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1. Introduction

A deformation theorem of Bestvina and Walsh [2] states that, below middle and adjacent
dimensions, a (k + 1)-connected mapping of a compact topological manifold to compact
polyhedron can be deformed to a UV k-mapping; that is, a surjection whose fibers are in
some sense k-connected. For example, if one has a map f from the n-sphere to the m-
sphere, where n ≤ m, one might expect a typical point inverse image to be a finite set
(usually empty, if n < m), but the truth, however, may be rather the opposite: if n > 4,
then f is homotopic to a surjection with simply connected point inverses. This is predicted
by the high connectivity of the homotopy fiber of the map. It is sometimes more useful
to consider approximations by maps that behave like these “space-filling curves,” which
are closer models of the underlying abstract homotopy theory, rather than adopt the usual
strategy of approximating by smooth or piecewise linear maps. Controlled versions of this
phenomenon were essential in the construction of non-resolvable homology manifolds in [5]
and in the “desingularization” of higher dimensional homology manifolds in [7].

The goal of this paper is to establish results of this nature for maps from a homology man-
ifold (with the disjoint disks property, or DDP , if its dimension is greater than 4) to a
polyhedron. The methods we develop here, which are new, even in the case of topological
manifolds, are an adaptation of a cell-trading argument that has proved useful in the classi-
fication theory for topological manifolds. In fact, they apply to any ENR having sufficient
general position properties, and the essential propositions and lemmas will be presented in
this setting. These methods allow us to take a map that, in Quinn’s terminology [21], is
(ε, k + 1)-connected and “squeeze” it in a controlled fashion to be (µ, k + 1)-connected, for
arbitrarily small µ. The desired UV k-map is obtained by taking a limit. The controls on
the homotopies have sufficient uniformity to show that a compact ENR with the disjoint
(k+ 1)-disks property (DDP k+1) has the linear UV k-approximation property, introduced in
[7]. As a consequence we see that a homology n-manifold, n ≥ 5, with the DDP has the

linear UV [ n−3
2

]-approximation property. This is a considerable strengthening of the disjoint
disks property and indicates yet another way in which the exotic homology manifolds con-
structed in [5] resemble topological manifolds. Our techniques are strong enough to yield a
relative theorem, which asserts that the homotopies of a given map to a UV k-map may be
kept fixed on a sufficiently nicely embedded compact set. As a result we obtain a strong
relative theorem for maps from a homology manifold with boundary.
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As a separate application we invoke a theorem of Krupski [16] to get the curious result that
a 1-connected map from a compact, connected, homogeneous, n-dimensional ENR, n ≥ 3,
to a connected ANR is homotopic to a monotone map, that is, a surjection with connected
point-inverses.

Here is our main result. (LCCk subsets are defined in the next section. Informally, they are
subsets that can be avoided by maps of a (k + 1)-dimensional polyhedron into the ambient
space.)

Theorem 1. Suppose X is a compact, connected ENR satisfying the disjoint (k + 1)-disks
property, B is a connected finite polyhedron, Y is a metric space, and p : B → Y is a map.
If f : X → B is UV k(ε) over Y , then f is (C(k) · ε)-homotopic (over Y ) to a UV k-map,
where C(k) is a positive constant depending only on k.

Moreover, if Z is a compact, LCCk subset of X, then the homotopy of f to a UV k-map
can be chosen to be fixed on Z.

As Theorem 1 essentially defines the relative linear UV k-approximation property, we get as
a corollary the result that motivated this paper.

Theorem 2. Suppose X is a compact ENR homology n-manifold, n ≥ 3, with boundary
∂X. If n ≥ 5 assume that X has the DDP and that ∂X is LCC1 in X. Then (X, ∂X) has

the relative linear UV [ n−3
2

]-approximation property.

Proof. It is well-known that a connected ENR of dimension ≥ 1 is arcwise connected and
locally arcwise connected. In particular, any continuous map of [0, 1] into X can be approx-
imated by one whose image has dimension ≤ 1. If n = 3 or 4, the DDP 1 property of X
follows from this fact together with Alexander duality: if U is any connected open subset of
X and A is a closed, 1-dimensional subset of U , then H1(U,U − A) ∼= Ȟn−1(A) = 0. This,
in turn, implies that the reduced homology group H̃0(U − A) = 0. The LCC0 property of
∂X in X follows immediately from the homology conditions given in the definition below.

If n ≥ 5, the results of [27] and [4] show that a homology n-manifold with the disjoint disks
property also has the disjoint [n−1

2
]-disks property. (See the discussion in the next section.)

If U is an open subset of X, then, by definition (below), the inclusion U−∂X ⊆ U induces an
isomorphism on homology. If X − ∂X is locally simply connected at points of ∂X, then, by
the eventual Hurewicz theorem [11], U −∂X ⊆ U also induces an isomorphism on homotopy
groups, hence, is a homotopy equivalence. (A subset of a space X with this property is called
a Z-set.) �

A similar argument establishes a hybrid version.

Theorem 3. Suppose X is a compact ENR homology n-manifold, n ≥ 3, possibly with
boundary, ∂X, and Z is a compact, LCC0 subset of X containing ∂X. If n ≥ 5 assume
further that X has the DDP and that Z is LCC [ n−3

2
] in X. Then (X,Z) has the relative

linear UV [ n−3
2

]-approximation property.
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As a special case (Y = a point) we recover the analogue of the theorem of Bestvina and
Walsh for “nice” homology manifolds.

Theorem 4. Suppose X is a compact, connected, ENR homology n-manifold, with boundary
∂X, and suppose B is a connected finite polyhedron. Suppose f : X → B is a (k+1)-connected
map for some k ≥ 0, 2k + 3 ≤ n. If k ≥ 1, we assume further X has the disjoint disks
property and ∂X is LCC1 in X. Then f is homotopic, rel f |∂X, to a UV k-map.

Remark. By applying Theorem 1, one can easily generalize each of these results to allow B
to be a compact ANR. If B is finite dimensional, it has a mapping cylinder neighborhood N
in some euclidean space [19] with mapping cylinder projection π : N → B. The composition
of f with the inclusion ι : B → N remains UV k(ε) over B, so we can apply Theorem 1 to
ι ◦ f : X → N . Composing the result with π, which is cell-like, will then recover the desired
homotopy of f to a UV k-map. If B is infinite dimensional, cross with the Hilbert cube to
get a Hilbert cube manifold (see [9]), which is triangulable, and proceed in much the same
way.

Our methods provide an alternative proof of the Bestvina-Walsh theorem referred to above.

Theorem 5 (Bestvina and Walsh [2]). Suppose Mm is a compact manifold and K is a
polyhedron. If f : M → K is a (k + 1)-connected map, then f is homotopic rel f |∂M to a
UV k map, provided that k ≤

[
m−3

2

]
.

Other results of this type are due to Keldyš [15], Anderson [1], Wilson [29, 30], Walsh [28],
Černavskii [8], and Ferry [11].

Remarks. (1) Lacher, ([17], §5 and §7) (see also [13]), has shown that a UV [ n−1
2

]-map
between compact n-manifolds must be cell-like if n is odd, and, if n is even, it must be
a spine map, in which spines of connected summands are collapsed to points. Thus,
the result in Theorem 5 is best possible for maps from the n-sphere Sn to itself of
degree d 6= ±1.

