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Abstract. We show that there are homotopy equivalences h : N → M between closed
manifolds which are induced by cell-like maps p : N → X and q : M → X but which are not
homotopic to homeomorphisms. The phenomenon is based on construction of cell-like maps
that kill certain L-classes. In dimension > 5 we identify all such homotopy equivalences
to M with a torsion subgroup SCE(M) of the topological structure group S(M). In the
case of simply connected M with finite π2(M), the subgroup SCE(M) coincides with the
odd torsion in S(M). For general M , the group SCE(M) admits a description in terms of
the second stage of the Postnikov tower of M . As an application, we show that there exist
a contractibility function ρ and a precompact subset C of Gromov-Hausdorff space such
that for every ε > 0 there are nonhomeomorphic Riemannian manifolds with contractibility
function ρ which lie within ε of each other in C.

1. Introduction

In [16] Grove and Petersen proved that for every n the class of n-dimensional closed
Riemannian manifolds with sectional curvature bounded below by κ, volume bounded below
by v, and the diameter bounded above by D contains only finitely many homotopy types.
The main technical lemma in their paper shows that there is a uniform ”contractibility
function” which applies to all manifolds in such a class.

Definition 1.1. A continuous function ρ : R+ → R+ with ρ(0) = 0 and ρ(t) ≥ t for all t is a
contractibility function for a metric space X if there is R > 0 such that for each x ∈ X and
t ≤ R, the t-ball Bt(x) centered at x can be contracted to a point in the ρ(t)-ball Bρ(t)(x).

In a second paper, [17], Grove, Petersen, and Wu showed that there are only finitely
many homeomorphism types in such class for n 6= 3. G. Perelman has removed the n 6= 3
restriction [22]. Perelman’s work shows (as does the earlier work of Grove-Petersen-Wu for
n 6= 3) that there is ε > 0 so that if M and M ′ satisfy the stated restrictions on curvature,
diameter, and volume with the Gromov-Hausdorff distance dGH(M,M ′) < ε, then M and
M ′ must be homeomorphic. In this paper we show that this is not the case when we relax the
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hypotheses to simply require that the manifolds in question have a common contractibility
function.

Our example goes as follows (Theorem 6.2). We construct nonhomeomorphic manifolds M
and M ′ and cell-like maps q : M → X and q′ : M ′ → X (see Corollary 2.14). Using a map-
ping cylinder construction, we construct two sequences of Riemannian manifolds converging
to X (supplied with some metrics and a fixed contractibility function) in Gromov-Hausdorff
space. One sequence consists of manifolds homeomorphic to M , the other to M ′. Such
manifolds M and M ′ must be simple homotopy equivalent by [10] and must have the same
rational Pontrjagin classes by Corollary 2.9. One such example can be constructed in which
M is the boundary of a regular neighborhood of a Moore space in R8. We note that by
Quinn’s uniqueness of resolution theorem it follows that X must be infinite dimensional.
Thus, this example ultimately contains a construction of the first author of a cell-like map
that raises dimension to infinity [3].

Our main theorem classifies all such examples. We give a complete description saying when
a given n-manifold M , n > 5, admits a cell-like map q : M → X together with a twin cell-like
map q′ : M ′ → X such that the induced homotopy equivalence M ′ →M is not homotopic to
a homeomorphism. If M is simply connected with finite π2, our classification depends only
on odd torsion characteristic class information. The general classification involves surgery
theory and the second stage of the Postnikov tower of M . (Theorem 2.4 and Theorem 2.7).
The second stage of the Postinikov tower turns out to be relevant because of acyclicity results
in the K-theory of Eilenberg-MacLane spaces [1, 2].

2. Surgery and cell-like maps

Definition 2.1.

(i) A compact subsetX of the Hilbert cubeQ is said to be cell-like if for every open neigh-
borhood U of X in Q, the inclusion X → U is nullhomotopic. This is a topological
property of X and is the Čech analog of “contractible”. The space sin(1/x)-with-a-
bar is an example of a cell-like set which is not contractible.

(ii) A map f : Y → Z between compact metric spaces is cell-like or CE if for each z ∈ Z,
f−1(z) is cell-like. The empty set is not considered to be cell-like, so cell-like maps
must be surjective.

Cell-like maps with domain a compact manifold or finite polyhedron are weak homotopy
equivalences over every open subset of the range. That is, if c : M → X is cell-like, then
for every open U ⊂ X, c| : c−1(U) → U is a weak homotopy equivalence. The range space
of such a cell-like map always has finite cohomological dimension. If the range has finite
covering dimension, then c is a homotopy equivalence over every open set.

LIFTING PROPERTY: Let f : M → X be a cell-like map with M an ANR space. Given
a space W with dimW < ∞, a closed subset A ⊂ W , a map g : W → X, and a map
h : A→M with fh = g|A, there is a map h̄ : W →M extending h such that g is homotopic
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to fh̄ rel A:

A
h //

��

M

f

��
W

g //

h̄

77ppppppppppppp
X.

See [20] for details.

Definition 2.2. A homotopy equivalence f : N → M is realized by cell-like maps if there
exist a space X and cell-like maps c1 : N → X, c2 : M → X so that the diagram

N
f //

CE   A
AA

AA
AA

M

CE~~||
||

||
||

X

homotopy commutes. We will also say that such a homotopy equivalence factors through
cell-like maps and we will call such manifolds N and M CE-related.

In view of the lifting property, every pair of cell-like maps c1 : N → X, c2 : M → X of
ANR-spaces induces a unique homotopy equivalence f : N →M . Theorem D of [11] implies
that f is in fact a simple homotopy equivalence. We note that the simple homotopy theory
is well-defined for ANRs (see [?]) and hence for topological manifolds.

If dimX < ∞, Quinn’s uniqueness of resolutions theorem implies that this homotopy
equivalence is homotopic to a homeomorphism ([24]).

Two simple homotopy equivalences of closed manifolds f1 : N1 → M and f2 : N2 → M
are called equivalent if there is a homeomorphism h : N1 → N2 that produces a homotopy
commutative diagram. We recall that the set S(M) of classes of simple homotopy equiva-
lences f : N →M is called the set of topological structures on M . The structure set S(M) is
functorial and has an abelian group structure defined either by Siebenmann periodicity [19]
or by algebraic surgery theory [26]. Ranicki’s theory gives the following useful formula.

