Spk ×Dlk) is a group called the group of partially framed links. This notion generalizes both
links (lk = 0) and framed links (lk = m − pk ) [11]. Partially framed links play an important role in the
classification of embeddings of general manifolds [2, 21, 24].

To give a formula for the rank of the group of partially framed links we first recall the Stiefel manifold
Vq,l of l-tuples of pairwise orthogonal unit vectors in Rq — by definition Vq,0 is a point. The ranks of the
homotopy groups Vq,l are as follows; see Section 2.4.

Lemma 1.12 Assume 1 ≤ l ≤ q. Then

rk πp(Vq,l) =



2, if 4 | p + 1 = q ≤ 2l;
1, if 4 | p + 1 6= q and p/2 + 1 < q < l + p/2 + 1,

or 4 | p + 1 = q > 2l,
or 4 | p− 1 = q− 2,
or 2 | p = q− l;

0, otherwise.

Theorem 1.13 Assume pk < m− 2 and 0 ≤ lk ≤ m− pk . Then there is an equality

rkEm(tr
k=1Spk × Dlk) = rkEm(tr

k=1Spk) +
r∑

k=1

rkπpk(Vm−pk,lk).

Combining statements 1.1, 1.13, 1.12, and 1.8 we obtain the following corollaries.

Corollary 1.14 Assume p < m− 2 and 1 ≤ l ≤ m− p. Then the set Em(Sp ×Dl) is infinite if and only if
at least one of the following conditions holds:



6 Diarmuid Crowley, Steven C. Ferry and Mikhail Skopenkov

• 4 | p + 1 and m < 3p/2 + l + 1;

• 2 | p + 1 and m = 2p + 1;

• 2 | p and m = 2p + l.

Corollary 1.15 Assume that p1, . . . , pr < m− 2. Then the set Em(tr
k=1Spk ×Dm−pk) is infinite if and only

if there is a subsequence (k1, . . . , ks) ⊂ (1, . . . , r) satisfying one of the following conditions:

• s = 1 and either 4 | pk1 + 1 or 4 |m + 1 = 2pk1 + 2;

• s = 2 and there is (x1, x2) ∈ FCS(m−pk1 ,m−pk2) such that (m−pk1−2)x1 + (m−pk2−2)x2 = m−3;

• s ≥ 3 and the equation (m − pk1 − 2)x1 + · · · + (m − pks − 2)xs = m − 3 has a solution in positive
integers.

1.6 The organization of the paper and its relationship to other work

In Section 2 we prove the results stated in the introduction: Section 1.4 deals with the ranks of the groups of
links in the general case and proves the results in Section 2.2. From these results we deduce the finiteness
criteria of Section 1.3 in Section 2.3. Finally prove the statements for partially framed links from Section 1.5
in Section 2.4.

In Sections 3.1, 3.2, and further in [3] we apply our calculations to the classification of handlebodies,
thickenings and computation of mapping class groups. In [24] the third author applies our calculations to
the rational classification of embeddings of a product of two spheres; see [1, 2, 21] for particular cases. In
Section 3.3 we discuss some open problems.

2 Proofs

In this section we prove the results stated in the introduction. In Section 2.1 we recall the Haefliger sequence
for primary links which we use to prove Theorem 2.1 at the beginning of Section 2.2. Theorems 2.1 and 1.2
convert the problem of the rational classification of links into a completely algebraic problem in the theory
of Lie algebras. In the remainder of Section 2.2 we solve this problem. In Section 2.3 we give finiteness
criteria for the group of links and in Section 2.4 we consider framed links.

2.1 The Haefliger sequence for primary links

By Theorem 1.2 the group of links splits as the sum of the groups of primary links. There is a Haefliger
sequence for primary links, (2–1) below, which is analogous to the Haefliger sequence (1–1). In this
subsection we recall the groups in the primary Haefliger sequence and also the key homomorphism w: we
refer the reader to [12, §9.4] and [16, §1.2] for further details. We also give the definition of the groups in
the Haefliger sequence (1–1).

Denote by πg(X) the g-th homotopy group of a space X . For i = 0, . . . , r there are obvious retractions
R̂i : ∨r

k=1 Sm−pk−1 → ∨1≤k≤r, k 6=iSm−pk−1 obtained by collapsing the i-th sphere Sm−pi−1 from the wedge.
Taking the kernel of the sum over i of the homomorphism induced on πg+1 one obtains the finitely
generated abelian group

iΠ(q)
g+1 := Ker

πg+1

( ∨
1≤k≤r

Sm−pk−1

)
→

⊕
1≤j≤r, j6=i

πg+1

 ∨
1≤k≤r, k 6=j

Sm−pk−1

 .
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In addition, define
0Λ(q)

(p) :=
⊕

1≤k≤r

kΠ(q)
pk

and define the homomorphism

w : 0Λ(q)
(p) → 0Π(q)

g+1, (u1, . . . , ur) 7→ [u1, ı1] + · · ·+ [ur, ır],

where ıi : Sm−pi−1 → ∨r
k=1Sm−pk−1 is the obvious inclusion. The Haefliger sequence for primary links is a

long exact sequence of finitely generated abelian groups which runs as follows:

(2–1) · · · → 0Π(q)
m−1

µ−→ Em
P (tr

k=1Spk) λ−→ 0Λ(q)
(p)

w−→ 0Π(q)
m−2

µ−→ Em−1
P (tr

k=1Spk−1)→ . . .

Note that we use the same notation for the maps in both sequences (2–1) and (1–1): no confusion will arise
from this.