(2) Somewhat more provocative examples result from Quinn’s resolution obstruction [22]
combined with the examples constructed in [5]. For given integers ι ∈ 1 + 8Z and
n ≥ 6, a homology n-manifold X with the DDP is constructed in [5], with the property
that X is homotopy equivalent to Sn and has Quinn index σ(X) = ι. If σ(X) 6= 1,
then there is no cell-like map from X to Sn (or from Sn to X). By Theorem 1 any

homotopy equivalence f : X → Sn is homotopic to a UV [ n−3
2

]-map, whereas Lacher’s
result, cited above, can be used to show no such f is homotopic to a UV [ n−1

2
]-map.

(3) To contrast the examples of Remark (2), consider compact homology n-manifolds X
and Y with the DDP and a homotopy equivalence f : X → Y that has vanishing total
surgery obstruction [23], [24]. Then X and Y must have the same Quinn index. If it
is always possible to produce a suitably controlled homotopy of such an f to a cell-like
map, one could prove the homogeniety conjecture of [5]. Applying Theorem 1 to f
can be thought of as performing “controlled surgery below the middle dimension” in
order to isolate the problem of reducing the size of a homotopy equivalence to the
middle dimensions. It is intriguing to note that, if our construction can taken one
step further, then, according to Lacher [17] the resulting map would be cell-like.1

1Although Lacher’s results in [17] referred to in these remarks are stated for topological manifolds, the arguments he uses

to obtain them work equally well for homology manifolds.
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2. Definitions and Preliminary Results

A homology n-manifold is a space X having the property that for each x ∈ X,

Hk(X,X − x; Z) ∼=

{
Z k = n

0 k 6= n.

We say that X is an homology n-manifold with boundary if the condition Hn(X,X −
x; Z) ∼= Z is replaced by Hn(X,X−x; Z) ∼= Z or 0, and, if ∂X = {x ∈ X : Hn(X,X−x; Z) ∼=
0}, then ∂X is a homology (n− 1)-manifold and H∗(U,U − ∂X) = 0 for every open subset
U of X. (In [20] Mitchell shows that, if X is an ENR, ∂X is a homology (n− 1)-manifold.)

A euclidean neighborhood retract (ENR) is a space homeomorphic to a closed subset
of euclidean space that is a retract of some neighborhood of itself, that is, a locally com-
pact, finite dimensional ANR. Topological manifolds and locally compact, finite dimensional
polyhedra are the most well-known examples of ENR’s, but there are many other interest-
ing types of examples, such as the exotic homology manifolds constructed in [5]. Perhaps
the most important property of a topological manifold or locally compact polyhedron that
generalizes to an arbitrary ENR X is the existence of mapping cylinder neighborhoods,
which we have already mentioned above: If X is LCC1 embedded in a topological manifold
M , dimM −dimX ≥ 3, then X has a topological manifold neighborhood W with boundary
in M , which admits a retraction p : W → X, such that W is the mapping cylinder of p|∂W ,
and p is the mapping cylinder retraction [19]. This generalizes the notion of normal bundle
neighborhoods for topological manifolds and regular neighborhoods for polyhedra. In fact,
there are stable classification theorems for mapping cylinder neighborhoods of ENR homol-
ogy manifolds analogous to those for normal bundle neighborhoods of topological manifolds.
(See [6].)

A space X satisfies the disjoint disks property (DDP ) if for every ε > 0 and maps
f, g : D2 → X, there are maps f ′, g′ : D2 → X so that d(f, f ′) < ε, d(g, g′) < ε and f ′(D2) ∩
g′(D2) = ∅. More generally, we say that a space X has the disjoint k-disks property,
or DDP k, if any two maps of a k-cell into X can be approximated by maps with disjoint
images. The DDP k implies that maps f : Di → X and g : Dj → X can be approximated by
maps with disjoint images whenever i, j ≤ k.

Given ε > 0 and a map p : B → C, a map f : A → B is UV k(ε) over C, if it has the
ε-homotopy lifting property over C for k + 1-dimensional polyhedra. That is, if (P,Q) is a
polyhedral pair with dimP ≤ k + 1, α0 : Q → A and α : P → B, with f ◦ α0 = α|Q, then
there is a map α : P → A extending α0 such that f ◦ α is ε-homotopic over C to α in B, rel
α|Q. The lift α of α will be called an ε-lift of α, rel α0 (or, sometimes, rel Q), over C.
This is the same as Quinn’s notion of a relatively (ε, k+1)-connected map over C (Definition
5.1 of [21]).

There are two important special cases of this definition representing the two extremes on the
degree of control. If p is a constant map, or, equivalently, C is a point, then we have the usual
notion of a (k−1)-connected map f : A→ B. This is equivalent to f inducing isomorphisms
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on homotopy groups through dimension k − 1 and an epimorphism in dimension k. At the
other extreme we have C = B and p = idB. In this case we will often omit reference to B
as a control space and just say f : A→ B is UV k−1(ε).

A compact connected space C has property UV k, k ≥ 0, if for some (and, hence, any)
embedding of C in an ANR X and every neighborhood U of C in X, there is a connected
neighborhood V of C lying in U such that the inclusion πi(V ) → πi(U) is 0 for 0 ≤ i ≤ k.
A surjection f : A → B between compact ENR’s is UV k, k ≥ 0, if its point inverses have
property UV k. A UV −1-map is a surjection.

Remark. For ANR’s, property UV k is equivalent to k-connectedness. For non-ANR’s,
especially non-locally connected spaces, the situation is quite different. For example, the
fundamental group of the diadic solenoid, Σ = proj lim{S1, z → z2}, is trivial, in fact, its
Čech π1 vanishes as well, but it fails to have property UV 1.

A compact metric pair (X,Z) has the relative linear UV k-approximation property if,
for a given finite polyhedron B and map p : B → Y of B to a metric space Y , every map
f : X → B that is UV k(ε) over Y , for some ε > 0, is C · ε-homotopic over Y , keeping f |Z
fixed, to a UV k-map, where C is a constant depending only on k.

A subset A of an ENR X is locally k-co-connected, or LCCk, in X if, for every open
set U ⊆ X, πi(U,U − A) = 0 for 0 ≤ i ≤ k + 1. This is equivalent to the condition that the
inclusion map ι : (X − A) → X is UV k(ε) for every ε > 0. If X is a topological n-manifold
and A is a closed subset of dimension r, n − r ≥ 3, then A is LCCn−r−2 if and only if A is
LCC1. This is essentially a consequence of Alexander duality and the Hurewicz isomorphism
theorem. (See [3] and [26].) This remains true if X is an ENR homology n-manifold, n ≥ 5,
with the DDP [4, 27].

Proposition 1. If an ANR X has the DDP k and A is an LCCk−1 subset of X, then any
map of a k-dimensional polyhedron into X can be approximated by an LCCk−1 embedding
that misses A.

Outline of proof. This proposition is proved using techniques similar to those used to prove
the main results of [4] and [28]. Since there are some essential differences, we outline a proof
here.

Suppose K is an k-dimensional polyhedron, and f : K → X is a map. Let K1, K2, ... be a
sequence of triangulations of K with mesh tending to 0. Use the DDP k property of X to get
a sequence fj, j = 1, 2, ... of maps, where fj is a approximation of fj−1, j ≥ 1, (f0 = f), such
that fj(σ)∩fj(τ) = ∅ whenever σ and τ are disjoint k-simplexes of Kj. By taking extra care
in choosing the sizes of subsequent approximations, we can guarantee that the limit map
f̄ : K → X satisfies this property for every j and, hence, is an embedding. Likewise, we can
assume that the first and all subsequent approximations are chosen so that their images, as
well as the image of f̄ , misses A. Arguments such as this may be found in [14].