Proposition 2.3. Let Mn be a closed topological n-manifold, n ≥ 5 and let h : M → N be
a simple homotopy equivalence, [h] ∈ S(N). Then the isomorphism h∗ : S(M) → S(N) is
defined by the formula

h∗([f ]) = [h ◦ f ]− [h].

By SCE(M) ⊂ S(M) we denote the subset of structures realized by cell-like maps.

Theorem 2.4. Let Mn be a closed simply connected topological n-manifold with finite π2(M),
n > 5. Then SCE(M) is the odd torsion subgroup of S(M).

We recall the Sullivan-Wall surgery exact sequence [28] for topological manifolds:

Ln+1(Zπ1(M))→ S(M)
η→ [M,G/Top]

θ→ Ln(Zπ1(M)).
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The homomorphism η is called the normal invariant and the homomorphism θ is called the
surgery obstruction. The Sullivan-Wall surgery exact sequence was extended by Quinn and
Ranicki to the following functorial exact sequence:

. . . Ln+1(Zπ1(M))→ Sn(M)
η′→ Hn(M ; L)

θ′→ Ln(Zπ1(M)) . . .

where Hn(M ; L) = H0(M ; L) = [M,G/Top]× Z and η′|S(M) = η. The homomorphism θ′ is
called the assembly map for M . This sequence is defined and functorial when M is a finite
polyhedron and this was extended to more general spaces in [30]. We write Ln = Ln(Z) and
recall that Ln = Z if n = 4k, Ln = Z2 if n = 4k + 2, and Ln = 0 for odd n.

In general, Ranicki’s algebraic surgery functor gives us a long exact sequence

. . .→ Sn(P, Q)→ Hn(P, Q; L)→ Ln(Zπ1P, Zπ1Q)→ . . .

for any CW pair (P, Q). If P happens to be a compact n-dimensional manifold, then Sn(P )
is the usual rel boundary structure set when P has nonempty boundary and differs from the
usual geometrically defined structure set by at most a Z in the closed case. We also have a
long exact sequence

. . .→ Sn+1(P, Q)→ Sn(Q)→ Sn(P )→ Sn(P, Q)→ . . .

where for an n-dimensional manifold with boundary (P, ∂P ), Sn(P, ∂P ) is the not rel
boundary structure set. There is also a long exact sequence of L-groups.

All of these sequences are 4-periodic. If Q → P induces an isomorphism on π1, then
Sk(P,Q) ∼= Hk(P, Q; L) because the Wall groups L∗(Zπ1P, Zπ1Q) are zero. Composing this
isomorphism with the boundary map in Ranicki’s exact sequence, we have a homomorphism
∂′ : Hk+1(P, Q; L) → Sk(Q). For a closed n-manifold there is a split epimorphism p :
Sn(M) → S(M) → 0 with the kernel Z or 0 depending on M . The following statement is
classical. Apply the π − π theorem to the pair (M, pt).

Proposition 2.5. For a simply connected closed n-manifold M the (reduced) normal invari-
ant η̄ : Sn(M)→ H̄n(M,L) is an isomorphism.

To state the main theorem for non-simply connected manifolds we need the following.

Definition 2.6. If K is a CW complex, let E2(K) be the CW complex obtained from K by
attaching cells in dimensions 4 and higher to kill the homotopy groups of K in dimensions 3
and above. Thus, K ⊂ E2(K), πi(E2(K)) = 0 for i ≥ 3, and E2(K)−K consists of cells of
dimension ≥ 4. Note that E2(K) will not, in general, be a finite complex. The space E2(K)
is called the second stage of the Postnikov tower of K.

Let M be a closed n-manifold. We denote by

δ : Hn+1(E2(M),M ; L)→ S(M)
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the composition:

Hn+1(E2(M),M ; L) ∼= Sn+1(E2(M),M ; L)
∂→ Sn(M)

p→ S(M).

Let φ : A → B be a homomorphism of abelian groups. By φT : TorA → TorB we denote
the restriction φ|TorA of φ to the torsion subgroups and by φ[p] : A[p] → B[p] denote the
localization of φ away from p.

Theorem 2.7. Let Mn be a closed topological n-manifold, n > 5. Then SCE(M) = im(δT[2]).

In particular, SCE(M) is a subgroup of the odd torsion of S(M).

We note that Theorem 2.4 is a consequence of Theorem 2.7.

Corollary 2.8. Let f∗ : S(M)→ S(N) be the induced homomorphism for a continuous map
f : M → N between two closed n-manifolds, n > 5. Then f∗(SCE(M)) ⊂ SCE(N).

Corollary 2.9. Let f : N →M be a homotopy equivalence between closed n-manifolds with
n ≥ 6 that is realized by cell-like maps. Then f preserves rational Pontryagin classes.

Corollary 2.10. ‘To be CE-related’ is an equivalence relation on closed n-manifolds, n > 5.

Proof. We prove transitivity. Let M1 be CE-related to M2 and M2 CE-related to M3.
Let h1 : M1 → M2 and h2 : M2 → M3 be corresponding homotopy equivalences. It suffices
to show that the composition h2h1 is realized by cell-like maps. In view of Corollary 2.8
we have (h2)∗([h1]) ∈ SCE(M3) and hence by the formula for the induced homomorphism
(Proposition 2.3 ) we obtain that [h2h1] = [h2] + (h2)∗([h1]) ∈ SCE(M3) . �

In special cases, it is not hard to understand the map Hn+1(E2(M),M ; L) → S(M) well
enough to get concrete “rigidity” and “flexibility” results. We begin with two typical rigidity
statements.

Corollary 2.11. If Mn is a closed manifold with n ≥ 6 and either

(i) M is aspherical or
(ii) M is homotopy equivalent to a complex projective space

then any homotopy equivalence f : N →M that factors through cell-like maps is homotopic
to a homeomorphism.

Proof. If M is aspherical, then M = E2(M) and Hn+1(E2(M),M ; L) = 0, so structures in
the image of Hn+1(E2(M),M ; L) = 0 are trivial.