The groups in the Haefliger sequence (1–1) are defined by similar formuli:

Π(q)
g = Ker

(
πg(∨r

k=1Sm−pk−1)→ ⊕r
k=1πg(Sm−pk−1)

)
,

Λ(q)
(p) = ⊕r

i=1 Ker
(
πpi(∨r

k=1Sm−pk−1)→ πpi(S
m−pi−1)

)
.

The homomorphism w : Λ(q)
(p) → Π(q)

g is also defined analogously via Whitehead products.

2.2 Computation of ranks

In this subsection we prove Theorems 1.9 and 1.10. Theorem 1.9 follows from assertions 2.1 and 2.2 below.
Theorem 1.10 can be obtained from Theorem 1.9 but we give a short alternative proof.

A graded Lie superalgebra1 over Q is a graded vector space L =
⊕∞

g=0 Lg , along with a bilinear operation
[·, ·] : L⊗ L→ L satisfying the following axioms:

(1) Respect of the grading: [Li,Lj] ⊆ Li+j .

(2) Symmetry: if u ∈ Li , v ∈ Lj then [u, v]− (−1)(i+1)(j+1) [v, u] = 0.

(3) Jacobi identity: if u ∈ Li , v ∈ Lj , w ∈ Lk then

(−1)(i+1)(k+1)[[u, v],w] + (−1)(j+1)(i+1)[[v,w], u] + (−1)(k+1)(j+1)[[w, u], v] = 0.

A free graded Lie superalgebra generated by a set of elements with given degrees is the quotient of the free
algebra generated by the set by the ideal generated by the terms from the left parts of the axioms (2)–(3). The
grading of this quotient is uniquely defined by axiom (1). Denote by L =

⊕∞
g=0 Lg the free Lie superalgebra

generated by the elements P1, . . . ,Pr of degrees m− p1 − 2, . . . ,m− pr − 2.

Denote by L0 the subalgebra of L generated by the products containing each generator P1, . . . ,Pr at least
once. Denote by Li the subalgebra generated by the products containing each generator at least once except
possibly Pi . For a finitely generated abelian group G identify G⊗Q = Qrk G .

Using this notation we can state a version of the Haefliger sequence (2–1) in purely algebraic terms:

Theorem 2.1 For r > 1 and p1, . . . , pr < m− 2 there is an exact sequence

· · · → ⊕r
k=1Lk

pk

w−→ L0
m−2 → Em

P (tr
k=1Spk)⊗Q→ ⊕r

k=1Lk
pk−1

w−→ L0
m−3 → . . .

The linear map w in the sequence is given by the formula w(u1, . . . , ur) = [u1,P1] + · · ·+ [ur,Pr].
1 Some authors use another definition, which can be obtained from ours replacing [x, y] by (−1)deg x[x, y] . Both definitions lead to the same

dimensions of homogeneous components of free graded Lie superalgebras.
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Proof of Theorem 2.1 We need only rewrite the sequence (2–1) tensored by Q in terms of Lie algebras.
Recall that the rational homotopy groups of a simply connected finite CW-complex X form a graded Lie
algebra as follows. The group

⊕∞
g=0 πg+1(X)⊗Q is a graded Lie superalgebra with respect to the Whitehead

product operation:
[·, ·] : (πi(X)⊗Q)× (πj(X)⊗Q)→ πi+j−1(X)⊗Q.

Note that the degree of a homotopy class is one less than its dimension.

A refined version of the Hilton–Milnor theorem [7, p. 116] states that the graded Lie superalgebra
∞⊕

g=0

πg+1(∨r
k=1Sm−pk−1)⊗Q

is isomorphic to the free Lie superalgebra L. The isomorphism takes the homotopy class of each inclusion
ıi : Sm−pi−1 → ∨r

k=1Sm−pk−1 to the generator Pi . Thus iΠ(q)
g+1⊗Q ∼= Li

g for each i = 0, . . . , r and the theorem
follows.

Now the rational classification of links reduces to the following purely algebraic result.

Lemma 2.2 (a) The map w from Theorem 2.1 is surjective.

(b) The dimension of the kernel of w equals the expression on the right hand side of (1–6) .

Proof of Lemma 2.2(a) Take t ∈ L0
m−3 . Let us prove that t belongs to the image of w. It suffices to

consider the case when t is a product of generators. Since r > 1 and t ∈ L0 it follows that t itself is not a
generator. Thus t = [u, v] for some products u and v of generators. So assertion (a) reduces to the following
claim.

Claim 2.3 Let 1 ≤ i ≤ r and let u be a product of generators Pi, . . . ,Pr (each of the generators may
appear in the product several times). Then for any v ∈ L there are vi, . . . , vr ∈ L such that [u, v] =
[Pi, vi] + · · ·+ [Pr, vr].

Proof of Claim 2.3 Let us prove the claim by induction over the number of factors in the product u. If there
only one factor then u is a generator itself, and there is nothing to prove. Otherwise u = [u1, u2] for some
products u1, u2 ∈ L containing less factors than u. By the symmetry and the Jacobi identity we get [u, v] =
±[u1, [u2, v]]± [u2, [u1, v]]. Apply the inductive hypothesis for u′ := u1 and v′ := [u2, v]. Since u′ contains
less factors than u it follows that [u1, [u2, v]] = [u′, v′] = [Pi, v′i] + · · · + [Pr, v′r] for some v′i, . . . , v

′
r ∈ L.

Analogously, since u2 contains less factors than u it follows that [u2, [u1, v]] = [Pi, v′′i ] + · · ·+ [Pr, v′′r ] for
some v′′i , . . . , v

′′
r ∈ L. Thus [u, v] = ±[u1, [u2, v]] ± [u2, [u1, v]] = [Pi,±v′i ± v′′i ] + · · · + [Pr,±v′r ± v′′r ],

which proves the claim.

Proof of Lemma 1.3 This follows directly from Lemma 2.2.a and Theorem 1.2.