In order to get an LCCk−1 embedding we need an extra ingredient. Let N be a mapping
cylinder neighborhood of X in some euclidean space of dimension ≥ 2k + 1 with mapping
cylinder projection p : N → X. Let T1 ⊆ T2 ⊆ · · · be the k-skeletons of a sequence of
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triangulations of N with mesh tending to 0. Given a map f : K → X as above, we combine
the process above with a sequence pj : N → X, where pj is an approximation of pj−1, j ≥ 1,
(p0 = p) so that pj(Tj) ∩ fj(K) = ∅ and the limit maps p̄ = lim pj and f̄ = lim fj satisfy
p̄(
⋃
Tj) ∩ f̄(K) = ∅. If α : (P,Q)→ (X,X − f̄(K)) is a map of a k-dimensional polyhedral

pair, then there is a small homotopy of α to a map of P into Tj for some j. We can choose
j large enough and the homotopy small enough so that the image of the composition of the
homotopy restricted to Q with p does not meet f̄(K). After composing this map with p and
using the estimated homotopy extension theorem [5], we can get a small homotopy of α, rel
α|Q, to a map into X − f̄(K). �

Proposition 2. Suppose A and B are compact, connected ENR’s of dimension ≥ 1, ε > 0,
Z is an LCC0 subset of A, and p : B → C is a map, where C is a metric space. If f : A→ B
is UV −1(ε) over C, then f is 2ε-homotopic (over C), rel f |Z, to a surjection.

Proof. Assume all measurements are made in C. Let P be a finite subset of B such that
every point of B can be joined to a point of P by an arc of diameter ≤ ε/2 in both B and
C. By hypothesis, there is a map α : P → A whose composition with f is ε-homotopic to
the inclusion. Since dimA ≥ 1, we may assume α is one-to-one, and, since Z is LCC0, we
may assume α(P ) ∩ Z = ∅. Let P ′ = α(P ). Using the homotopy extension theorem on a
small neighborhood of P ′ in A, which is disjoint from Z, we can get an extension of the
ε-homotopy of f |P ′ to α−1 to an ε-homotopy of f to a map that sends P ′ to P . Thus there
is an ε-homotopy of f , rel f |Z, to a map that is UV −1(ε/2) over both B and C. A sequence
of such maps can be constructed so as to converge to a surjection that is 2ε-homotopic to
f . �

The following basic result is due to Lacher [17, 18].

Theorem 6. A surjection f : A → B between compact ENR’s is UV k iff it is UV k(ε) for
every ε > 0.

The next lemma gives a criterion for determining when an extension of an UV k−1(ε)-map is
(almost) UV k−1(ε).

Lemma 1. Suppose X1 ⊆ X2 and B are compact ENR’s, δ > 0, and ε > 0, suppose
p : B → Y is a map of B to a metric space Y , and suppose that for some integer k ≥ 0,
f : X2 → B is a map such that

(i) f |X1 is UV k−1(ε) over Y , and
(ii) if g is a map of a k-dimensional polyhedron R into X2, then g is δ-homotopic over Y

to a map of R into X1.

Then f is UV k−1(2δ + ε) over Y .

Proof. Suppose (P,Q) is a polyhedral pair, dimP ≤ k, and suppose α : P → B, and α0 : Q→
X2 satisfy f ◦ α0 = α|Q. For any µ > 0 there is a µ-homotopy over B of the identity on P
to a map r : P → P , which is fixed on Q and outside a neighborhood of Q, that deformation
retracts a small regular neighborhood N of Q onto Q. By precomposing α with such a map,
we can get an µ-homotopy of α to a map α1 : P → B, whose restriction to N can also be
lifted by α0.
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Let P0 = C`(P − N), and let Q0 = Q ∩ P0 = bd(N). Since dimQ0 ≤ k − 1, there is
a δ-homotopy (over Y ) of α0|Q0 that takes Q0 into X1 . Since Q0 is collared in N , this
homotopy can be extended to a δ-homotopy of α0 on N (over Y ) that is fixed on Q. Call the
resulting map α0 : N → X2. Composing with f gives an δ-homotopy of α1|N in B, which
can be extended to an δ-homotopy of α1 on P to α2 : P → B, since N is collared in P . By
hypothesis, f |X1 is UV k−1(ε) over Y , and so α2|P0 can be ε-lifted to X1 (over Y ), rel α0|Q0.
This map, in turn, extends to a map α : P → X2, whose restriction to Q is α0, and, assuming
µ is sufficiently small, f ◦ α is (2δ + ε)-homotopic to α rel α|Q. �

An argument virtually identical to the one just given also proves the following lemma.

Lemma 2. Suppose X and B are compact ENR’s, δ > 0, and ε > 0. If f : X → B is
UV k−1(ε) over a metric space Y and g is δ-homotopic to f over Y , then g is UV k−1(2δ+ ε)
over Y .

The proof of the next lemma is an easy application of the definition.

Lemma 3. Suppose A, B, and C are compact metric spaces and f : B → C is an UV k−1(ε)-
map for some ε > 0. Then there exists δ > 0 such that if g : A → B is UV k−1(δ) over B,
then f ◦ g : A→ C is UV k−1(ε) (over C).

Consider the (k + 1)-cell D = Bk × [0, 1] ⊆ Rn × [0, 1] ⊆ Rn+1, where Bk is the unit ball
in Rk = Rk × 0 ⊆ Rn. Let E be a relative n-cell neighborhood of Bk in Rn, rel ∂Bk,
chosen so that the natural projection p : Rn → Rk has the property that p−1(x) ∩ ∂E is
an (n − k − 1)-sphere, a point, or the empty set, accordingly as x ∈ intBk, x ∈ ∂Bk, or
x 6∈ Bk. Let F be a relative (n+ 1)-cell neighborhood of D in Rn× [0, 1], rel ∂D, containing
E in its boundary, chosen so that the natural projection p̄ : Rn × [0, 1] → Rk × 0 × [0, 1]
has the property that p̄−1(x) ∩ (∂F − intE) is an (n− k − 1)-sphere, a point, or the empty
set, accordingly as x ∈ intD, x ∈ ∂D, or x 6∈ D, and the projection Rn × [0, 1] → Rn maps
∂F − intE homeomorphically onto E. Let E ′ be another relative n-cell neighborhood of Bk

satisfying the same properties listed above for E such that E ⊆ (intE ′ ∪ ∂Bk). By using the
various projections above or their inverses, it is possible to construct a map q : Rn → Rn∪D
such that q|(Rn − E ′) is the identity, q retracts E onto Bk, and q−1(x) is a point or an
(n− k − 1)-sphere.

If M is a topological n-manifold and D is a (k + 1)-cell attached to M along a k-cell that
is nice in both M and ∂D, then we can can use the model above to construct a map
h : M → M ∪A D, which is the identity outside a relative neighborhood of A, rel ∂A,
whose point-inverses are either points or (n− k − 1)-spheres. This implies h is UV n−k−2. If
2k + 1 ≤ n, then M has the DDP k and h will be UV k−1. This is the familiar cell-trading
procedure one sees in controlled surgery theory, which is used to improve the connectivity of
a map below the middle dimension. The following proposition shows that an approximate
version of this result holds for an ENR X with the DDP k. It will provide an important step
in the proof of our main results. (Ultimately, the main results will apply to show that the
inclusion X ⊆ X ∪A D is homotopic to a UV k−1-map.)
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Proposition 3. Suppose X is an ENR with the DDP k, k ≥ 0, and suppose γ : C → X is
an embedding of a k-cell C onto an LCCk−1 k-cell A ⊆ X, and X = X ∪A D is the relative
mapping cylinder of γ, rel ∂C, with mapping cylinder retraction d : X → X. Assume a
metric on X extending a given one on X. Then for every neighborhood U of A in X and
every η > 0, there is an η-homotopy h : X × I → X over X of the inclusion ι : X → X such
that

(i) each ht is the identity outside U,
(ii) d◦h : X×I → X is an η-homotopy that deformation retracts a neighborhood of A onto

A inside U ,
(iii) h1 : X → X is UV k−1(η) over X.