If M is homotopy equivalent to CP k, then E2(M) = CP∞. But Hn+1(CP∞, CP k; L) =
lim`→∞Hn+1(CP `, CP k; L), which has no odd torsion, so no nontrivial element of S(M) can
be the image of an odd torsion element. See Lemma 2.13 below. �

Corollary 2.12. There are closed nonhomeomorphic 7-dimensional manifolds M and N
which are CE-related.
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Proof. Let p ≥ 5 be a prime number. The Moore complex P = S3∪pB4 can be PL-embedded
in R8 (see for example [8]). Let M = ∂W be the boundary of a regular neighborhood W of P .
Then M is 2-connected since every homotopy in W of a sphere of dimension ≤ 2 to a constant
map can be pushed off the core P by general position and retracted to M . By the Lefchsetz
duality, H3(W,M) = H5(W ) = H5(P ) = 0 and H4(W,M) = H4(W ) = H4(P ) = Zp. The
exact sequence of the pair (W,M) turns into the following:

0→ Zp → H3(M)→ Zp → 0.

By the Atiyah-Hirzebruch spectral sequence H̄3(M ; L) consists of nontrivial p-torsion. Take
a nontrivial p-torsion element α ∈ H̄7(M ; L) ∼= H̄3(M ; L). Let β = p(η′)−1(α) where η′ :
S7(M) → H̄7(M ; L) is an isomorphism by Proposition 2.5 and p : Sn(M) → S(M) is the
projection. Since the kernel of p is torsion free, β 6= 0. Thus, by Theorem 2.4, β defines a
homotopy equivalence f : N →M that belongs to SCE(M).

It remains to show that N is not homeomorphic to M . Rationally the normal invariant
measures the difference in L-polynomials. Since, L1 = 1

3
p1 where p1 is an integral Pontryagin

class, for 7-dimensional manifolds L-classes live in cohomology with coefficients in Z[1
3
]. Then

in our case the normal invariant with coefficients in Z[1
2
, 1

3
] is the difference of L1-classes.

By the construction M is stably parallizable and hence it has zero Pontryagin classes. Since
p ≥ 5, the normal invariant η(f) with coefficients in Z[1

2
, 1

3
] is nonzero. Hence the first

class L1(N) 6= 0. Novikov’s theorem on the topological invariance of rational Pontryagin
classes in fact proves the topological invariance of L-classes. Then by Novikov’s theorem
these manifolds cannot be homeomorphic. �

Corollary 2.13. If L and L′ are homotopy equivalent odd order lens spaces, then L×S4k+3

and L′ × S4k+3 are CE-related. It follows that L× S4k+3 and L′ × S4k+3 can be deformed to
be arbitrarily close to each other in Gromov-Hausdorff space and that this deformation can
be performed through Riemannian metrics which preserve a contractibility function. There
exist homotopy equivalent odd order lens spaces L and L′ so that L×S5 and L′×S5 are not
CE related.

The proof of this Corollary will appear elsewhere.

3. Cell-like maps that kill L-classes

We need the following facts [1], [2], [31].

Theorem 3.1. K̃O∗(K(π, n); Zp) = 0, n ≥ 3, for any group π and K̃O∗(K(π, n)) = 0,
n ≥ 2, for finite π.

Let M(p) denote the Zp Moore spectrum. The chain of homotopy equivalences of spectra
for odd p,

K̃O∗ ∧M(p) ∼ K̃O∗[
1

2
] ∧M(p) ∼ L[

1

2
] ∧M(p) ∼ L ∧M(p)

implies the following:
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Corollary 3.2. Let p be odd, then H̄∗(K(Zp, 2); L∧M(p)) = 0 where L∧M(p) is L-theory
with coefficients in Zp.

We recall that for an extraordinary homology theory given by a spectrum E of CW com-
plexes there are the following Universal Coefficient Formulas for coefficients Zp and Q:

0→ Hn(K; E)⊗ Zp → Hn(K; E ∧M(p))→ Hn−1(K; E) ∗ Zp → 0

and

Hn(K; E(0)) = Hn(K; E)⊗Q.
Here H ∗Zp = {c ∈ H | pc = 0} and E(0) denotes the localization at 0. Let X = lim←−{Ki} be

a compact metric space presented as the inverse limit of finite polyhedra. By Ȟ∗(X; E) =
lim←−{H∗(Ki,E)} we denote the Čech E-homology. The Steenrod homology Hn(X; E) of X
fits into the following exact sequence

0→ lim1{Hn+1(Ki; E)} → Hn(X; E)→ Ȟn(X; E)→ 0.

If Hk(pt; E) is finitely generated for each k, the Mittag-Lefler condition holds with rational
or finite coefficients, so we have

Hn(X; E ∧M(p)) = Ȟn(X; E ∧M(p)) and Hn(X; E(0)) = Ȟn(X; E(0)).

In the case of Zp-coefficients we obtain an exact sequence which is natural in X:

(∗∗) 0→ lim←−(Hn(Ki; E)⊗ Zp)→ Hn(X; E ∧M(p))
φ′→ Ȟn−1(X; E) ∗ Zp.

Lemma 3.3. Let M be a simply connected finite complex with finite π2(M). Then for
every element γ ∈ Hk(M ; L) of odd order p there exists an odd torsion element α ∈
Hk+1(E2(M),M ; L) such that ∂(α) = γ where ∂ is the connecting homomorphism in the
exact sequence of the pair (E2(M),M).

Proof. Note that E2(M) = K(π2(M), 2).
If π2(M) = 0, the space E2(M) is contractible and the lemma is trivial.
If π2(M) is torsion, then in view of Theorem 3.1, H̄∗(E2(M); L∧M(p)) = 0. Then by the

Universal Coefficient diagram

Hk+2(E2(M),M ; L ∧M(p))
epi //

∂iso
��

Hk+1(E2(M),M ; L) ∗ Zp
mono // Hk+1(E2(M),M ; L)

∂
��

Hk+1(M ; L ∧M(p))
epi // Hk(M ; L) ∗ Zp

mono // Hk(M ; L)

we obtain the required result. �

Let q : M → X be a cell-like map. According to Proposition 3.5 for every map h : M →
E2(M) there is a map g : X → E2(M) such that g ◦ q is homotopic to h. In particular, there
is an induced map g̃ : Mq → Mh between their mapping cylinders, g̃|M = idM , g̃|X = g.
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We apply this when h is the inclusion j : M ⊂ E2(M) and denote the induced map by
i : Mq →Mj. Denote by

i∗ : H∗(Mq,M ; L)→ H∗(E2(M),M ; L)

the induced homomorphism for the Steenrod L-homology groups [9], [18].