We say that an element t ∈ L has multidegree (x1, . . . , xr) if t is a product in which the generator Pk appears
exactly xk times for each k = 1, . . . , r . The multidegree does not depend on the choice of the factorization
because axioms (2) and (3) above are relations between elements of the same multidegree. The degree
g(x1, . . . , xr) of the element t is given by formula (1–2). Denote by Lx1,...,xr the linear subspace of L spanned
by elements of multidegree (x1, . . . , xr).

Theorem 2.4 (See [17, Corollary 1.1(3)]) The dimension d(x1, . . . , xr) of the space Lx1,...,xr is given by the
formula (1–3).
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Proof of Lemma 2.2(b) By part (a) we have dim Ker w = dim L1
p1−1 + · · · + dim Lb

pr−1 − dim L0
m−3 . The

space Li
g is a direct sum of all the spaces Lx1,...,xr such that g(x1, . . . , xr) = g and xk ≥ 1 for each k 6= i. By

Theorem 2.4 the lemma follows.

Proof of Theorem 1.9 By Lemma 2.2.a the sequence of Theorem 2.1 splits. Hence there is an isomorphism
Em

P (tr
k=1Spk) ⊗ Q ∼= Ker w. Thus formula (1–6) follows from Lemma 2.2(b). Formula (1–7) follows

from (1–6), Theorems 1.2 and 1.1, and the computation m( m−3
m−p1−2 , 0, . . . , 0) = δ2(m−3)/(m−p1−2),5−(−1)m−p .

Proof of Theorem 1.10 Let S be a subset of {1, . . . , r}. Denote by L(S) the subalgebra of L generated by
the generators Pk such that k ∈ S. Then Lg

∼= ⊕SL0
g(S), where the sum is over all the subsets S ⊂ {1, . . . , r},

and Lg
∼= ⊕S3iLi

g(S).

By Lemma 2.2(a) and the proof of Theorem 1.9 it follows that for a set S with more than one element

rk Em
P (tk∈SSpk) =

∑
k∈S

dim Lk
pk−1(S)− dim L0

m−3(S).

Summing these formulas over all the nonempty subsets S ⊂ {1, . . . , r} and using the result rk Em(Spk) = cpk,m

[11, Corollary 6.7], we get:

rk Em(tr
k=1Spk) =

r∑
k=1

(
dim Lpk−1 − dim Lpk−1({k}) + dim Lm−3({k}) + cpk,m

)
− dim Lm−3.

This equals to the expression from Theorem 1.10 by the formula wt−1,m−p(1)−wt,m−p(1) = δ2t,5−(−1)m−p and
the following well-known result.

Theorem 2.5 (Witt’s formula) (See [17]) Suppose that all r generators of the free Lie superalgebra L
have the same degree s; then dim Lts = wt,s(r).

Corollary 1.11 follows easily from Theorem 1.10; see Section 2.3 for the details.

The following claim will be used in the sequel.

Claim 2.6 If r > 2 and x1 = 1 then m(x1, . . . , xr) > 0.

Proof Analogously to Lemma 2.2 we see that m(x1, . . . , xr) is the dimension of the kernel of the restriction

w : Lx1−1,x2,...,xr ⊕ · · · ⊕ Lx1,x2,...,xr−1 → Lx1,x2,...,xr .

It suffices to prove that the map is not injective. Take products u and v of generators such that the element
[u, v] is nonzero and has multidegree (0, x2, . . . , xr). The map w is not injective because

0 = [P1, [u, v]]± [u, [P1, v]]± [v, [P1, u]] = [P1, [u, v]] + [P2, u2] + · · ·+ [Pr, ur] = w([u, v], u2, . . . , ur)

for some choice of signs and elements u2, . . . , ur ∈ L. Here the first equality is the Jacobi identity. The
second equality follows from Claim 2.3 because u and v do not contain the generator P1 .

2.3 Finiteness criteria

In this subsection we prove Theorems 1.4 and 1.5. For this we solve the elementary problem of determining
when formula (1–4) gives zero. Formally, Theorems 1.4 and 1.5 follow from assertions 1.9, 2.7, and 2.12.

To explain the idea of the proof, let us prove Corollary 1.11 first.
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Proof of Corollary 1.11 We have

rk Em(Sm−3 t Sm−3) = 2wm−4,3(2)− wm−3,3(2) + 2cm−3,m − 2δ2m−6,6 ≥

2wm−4(2)− wm−3(2)− w(m−3)/2(2)− 2 ≥ 2m−3

(m− 4)(m− 3)
− 2m/2m

m− 3
− 2→∞

as m → ∞. Here the first equality follows from Theorem 1.10. The second inequality follows from the
definitions in Section 1.4. The third inequality follows from the observation that sum (1–5) contains at most
t summands, each being at most 2t/2 except the one corresponding to i = 1.

Lemma 2.7 For r > 2 we have m(x1, . . . , xr) > 0.

Proof of Lemma 2.7 Without loss of generality assume that x1 ≤ · · · ≤ xr .

Case x1 = 1 was proved in Claim 2.6 above.

Case x1 ≥ 2. In this case we need rather precise asymptotic form for the multiplicity. Denote by n(x) the
total number of those divisors of x and x− 1, which are free of squares and greater than 1. Denote by [x]
the integral part of x.

Claim 2.8 m(x1, . . . , xr) ≥ 1
(x1+···+xr)(x1+···+xr−1)

((x1+···+xr
x1,...,xr

)
− n(x1) · (x1 + · · ·+ xr)

([(x1+···+xr)/2]
[x1/2],...,[xr/2]

))
.