Proof. Assume that X is tamely embedded in Rm, m > 2 dimX, so as to have a mapping
cylinder neighborhood N with mapping cylinder projection π : N → X [19]. Given any
triangulation of N , π restricted to its k-skeleton can be approximated arbitrarily closely by
an LCCk−1 embedding whose image misses A. For any ε > 0, there is a triangulation of N ,
with k-skeleton T such that any map of a k-dimensional polyhedral pair (P,Q) into (N, T )
can be ε-homotoped, rel Q, into T . Thus, for a given sequence ε0, ε1, ... of positive numbers,
there is a sequence T0 ⊆ T1 ⊆ ... of k-dimensional polyhedra, LCCk−1 embedded in X − A,
such that any map of a k-dimensional polyhedral pair (P,Q) into (X,Tj), j < i, can be
εi-homotoped, rel Q, into Ti.

Suppose we are given X = X ∪A D. Let X ′ = (X × 0) ∪ (A × I) ⊆ X × I, I = [0, 1], and
let p : X ′ → X be projection to the first factor. Let g : X ′ → X be the map that sends
each of the vertical intervals in ∂A × I to a point, but is otherwise one-to-one. We may
assume d : X → X is the map induced by p. Equip X ′ with the metric ρ inherited from
the embedding into Rm × [0, 1] with the product metric, where X ⊆ Rm × 0 as above and
(x, t) 7→ (x, t) if x ∈ A. Since the quotient map g : X ′ → X is cell-like, it is sufficient,
by Lemma 3, to prove the theorem with X replaced by X ′ and d : X → X replaced by
p : X ′ → X.

Suppose then that we are given η > 0. Let {0 = t0 < t1 < · · · < t` = 1} be a subdivision of I
of mesh < η/3. Given a neighborhood U of A, positive numbers ε0, ..., ε`, and k-dimensional
polyhedra T0 ⊆ T1 ⊆ · · · ⊆ T` in X − A, as above, construct a sequence of neighborhoods

V` ⊆ · · · ⊆ V1 ⊆ V0 ⊆ U

of A and an ε0-homotopy R : X × I → X as follows.

(1) R0 = idX .
(2) Rt|[(X − U) ∪ A] = id for all t ∈ I.
(3) R(U × I) ⊆ U .
(4) R(C`(V0)× I) ⊆ U .
(5) R−1

1 (A) = C`(V0).
(6) R(C`(Vi)× I) ⊆ (Vi−1 − Ti−1) for 1 ≤ i ≤ `.
(7) R|Vi × I is an εi-homotopy, 0 ≤ i ≤ `.

That is, R is an ε0-deformation retraction of a neighborhood V0 of A onto A inside a neighbor-
hood U of A, which has been extended to X by the estimated homotopy extension theorem
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of [5]. Having constructed R satisfying (1) - (5), the neighborhoods V1, ..., V` satisfying prop-
erties (6) and (7) are obtained from continuity of R. The positive number ε0 will be chosen
so that subsets of X of diameter < ε0 will have diameter < η/2 throughout the homotopy
R. The numbers εi (and the polyhedra Ti), i ≥ 1, will be chosen inductively so that, for
any polyhedral pair (P,Q) of dimension ≤ k + 1 and map α : (P,Q)→ (Vi−1, Ti−1), there is
an εi-homotopy of α, rel α|Q, in Vi−2 to a map of P into Ti (where U = V−1). We assume,
furthermore, that εi < min{ε0/3, dist(A,X − Vi)}, for i > 0.

For each i = 1, . . . , `, let λi : (C`(Vi−1) − Vi) → [ti−1, ti] be a Urysohn function that takes
bd(Vi−1) to ti−1 and bd(Vi) to ti. Combine these maps to get a map λ : X → I that takes
X − V0 to 0 and V` to 1.

A map q : X → X ′ can then be defined by setting

(a) q(x) = (R1(x), 0), if x ∈ (X − V0),
(b) q(x) = (R1(x), λi(x)), if x ∈ (Vi−1 − Vi), i = 1, . . . , `, and
(c) q(x) = (R1(x), 1), if x ∈ V`.
Then R1 = p ◦ q, and the homotopy idX′ ' p composed with q gives a homotopy of q to
p ◦ q = R1. Piecing this homotopy together with R gives a homotopy h′ : X × I → X ′ from
the inclusion X ⊆ X ′ to q.

The claim now is that q : X → X ′ is UV k−1(η).

To this end, suppose we are given a polyhedral pair (P,Q) of dimension ≤ k and maps
α : P → X ′ and α0 : Q → X with q ◦ α0 = α|Q. As in the proof of Lemma 1 we may
assume that, after a small perturbation of α, rel α|Q, there is a small regular neighborhood
W of Q in P and an extension of α0 to W lifting α|W . This perturbation is obtained by
precomposing α with a perturbation of the identity on P that deformation retracts W to Q.
Let Q0 = bd(W ) and let P0 = P − int(W ). After a second small perturbation of α we may
assume each Si = α−1(A× [ti−1, ti]) ∩ P0 (i ≥ 1) and each Bi = α−1(A× ti) ∩ P0 (i ≥ 0) are
subpolyhedra of P0. Set S0 = α−1(X) ∩ P0. Thus, we have

P = W ∪ P0 = W ∪ S0 ∪ S1 ∪ · · · ∪ S`
where W ∩ P0 = bd(W ) and Si−1 ∩ Si = Bi−1 for 1 ≤ i ≤ `.

Observe that h′ : X × I → X ′ provides a homotopy from α0 : W → X to α|W : W → X ′.
Set α′ = p ◦ α and observe that α′(P0 − S0) ⊆ A.

Proceed inductively to move α′(P0 − int(S`)) off of A using the moves below:

• an ε0-homotopy of α′ to a map α′0, that takes B0 into T0 and is constant outside a
small neighborhood of B0 in P0 that misses Si, i ≥ 2,
• an ε1-homotopy of α′0 to a map α′1 that takes S1 into T1 and is constant on S0 and

outside a small neighborhood of S1 that misses Si, i ≥ 3. Since α′0(S2) ⊆ A, our
choice of ε1 ensures that α′1(B1) ⊆ α′1(S2) ⊆ V1,
• an ε2-homotopy of α′1 to a map α′2 that takes S2 into T2 and is constant on S0 ∪ S1

and outside a small neighborhood of S2 that misses Si, i ≥ 4. Since α′1(S3) ⊆ A, our
choice of ε2 ensures that α′2(B2) ⊆ α′2(S3) ⊆ V2.
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Continuing this process produces a homotopy of α′ to α′`−1 : P0 → X, which moves no point
of P0 more than twice, such that α′`−1(Si) ⊆ Vi−2 − Vi+1 for 1 ≤ i ≤ ` (where V`+1 = ∅).
Since W is a (small) regular neighborhood of Q in P , this homotopy, restricted to bd(W ),
can be extended over W to a 2ε0-homotopy of α′|W that is constant on Q by the estimated
homotopy extension theorem. The resulting map ᾱ : P → X satisfies ᾱ|Q = α0.