Theorem 3.4. Let Mn be a closed connected topological n-manifold, n ≥ 6, let p be odd,
and let β ∈ H∗(E2(M),M ; L ∧M(p)), then there exist a cell-like map q : M → X and an

element β̂ ∈ H∗(Mq,M ; L ∧M(p)) such that i∗(β̂) = β.

The proof of Theorem 3.4 will follow Lemma 3.11. The following proposition is proven in
[29] Appendix B.

Proposition 3.5. Let E be a CW complex with trivial homotopy groups πi(E) = 0, i ≥ k for
some k, and let q : X → Y be a cell-like map between compacta. Then q induces a bijection
of the homotopy classes q∗ : [Y,E]→ [X,E].

Lemma 3.6. Let Mn be a closed connected topological n-manifold, n ≥ 6. If α ∈ H∗(E2(M),M ; L)
is an odd torsion element, then there exist a cell-like map q : M → X and an odd order ele-
ment α̂ ∈ H∗(Mq,M ; L) such that i∗(α̂) = α.

Proof. Let α ∈ Hk(E2(M),M ; L) be an element of order p where p is an odd number. Then
by the universal coefficient formula, there is an epimorphism

φ : Hk+1(E2(M),M ; L ∧M(p))→ Hk(E2(M),M ; L) ∗ Zp.

Note that H∗Zp = {c ∈ H | pc = 0} so that there is an inclusion H∗Zp ⊂ H which is natural
in H. Thus, α ∈ Hk(E2(M),M ; L)∗Zp. Hence, there is an element β ∈ Hk+1(E2(M),M ; L∧
M(p)) such that φ(β) = α. By Theorem 3.4 there exist a cell-like map q : M → X and an

element β̂ such that i∗(β̂) = β. The commuting diagram of universal coefficient formulas
gives (see **)

Hk+1(Mq,M ; L ∧M(p))
φ′ //

i∗
��

Hk(Mq,M ; L) ∗ Zp
⊂ // Hk(Mq,M ; L)

i∗
��

Hk+1(E2(M),M ; L ∧M(p))
φ // Hk(E2(M),M ; L) ∗ Zp

⊂ // Hk(E2(M),M ; L)

which implies that i∗(α̂) = α where α̂ = φ′(β̂) is an element of order p. �

REMARK. By Proposition 3.5 a cell-like map induces a rational isomorphism on L-
homology. Therefore, the group H∗(Mq,M ; L) consists of torsions.

Theorem 3.7. Let Mn be a closed simply connected topological n-manifold, n ≥ 6, with
π2(M) finite. Then for every odd torsion element γ ∈ H∗(M ; L) there is a cell-like map
q : M → X such that q∗(γ) = 0.
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Proof. By Lemma 3.3 there is an odd torsion element α ∈ H∗(E2(M),M ; L) such that
∂(α) = γ. By Theorem 3.6 there exists a cell-like map q : M → X and an element
α̂ ∈ H∗(Mq,M ; L) such that i∗(α̂) = α. Then the commutative diagram

H∗+1(Mq,M ; L) //

i∗
��

H∗(M ; L)
q∗ //

=

��

H∗(X; L)

��
H∗+1(E2(M),M ; L) // H∗(M ; L) // H∗(E2(M); L)

implies that q∗(γ) = 0. �

REMARK. Without the finiteness assumption on π2(M) one can show that q kills an
element γ ⊗ 1Zp with Zp coefficients.

We recall that the cohomological dimension of a topological space X with respect to the
coefficient group G is the following number

c− dimGX = max{n | Ȟn(X,A;G) 6= 0 for some closed A ⊂ X}.
A map of pairs f : (X,L)→ (Y, L) is called strict if f(X − L) = Y − L and f |L = idL.
The following theorem is taken from [5] (Theorem 7.2). For G = Z it can be found in [6].

Theorem 3.8. Let h̃∗ be a reduced generalized homology theory. Suppose that h̃∗(K(G, n)) =
0 for some countable abelian group G. Then for any finite polyhedral pair (K,L) and any

element α ∈ h̃∗(K,L) there is a compactum Y ⊃ L and a strict map f : (Y, L) → (K,L)
such that

(i) c− dimG(Y − L) ≤ n;
(ii) α ∈ im(f∗).

The following is a relative version of Theorem 3 from [4].

Lemma 3.9. Let (Y, L) be a pair of compacta such that

c− dimZp(Y − L) ≤ 2 and c− dimZ[ 1
p

](Y − L) ≤ 2.

Then there is a strict cell-like map g : (Z,L) → (Y, L) such that dim(Z − L) ≤ 3 and
dim(Z − L)2 ≤ 5.

Lemma 3.10. Let (Z,M) be a compact pair such that dim(Z −M)2 ≤ 2n− 1 and let M be
a manifold of dimension 2n. Suppose there is a retraction ρ : Z →M . Then ρ is homotopic
relM to a retraction r : Z →M with r|(Z−M) one-to-one.

Proof. The condition dimX2 ≤ 2n − 1 for a compact metric space X implies that ev-
ery continuous map φ : X → M to a 2n-dimensional manifold can be approximated
by embedding [7],[27]. Moreover, the space of embeddings Emb(X,M) is a dense Gδ in
the space of mappings Map(X,M). The same argument shows that under the condition
dim(Z−M)2 ≤ 2n−1 the space of retraction-embeddings rEmb(Z,M) is dense in the space
of retractions Ret(Z,M). �
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The following lemma is proven in [6] Lemma 3.7.

Lemma 3.11. Let Z be a compact and r : Z → M be a retraction with r|(Z−M) one-to-
one. Let g : (Z,M) → (Y,M) be a continuous map which is identity over M . Then the
decomposition of M whose nondegenerate elements are r(g−1(y)) is upper semicontinuous.

Proof of Theorem 3.4.
We consider the generalized homology theory h∗ = L∧M(p), i.e., L-theory with coefficients

in Zp.
Let β ∈ hk+1(E2(M),M). There is a finite complex K, M ⊂ K ⊂ E2(M), and an element

γ ∈ h∗(K,M) such that γ is taken to β by the inclusion homomorphism.