Proof For clarity set r = 2; the general case is analogous. Let us estimate the number m(x, y) =
d(x − 1, y) + d(x, y − 1) − d(x, y). Substitute the given 3 terms by the expressions from formula (1–3) in
Theorem 1.9. We obtain an algebraic sum of binomial coefficients divided by either (x + y− 1) or (x + y):

m(x, y) =

(x+y−1
x−1

)
x + y− 1

+

(x+y−1
x

)
x + y− 1

−
(x+y

x

)
x + y

± . . . .

The algebraic sum of the first 3 terms in this formula is equal to
(x+y

x

)
/(x + y − 1)(x + y). Consider the

remaining terms. Their number is at most n(x). Let us estimate each one. By geometric interpretation of
binomial coefficients it follows that

([(x+y)/k]
[x/k]

)
≤
([(x+y)/2]

[x/2]

)
for k ≥ 2. Thus the value

([(x+y)/2]
[x/2]

)
/(x + y− 1)

is not less than the absolute value of each term. Thus Claim 2.8 follows.

Claim 2.9 For 2 ≤ x1 ≤ · · · ≤ xr we have∣∣∣∣m(x1, . . . , xr)
M(x1, . . . , xr)

− 1
∣∣∣∣ < ε(x1, r),

where M(x1, . . . , xr) = (x1+···+xr−2)!
x1!···xr! and ε(x1, r) = n(x1)x12(r−1)/2er/9x1r1−rx1/2 .

Proof This follows from the estimates:∣∣∣∣m(x1, . . . , xr)
M(x1, . . . , xr)

− 1
∣∣∣∣ < n(x1)(x1 + · · ·+ xr)

(
[(x1 + · · ·+ xr)/2]
[x1/2], . . . , [xr/2]

)(
x1 + · · ·+ xr

x1, . . . , xr

)−1

<

n(x1)(x1 + · · ·+ xr)2(r−1)/2er/9x1

r∏
i=1

(
xi

x1 + · · ·+ xr

)xi/2

< n(x1)x12(r−1)/2er/9x1r1−rx1/2 = ε(x1, r).

Here the first inequality follows from Claim 2.8.

The second inequality follows from the Stirling formula x! =
√

2πx
(
x/e
)x eθ(x)/12x , where 0 < θ(x) < 1.

The third inequality follows from the assumption 2 ≤ x1 ≤ · · · ≤ xr and the monotonicity of the third
expression in each variable x2, . . . , xr . To check the monotonicity, denote the expression by f . Then

∂ ln f
∂xk

=
1

x1 + · · ·+ xr
− 1

2
ln

x1 + · · ·+ xr

xk
≤ 1

2 + xk
− 1

2
ln(1 +

2
xk

) < 0.
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Claim 2.10 For x > 1 we have n(x) ≤ 2
√

x.

Proof For each divisor d of x we have either d ≤
√

x or x/d ≤
√

x. Each integer d = 2, 3, . . . , [
√

x]
divides no more than one of the numbers x, x − 1. So these two numbers have at most 2

√
x + 1 positive

divisors including 1. The required inequality is proved.

Claim 2.11 Assume that r > 2 and x1 > 1, or r = 2 and x1 > 4. Then ε(x1, r) < 1.

Proof First note that ε(x, r) is a decreasing function in r (for the considered values of variables) because
∂ ln ε(x, r)

∂r
=

1
r

+
1
9x

+
ln 2
2
− x

2
(ln r + 1) <

1
2

+
1

18
+

ln 2
2
− ln 2− 1 < 0.

So ε(x, r) ≤ ε(x, 3) < 1 for x = 2, 3, 4. For x > 4 the function ε(x, r)2
√

x/n(x) is similarly a decreasing
function in x. Thus by Claim 2.10 we have ε(x, r) ≤ ε(x, r)2

√
x/n(x) ≤ ε(5, 2)

√
5 < 1.

Now we can conclude the proof of Lemma 2.7. By the assumptions x1 > 1, r > 2, and Claim 2.11 it follows
that ε(x1, r) < 1. Then by Claim 2.9 it follows that m(x1, . . . , xr) > 0. Lemma 2.7 and hence Theorem 1.4
are proved.

Let us proceed to 2-component links.

Lemma 2.12 We have m(x, y) > 0, if (x, y) ∈ FCS(m− p1,m− p2), and m(x, y) = 0 — otherwise.

Proof of Lemma 2.12 Assume x ≤ y without loss of generality. Consider cases x = 1, 2, 3, 4 and x ≥ 5
separately.

Case x = 1 follows by a direct computation.

Case x = 2. If m− p1 and m− p2 are even then by formula (1–3) in Theorem 1.9 we have d(2, y) = [ y+1
2 ].

So m(2, y) = d(1, y) + d(2, y− 1)− d(2, y) 6= 0 if and only if 2|y, which is equivalent to (2, y) ∈ FCS(1, 1).
So for x = 2, m− p1 and m− p2 even the lemma follows. The cases when either m− p1 or m− p2 is odd
are considered analogously.

Table 3: The “multiplicities” m(x, y) of the points (x, y) ∈ FCS(i, j) for small x, y .

for i, j even:

5 0 0 1 1 3
4 0 1 0 2 1
3 0 0 1 0 1
2 0 1 0 1 0
1 1 0 0 0 0
y

x 1 2 3 4 5

for i odd, j even:

5 0 1 1 1 3
4 0 0 1 2 1
3 0 1 1 0 1
2 0 0 1 1 0
1 1 1 0 0 0
y

x 1 2 3 4 5

for i, j odd:

5 0 1 1 1 3
4 0 0 1 2 1
3 0 0 1 1 1
2 1 1 0 0 1
1 1 1 0 0 0
y

x 1 2 3 4 5

Case x = 3. For y = 3, 4, 5 the lemma is proved by a direct computation, see Table 3. It remains to
prove that for y ≥ 6 we have m(3, y) > 0. This follows from Claim 2.8 because for x = 3 and y ≥ 6 the
right-hand side in Claim 2.8 is at least y+1

6 −
y+3
y+2 > 0.