Our choice of ε0 ensures that p◦ ᾱ is η/2-homotopic to p◦α. Since ᾱ(Si) ⊆ Vi−2−Vi+1, q ◦ ᾱ
is η-homotopic to α. �

W

Q 

Q 
0

P
0

Si

Bi

Bi-1

P

Addendum 1. The neighborhoods of A in the statement and proof of Proposition 3 can
be chosen to be relative neighborhoods, rel ∂A.

Addendum 2. If Z is a closed subset of X −A, then the homotopy h : X × I → X can be
chosen to be fixed on Z.

We will establish Theorem 1 by first proving the special case in which C = B and p = idB.

Theorem 7. Suppose X is a compact, connected ENR satisfying the disjoint (k + 1)-disks
property, B is a connected finite polyhedron, and f : X → B is UV k(ε) for some ε > 0. Then
f is (C(k) · ε)-homotopic to a UV k-map, where C(k) is a positive constant depending only
on k.

Moreover, if Z is an LCCk subset of X, then the homotopy of f to a UV k-map can be
chosen to be fixed on Z.

In Section 5 we indicate how the proof of Theorem 7 can be modified to obtain our main
result. We shall separate the proof of Theorem 7 into two cases: k = 0 and k ≥ 1. The
intent is to present the main ideas first in a somewhat less cluttered setting, so that they
may be a bit more transparent. This approach has, of course, introduced redundancies into
the exposition, but we hope they prove to be of value to the reader.

3. UV 0

In this section we assume only that X is a compact ENR satisfying the DDP 1, also known as
the disjoint arcs property and that Z is a compact, LCC0 subset of X. We shall also assume
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throughout that B is a finite complex. We start by proving a simple homotopy analogue of
our main result in the base case k = 0. Keep in mind that all measurements are made in B
unless specifically indicated otherwise.

Proposition 4. Suppose a surjection f : X → B is an UV 0(δ)-map and µ > 0. Then there
is an ENR X obtained by adding 1- and 2-cells to X − Z and an extension f̄ : X → B such
that f̄ is UV 0(µ) and X 2δ-collapses to X.

Proof. Triangulate B so that the diameter of the star of each simplex is less than µ′ < µ/3,
where µ′ is chosen so that maps into B that are µ′-close are µ/3-homotopic. The inverse
image under f of each simplex σ ∈ B is compact. If Uσ is a small path-connected open
neighborhood of σ in B, then f−1(σ) is contained in finitely many components of f−1(Uσ).
Attach finitely many 1-cells to X − Z connecting the components of f−1(Uσ) that contain
points of f−1(σ) and extend the map f over each of these 1-cells so that their images lie in
Uσ. Doing this for each σ ∈ B produces a space X1 and an extension f1 : X1 → B of f . If
the neighborhood Uσ of each σ ∈ B is sufficiently small, f1 is UV 0(µ/3): For each simplex σ
in B, choose a neighborhood Vσ of σ lying in U so that f−1(Vσ) meets only components of
f−1(Uσ) which meet f−1(σ). A path in B can be broken into finitely many segments, each
lying in one of these sets Vσ. It suffices to µ′-lift one such segment relative to given lifts on
the ends. But this is easily accomplished using the 1-cells of X1.

Let C be a 1-cell in C`(X1 −X). Since f : X → B is UV 0(δ), f1|C has a δ-lift to X, which
we may assume is an embedding into X −Z. Call the image arc A. Attach a 2-cell D to X1

by identifying its boundary with A ∪ C. Call the result X2, and use the δ-homotopy from
f1(C) to A to extend f1 to f2 : X2 → B. Unfortunately, the map f2 is no longer UV 0(µ/3),
since all we know about the image of D is that it has size δ in B.

We remedy this as follows. Parameterize D as the quotient of A× I with the intervals over
∂A identified to points, and identify A with A×0 and C with A×1. Let A0 be a finite subset
of A such that every point of D is within µ/3 (measured in B) of a point of A0 × I ⊆ D.
Let y be a point of A0, let β = y × I ⊆ D, and let x = y × 1 ∈ C. Since f is surjective,
there is a point x′ in X such that f2(x) = f(x′). By changing f by a small homotopy,
if necessary, we can assume x′ 6∈ Z. Since f1 is UV 0(µ/3), there is a path β′ in X1 − Z
connecting y to x′ such that f2 ◦ β is (µ/3)-homotopic to f1 ◦ β′ (rel {x, y}). We have a map
from β to β′ sending x to x′ and y to y, so we can attach its mapping cylinder (rel y) to
X2. We can extend the map f2 to this mapping cylinder, using the (µ/3)-homotopy above,
so that mapping cylinder fibers have size < µ/3 in B. Thus, all points on the new 2-cell are
(µ/3)-close to X, as well. Performing this construction for all y ∈ A0 produces a relative
2-complex X3, and a map f3 : X3 → B, which, by Lemma 1, is UV 0(µ). X3 δ-collapses to
X2, which, in turn, δ-collapses to X1 − intC.

Repeat this construction for each 1-cell, C ⊆ C`(X1−X), making sure that the corresponding
family of attaching arcs is mutually exclusive in X. The resulting space X 2δ-collapses to
X and admits an UV 0(µ)-map f̄ : X → B. �

The figure below illustrates a single 2-cell attached to X2 and a single point y ∈ A0. The
placement of the path β′ is misleading, however, since it can wind about the other 1-cells we
attached to X when we formed X1.
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The following proposition provides the key to proving Theorem 7 for the case k = 0.

Proposition 5. Suppose f : X → B is UV 0(ε), and µ > 0. Then f is 10ε-homotopic, rel
f |Z, to an UV 0(µ)-map.

Proof. SupposeX andB are given as in the hypothesis, and suppose µ > 0. By Proposition 2,
we can get a 2ε-homotopy of f to a surjection. By Lemma 2 the resulting map, which we
shall still call f , is UV 0(5ε). Set δ = 5ε.

Proceed as in the proof of Proposition 4. Obtain X1 ⊆ X2 from X by attaching 1-cells
to X − Z to get X1 and 2-cells to X1 − Z to get X2, together with extensions f1 ⊂ f2 of
f : X → B to X1 and X2, respectively. These were constructed so that f1 is UV 0(µ′) and f2

is UV 0(δ), where µ′ > 0 will be determined later. We may assume that the arcs in X along
which the 2-cells are attached to form X2 are mutually exclusive.

Enclose the attaching arcs in neighborhoods whose closures are mutually exclusive and miss
Z . Let D be a 2-cell of X2 −X1 attached to X along an arc A. (The complementary arc
C ⊆ ∂D was added when X1 was constructed.) The arc β ⊆ D and path β′ ⊆ X1 from
points x ∈ C and x′ ∈ X, respectively, to a point y in A, were chosen so that f2(x) = f(x′)
and f2|β and f1|β′ are µ′-homotopic in B.

x'

x
yx'y

A

C

D

X3 X

�

� '

x1 1 1

2� '1�
β

β

β� 1β

_
q

For a given η2 > 0 Proposition 3 provides us with a homotopy h : X × I → X2 of the
inclusion ι : X → X2 to an UV 0(η2)-map q2 : X → X2 over X2 such that h is fixed at the
identity on the complement of the union of the neighborhoods of the attaching arcs and h
composed with the collapse X2 ↘ X is an η2-homotopy on X. In particular, h is fixed on
Z. Let y1, x1, x

′
1 be points of X that map to y, x, x′, respectively. Then there are arcs β1

and β′1 in X − Z joining y1 to x1 and y1 to x′1, respectively, such that q2(β1) and q2(β′1) are
η2-homotopic to β and β′, respectively. We may assume that β1 and β′1 are embedded and
that β1 ∩ β′1 = y1. We may also assume that the collection of all the arcs β1 ∪ β′1 is mutually
exclusive.
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It is possible to arrange it so that q2(β1) = β and q2(β′1) = β′ at the expense of ending up
with a map q2 that is UV 0(6η2) over X2: Given β1 ∪ β′1 in X, let X ′ be the space obtained
by attaching (β1 ∪ β′1) × I to X so that (β1 ∪ β′1) × 0 is identified with (β1 ∪ β′1) and the
intervals over the endpoints of β1 and β′1 are identified to points. Construct a map X ′ → X2

extending q2 using the η2-homotopy from q2(β1∪β′1) to β ∪β′, rel the endpoints of β and β′.
Then, by Lemma 1, this map is UV 0(3η2) over X2. By Lemma 3 and Proposition 3, we can
find a map from X to X ′ so that the composition X → X ′ → X2 is UV 0(6η2) over X2. Thus,
after rescaling, we may assume that q2 is UV 0(η2) over X2, q2(β1) = β, and q2(β′1) = β′.

