EPSILON-DELTA SURGERY OVER Z
STEVEN C. FERRY

ABSTRACT. This manuscript fills in the details of the lecture | gave on “squeezing structures” in
Trieste in June, 2001. The goal is to develop a controlled surgery theory of the sort discussed/used
in [3]. This material will appear as part of the writeup of my CBMS lectures.

1. INTRODUCTION

Letp : X — B be a map. We will say that a mdp Y — X is ane-equivalence oveB if there
exista mapg : X — Y and homotopie&, : fo g ~ id, k¢ : g o f ~ id so that the trackp o h(x)
andp o f o k¢(y) have diameter less thanfor all x € X andy €Y.

Let (M, 0M) be a manifold. Ifp : M — B is a map, are-structure on(M, oM) over B will
mean an equivalence class of pdit, f), wheref : (N, oN) — (M, O0M) is ane-equivalence
over B which restricts to a homeomorphism of the boundaries. Raits) and (N, f’) are said

to bee-related if there is an homeomorphisg : N — N’ so thatf’ o ¢ is e-homotopic tof over

B rel boundary. Our notion of “equivalence” ferstructures is the equivalence relation generated
by this relation. We will use the symbSL( ]\g) to denote the collection of equivalence classes of

e-structures orML.
The purpose of this paper is to prove & surgery exact sequence.

Theorem 1.1.If M™ is a compact topological manifoleh, > 6, orn > 5 whenoM = (), Bis a
finite polyhedron with the barycentric metric, apd M — B is aUV' mag, then there exist an
€o > 0 and aT > 0 depending only om and B so that for everyg < e, there is a surgery exact
sequence

M
oo Hn1(B;L) = = = 8( ! ) —= [M, 0M; G/TOR —— H,(B;L)
wherelL is the periodicL-spectrum of the trivial group and
M . M M
se(1) =im (se(Y) = st(1)).
M M
Moreover, fore < eo, 8c(L ) =8¢, (L ).
B B
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1See definition 5.1 below
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Definition 1.2. A connected locally finite polyhedrdh with a metric bilipschitz equivalent to the
barycentric metric is said to hav®munded geometny there is a (finite) bound on the number of
vertices ofB adjacent to a given vertex. We will call this bound tt@mplexityof B. We will

say that a topological manifol¥l has bounded geometry if there is B> 0 so thatM has a
handle decomposition so that each hardlies L—bilipschitz equivalent to the standard handle of
that dimension and index. Classically, a smooth maniilds said to have bounded geometry if

it has bounded sectional curvature and if there is a lower bound on the injectivity radius. Work of
Cheeger, Miller, and Schrader [7] shows that the classical definition implies the definition that we
have given in the topological category.

Remark 1.3.

() If a polyhedron of bounded geometry is given the barycentric metric, then up to isometries,
there are only finitely many possibilities for vertex stars.

(i) We can go further and declare a finite-dimensional ANR to have bounded geometry if
it has a manifold mapping cylinder neighborhadt{r) — M so thatM(r) has bounded
geometry as a topological manifold and so that the projection®igg — M is uniformly
continuous. This level of generality is not needed in the present paper.

Addendum 1.4.

() This surgery sequence is also valid in the smooth and PL categories. The point is that the
PL and smooth surgery groups are the same as the TOP surgery groups, so the argument in
theorem 10.2 gives “squeezing” and a surgery exact sequence in those categories, as well.
In the smooth and PL categorigd], G/TOP should be replaced by, G/CAT].

(i) Theorem 1.1 is true as stated, i.e. with a linear relation betwesmmd Te, for B a polyhe-
dron of bounded geometry with the barycentric metric provided that we use locally finite
homologyH'f(B;1L) at the appropriate spots in the surgery sequence. Of cautseill
be a noncompact manifold in this case. We will state our results for finite polyhedra and
use addenda to discuss the extension to the bounded geometry case. The special case
B = P x R, whereP is a finite polyhedron, is used in the proof of theorem 1.1 for finite
polyhedra. The use of the barycentric metric is for definiteness. Theorem 1.1 remains true
as stated in any metric bilipschitz equivalent to the barycentric metric.

(i) Theorem 1.1 is true folB a compact ANR, except that in that case we lose the linear

dependence in the definition 6@( 7\11:) For B a compactANR, the theorem should say
that there is arey > 0 so that for every < ¢, there is & > 0 so that the surgery exact

sequence is true wit&e(l\f{) = im (sg(”f) — s;(“f)) and that fore < e, Se(]\fl) =
s (I\i/l) B B B B

B

The proof of theorem 1.1 is quite easy in principle. The first basic slogan is that a theorem

lets you set up a surgery theory. It turns out to be straightforward to adapt the proof of the bounded
ni—mt theorem of [11] to give an “epsilon-delta™ 7t theorem. The result is a “pro” surgery theory.