Case x = 4. For y = 4, 5 the lemma is proved by a direct computation. Let us prove that for y ≥ 6 we
have m(4, y) > 0. This again follows from Claim 2.8 because for x = 4 and y ≥ 6 the right-hand side in
Claim 2.8 is at least (y+2)(y+1)

24 − (y+4)(y+2)
4(y+3) > 0.

Case x ≥ 5. For y ≥ x ≥ 5 we have m(x, y) > 0 by Claims 2.9 and 2.11.

Lemma 2.12 and hence Theorem 1.5 with Corollary 1.6 are proved.



12 Diarmuid Crowley, Steven C. Ferry and Mikhail Skopenkov

2.4 Framed links

The group structure, analogue of the decomposition from Theorem 1.2, and the following exact sequence
for partially framed links are constructed completely analogously to the particular case of framed links
(lk = m− pk ) studied in [11].

Theorem 2.13 (Cf. [11, Corollary 5.9]) For p < m − 2 there is an exact sequence of finitely generated
abelian groups

· · · → πp(Vm−p,l)
τ−→ Em(Sp × Dl) i∗−→ Em(Sp) Ob−→ πp−1(Vm−p,l)→ Em−1(Sp−1 × Dl)→ . . .

Theorem 1.13 follows immediately from the following result:

Lemma 2.14 After tensoring with Q the sequence of Theorem 2.13 splits as

0→ πp(Vm−p,l)⊗Q
τ⊗IdQ−−−→ Em(Sp × Dl)⊗Q

i∗⊗IdQ−−−→ Em(Sp)⊗Q→ 0.

For the proof of the lemma we need to compute the rational homotopy groups of orthogonal groups and
describe their generators. Let us introduce some notation. Let Vectq(Sp+1) be the set of isomorphism classes
of oriented vector bundles of rank q over Sp+1 . Viewing a representative of x ∈ πp(SOq) as a clutching
function for a vector bundle over Sq+1 gives the well-known bijection c : πp(SOq) ∼= Vectq(Sp+1) which we
use to identify Vectq(Sp+1) as an abelian group. We use c, the Pontryagin class and the Euler class to define
homomorphisms

P̂, Ê : πp(SOq)⊗Q ∼= Vectq(Sp+1)⊗Q→ Hp+1(Sp+1;Q) ∼= Q

as follows: for V ∈ Vectq(Sp+1) and for α ∈ Q define

P̂(V ⊗ α) :=
{

Pk(V)⊗ α, if p = 4k − 1,
0 if p 6= 4k − 1;

and Ê(V ⊗ α) :=
{

E(V)⊗ α if (p, q) = (2j− 1, 2j),
0 if (p, q) 6= (2j− 1, 2j),

where Pk and E denote respectively the k-th Pontryagin class and the Euler class. We then define
Pp,q = Pk := P̂−1(1) ∈ πp(SOq) ⊗ Q, if the map P : πp(SOq) → Q is nontrivial (and thus p = 4k − 1 for
some integer k), and Pp,q = 0, otherwise. We also define Ep,q = E analogously.

Claim 2.15 There are isomorphisms

πp(SOq)⊗Q ∼=


Q(Pk)⊕Q(E) if p = q− 1 = 4k − 1,

Q(Pk) if p = 4k − 1 and p 6= q− 1 > p/2,
Q(E) if p = q− 1 = 4k + 1,

0 otherwise.

Proof of Claim 2.15 This is well-known: we give a proof using results in [6]. A general result on the
rational homotopy type of homology-finite H -spaces [6, §12(a) Example 3] ensures that π∗(SOq)⊗Q has
generators only in odd dimensions. In [6, §15(f) Example 3] these generators are given:

SO2n+1 : {x1, . . . xn},

SO2n : {x1, . . . , xn−1, x′n}.

Here xk has dimension 4k−1 and x′n has dimension 2n−1. Moreover the generators xk are stably nontrivial
and so are detected by the k-th Pontryagin class and the generator x′n is detected by the Euler class. This
proves the claim.
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Proof of Lemma 1.12 Consider the exact homotopy sequence of the fibration SOq−l → SOq → Vq,l defined
by forgetting the first q− l vectors of an oriented q-frame in Rq :

· · · → πp(SOq−l)
ip−→ πp(SOq)

jp−→ πp(Vq,l)
∂p−→ πp−1(SOq−l)

ip−1−−→ πp−1(SOq)→ . . .

By exactness we have that πp(Vq,l)⊗Q ∼= coker(ip ⊗ IdQ)⊕ ker(ip−1 ⊗ IdQ).

Henceforth we consider all groups and homomorphisms to be tensored with Q, respectively IdQ , however we
omit ⊗Q and ⊗IdQ from the notation of groups and homomorphisms. By Claim 2.15 and the exact sequence
above, the group πp(Vq,l) is generated by those elements among jpEp,q , jpPp,q , ∂−1

p Ep−1,q−l , ∂−1
p Pp−1,q−l

which exist and are non-zero. It remains to investigate when each of the elements vanishes.

Since the Euler class vanishes for bundles with section see that jpEp,q 6= 0 iff Ep,q 6= 0 and that ip−1Ep−1,q−1 =
0. We deduce that jpEp,q 6= 0 iff 2 | p + 1 = q and that ∂−1

p Ep−1,q−l 6= 0 iff 2 | p = q− l.