In Proposition 4 this construction is performed a finite number of times for each of the 2-cells
added to X to form X2. Since the collection of arcs β1 ∪ β′1 is mutually exclusive, we can
perform this construction for all of the arcs simultaneously; hence, we can assume that we
have an UV 0(η2)-map q2 : X → X2 over X2 that works as above for all of the (β, β′) arc-path
pairs.

The next step in the proof of Proposition 4 was to add mapping cylinders of the maps β → β′

(rel y) to X2. The ENR X is obtained from X2 by attaching 2-cells (the mapping cylinders)
along the family of arcs β∪β′. We also obtain an extension f̄ : X → B of f2 that is UV 0(µ′)
and δ-homotopic to the collapse from X to X2 composed with f2.

Form the space X3 by attaching 2-cells to X along the arcs β1∪β′1, and get an UV 0(η2)-map
q′ : X3 → X over X by combining q2 : X → X2 with a map between corresponding attaching
2-cells that realizes the mapping cylinder identification. That is, the 2-cell attached along
β1 ∪ β′1 should be thought of as the product β1 × I, with β1 × 0 identified with β1, β1 × 1
identified with β′1, and y1× I identified to the point y1. Given an η3 > 0 apply Proposition 3
to get an UV 0(η3)-map q3 : X → X3 over X3, along with accompanying homotopies.

Lemma 3 tells us that we can choose µ′, η2, and η3 sequentially so that, after performing the
constructions above, the composition

X
q3 // X3

q′ // X
f̄ // B

is UV 0(µ). During this process, f has undergone two δ- or one 10ε-homotopy, and each of
these homotopies can be chosen to fixed on Z. �

Proof of Theorem 7 in the case k = 0.
To get a UV 0-map from an UV 0(ε)-map, simply apply Proposition 5 inductively to get a
sequence of homotopies of maps from X to B, which start with f and converge to a homotopy
of f to a map that is UV 0(δ) for every δ > 0 and is fixed on Z. We may make the positive
number µ in Proposition 5 small enough so that the homotopy from the UV 0(µ)-map to a
UV 0-map has size < ε; hence, f is 11ε-homotopic to a UV 0-map, rel f |Z. �

4. UV k, k ≥ 1

Throughout this section we will assume that X is a compact ENR with the DDP k+1, k ≥ 1,
Z is a compact, LCCk subset of X, and B is a finite complex. To proceed, we need the
following finite generation lemma.
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Lemma 4. Suppose f : X → B is UV k−1, where k ≥ 1. Given µ > 0, we can attach finitely
many (k + 1)-cells to X − Z along their boundaries to obtain an ENR X1 and an extension
of f to an UV k(µ)-map f1 : X1 → B.

Proof. Triangulate B so that each vertex star U has diameter � µ. Given α : Ik+1 → B
with a lift α0 : ∂Ik+1 → X, choose a subdivision of Ik+1 so that the image of each simplex
lies in a vertex star of the triangulation of B. Since f is UV k−1, we can lift the k-skeleton of
this subdivision and assume the lifts to be embeddings into X−Z. Attaching (k+1)-cells to
allow us to extend the lift over the (k+ 1)-skeleton would produce the desired UV k(µ)-map,
so we would like to know that πk(f

−1(U)) is either

1. normally generated by finitely many elements, if k = 1, or
2. finitely generated as a π1-module, if k > 1,

for each such U . This is not necessarily true, but, since X is an ENR, it is true that
im(πk(f

−1(U)) → πk(f
−1(V ))) is finitely generated (in the appropriate sense) whenever V

is an open set such that V ⊃ C`(U) ⊃ U . Choosing a finite set of generators for each such
image and attaching (k + 1)-cells to kill the images completes the construction. �

The next result is the analogue of Proposition 4 for k ≥ 1.

Proposition 6. Suppose f : X → B is UV k−1 and UV k(δ). For every µ > 0 there exists an
ENR X obtained by adding cells of dimension ≤ k+2 to X−Z and an extension f̄ : X → B
so that f̄ is UV k(µ) and X 2δ-collapses to X.

Proof. Since f is UV k−1, Lemma 4 ensures that we can attach finitely many (k + 1)-cells to
X along their boundaries, forming X1, and extend f to f1 : X1 → B so that f1 is UV k(µ′),
where 0 < µ′ � µ. By Proposition 1, we may assume the attaching spheres are LCCk

embedded and mutually exclusive in X − Z. Let C be one such (k + 1)-cell. Since f is
UV k(δ), f1|C has a δ-lift to X, rel ∂, which we may assume to be an LCCk embedding into
X − Z. Call the image A. Attach a (k + 2)-cell D to X1 along A ∪ C, obtaining X2. The
δ-homotopy of f |A to f1|C, rel f |∂A(= ∂C), gives us an extension of f1 to f2 : X2 → B so
that f2(D) has size δ in B.

Unfortunately, f2 is only UV k(δ). We modify the proof of Proposition 4 so that we can
recover property UV k(µ′).

Use the δ-homotopy of f |A to f1|C, rel f |∂A, to parameterize D as the quotient of A × I
with the intervals in ∂A × I identified to points. Here, A is identified with A × 0 and C is
identified with A× 1. Suppose 0 < η � µ′. Introduce the following notation:

• J is the k-skeleton of a fine triangulation of A,
• K ⊆ J is the (k − 1)-skeleton of A,
• R = J × [0, 1] ⊆ D,
• S = K × [0, 1] ⊆ R ⊆ D,
• L = S ∪ (J × {0, 1}) ⊆ R ⊆ D.

Choose the triangulation of A fine enough so that if P is an i-dimensional polyhedron,
0 ≤ i ≤ k, then any map of P into D can be η-homotoped into R (over B).
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By the inductive hypothesis we can η′-lift the map f2|L toX (rel f2|L∩A), for any preassigned
η′ > 0. This gives a map α0 : L → X, which is the identity on L ∩ A, and which we may
assume results in an LCCk embedding of L ∪ A into X − Z (Proposition 1). Let L′ be
the image of this map. Since η′ can be made arbitrarily small, we may use the estimated
homotopy extension theorem to deform f2|D (rel f2|A) slightly so that this lift is exact.
Thus, we also have a map of the mapping cylinder M of the map α0 : L → L′ (rel J × 0)
into B with mapping cylinder fibers projecting to points in B. Attach M to X2 along L∪L′
to get X ′2 and an extension f ′2 : X ′2 → B that sends mapping cylinder fibers of M to points.
Observe that if M ′ is the portion of this mapping cylinder under S, then X2∪M ′ δ-collapses
to X2.