Note that h̃∗(K(Z[1
p
], 2)) = 0 since the L-theory of this space is p-divisible. Taking into

account Corollary 3.2 and Theorem 3.1 we can state that h̃∗(K(G, 2)) = 0 for G = Zp⊕Z[1
p
].

Then we apply Theorem 3.8 to (K,M) and γ with this G to obtain f : (Y,M) → (K,M)
satisfying the conditions (i)-(ii) of Theorem 3.8. Condition (i) allows us to apply Lemma 3.9
to obtain a cell-like map g : (Z,M)→ (Y,M) with dim(Z −M) ≤ 3 and dim(Z −M)2 ≤ 5.

Because E2(M) −M has no cells of dimension ≤ 3, there is a homotopy of f ◦ g rel M
that sweeps Z −M to M . Thus, f ◦ g is homotopic to a retraction ρ : Z →M . By Lemma
3.10, f ◦ g is homotopic rel M to a retraction r : Z →M which is one-to one on Z −M . By
Lemma 3.11 the decomposition of M into r(g−1(y)) and singletons defines a cell-like map
q : M → X such that there is a commutative diagram

Z
r //

g

��

M

q

��
Y

r′ // X

By Proposition 3.5 there is a map g′ : X → E2(M) such that g′ ◦ q is homotopic to the
inclusion M ⊂ E2(M). Hence f ◦ g ∼ r ∼ g′ ◦ q ◦ r = g′ ◦ r′ ◦ g. Since g is cell-like, the map f
is homotopic to g′ ◦ r′ by Proposition 3.5. Then there is a homotopy commutative diagram
of the mapping cylinders

Mj′
r′ //

f
��

Mq

i
xxppppppppppppp

Mj

where j : M → E2(M) and j′ : M → Y are the embeddings. For Steenrod h∗-homology this
gives us the following diagram:

h̃∗(Y,M)
= //

f∗
��

h̃∗(Mj′ ,M)
r′∗ //

��

h̃∗(Mq,M)

i∗wwppppppppppp

h̃∗(E2(M),M) // h̃∗(Mj,M)
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By condition (ii) of Theorem 3.8 there is γ′ ∈ h̃∗(Y,M) such that f∗(γ
′) = γ. Then i∗(β̂) = β

where β̂ = r′∗(γ
′). �

4. Continuously controlled topology and cell-like maps of simply
connected manifolds

Let g : Z → X be a proper map and let Y = X̄ −X be the corona of a compactification
X̄ of X. Then there is a natural compactification Z̄ of Z with corona Y such that the map
g extends to a strict map ḡ : (Z̄, Y ) → (X̄, Y ). We recall that a map of pairs f : (Z, Y ) →
(Z ′, Y ) is strict if (Z − Y ) ⊂ Z ′ − Y and f |Y = idY . A proper homotopy ft : Z → X which
is strict at each level is called strict if the homotopy f̄t : (Z̄, Y )→ (X̄, Y ) is continuous.

Let X be a locally compact space compactified by a compact corona Y = X̄ − X. A
proper map f : Z → X is a strict homotopy equivalence if there is a proper map g : X → Z
such that g ◦ f and f ◦ g are strict homotopic to idZ̄ and idX̄ respectively where Z is given
a compactification as above.

Definition 4.1.

(i) Let X be an open manifold and let Y be a compact corona of a compactification X̄
of X. Two strict homotopy equivalences f : W → X and f ′ : W ′ → X are equivalent
if there is a homeomorphism h : W → W ′ such that f = f ′ ◦ h.

(ii) The set of the equivalence classes of strict homotopy equivalences of manifolds is
called the set of continuously controlled structures on X at Y and it is denoted as
Scc(X̄, Y ).

We note that if X̃ is another compactification of X with a compact corona Y ′ which is
dominated by X̄, i.e., there is a continuous map φ : X̄ → X̃ which is the identity on X, then
there is a map φ∗ : Scc(X̄, Y )→ Scc(X̃, Y ′).

Definition 4.2. A pair (X, Y ) is said to be locally 1-connected at Y if for each y ∈ Y
and neighborhood U of y in X there is a smaller neighborhood V of y in X so that the
inclusion-induced map π1(V − Y )→ π1(U − Y ) is zero.

Proposition 4.3. Let X be an open manifold of dimension n ≥ 5 compactified by a compact
corona Y in such a way that the pair (X̄, Y ) is locally 1-connected. Then there is a surgery
exact sequence

· · · → H̄n(Y ; L)→ Scc(X̄, Y )→ [X,G/Top]→ H̃n−1(Y ; L)

which is natural with respect to compactification dominations. Here H̄∗(−; L) is reduced
Steenrod L-homology.

Proof. This sequence can be obtained by adjusting the bounded surgery theory of [13] to
a continuously controlled case. It is presented in [21] in a form where the side terms are
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Ranincki-Wall L-groups of the continuously controlled additive category B(X̄, Y ; Z). Theo-
rem 2.4 of [21] states that these terms are in fact the reduced Steenrod L-homology groups
of the corona.

The naturality follows from the definition of the continuously controlled category . �

A UV 1-map is a proper surjection with Čech simply connected point-inverses. See [20] for
details. Let M be a closed simply connected n-manifold and let q : M → Y be a UV 1-map.
Then the mapping cone Cq is a compactification of M × R by Y+ = Y t pt which is locally
1-connected at Y+. Since (Cq−Y+) is homotopy equivalent to M and H̄∗(Y+; L) = H∗(Y ; L),
the controlled surgery exact sequence turns into the following

· · · → Hn+1(Y ; L)→ Scc(Cq, Y+)→ [M,G/Top]→ Hn(Y ; L).

Let L̃ be the connected cover of the spectrum L. Note that it is a loop spectrum and
L̃0 = G/Top. By Poincare duality, [M,G/Top] = H0(M, L̃) = Hn(M, L̃). The n-th homo-
topy group Sccn (Cq, Y+) of the fiber of the controlled assembly map of spectra H∗(M ; L) →
H∗(Y ; L) differs from Scc(Cq, Y+) by at most a copy of Z.

The next proposition follows from Browder’s M×R theorem and the h-cobordism theorem.

Proposition 4.4. Let M be simply connected and let ΣM denote the unreduced suspension
over M with the suspension points S0. Then Scc(ΣM,S0) ∼= S(M).