Moving to the classes Pp,q , observe that if both Pp,q−l and Pp,q are nonzero then ipPp,q−l = Pp,q because
the Pontryagin classes are stable. Hence jpPp,q 6= 0 iff Pp,q 6= 0 and Pp,q−l = 0. Applying Claim 2.15 we
deduce that jpPp,q 6= 0 iff 4 | p + 1 and p/2 + 1 < q < l + p/2 + 1.

Finally, ∂−1
p Pp−1,q−l 6= 0 iff Pp−1,q−l 6= 0 and Pp−1,q = 0. By stability we see that ∂−1

p Pp−1,q−l = 0.

Thus rk πp(Vq,l) = 2, if both jpEp,q, jpPp,q 6= 0. We have rk πp(Vq,l) = 1, if exactly one of the elements
jpEp,q , jpPp,q , ∂−1

p Ep−1,q−l exists and is nonzero. Otherwise rk πp(Vq,l) = 0. Combining the conditions for
these cases we found above, we obtain the statement of the lemma.

Proof of Lemma 2.14 It suffices to prove that the map Em(Sp) → πp−1(Vm−p,l) from the sequence of
Theorem 2.13 has finite image for p < m− 2. If either p + 1 is not divisible by 4 or m ≥ 3p/2 + 2 then by
Theorem 1.1 the group Em(Sp) is finite. If p + 1 is divisible by 4 and m < 3p/2 + 2 then by Lemma 1.12
the group πq−1(Vm−q,p) is finite. The lemma now follows.

3 Applications and related problems

In this section we discuss applications of our rational calculations of the groups of links to the classification
of handlebodies and thickenings and to the computation of certain mapping class groups. We also raise
some open problems. Throughout this section denote qk := m− pk − 1.

3.1 Handlebodies and thickenings of wedges of spheres

Recall that an (m + 1)-dimensional handlebody V is a connected manifold with boundary which is obtained
from the disc Dm+1 by attaching a finite set of handles:

V ∼= Dm+1 ∪f
(
tr

k=1Dpk+1 × Dqk+1)
where f : tr

k=1 Spk × Dqk+1 → Sm = ∂Dm+1 is a framed link. We define

H+(m + 1; p1 + 1, . . . , pr + 1) := {V}/o. p. diffeomorphism

to be the set of oriented diffeomorphism classes of handlebodies with precisely r handles of respective
dimensions p1 + 1, . . . , pr + 1.

Determining the set H+(m; p1 + 1, . . . pr + 1) can be an intricate problem and, as is often the case, it helps
to introduce extra structure. The manifold V above comes equipped with an obvious homotopy equivalence
φ : ∨r

k=1 Spk+1 ' V . Following [27] and [12, §6] one defines the set of equivalence classes of homotopy
equivalences

T m+1(∨r
k=1Spk+1) = {φ : ∨r

k=1 Spk+1 ' W}/ ∼
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where W is a connected oriented smooth manifold with a non-empty simply connected boundary and
(W0, φ0) ∼ (W1, φ1) if and only if there is an orientation preserving diffeomorphism h : W0

∼= W1 such that
φ1 is homotopic to h ◦ φ0 . The group of homotopy classes of self-homotopy equivalences of ∨r

k=1Spk+1 ,
denoted E(∨r

k=1Spk+1), acts by pre-composition on T m+1(∨r
k=1Spk+1) and the obvious forgetful map defines

a bijection

T m+1(∨r
k=1Spk+1)/E(∨r

k=1 ∨ Spk+1) ≡ H+(m + 1; p1 + 1, . . . , pr + 1), [W, φ] 7→ [W].

As described above attaching handles defines a map

ω : Em(tr
k=1Spk × Dqk+1)→ T m+1(∨r

k=1Spk+1)

and Haefliger proved the following:

Theorem 3.1 See [12, Theorem 6.2] The map ω : Em(tr
k=1Spk×Dqk+1)→ T m+1(∨r

k=1Spk+1) is surjective if
2pk−pj + 2 ≤ m and 2pk−pj ≥ 1 and injective if 2pk−pj + 2 < m and 2pk−pj > 1 for all k, j = 1, . . . , r .

As a consequence of our calculations of Em(tr
k=1Spk × Dqk+1)⊗Q we immediately obtain the following:

Corollary 3.2 Suppose that 2pk − pj + 2 ≤ m and 2pk − pj ≥ 1 for all k, j = 1, . . . , r . If the multi-index
(p1, . . . , pr) fails to satisfy each of the conditions of Corollary 1.15 then both of the sets T m+1(∨r

k=1Spk+1)
and H+(m + 1; p1 + 1, . . . , pr + 1) are finite.

Corollary 3.3 Suppose that 2pk−pj +2 < m and 2pk−pj > 1 for all k, j = 1, . . . , r , then T m+1(∨r
k=1Spk+1)

inherits the structure of a finitely generated abelian group via ω and the rank of this group equals to the
right-hand side of the equality from Theorem 1.13.

Example 3.4 By Corollary 1.15, E8(S5 × D3 t S5 × D3) is finite and so both the group T 9(S6 ∨ S6) and
the set H+(9; 6, 6) are finite.

Remark 3.5 Computing the action of the group E(∨r
k=1Spk+1) on the set T m+1(∨r

k=1Spk+1) is an interesting
problem we shall address in [3]. In particular, we conjecture that the converse of the second sentence of
Corollary 3.2 holds under the dimension assumptions of the first sentence.

3.2 The mapping class group of a connected sum of “tori”

Recall that the group of framed links, Em(tr
k=1Spk × Dqk+1), consists of smooth isotopy classes of smooth

orientation preserving embeddings
f : tr

k=1 Spk × Dqk+1 → Sm.

In this subsection we describe the relationship of Em(tr
k=1Spk × Dqk+1) to certain mapping class groups.