A second well-known slogan is that “once you understand one manifold with a given fundamental
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group well, you know a lot about all manifolds with that fundamental group.” The “Alexander
trick” of section 9 of this paper shows that the rel boundary structure set of the projection map
N(B) — B sending a regular neighborhood of a polyhedgoto B has trivial structure set. This

uses the alpha approximation theorem of [6] and it allows us to compute the controlled surgery
groups oveB with Z coefficients. This is analogous to Sullivan’s use of the generalized Péincar
conjecture to compute the homotopy groups of G/TOP, but in this case we reversed the process
to compute the controlled surgery groups. Once the surgery groups are known to be stable, the
stability for the structure set follows from a form of the five lemma. The rest of theorem 1.1
follows immediately.

The most confusing part of this program is the “pro surgery theory,” but an excellent model for
this construction can be found in Chapman’s development of a very general theory of controlled
Whitehead torsion in [5]. Recapitulating, our basic plan for proving theorem 1.1 was to com-
bine the approaches of [5] and [11] to prove & pi-pi theorem and use it to give a formal
“chapter 9” development of a pro-surgery theory. We then computed the high-dimensional surgery
groups by plugging the Chapman-Ferry alpha-approximation theorem into this theory. The lower-
dimensional groups were then computed using a 4-periodic algebraic description of the groups.
The stability of the surgery groups was then used to deduce the stability of the structure set in all
dimensions. This version of the proof was presented in a series of five lectures at Notre Dame
University in May 2002. The author would like to thank the topologists of Notre Dame for their
hospitality during a pleasant visit.

This plan worked, but it turns out to have been overly elaborate. It is considerably simpler to
work directly with the algebraically defined surgery groups. Applying the alpha approximation
theorem shows the stability of the algebraic system in high dimensions and periodicity extends
this immediately to all dimensions. One proceeds as before to prove the stability of the structure
sets — again, this is basically a “pro” form of the five lemma. The surgery sequence of theorem 1.1
then follows as usual.

The author apologizes for being slow in writing up this papkrdoes involve quite a lot of writ-

ing for such a trivial result and the author hoped for some time to find a quick way of proving
this theorem as a consequence of [11]. Sadly, this included an attempt called “Squeezing struc-
tures” which turned out to contain an error. Also, the author has developed a pleasant addiction to
working on the question of whether ANR homology manifolds with the disjoint disk property are
homogeneous. This is a wonderfully basic problem in high-dimensional topology. It is the author’s
hope that this paper will allow others to explore this new area of topology.

Here is the statement of the alpha-approximation theorem:

2A competing presentation of this material has appeared in [17]. The author disagrees with the “historical” state-
ments in the introduction to that paper.
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Theorem 1.5(Alpha-approximation theorem [6]).

(i) Let M™ be a closed topological manifold of dimensien5. For everye > 0 there is a
d > 0sothatiff : N — M is ad-homotopy equivalence from another manifold of the
same dimension t¥, thenf is e-homotopic to a homeomorphism.

(i) If M™is a compact topological manifold, then for every> 0 there is ad > 0 so that if
f: N — M is ad-homotopy equivalence from a compact manifold of the same dimension
to M such thatf| 9N is a homeomorphism fro@N to oM, thenf is e-homotopic to a
homeomorphism.

Remark 1.6.

(i) Since the manifolds in the theorem above are topological, the metric in whactdd are
measured is merely a topological metric. The proof of the alpha-approximation theorem is
a handle induction, so the size ®fis some fraction of the size of the smallest handle in
a handle decomposition @&fl. As noted by Farrell and Jones, this means that the relation
betweene ands is linear in any metric which allows handle decompositions to be subdi-
vided linearly. In particular, the relation is linear for PL manifolds with the barycentric
metric. We will always assume that polyhedra in this paper have been given metrics which
are Lipschitz equivalent to barycentric metrics.

(i) The full statement of the theorem in [6] is valid for noncompact manifolds and uses open
coversx andp in place ofe andd, hence the name. The proof of the alpha approximation
theorem is a handle induction, so the theorem is true in its original form —e/&thndo’s
for manifolds of bounded geometry. One only has to deal with finitely many isomorphism
type of handles in a PL manifold of bounded geometry.

(i) The alpha-approximation theorem is valid in dimension 4 as an easy consequence of work
of Freedman and Quinn. See [12].

(iv) The alpha-approximation theorem is a purely topological theorem. It is false in the PL and
smooth categories.