We now have a map α = f2|R : (R,L) → B and a lift α0 of α|L to X − Z. Thus, there is
a µ′-lift α : R → X1 − Z, and the µ′-homotopy between f1 ◦ α and α is fixed on L. This
µ′-homotopy provides an extension of f ′2 to the mapping cylinder M1 ⊇M (rel R ∩ A) of α
so that mapping cylinder fibers have size µ′ in B. Attach this mapping cylinder to X ′2 along
M ∪R ∪ α(R) to get X, which δ-collapses to X2, and extend f ′2 to f̄ : X → B.

The result of this construction is to produce a relative (k + 2)-complex (X,X), which 2δ-
collapses to X, such that every map of a k-dimensional polyhedron into X can be (η + µ′)-
homotoped into X (over B). Lemma 1 guarantees that, if η and µ′ are sufficiently small,
then f̄ is UV k(µ).

One should observe that, although f̄ is UV k−1 on X, it is not UV k−1 on X. �

Here is the key proposition for the proof of Theorem 7 when k ≥ 1.

Proposition 7. Suppose f : X → B is UV k(ε). Then there is a constant D(k), depending
only on k, such that, for every µ > 0, f is (D(k) · ε)-homotopic, rel f |Z, to an UV k(µ)-map.
Moreover, the constants D(k), k ≥ 0, are related to the constants C(k), k ≥ 0, of Theorem 7
by the formula D(k) = 2(2C(k − 1) + 1).

Proof of Theorem 7 for k ≥ 1 assuming Proposition 7. Suppose f : X → B is UV k(ε). Given
arbitrary µ > 0, Proposition 7 assures us that there is a (2(2C(k − 1) + 1))-homotopy of f ,
rel f |Z, to an UV k(µ)-map. If µ is sufficiently small, we can repeat this process to get an
ε-homotopy, rel Z, of the resulting map to one that is UV k(η) for every η > 0, hence, UV k

by Theorem 6. Thus, C(k) = 4C(k − 1) + 3. Since C(−1) = 2 (Proposition 2), we get the
explicit formula C(k) = 3 · 4k+1 − 1. �

Proof of Proposition 7. We use induction on k, the case k = 0 having already been estab-
lished. The proof of the inductive step follows closely the proof for the case k = 0. We
will assume Theorem 7 in dimensions < k. Keep in mind throughout that, unless otherwise
indicated, all measurements are made in B.

Assume that k ≥ 1 and f : X → B is UV k(ε) for some ε > 0. Assume, inductively, that f
is (C(k − 1) · ε)-homotopic, rel f |Z, to a UV k−1-map, which we shall still call f . Then, by
Lemma 3 the “new” f is now UV k((2C(k − 1) + 1)ε). Set δ = (2C(k − 1) + 1)ε.
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As in the proof of Proposition 6 build a relative (k + 2)-complex (X,X), which 2δ-collapses
to X and on which the map f extends to an UV k(µ)-map f̄ : X → B for a given µ > 0. As
in the proof for k = 0 we need to retrace the steps in the construction of X.

We start by constructing X1 ⊆ X2 from X by attaching (k + 1)-cells to X − Z to get
X1 and (k + 2)-cells to X1 − Z to get X2. These relative complexes come with extensions
f1 ⊂ f2 of f : X → B to X1 and X2, respectively, such that f1 is UV k(µ′) and f2 is UV k(δ),
where 0 < µ′ � µ, and X2 δ-collapses to X. Each (k + 2)-cell D is attached to X1 along
∂D = A ∪ C, where C is a (k + 1)-cell attached to X while forming X1, and A ⊆ X is the
complementary (k + 1)-cell in ∂D. We may assume, by Proposition 1, that the collection of
cells A is mutually exclusive and lies in X − Z.

In each (k + 2)-cell D attached to X (along a (k + 1)-cell A in its boundary) we identify a
(k + 1)-complex R = J × [0, 1], where J is the k-skeleton of a fine triangulation of A. The
next step is to attach the mapping cylinder M of a map R → R′ ⊆ X1 ⊆ X2 (rel R ∩ A)
to X2, and, after doing this for each (k + 2)-cell D, we obtain the space X ⊇ X2 and an
extension of f2 to f̄ : X → B that is UV k(µ′). The space X 2δ-collapses to X: the first
δ-collapse comes from the collapses M ↘ (R ∪ R′) of the relative mapping cylinders, and
the second comes from the collapses D ↘ A.

For a given η2 > 0 apply Proposition 3 to get a map q2 : X → X2 that is UV k(η2) over X2 and
equal to the identity on Z. We can η2-lift each of the complexes R∪R′ to R1 ∪R′1 ⊆ X −Z
and assume by Proposition 1 that each of R1 and R′1 is homeomorphic to R, that each R1∪R′1
is embedded, and that the collection of all such lifts is mutually exclusive. By an argument
similar to the one in the proof for k = 0, we may assume that the lifts are exact. Thus,
for each complex R1 ∪ R′1, there is a homeomorphism r : R1 → R′1, which is the identity on
R1∩R′1, that commutes with q2. For each (R1, R

′
1)-pair attach the mapping cylinder M1 of r

to X forming X3, and extend the map q2 : X → X2 to a map q′ : X3 → X, which is UV k(η2)
over X and the identity on Z, using the mapping cylinder identifications M1 →M .

For a given η3 apply Proposition 3 again to get an UV k(η3)-map q3 : X → X3 over X3, which
is the identity on Z. Lemma 3 tells us that we can choose µ′, η2, and η3 sequentially so that,
after performing the constructions above, the composition

X
q3 // X3

q′ // X
f̄ // B

is UV k(µ) over B.

During this process f has undergone two δ-homotopies (each of which fixed Z) so that
D(k) = 2(2C(k − 1) + 1). Although the resulting map is UV k(µ), it may no longer be UV i

for any i = 0, ..., k. �
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5. Proof of Theorem 1

We now show how to alter the proof of Theorem 7 to prove Theorem 1. The key is in
establishing an analogous simple homotopy version corresponding to Propositions 4 and 6.
We maintain our basic assumption that X is a compact ENR with the DDP k+1 and B is a
finite complex.

Proposition 8. Suppose Y is a metric space, p : B → Y is a map, k ≥ 0, and f : X → B is
a UV k−1- and an UV k(δ)-map over Y for some δ > 0 and Z is a compact, LCCk subset of
X. Then for every µ > 0, there is an ENR X obtained by adding cells of dimension ≤ k+ 2
to X − Z and an extension f̄ : X → B so that f̄ is UV k(µ) over B and X 2δ-collapses to
X over Y .

Proof. Since f is UV k−1, we can attach finitely many (k + 1)-cells to X − Z along their
boundaries, forming X1, and extend f to f1 : X1 → B so that f1 is UV k(µ′) (over B), where
0 < µ′ � µ (Lemma 4). Let C be one such (k + 1)-cell. Since f is UV k(δ) over Y , the
map f1|C : C → B has a δ-lift g : C → X (over Y ), rel g|∂C. Let A = g(C), and assume,
by Proposition 1, that A is LCCk−1 embedded in X − Z. Using the δ-homotopy of f1|C to
f ◦ g (over Y ), we may attach the mapping cylinder D of g, rel ∂C, to X1 and extend f1 to
X1 ∪D. Then X1 ∪D δ-collapses to X over Y .