We note that the suspension ΣM can be treated as the mapping cone of the constant map.
Therefore for every surjective map q : M → Y there is an induced map

Scc(Cq, Y+)→ Scc(ΣM,S0)

which we call the forget control map.

Proposition 4.5. Let q : M → X be a UV 1 map of a simply connected n-manifold and let
Mq be the mapping cylinder, then there is a commutative diagram:

Scc(Cq, X+)
split−mono //

forget

��

Sccn+1(Cq, X+)
η̃ //

forget

��

Hn+1(Mq,M ; L)

∂̄
��

S(M)
split−mono // Sn(M)

η̄ // H̄n(M ; L)

where η̃ and η̄ are isomorphisms.

Proof. Consider the diagram of spectra

H∗+1(Mq,M ; L)

∂̄
��

// H∗(M ; L) //

id
��

H∗(X; L)

const
��

H̄∗(M ; L) // H∗(M ; L) // H∗(pt; L)
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and compare it in dimension n with the diagram defined by the quotient map p : Cq → ΣM
that collapses X to a point

Scc(Cq, X+) //

p∗
��

[M,G/Top] //

=

��

Hn(X; L)

��
Scc(Cconst, pt+) // [M,G/Top] // Hn(pt; L)

to obtain the required commutative diagram. By Proposition 2.5 η̄ is an isomorphism. The
exact sequence of pair (Mq,M) implies that η̄ is an isomorphism.

�

Proposition 4.6. Let q : M → X be a cell-like map of a simply connected closed manifold
M . Then

(1) Scc(Cq, X+) is generated by strict maps f : (Cp, X)→ (Cq, X) where p : N → X is a
cell-like map.

(2) The forget control map takes f to the homotopy equivalence h : N →M which factors
through the cell-like maps q and p.

(3) η′ : Scc(Cq, X+)→ Hn+1(Mq,M ; L) is an isomorphism.

Proof. (1) Follows from Quinn’s end theorem [24] and the h-cobordism theorem.
(2) Obvious.
(3) We omit the proof of this fact since we do not use it in the paper.

�

Proof of Theorem 2.4. (Torodd(S(M)) ⊂ SCE(M).)
We are given an odd torsion element α ∈ S(M). We denote by the same letter α the
corresponding element of Sn(M). Let γ = η̄(α) ∈ Hn(M ; L). By Theorem 3.7 there is a
cell-like map q : M → X such that q∗(γ) = 0. Consider the diagram of Proposition 4.5.
There is an element γ̂ ∈ Hn+1(Mq,M ; L) such that ∂̄(γ̂) = γ. Let α′ = η̄−1(γ̂) and let
α̂ ∈ Scc(Cq, X+) be the projection of α′. Since α is the image of α̂ under the forgetful map,
by Proposition 4.6 (2) we obtain that α ∈ SCE(M).

(Torodd(S(M)) ⊃ SCE(M).)
Suppose that c : N → X and q : M → X are cell-like maps and that f : N → M is a
homotopy equivalence such that q ◦ f ' c.

N
f //

CE

c   A
AA

AA
AA

M
CE

q~~||
||

||
||

X

We consider the diagram of Proposition 4.5
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Scc(Cq, X+) //

forget

��

Sccn+1(Cq, X+)
η̃ //

forget

��

Hn+1(Mq,M ; L)

∂̄
��

S(M) // Sn(M)
η̄ // H̄n(M ; L)

By Vietoris-Begle theorem a cell-like map induces an isomorphism of ordinary cohomology
or Steenrod homology with any coefficients (see Proposition 3.5). Therefore Hn(M ; L) →
Hn(X; L) is an isomorphism rationally, and hence, the image of Hn+1(Mq,M ; L) in Hn(M ; L)
is a torsion group. Since L is an Eilenberg-MacLane spectrum at 2, Hn(M ; L)→ Hn(X; L)
is an isomorphism at 2 and hence the image of Hn+1(Mq,M ; L) in Hn(M ; L) is odd torsion.
By Proposition 4.6 [f ] is the image of [c] ∈ Scc(Cq, X+) under the forgetful map. Then
[f ] = (η̄)−1∂̄(γ) is an odd torsion element where γ = η̃([c]) ∈ Hn+1(Mq,M ; L). �

5. Continuous control near the corona

The proof of following proposition is based on diagram chasing. Since the proposition can
be considered as a definition of the homomorphism ∂′, we leave the proof to the reader.

Proposition 5.1. Let (P,Q) be a CW pair with the inclusion isomorphism π1(Q)→ π1(P ) =
π. Then the homomorphism ∂′ : Hn+1(P,Q; L)→ Sn(Q) defined in §2 coincides with the n-
homotopy group homomorphism generated by the map of the homotopy fibers of the following
fibrations of spectra

H∗(Q; L) //

=

��

H∗(P ; L)

AP

��
H∗(Q; L) // L∗(Zπ)

where AP is the assembly map for P .

We consider (P,Q) = (E2(M),M) where M is a closed manifold M and E2(M) is its
second Postnikov stage. We recall the notation δ = p ◦ ∂′ where p : Sn(M) → S(M) is the
projection.

To prove Theorem 2.7 we need a germ version of continuously controlled surgery theory.

Definition 5.2.

(i) Let N be an open manifold and let Y be a compact corona of a compactification N̄
of (one end of) N . A strict homotopy equivalence near Y is a proper map f : W → N
onto a neighborhood of Y such that there are neighborhoods U ⊃ V of Y in N̄ and
U ′ ⊃ V ′ of Y in W̄ with f(V ′) ⊂ V and a strict map g : V → V ′ such that g ◦ f |V ′ is
strict proper homotopic to the inclusion V ′ ⊂ U ′ and f ◦ g is strict proper homotopic
to the inclusion V ⊂ U .
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(ii) Two strict homotopy equivalences near Y , f : W → N and f ′ : W ′ → N are
equivalent if there is a neighborhood V of Y in W̄ = W ∪ Y and a strict map
h : (V, Y ) → (W̄ ′, Y ) which is an open imbedding and f ′ ◦ h : V − Y → N is strict
homotopic to f |V .

(iii) The set of the equivalence classes of strict homotopy equivalences of manifolds near
Y is called the set of germs of continuously controlled structures on N at Y and it is
denoted as Scc(N̄ , Y )∞.