2. GEOMETRIC ALGEBRA

One of the main ideas in proving the thin-cobordism theorem and related results is to do ordinary
algebraic topology while keeping track of the sizes of various homotopies and chain homotopy
equivalences. To facilitate this, we follow [8], [18], [24], and introduce the language of geometric
modules. One reason that geometric chain modules turn out to be useful is that in certain situations
they allow us to use homological data to construct homotopy equivalences of non simply connected
CW complexes without passing to the universal cover and/or dealing with modules over the group
ring. The general strategy is that if we can keep our cell manipulations localized, then the loops
that arise in our constructions will all bound small disks which can be found without invoking the
universal cover. See Proposition 6.3 below.

Definition 2.1.

(i) A geometricZ-module on a space 5 a free moduléZ[S] on a sefS together with a map
f: S — E. In this paperS will always be locally finite oveE. We will often suppress the
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functionf and pretend that the elementsSére points oft. GeometricA—modules can
be defined similarly for any ring..

(i) A geometric morphisnh : Z[S] — Z[T] of geometricZ-modules withf : S — E and
g : T — Eis a homomorphisnZ[S] — Z[T]. If we write h = (hg) with respect to the
basesS andT, then the radius ok is sup {d(f(s), g(t))[hst # 0}. This is less general
than the definition from [24], but it will suffice for the purposes of this paper.

(iii) A geometric morphismh : Z[S] — Z[T] of radiuse is an e-isomorphismif there is a
geometric morphisnk of radiuse, k : Z[T] — ZI[S], so thath o k = id andk o h = id.

Definition 2.2.

(i) A geometricZ-module chain comple& on E is a sequence of morphisms of geometric

Z-modules ort

C: ... C; d; Ci; di1
such thatd o d = 0. C will be called ane-chain complex ort if each morphismi; has
radius less than.

(i) A chain map f between geometriZ-module chain complexeS andD is a sequence of
geometric morphisms; : C; — Dj; so thatd; ; o f; = f;_; o di. The mapf hasradius ¢ if
eachf; has radius:.

(iif) A chain homotopyetween two geometric chain mapandg is a collection{H;} of geo-
metric morphismdi; : C; — D;,; so thatd;,; o H; + H; ; o d; = f; — g;. Theradius of
H is its radius as a geometric morphism.

(iv) An e-chain contractiors : C, — C, is ane-chain homotopy between id add

Example 2.3. A good example of a geometrié—module chain complex to keep in mind arises
when X is a finite polyhedron. The simplicid-chains onX form a geometric modul€ (X)
where eachk-simplexo is associated to its barycenterc X. If the simplices in the subdivision
have diametex ¢, then the boundary map: Ci(X) — Cy_1(X) has radius< e.

It is often useful to extend this example in the following manner: ket K — B be a map
from a finite polyhedron to a compact metric space. The simplicial chaikgyofe rise to a chain
complex of geometric modules ovBiby associating each simplex with the image of its barycenter
in B.

The biggest change in moving to this “controlled” or “epsilon-delta” world from ordinary algebraic
topology is that we no longer have kernels or quotients, the problem being that except in very
restricted circumstances it is difficult to assign a position in the underlying space to an element of
a kernel or a quotient. Happily, other standard constructions of algebraic topology carry over to
this situation without difficulty. In particular, we have the notions of éhgebraic mapping corfe
andalgebraic mapping cylindeof a morphism of geometric chain complexes.

Definition 2.4. If E andF are geometric chain complexes over a spacendf : E — Fis a chain
map, then

3It’s a good thing that the algebraic mapping cone has no cone point.
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(i) The algebraic mapping cone of f is the chain compleX(f)x = Ex_1 & Fy with boundary
map given by( _ 1ot o )-
(i) The algebraic mapping cylinder of f is the chain compleM(f), = Ex & Ex_; & Fy with

) -9 (—1)*ide ©
boundary map given by o % 0 ).
0 (—1)Ff o

If fis ad—morphism, therC(f), is ad chain complex.

Since we do not have kernels and cokernels available in this setting, we do not have homology
groups, so we must find a new proof that showing the contractibility of the mapping cone of a map
f is equivalent to showing thdtis a chain homotopy equivalence.

Proposition 2.5. Let E andF be geometric chain complexes over a spB¢and letf : E — F be
a d—chain map.
(i) If C(f), is d—chain contractible, theti is a 5—chain homotopy equivalence.
(i) If fis ad—chain homotopy equivalence, th€ifif), is kod—chain contractible, wherg, is
a fixed integer.

Proof. The first part is a straightforward computation using the definitions. The second part
amounts to showing that if is a 5—chain homotopy equivalence, then there is a retraction
M(f), — E,. which isky,d—chain homotopic to the identity r&l,. See proposition 1.1 of [21],
which gives an explicit formula for a controlled chain contraction. The analogous statement for
spaces is proven in [10] using “mapping cylinder calculus”. O

Here is an algebraic version of handle sliding or handle addition, as it is sometimes called. We will
use this operation frequently to modify chain complexes.