We begin with some necessary new definitions. Let us first expand the definition of link to include links in
homotopy spheres. Let Σm be a closed smooth oriented homotopy m-sphere and recall that Θm denotes the
group of oriented diffeomorphism classes of such homotopy spheres. Define

EΘm(tr
k=1Spk × Dqk+1) := {f : tr

k=1 Spk × Dqk+1 → Σm}/ '

to be the set of equivalence classes of orientation preserving embeddings of tr
k=1Spk × Dqk+1 into some

homotopy sphere where embeddings f0 and f1 with targets Σm
0 and Σm

1 respectively are equivalent if there
is an orientation preserving diffeomorphism H : Σm

0
∼= Σm

1 such that H ◦ f0 = f1 .

The isotopy extension theorem ensures that there is a well-defined map

I : Em(tr
k=1Spk × Dqk+1)→ EΘm(tr

k=1Spk × Dqk+1).
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Moreover there is a group structure on EΘm(tr
k=1Spk ×Dqk+1) defined in the same was as the group structure

on Em(tr
k=1Spk ×Dqk+1) but also taking connected sum of the ambient homotopy sphere. In particular I is a

homomorphism and forgetting the embedding defines a homomorphism Forg: EΘm(tr
k=1Spk×Dqk+1)→ Θm .

Moreover Forg is split by the homorphism T : Θm → EΘm(tr
k=1Spk×Dqk+1) defined by mapping a homotopy

sphere Σm to the trivial framed link in Σm , i.e., the framed link which bounds disjoint embedded discs.

Lemma 3.6 The sum of the homomorphisms I and T defines an isomorphism

(3–1) I ⊕ T : Em(tr
k=1Spk × Dqk+1)⊕Θm

∼= EΘm(tr
k=1Spk × Dqk+1).

Proof It remains only to prove that I is injective. Suppose that f0, f1 : tr
k=1 Spk × Dqk+1 → Sm are

embeddings such I([f0]) = I([f1]). This means that there is an orientation preserving diffeomorphism
H : Sm → Sm such that f1 = f0 ◦ H . If in addition H were isotopic to the identity we would be done. But
since H is orientation preserving we may assume after a small isotopy that it is the identity on on a small
disc Dm ⊂ Int(Sm − f0(tr

k=1Spk × Dqk+1)). We may now modify H by any diffeomorphism of Dm which is
the identity on a neighbourhood of the boundary ∂Dm , keeping the diffeomorphisms the same outside of this
disc. Now it is well-know that every orientation preserving diffeomorphism of Sm is pseudo-isotopic to a
diffeomorphism which point-wise fixes some m-disc; see [26, Hilfsatz p.265]. In this way we can construct
a diffeomorphism H′ such that f1 = f0 ◦ H′ and such that H′ is isotopic to the identity.

We also need to pass from disconnected manifolds to connected manifolds. Hence we define

W0 := \r
k=1(Spk × Dqk+1), W1 := \r

k=1(Dpk+1 × Sqk) and M := ]r
k=1(Spk × Sqk).

Note that there are canonical identifications ∂W0 = M = ∂W1 . We recall how the standing assumption of
high-codimension gives rise to a bijection

(3–2) α : EΘm(tr
k=1Spk × Dqk+1) ≡ EΘm(W0)

where EΘm(W0) is the set of isotopy classes of orientation preserving embeddings of W0 into some homotopy
m-sphere. Given an embedding f : tr

k=1 Spk × Dpk+1 → Σm as above, choose smoothly embedded paths
between each component of f and remove a small tubular neighbourhood of each path: since each component
of f has codimension at least 3 the choice of such a path does not play a role up to isotopy. We obtain an
embedding

F : W0 → Σm.

Moreover, two such embeddings f and f ′ are isotopic if and only if the corresponding embeddings F and
F′ of W0 are isotopic. Conversely, given an embedding F : W0 → Σm we may delete a set of appropriate
m-discs from W0 to obtain an embedding f : tr

k=1 Sp+k × Dqk+1 → Σm . In this way we obtain the the
bijection α above.

We now relate EΘm(W0) to the mapping class group π̃0Diff+(M) of pseudo-isotopy classes of orientation
preserving diffeomorphisms of M . Given [h] ∈ π̃0Diff+(M) form the oriented smooth homotopy sphere

Σ[h] := W0 ∪h W1

where we orient Σ[h] using a fixed orientation on W0 . Now define the map

β : π̃0Diff+(M)→ EΘm(W0), [h] 7→ (W0 → Σ[h])

which maps [h] to the obvious embedding of W0 into Σ[h] . We shall see that if h extends over W1 then
Σ[h]
∼= Sm and β([h]) is the standard embedding. Hence we introduce the homomorphisms defined by

restriction of diffeomorphisms:
R : π̃0Diff+(W1)→ π̃0Diff+(M).

Lemma 3.7 Suppose that pk ≥ [m/2] for each k = 1, . . . , r . Then the map β above induces a bijection

β̄ : R(π̃0Diff+(W1))\π̃0Diff+(M) ≡ EΘm(W0).
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Corollary 3.8 If m ≥ 5, the subgroup R(π̃0Diff+(W1)) ⊂ π̃0Diff+(M) is of finite index if and only if
(p1, . . . , pk) fails to satisfy each of the conditions of Corollary 1.15.

Proof Let us prove the “if” part; the “only if” part is analogous. By [13] the group Θm is finite and
by assumption Corollary 1.15 states that Em(tr

k=1Spk × Dqk+1) is finite. By (3–1) and (3–2) we see that
EΘm(W0) is finite. Now apply Lemma 3.7.