The rest of the proof now follows as in the proofs of Propositions 4 and 6. As in the proofs
of these two propositions, the map f2 is no longer UV k(µ′) over B. The construction that
remedies this defect, however, is exactly the same. �

Proof of Theorem 1. After constructing X using Proposition 8, we can apply Proposition 3
to get a homotopy of f , fixing Z and controlled over Y , to map that is UV k(µ)-map over
B and over Y , for some preassigned µ > 0. The resulting map satisfies the hypotheses of
Theorem 7, which takes over to complete the proof. We need only ensure that subsequent
homotopies are small enough in B so that their sizes add up to < ε in Y . �

6. Pseudoisotoping codimension-1 submanifolds to UV k-maps

In this section we establish a theorem in the spirit of early results of Keldysh [15] and
Cernavskii [8]. We start with the following observation.

Proposition 9. Suppose M is a compact topological (n + 1)-manifold, N is a locally flat
n-dimensional closed submanifold, separating M into submanifolds M1 and M2, such that
the inclusion N ⊆ Mi, i = 1, 2, is UV k(µ), for some µ > 0. Then the inclusion N ⊆ M is
UV k(µ).

Proof. The proof of the proposition is fairly straightforward. Given a map α : (P,Q) →
(M,N), where P is a polyhedron of dimension ≤ k + 1, deform α slightly, keeping α|Q
fixed, so that α sends a small regular neighborhood W of Q in P into N as in the proof of
Lemma 1. Set P0 = P − intW and Q0 = bdW , and assume α|P0 : (P0, Q0) → (M,N) are
tame embeddings. By a further adjustment of α, keeping α|Q0 fixed, we may assume that
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Pi = α−1(Mi), i = 1, 2, is a subpolyhedron of P0. Now apply the UV k(µ) assumptions on
the inclusions N ⊆Mi, i = 1, 2, to the separate pieces of P0. �

Theorem 8. Suppose M is a compact topological (n + 1)-manifold and N is a locally flat,
closed n-dimensional submanifold separating M into submanifolds M1 and M2 such that
each inclusion N ⊆ Mi, i = 1, 2, is UV k(ε), for some ε > 0, and 2k + 3 ≤ n. Then there
is constant D(k) > 0, depending only on k, such that, for every µ > 0, there is an ambient
(D(k) · ε)-isotopy on M , supported in an arbitrarily preassigned neighborhood of a (k + 2)-
dimensional polyhedron, to a homeomorphism h : M → M such that each of the inclusions
h(N) ⊆Mi, i = 1, 2, is UV k(µ). Thus, there is a constant C(k), depending only on k, such
that the inclusion N ⊆M is ambient (C(k) · ε)-pseudoisotopic to a UV k-map.

By an ambient pseudoisotopy on M we mean a level-preserving map H : M × I →M × I
such that H0 = idM and H|M × [0, 1) : M × [0, 1)→M × [0, 1) is a homeomorphism.

Suppose N is a locally flat n-dimensional submanifold of a topological (n + 1)-manifold
M . Suppose g : Ik → M1 is a locally flat embedding of the k-cell into M such that A =
g(Ik−1×0) = g(Ik)∩N is a locally flat (k−1)-cell in N . Let E ⊆ N be a locally flat n-cell in
N containing A as a properly embedded (k − 1)-cell. The embedding g extends to a locally
flat embedding, which we shall still call g : E × I → M , such that g(E × 0) = E. Using a
local collar structure of N in M in a neighborhood of E, one can find an ambient isotopy
H on M , fixed outside any preassigned neighborhood of g(E × I) and on N − intE taking
N to (N − intE) ∪ g(E). Moreover, H|N can be made arbitrarily small with respect to the
projection N ∪E × I → N . We will refer to the isotopy H as a k-shelling. The discussion
following Lemma 3 shows that there is a UV n−k−2-map h : (N − intE) ∪ g(E)→ N ∪ g(Ik).

If gj : Ik →M , j = 1, ..., r, is a finite collection of mutually exclusive such embeddings, and
the associated shellings have mutually exclusive supports, then they can be done simultane-
ously, and the resulting ambient isotopy H on M will be called a multi-k-shelling.

Proof of Theorem 8. Proceed inductively following the proof of Theorem 1. SupposeN ⊆M ,
M1, and M2, are given as in the statement of the theorem with the inclusion N ⊆Mi UV

k(ε),
i = 1, 2, for some ε > 0, 2k+3 ≤ n. Assume G : M × I →M × I is an ambient (C(k−1) · ε)-
pseudoisotopy on M such that g = G1|N : N →M is UV k−1 and, for 0 ≤ t < 1, each of the
inclusions Gt(N) ⊆Mi, i = 1, 2, is UV k−1(εt), where εt → 0 as t→ 1.

Given µ > 0, apply Proposition 6 (or Proposition 4) to get an ENR Ni, i = 1, 2, obtained
by adding cells of dimension ≤ k + 2 to N and an extension gi : Ni → Mi of g so that gi is
UV k(µ) and Ni 2ε-collapses to N . Since 2k + 3 ≤ n, we may assume the cells added to N
to get N1 are disjoint from those added to get N2.

By the estimated homotopy extension theorem there is a t, 0 ≤ t < 1, such that, if g′ = Gt|N ,
then g′ can be extended to an UV k(µ)-map g′i : Ni → Mi, i = 1, 2, as well. If 2k + 3 < n,
we can assume the maps g′i : Ni → Mi are embeddings. If 2k + 3 = n, then we can use a
standard “piping” construction to make each g′i an embedding at the possible expense of
doubling the size of the collapses Ni ↘ N over M . We can now appeal to Theorem 3.26 of
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[25] to get multi-(k + 2)-shelling G′ on M such that G′1Gt|N : N →M is UV k(µ). Controls
needed to accomplish this as we expand along the cells in the collapse are the same as in
the proof of Theorem 1. The only difference is that the constructions are performed inside
of M .

Proposition 9 shows that the limit map N →M is UV k. �

The following is a corollary to the proof of Theorem 8.

Theorem 9. Suppose X is a compact ENR and Y ⊆ X is a closed subset such that X − Y
is an open topological (n + 1)-manifold and Y is LCCk+1 in X. Suppose N ⊆ X − Y is a
locally flat, closed n-dimensional submanifold separating X into closed components X1 and
X2 such that each inclusion N ⊆ Xi, i = 1, 2, is UV k(ε), for some ε > 0, and 2k + 3 ≤ n.
Then there is constant D(k) > 0, depending only on k, such that, for every µ > 0, there
is an ambient (D(k) · ε)-isotopy on X, supported in an arbitrarily preassigned neighborhood
of a (k + 2)-dimensional polyhedron lying in X − Y , to a homeomorphism h : X → X such
that each of the inclusions h(N) ⊆ Xi, i = 1, 2, is UV k(µ). Thus, there is a constant C(k),
depending only on k, such that the inclusion N ⊆ X is ambient (C(k) · ε)-pseudoisotopic to
a UV k-map.

7. A Final Observation

Krupski has shown [16] that a homogeneous ANR of dimension ≥ 3 has the DDP 1. Recall
that a space X is homogeneous if, given points x, y ∈ X, there is a homeomorphism of X
onto itself taking x to y. Combining Krupski’s result with Theorem 1 we obtain

Theorem 10. Suppose X is a compact, connected, homogeneous ANR of dimension ≥ 3,
p : B → Y is a map from an ANR B to a metric space Y , and f : X → B is UV 0(ε) over Y
for some ε > 0. Then f is 11ε-homotopic over Y to a UV 0-map.

In particular any map of X to a simply-connected ANR is homotopic to a map with non-
empty connected point-inverses.
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