Lemma 2.6(Handle Sliding). Given ad—chain complex

(8) (ca)

c
"'ch+l_>ca@cﬁ4>cn—1

and ad—morphisms : C;, — C;', there is a26— isomorphism to th&d—chain complex

(b—asa) ( ds d)

c+
HCn+1—>C§1€BCﬁ*> n—1

Proof. The isomorphism is given by identity maps on the ends @ﬂqg) in the middle. Notice

that the slide performed a block row operation on the first boundary map and a compensating block
column operation on the second onek = (9 § ) in the discussion above, then the new boundary
map on the left i€ "9 and the new boundary map on the righd s O

Another very useful construction eancellation of cells

Lemma 2.7. There is an integek so that if a portion of &—chain complex looks like

...oA>5BaeC—-DapC —...
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with the composite
C—oBaeC—DaoC =

a d-isomorphism then the chain complekxts—chain homotopy equivalent tok@— chain complex
.2 A—=>B—>D—> ...

Proof. Let the boundary maB & C — D @ C’ be given by(*£). The mapy : C — C’is

a b—isomorphism, so an elementary column operation followed by an elementary row operation
reduces the boundary map (& 9 ). Performing appropriate handle slidesins C andD & C’
produces an isomorphic chain complex with boundary map of this diagonal form. It is now a
simple matter to show that this chain complexkis—chain homotopy equivalent to one of the
foom--- A —>B—>D — ...

If the original chain complex has the form

(%) (58 - (aw)

—A—>BaeC—Da(C—E——---
then the new complex has the form

- a—By~n A

A B D E

In particular, the collapsed complex is what it “should” be if eitBerC — D orn: B — C'is

zero, i.e., if the cells irC are attached only to cells i@’ or if no cells inB are attached to cells in

C’. The condition org allows us, for instance, to collapse a cone to a subcone, while the condition
onm is to familiar “free face” condition from PL topology. O

Remark 2.8. The sophisticated reader may wonder where the Whitehead group has gone in this
discussion. The K-theory vanishing theorem stated in the next section will show that the hypothesis
that the isomorphism@ — C’ be simple is unnecessary when working with geomé&trienodules.

Lemma 2.9. If A is a geometric chain complex a@iC A is a geometric chain complex which is
d—contractible, them is kd—chain homotopy equivalent th — C. The new compleA — Cis a
d— chain complex. Her& = k(n) is a fixed integer, whera is the dimension of.

Proof. C is 6—chain homotopy equivalent to Co) rel C, SoA is 6— chain homotopy equivalent

to the union ofA with Cond C) alongC. Cancelling the cells of Con€) starting from the top
dimension of CongC) gives the desired equivalence. Since the higher-dimensional cells in each
collapse attach only int@, the boundary maps ot — C are unchanged by this process. [

Here is an algebraic cell-trading lemma. It involves introducing cells, adding cells, and cancelling
cells, the final result being that-cells are “traded for{n + 2)-cells.
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Lemma 2.10. Suppose given ae-chain complex decomposed as module8.as A for which
the boundary map has the form

B & Ay
Bys1 & Aug

If there is ane-chain homotopy, with (s|Bx) = 0, from the identity to a morphism which@son
Ay for # < £, thenBy & Ay is chain-homotopy equivalent By & Al whereA, = 0 for # < { and
Al = Ay for #> { + 2. The new chain complex is34e-chain complex with &‘e-contraction.

Proof. First introduce cancelling 1- and 2-cells corresponding §do obtain

B, & A, & Ay

Yo

By & Ay & A

e

Bo@Ao

Now perform a handle slide usirg: Ay — A; to obtain

B, @ Ay @© Ao

s

S

By & A, Ao
Bo D Ao

The lower map fromA, to A, is the identity, so the lower copies &f, may be canceled to obtain

B, @ Ay @© Ao

yavd

B e A
Bo

Repeat this process, and defiigso thatB, & A is the resulting chain complex. O
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Proposition 2.11. If we have a commuting diagram:

A, —= B,

o,

B

A/ B/

of 8—chain complexes, then there is a commuting diagram

A, —~—~B, Cla)
o o
Al "B C(B)
Lo
C(f) 2 Clg) — Cla+ B) = C(f + g)
Proof. Chase the definitions. O

The next proposition gives us a controlled replacement for the five lemma.

Proposition 2.12. If we have a commuting diagram

A, —%~B, % C(a)

b

Al LB =L C(p)

whereA.,, B, A/, B! are n—dimensionab—chain complexes ang and f + g are 6—chain ho-
motopy equivalences, then there ik & k(n) so thatf is a kd—chain homotopy equivalence.