One can define germs of homotopy classes [N,G/Top]∞ of maps at Y and the correspond-
ing L-groups and form a surgery exact sequence. This was done in §15 of [13] in the case of
the bounded control. These results can be translated to the continuous control setting as in
[21]. We state the result here in the case when N = M × (0, 1) and N̄ is an open mapping

cylinder
◦
M q of a cell-like map q : M → Y of a closed orientable manifold.

Proposition 5.3. Let q : M → Y be a cell-like map of a closed orientable n-manifold, then
there is an exact sequence

· · · → H̄n+1(Y ; L)→ Scc(
◦
M q, Y )∞ → [M,G/Top]→ H̄n(Y ; L).

In view of Proposition 4.6 forget control defines a map φ : Scc(
◦
M q, Y )∞ → S(M). More-

over, there is a commutative diagram:

Scc(
◦
M q, Y )∞

//

φ

��

[M,G/Top] //

��

H̄n(Y ; L)

A

��
S(M) // [M,G/Top] // Ln(Zπ1(M)).

Here A is the assembly map for Y .

Proposition 5.4. Let q : M → Y be a cell-like map of a closed n-manifold, then the forget

control map φ : Scc(
◦
M q, Y )∞ → S(M) factors as

Scc(
◦
M q, Y )∞

j→ Hn+1(Mq,M ; L)
i∗→ Hn+1(E2(M),M ; L)

δ→ S(M)

where j is a monomorphism with the cokernel Z or 0.

Proof. Proposition 3.5 defines a map g : X → E2(M) such that g ◦ q is homotopic to the
inclusion M → E2(M). We consider the diagram of fibrations of spectra

H∗(M ; L) //

=

��

H∗(X; L)

g∗
��

H∗(M ; L) //

=

��

H∗(E2(M); L)

AE

��
H∗(M ; L) // L∗(Zπ).
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In the dimension n we have the homomorphism of homotopy groups of the fibers

Hn+1(Mq, X; L)∞
i∗→ Hn+1(E2(M),M ; L)

∂′→ Sn(M)

where Hn+1(Mq,M ; L) differs from Scc(
◦
M q, X)∞ by a potential summand Z. In fact, one

can argue that in this case they agree. Then the result follows in view of Proposition 5.1. �

Proof of Theorem 2.7. (SCE(M) ⊃ im(δT[2]).)

We are given an odd torsion element α ∈ Hn+1(E2(M),M ; L) with δ(α) = [f ] ∈ Sn(M)
where δ is the composition

Hn+1(E2(M),M ; L) ∼= Sn+1(E2(M),M)→ Sn(M)→ S(M).

By Corollary 3.6, there exist a cell-like map q : M → X and an odd torsion element

α̂ ∈ Hn+1(Mq,M ; L) = Sccn+1(
◦
M q, X)∞ so that α is the image of α̂ under the inclusion-

induced map i∗ : Hn+1(Mq,M ; L) → Hn+1(E2(M),M ; L). Since α̂ has finite order and

j : Scc(
◦
M q, X)∞ → Sccn+1(

◦
M q, X)∞ is an isomorphism on torsion subgroups, α̂ = j(α′),

where α′ ∈ Scc(
◦
M q, X)∞. By Propostion 5.4 φ(α′) = [f ]. Let g : W → M × (0, 1) be

a representative for α′. By Quinn’s end of maps theorem [24] we may assume that W =
N × (0, 1) and W̄ = Mp, where p : N → X is cell-like. Thus, [f ] = φ(α′) is realized by
cell-like maps p and q.

(SCE(M) ⊂ im(δT[2]).
Suppose that c : N → X and q : M → X are cell-like maps and that f : N → M is a
homotopy equivalence such that q ◦ f ' c.

N
f //

CE

c   A
AA

AA
AA

M
CE

q~~||
||

||
||

X

As above, there is an inclusion-induced map p : X → E2(M) and the forgetful map
Hn+1(Mq,M ; L) ∼= Scc∞(Mq, X) → S(M) factors through Hn+1(E2(M),M ; L). It there-
fore suffices to show that the image of Hn+1(Mq,M ; L) in Hn+1(E2(M),M ; L) is an odd
torsion group. By Vietoris-Begle theorem a cell-like map induces an isomorphism of ordi-
nary cohomology or Steenrod homology with any coefficients (see Proposition 3.5). Therefore
H∗(M ; L)→ H∗(X; L) is an isomorphism rationally, and hence, the image ofH∗(Mq,M ; L) in
H∗(E2(M),M ; L) is a torsion. Since at 2 L is an Eilenberg-MacLane spectrum, H∗(M ; L)→
H∗(X; L) is an isomorphism at 2 and hence H∗(E2(M),M ; L) is an odd torsion.

This half of the theorem is true for all n.
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6. Pushing manifolds together in Gromov-Hausdorff space

Definition 6.1.

(i) If X and Y are compact subsets of a metric space Z, the Hausdorff distance between
X and Y is

dH(X, Y ) = inf{ε > 0 | X ⊂ Nε(Y ), Y ⊂ Nε(X)}.

(ii) If X and Y are compact metric spaces the Gromov-Hausdorff distance from X to Y
is

dGH(X, Y ) = inf
Z
{dH(X, Y ) | X, Y ⊂ Z}.

(iii) Let CM be the set of isometry classes of compact metric spaces with the Gromov-
Hausdorff metric.

(iv) LetMman(n, ρ) be the set of all (X, d) ∈ CM such that X is a topological n-manifold
with (topological) metric d with contractibility function ρ.

It is well-known that CM is a complete metric space (see [15] or [23] for an exposition).

Theorem 6.2. (i) If n 6= 3 and X ∈ CM is in the closure of Mman(n, ρ), then there is
an ε > 0 so that there are only finitely many homeomorphism types of manifolds M ∈
Mman(n, ρ) with dGH(M,X) < ε. If dGH(M,X), dGH(M ′, X) < ε, then there exists
a simple homotopy equivalence h : M ′ → M which preserves rational Pontryagin
classes.

(ii) There exist a contractibility function ρ, nonhomeomorphic manifolds M and N , and
a compact metric space X such that every ε-neighborhood of X in CM contains
manifolds lying in Mman(n, ρ) and homeomorphic to both M and N .