Proof of Lemma 3.7 We first show that β̄ is well-defined. Let [ha] and [hb] be elements of π̃0Diff(M)
and suppose that hb = h ◦ ha where h : M ∼= M extends to a diffeomorphism H : W1

∼= W1 . Then have the
diffeomorphism

Id ∪ H : W0 ∪ha W1 → W0 ∪hb W1

which shows that β([ha]) = β([hb]). It follows that each member of a coset of Im(R) is mapped to the same
isotopy class of embedding via β and hence β̄ is well-defined.

Next we show that β̄ is injective: suppose that β̄([ha]) = β̄([hb]). Then there is a diffeomorphism

G : W0 ∪ha W1
∼= W0 ∪hb W1

such that G|W0 = Id. It follows that G(W1) = W1 and that for h := R(G|W1), hb = h ◦ ha . It follows that
[ha] and [hb] lie in the same coset of R(π̃0Diff(W1)) and so β̄ is injective.

Finally we show that β̄ is surjective. For any embedding F : W0 → Σm let CF ⊂ Σm denote the closure of
its complement. Then CF is homotopy equivalent to the wedge ∨r

k=1Sqk . Since CF is simply connected with
non-empty simply-connected boundary it is the target of a thickening in the sense of [27]. Moreover, as
pk ≥ [m/2] it follows that qk < [m/2] and thus CF is the target of a stable thickening of ∨r

k=1Sqk . Now by
[27, Proposition 5.1] stable thickenings are classified by their stable tangent bundles, CF ⊂ Σm and Σm is
stably parallizable: it follows that CF is the target of the trivial thickening. Hence for every such embedding
F there is a diffeomorphism

H : CF
∼= W1.

We define the diffeomorphism h := (∂H) ◦ (∂F) : M ∼= M . It follows that the embedding F : W0 → Σ is
isotopic to the embedding β̄(h) and we are done.

3.3 Open problems

In this subsection we discuss some open problems related to the groups of links. The first of these is the
computation of the torsion group Tors Em(tr

k=1Spk) which by the Haefliger sequence [12, Theorem 1.1]
is a finite abelian group. Here we wish to point out that the analysis of the Haefliger sequence seems
significantly more difficult than analysing the sequence tensored with Q. Specifically, our computation of
Em(tr

k=1Spk)⊗Q rested on the Lemma 2.2(a) which stated that the homomorphism w of the exact sequence
in Theorem 2.1 is surjective. This implied that the rational sequence of Theorem 2.1 splits into short exact
sequences and also the rational splitting in Lemma 1.3. However the integral Haefliger long exact sequence
does split in this way in general.

Lemma 3.9 The homomorphism w : 0Λ(2,2)
(5,5) → 0Π(2,2)

6 is not onto and so 0 6= µ(0Π(2,2)
6 ) ⊂ E7

P(S4 t S4).

Proof By the Hilton–Milnor theorem and known computations of the homotopy groups of spheres it follows
that the 3-torsion in 0Π(2,2)

6 is isomorphic to Z/3 whereas the torsion in 0Λ(2,2)
(5,5) is all 2-primary. Moreover,

by Example 1.7, the homomorphism w⊗ IdQ : 0Λ(2,2)
(5,5)⊗Q→ 0Π(2,2)

6 ⊗Q is an isomorphism. It follows that
the 3-torsion in 0Π(2,2)

6 is not in the image of w.
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Of course, to understand a finite abelian group a key first step is to find the primes which appear in its order.
We therefore post the following

Problem 3.1 Find a function of two positive integer variables f (x, y) such that if a prime q satisfies the
inequality q > f (m,min{p1, . . . , pr}) then the group Em(tr

k=1Spk) contains no q-torsion.

We now briefly consider the problem of classifying links whose components need not be spheres. Let
N1, . . . ,Nr be a set of closed connected smooth manifolds with Nk of dimension pk and consider the map

C : Em(tr
k=1Nk)→ tr

k=1Em(Nk)

which associates to each isotopy class of embedding the set of isotopy classes of its components. For a
survey of what is known about Em(Nk) see [20] and for the special cases, (m; pk) = (6, 3) or (7, 4) see
[19, 22, 4]. If Em(Nk) is known for each Nk then for a fixed isotopy classes [fk] ∈ Em(Nk), k = 1, . . . , r , the
set C−1([f1], . . . , [fr]) becomes of particular interest.

In the case of spheres recall that the links with unknotted components are defined by the equality

Em
U(tr

k=1Spk) = C−1(0, . . . , 0)

where 0 ∈ Em(Spk) denotes the class of the unknot. Now the operation of component-wise connected sum
defines a group action

Em
U(tr

k=1Spk)× C−1([f1], . . . [fr])→ C−1([f1], . . . [fr]).

Problem 3.2 Find a range of dimensions (m; p1, . . . , pr) and connectivity assumptions on Nk for which the
above action is transitive.

Finally we comment that there is a lack of explicit constructions of high codimension links. There is a
construction of (the image of) the Borromean rings S2k−1 t S2k−1 t S2k−1 → R3k :

2|x|2 + |y|2 = 1, z = 0; t 2|y|2 + |z|2 = 1, x = 0; t 2|z|2 + |x|2 = 1, y = 0;

where x = (x1, . . . , xk), y = (xk+1, . . . , x2k), z = (x2k+1, . . . , x3k) and | · | denotes the usual norm in Rk . The
Borromean rings generate the Q-linear space E3k

P (t3
k=1S2k−1) ⊗ Q ∼= Q. It would be interesting to obtain

a shorter proof of Theorem 1.4 using either a generalization of this explicit construction and the Milnor
invariants or identities in Lie algebras (cf. the proof of Lemma 2.7 for the case when x1 = 1).

It would be also interesting to determine when the set of isotopy classes of (primary) links is finite without
the codimension > 2 assumption.
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