Proof. We extend the diagram to the right and down

A, —%>B, —® . Cla)

\Lf 9 lerg J{Z[f)

Al B/ —— C(B) — Clip/) = Z(A")

Clg) —=C(f+g) C(Z(f))
This is an algebraic version of the Puppe sequence. The first two mapping cones on the bottom
are controlled chain contractible, so the last one is, as well. Hegust shifts the dimensions in

the chain complex by one. This shows that) is akd—equivalence for somk and thatf is, as
well. O

B
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Remark 2.13. By continuing to the right, we can prove the analogous results whenever two of the
three vertical maps are—-chain homotopy equivalences.

Lemma 2.14. Let A, #>B* be a d—chain map ofé—chain complexes so that there is a
d—chain mapj : B, — A, withj o i 8—chain homotopic to the identity. Thé is 26—chain
homotopy equivalent td, & C,(i).

Proof. B, is 8—chain homotopy equivalent tv,(i). We will show thatM, (1) splits. Writing
My (i) = A @ Ay_1 ® By, definer : M, (i) — A, byr(a,a’,b) = a+ (—1)*s(a’) —j(b), where
s is the chain homotopy fromo 1 to the identity. This retracts1, (1) onto A, splitting M, (1) as
A, @ C.(i). O

3. EPSILON-DELTA K-THEORY

In this section we will review controllel{-theory as described in [5] and [18].

Definition 3.1. Let h be ane-automorphism of a geometric modulieover a spac®. We will say
thath is e-elementary if A can be written as a based direct sdn® F in such a way thah has
matrix (§%).

Definition 3.2. We will identify « : A - Awitha®id: AeF — A @ F for any geometric

Z-moduledJ over B. If « and 3 are e-automorphisms ofd, we write x N Bif xopBise-

elementary. The relation generates an equivalence relation and we denote the set of equivalence
classes oé-automorphisms bi(; .(B). Direct sum makes this set into an additive semigroup. The
Whitehead identities

o« 0\ (/1T 1\N/1 0\/1 1\/1 O\ /1T —a"\ /1 O

0 «'/)\0 1)J\=1 1)J\0 1)\ 1)\0 1 o 1

o« O\ (1T 1\/1 O\ /1T 1\ /1 0\ (1 —oac™\ /1 0\ /1 O

0 ) \O 1)\=1 1)\0 1)\ 1T)\0 1 «x 1)\0 «p)"
show that the image df; ¢(B) in K ,.(B) is an abelian group. We will defin@/h.(B) to be
Kie(B)A=£1}
The most unsatisfactory feature of this definition is the phrase “equivalence relation generated by
<’ The next lemma makes this relation more palatable.

Lemma 3.3. If « and 3 are equivalent irk; ¢(B), thenx 3¢ B.

This follows immediately from the next lemma.

Lemma 3.4(Chapman’s swindlg). If «, 3 : A = AinK; (B) are automorphisms ang,_...e, « =
B with radiuga;) < € for all i, «; = ey, ... ey, «, then there exist, : &A= @A,

i=1

j =1...13, withradiugeg,) < e for all j such thatle;,, ...e¢, ) (x @ id) = f @ id.
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Proof. We have:
a®(idoid) e (ideid) @ ...® (id®id)

Sad (0T @) @ (g D) @D (! B o)
=N (@) E @ (a1 @) S
o' @id) @ (o0 Bid) B - B (gx ' Bid) B B
=(e,! @id) @ (e ®@id) @+ @ (e, ®id) @ B
fidoid) @ (ideid) @@ (ideid) @ p

The first “~” uses the first 6 term identity disjointll times and the next line reassociates paren-
theses. The third line uses the second 6 term identity disjoiiypre times and also uses the fact
thato, = 3. The last line combinek disjoint elementary operations. O

Theorem 3.5(Controlled K, vanishing [18]). For any finite polyhedrom there exist areq > 0
and ak so that for anye < €, the mapWwh.(B) — Wh,(B) is zero.

Remark 3.6.

() The lemma and theorems above have a remarkable consequence: given a compact metric
B, for everye > 0 there is & > 0 so that every-automorphism wittZ-coefficients can
be written (stably) as a product of at mostd-8lementary automorphisms.

(i) The controlled vanishing theorem is also true as stated for polyhedra of bounded geometry.
Since there are only finitely many isomorphism types of vertex stars, the inductive tech-
nique used to prove vanishing in the case whgiie a finite polyhedron applies without
alteration. The linearity is not stated in the original argument of Quinn, but follows easily
from a subdivision argument due to Farrell-Jones.

The derivation of the surgery exact sequence of Theorem 1 will make extensive use of Quinn’s
Thin h-cobordism theorem, which we state here.