Proof. Part (i) is Theorem 2.10 of [9].
Let M and N be from Corollary 2.14 and let q : M → X and p : N → X be cell-like maps.

By the main result of [12] there are a contractibility function ρ, sequences of Riemannian
metrics {dMi } and {dNi } on M and N respectively lying in Mman(n, ρ) and converging in
CM to (X, d) for some metric d. �

Let Mman(n, ρ) be the closure of Mman(n, ρ) in the Gromov-Hausdorff space CM and
∂Mman(n, ρ) be the boundary. For a compact metric space X we will denote its isometry
class by the same letter X ∈ CM.

Theorem 6.3. Suppose that the isometry type of a metric space X belongs to ∂Mman(n, ρ).
Then there is ε > 0 such every two manifolds M,N ∈ Bε(X)∩Mman(n, ρ) from ε-neighborhood
of X in CM are CE-related.
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Definition 6.4. A map f : M → X has a δ-lifting property in dimensions ≤ k. If for every
PL pair (P,Q), dimP ≤ k for every commutative diagram

Q
g′ //

��

M

f

��
P

g //

ḡ
88qqqqqqqqqqqqq
X.

there is a map ḡ : P →M extending g′ such that dist(fḡ, g) < δ.

Proposition 6.5. Let X be a locally k-connected space for k > n, then there exists δ > 0
such that every map f : M → X from a compact n-dimensional ANR with the δ-lifting
property in dimensions ≤ n + 1 is a weak homotopy equivalence in dimension n (i.e., is
n + 1-connected). Furthermore, it induces isomorphisms of the Steenrod homology groups
f∗ : Hi(M)→ Hi(X) for i ≤ n.

Proof. The weak homotopy equivalence in dimension n easy follows from the liting property.
Then the fact follows for the singular homology. We note that the Steenrod homologies
coincide with the singular homologies in this case. �

Proposition 6.6. Let X ∈ ∂Mman(n, ρ), then for every δ > 0 there exists ε > 0 such that
every M ∈ Mman(n, ρ) with dGH(M,X) < ε there is a map f : M → X with the δ-lifting
property in dimensions ≤ n+ 1.

Proof. The space X is locally k-connected for all finite k (see [11]). Then for small ε a map
f : M → X can be constructed by induction by means of a small triangulation on M (If
M does not admit a triangulation, one can use a CW complex structure). Given δ0 > 0, we
may assume that d(x, f(x)) < δ0. Clearly, for a proper choice of δ0 the map f will have the
δ-lifting property. �

Proposition 6.7. Let X ∈ ∂Mman(n, ρ) then there exists ε > 0 such that every M ∈
Mman(n, ρ) with dGH(M,X) < ε there is a map f : M → X such that f∗ : H∗(M ; L(2)) →
H∗(X; L(2)) is an isomorphism.

Proof. We note that L(2) is an Eilenberg-MacLane spectrum. We take ε from Proposition
6.6. Then Proposition 6.5 and the fact that Hi(M) = Hi(X) = 0 for i > n imply the required
result. �

Proof of Theorem 6.3.
We take ε from Proposition 6.7. Let c : N → X and q : M → X be corresponding

maps. We may assume that there is a homotopy lift f : N → M of c which is a homotopy
equivalence.

As it was shown in [11] that X can be presented as the limit space of an inverse sequence
of polyhedra {Ki, pi} such that each map pi : X → Ki is n + 3-connected. Moreover, we
may assume that every bonding map pi+1

i : Ki+1 → Ki is (dimKi + 3)-connected (see P4,
page 98 of [11]). Since pi ◦ q is 2-connected, the space E2(M) can be constructed out of
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Ki by killing higher dimensional homotopy groups. Thus the inclusion M ⊂ E2(M) can be
factored through X and Pi (for large i). Hence there is a commutative diagram

(∗) Hn+1(Pi+1,M ; L)
∼= //

��

Sn+1(Pi,M) //

��

Sn(M)

=

��
Hn+1(E2(M),M ; L)

∼= // Sn+1(E2(M),M) // Sn(M).

By Proposition 6.7 we obtain that H∗(X,M ; L(2)) = 0 for the Steenrod homology. Hence

lim
←
H∗(Pi,M ; L(2)) = 0 and lim

←
1H∗(Pi,M ; L(2)) = 0.

By Theorem 2.6 of [11] the structure [f ] defined by f : N → M belongs to the kernel Gi

of the induced map (piq)∗ : Sn(M)→ Sn(Pi) for all sufficiently large i. There is a morphism
of inverse sequences

. . .

��

. . .

��
Hn+1(Pi+1,M ; L)

ψi+1 //

(pi+1
i )∗

��

Gi+1
//

ξi+1
i

��

0

Hn+1(Pi,M ; L)
ψi // Gi

// 0.

such that ξi+1
i are inclusions and [f ] ∈ Gi for all i. We tensor it with Z(2) and take the

inverse limit. Since lim1
←H∗(Pi,M ; L(2)) = 0 and H∗(Pi,M ; L(2)) = H∗(Pi,M ; L) ⊗ Z(2), we

obtain an epimorphism

0 = lim
←
Hn+1(Pi,M ; L(2))→ lim

←
Gi ⊗ Z(2) → 0.

Therefore lim←Gi ⊗ Z(2) = 0 and hence [f ] is an odd torsion. In view of the above diagram
(*) it suffices to show that show that φ−1

i ([f ]) ∩ Tor(Hn+1(Pi,M ; L) 6= ∅ for some large i.
Since q induces isomorphism of rational homology we obtain

lim
←
H∗(Pi,M ; Q) = 0 and lim

←
1H∗(Pi,M ; Q) = 0.

The later implies that rationally the system is Mittag-Lefler. Thus, we may assume that the
bonding maps (pi+1

i )∗ take all elements of Hn+1(Pi+1,M ; L) to the torsions of Hn+1(Pi,M ; L).
Thus,

∅ 6= (pi+1
i )∗(φi+1([f ]) ⊂ φ−1

i ([f ]) ∩ Tor(Hn+1(Pi,M ; L)).

We obtain that our odd torsion element [f ] is the image of torsion element fromHn+1(E2(M),M ;  L).
Then it is an image of an odd torsion element. �
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