Theorem 3.7 (Thin h-cobordism theorem [18]). Let B be a finite polyhedron. Then for every
e > Othereis ad > 0 sothatifn > 4 andp : M} — BisaUV'(s)-mag and (W;M,, M) is a
cobordism with strong deformation retractionsands; retractingW to M, andM; such that the
lengths of the pathg(r(r¢(x))) andp(ri(sq(st(x)))) are less thard for eachx € W, then there
is a product structure oV so that the composition @f with the projection toV, is e-homotopic
topor;.

Addendum 3.8. The thin h-cobordism theorem remains true as statBdsfa compact ANR or a
polyhedron with bounded geometry. For the latter, one simply notes that most existing proofs work
“in parallel” to prove the bounded geometry case along with the finite tddere specifically,

note that in dimensiona > 5 the topological thin h-cobordism theorem parameterized by the

4See definition 5.1 below.
5The proofs of the finite case are already parallel processes, so no modification is necessary to extend them to the
bounded geometry case.
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identity mapM, — M, is an immediate corollary of the alpha approximation theorem. Using the
given data, one constructs a homotopy equivalence ¥mo M, x [0, 1], which turns out to be
controlled. One then applies the alpha approximation theorem twice, fikdtte> M, and then

toW — M x [0, 1] rel boundary. The smooth and PL versions of the thin h-cobordism theorem
can then be recovered using concordance smoothing results of Kirby-Siebenmann (see [15], p.
25). In particular, since any controlled torsion ovdr can be realized on a thin h-cobordism,

this gives the vanishing of the epsilon Whitehead group controlled over a manifold of bounded
geometry. Applying the “Alexander trick” of proposition 9.2 extends this to show vanishing of
the controlled Whitehead group parameterized over any polyhedron of bounded geometry. This
general procedure of realizing and algebraic obstruction and then using geometric methods to
prove that it vanishes will play a major role in this paper.

Definition 3.9. Let A be a geometric module on a metric space
(i) An e—deformationh : A — A is ane— morphism which is a produg‘[f[f:1 E; of elemen-

tary e—morphisms so that each prodLEt‘.f:1 E; is ane—morphism fork < £.

(i) An e—projectionp on A is ane morphismp : A — A such thatp o p = p. We say that
p is geometridf A can be written as a direct sufy & A, of geometric submodules with
plA; = id andp| A, = 0, that is, ifp is the standard projection & onto the summand
Aj.

Theorem 3.10(Controlled K, vanishing, Thm 8.4[18]). Let B be a finite polyhedron. There
existey, > 0 andk so that for everye > 0 with € < € there is ad > 0 so that ifA is a geometric
Z— module onB andp : A — A is and—projection, then there exist a geometle- moduleC
on B and a geometric projectiog : C — C and e—deformationsH; andH, on A ¢ C so that
H;o (p ® q) o H, is geometric.

Remark 3.11.1f p : A — A is ane— projection of a geometrié—module oveiX, thenp+t(1—p)
is a2e— isomorphism of the associated geomefit, t—']—moduleA ® Z[t,t~'] with inverse
p+t'(1—p). One can show ([8], [18]) that this automorphism is trivial in a controKedf and
only if the projectionp is trivial in controlledKy , i.e., that
(i) There exists, so that ifH; o (p @ q) o H, is geometric, as in definition 3.9, then some
stabilization ofp + t(1 — p) is ak;e—deformation.
(i) There existk; so thatifp+t(1—p) is ane—deformation, then there existe—deformations
H;, H; and a geometric projectiomnas above so that; o (p & q) o H is geometric.

ControlledK, vanishing is the key algebraic ingredient in the proof of the following controlled
version of Browder'sM x R theorem which is a special case of Quinn’s Approximate End Theorem
(see p. 283 of [18] fon > 6 and p. 505 of [19] for n=5).

Theorem 3.12(Controlled M x R ). Suppose that > 5, andB is a finite polyhedron with the
barycentric metric. Then there existdg > 0 and ak > 0 so that ifé6 < 6o andK — B is a
UuVv'(8)-map from a finite polyhedron 1 andWw™ — K x R' is a propers-equivalence from an

6Squeezing the “active” area of the homotopy ifttpe] establishes control in the [0,1]-coordinate.
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n-manifoldW without boundary t&k x R' overB x R, then there is a closed codimension one
submanifoldM of W which is aké-strong deformation retract dfvV overB. Thek andé, depend
on the dimension d#V and the dimension @.

If W™ is a manifold with boundary andW has a controlled splitting, then the splitting extends
to the interior, provided that > 5. The theorem is also valid B is a polyhedron with bounded
geometry. In this caséyl will not be closed and thk and6, depend on the dimension ¥ and
the complexity ofB.

Addendum 3.13. Most recent proofs of topological invariance of torsion also prove the vanishing

of the controlled Whitehead group of geomeffiit, t—']—modules. This yields the vanishing of

the controlled projective class group withcoefficients, since that group embeds in the controlled
Whitehead group of geometrig[t, t—']—modules. This is the algebraic key to proving the con-
trolled M x R theorem. The argument in [18] produces the desired splitting when it is given this
algebraic data. As before, the proof extends without alteration to the case of polyhedral control
spaces with bounded geometry. For readers who prefer to work with manifolds, a similar analysis
to that of addendum 3.8 establishes the vanishing of controlled projective class groups over these
same spaces. After embedding the epsilon projective class group into the epsilon Whitehead group
of M x S' and realizing an obstruction by a controllad-cobordism, one solves the manifold
problem using Chapman’s generalization of the alpha approximation theorem (see [4]).

As before, realizing the algebraic problems as geometric problems, solving them, and using the
well-definedness of the algebraic obstructions as in [8] or [18] completes the proof. This and the
argument in addendum 3.8 extend the thincobordism theorem, end theorem and approximate
end theorem to the situation 6fcontrol ké-vanishing over manifolds and polyhedra of bounded
geometry.

4. REMARKS ON PRO THEORY

Throughout this paper, we will be working with systems of sets and/or groups. The purpose of this
section is to establish some definitions and notation. The setup we’re describing is pro-theory, but
only for the comparatively uncomplicated case of systems indexed by the natural numbers. For the
reader unfamiliar with these things, a good example to keep in mind is the system of homology
groups near infinity in an open manifold. If we have a basig of neighborhoods of infinity,

it's actually the systemiHy(U;)} as a whole that we're interested in, not the individual groups.

A proper map from one manifold to another induces a homomorphism of homology systems at
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infinity, but a certain amount of passing to subsequences and reindexing is necessary in order to
write down a pleasant commutative diagram representing the map of homology systems.

Definition 4.1.

()

In this paper, asystenwill be an inverse system of sets and maps indexed by the integers,
most often positive, but sometimes including 0. We write such a systéd;as:;} where
«; : Ay — Ai_7. The mapsx; are calledbonding maps

(i) The relation ofequivalenceon systems is the equivalence relation generated by passing

to subsequences. Of course we must also allow passing to “supersequences” in order to
maintain symmetry. When we pass to subsequences we will automatically compose the
bonding maps and reindex the remaining spaces.

(iii) Defining a map{A;, o} — {A{, !} of systems in full generality is messy. The official

(iv)

definition is lim, colim; Mapg A;, A}.). This allows allows a bit more flexibility in defining
maps than we’ll need in this paper. Suffice to say that after passing to subsequences and
reindexing, maps can be represented by a commuting diagram of level-preserving maps

2 o3 oy

Aq Az As Ay

A

X,

Al <A< A< A

If we have maps in both directions, it may not be possible to represent both by level-
preserving maps in the same diagram and the best we can get by passing to subsequences
and reindexing is a diagram like

X2 3 X4

Aq Az As Ay

\LB] & J{Bz ” J/|33 - l&

X X Xy

Al <A< A} A4

with commuting squares and parallelograms. Note that if all of the triangles commute, such
a diagram implies equivalence of the systdms «;} and{A, «/}, since itis easy to build

a larger system which contains both as subsystems. The systems would still be equivalent
if we only hada; 1 o y; 0 31 = vi o «f o 3; for eachi, rather than strict commutativity

in the diagram above. In general, composing with bonding maps to get commutativity is
allowed as long as the commuting subdiagrams are cofinal in the original system. See [13]
for more information, including a translation of linsolim; Mapg A;, A;) into something

more readable.

Definition 4.2.

(i) A system isMittag-Lefflerif it is equivalent to a system of epimorphisms.
(i) A system isstableif it is equivalent to a system of isomorphisms.
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After passing to subsequences and reindexing, stability of a sygteny;} leads to a commuting
diagram like the one below, from which one can see that eqaahaps the image ol in A;
bijectively onto the image of\; in A; ;.

X2 3 x4

Aq Az Aj Ay

J{fﬁ ” J{ﬁz Ys J{f53 . iﬁzx
A A

id A id A id

5. SURGERY BELOW THE MIDDLE DIMENSION

We begin with some definitions.

Definition 5.1.

(i) We will say that a mapp : K — B between finite polyhedra idV'(8) if for every map
o : P2 — B of a 2-complex intd with lift «, : Py — K defined on a subcomplé, there
isamapx : P — K with «|Py = & so thatp o « is >—homotopic tocx.

Po&>K

.7
/
/

PZ;")B

This can be thought of as saying tipeihasCechs—simply connected point-inverses.(lis
aloop neap~—'(b) for someb, then the image of in B is contractible and the contraction
can bed—lifted to K, giving a contraction of close top~—'(x). The mapp is said to balV'

if itis UV'(8) for everyd > 0. More generally, we will say that a map: K — B with

B a not necessarily finite polyhedrontv'(6) if it is proper’ and satisfies the conditions
above. See [16] for detalils.

(i) If p: P — BisalUV'(s) control map, we will say that: M — Pis (8, k)-connected over
B if whenever(L, L) is a CW pair with diniL) < kandx : Ly — M is a map such that
thereisamayp : L — P with fox = B|Lo, then there exista map: L — M withy|L, =
« and a homotop¥, : L — Prellywith hyg = foy, hy = 3, and dianfpoh({x} xI)) < &

for eachx € L. P
M ——P

are
YI P
|
Loc—> L B

Definition 5.2. If P is a finite polyhedron an# is compact metric, we say thRtis anunrestricted
e-Poincae complex of formal dimensionover B if there exist a subdivision d? so that images

of simplices have diametet € in B and so that there is a cydgin the simplicial chaing,,(P) so
thaty N _: C*(P) — C,_x(P) is ane-chain homotopy equivalence. The definition akatricted

’i.e., inverse images of compact sets are compact.
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e-Poincare complex of formal dimensiam is similar except that we require in addition that the
control mapp : P — B beUV'(e).

Addendum 5.3.If B is merely locally compact anélis a finite-dimensional locally finite complex,
we will require thaty be a locally finite cycle in the definitions of oar-Poincaé complexes.

For simplicity, we will restrict our discussion below to the oriented case. The unoriented case can
be handled as usual by using the orientation double cover. In a similar vein, we will omit mention
of the orientation character in our definition of thke Wall groups below.

Definition 5.4. Let P be an unrestricted-Poincaé duality space of formal dimensiaon over a
metric spaceB and letv be a (TOP, PL or O) bundle ovét. A 5-surgery problenor degree
one normal magps a triple (M™, ¢, F) wherep : M — P is a map from a closed topological
n-manifold M to P such thatp,([M]) = [P] andF is a stable trivialization ofp & ¢*v. Two
problems(M, ¢, F) and (M, ¢, F) areequivalentf there exist ann + 1)-dimensional manifold

W with 0W = M ][ M, a proper magb : W — P extendingd andd, and a stable trivialization

of tyw @ ®*v extendingF andF. Such an equivalence is called a normal bordism. See p. 9 of [23]
for further details.

We will use the notationMm L4 P to denote &-surgery problem. WheB is understood, we will

v
B

shorten the notation t¢p : M — P or even tod. We will follow tradition in pretending that our
topological manifolds are PL in order to simplify details of the proofs. In all cases, the bundle
information is included as part of the data. Our theorem on surgery below the middle dimension
and its proof are parallel to Theorem 1.2 on p. 11 of [23]. As usual, surgery below the middle
dimension is unobstructed.

Theorem 5.5. Let (P™, 0P) be an unrestricted-Poincare duality pair over a finite polyhedroB,
n > 6,0rn > 5if aP is empty. Consider an-surgery problemp : (M,0M) — (P,0P). Then
¢ : (M,dM) — (P,dP) is normally bordant to are- surgery problemp : (M,9M) — (P, dP)
such thatd is (e, [3])-connected oveB and | : 9M — P is (e, [ ])-connected.

Proof. We start by considering the case in whiidh = (). TriangulateM so thato is simplicial and
the diameterp o d(t), T € M andp(o), o € P, are< e. ReplacingP by the simplicial mapping
cylinder of ¢, we can assume that C P. We inductively define a bordistd ¥, —1 < i < [~H]

and mapsp@ : UV — M UPWY, so thatotu®? = M ]_[Mm and so thatbV is ane- homotopy
equivalence. We begin by settingf~" = M x I, and lettingd =" — P be ¢ o proj. LetU®

be obtained froml =" by adding a disjointn + 1)-ball corresponding to eachcell of P — M.

The map®© is constructed by collapsing each new ball to a point and sending the point to the
corresponding-cell of P — M. Assume thatdb¥ : U® — P has been constructed in such a
way thatU® is an abstract regular neighborhood of a complex consisting tdgether with cells

in dimensions< 1 corresponding to the cells ¢f — M in those dimensions. Assume further
that®V is the composition of the regular neighborhood collapse with a map which takes cells to
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corresponding cells. Eac¢h+1)-cell of P— M induces an attaching m&p — UM, If 2i4+1 < n,
general position allows us to move this map off of the underlying complex and approximate the

attaching map by an embeddi§§ — M"Y The bundle information tells us how to thicken this

embedding to an embedding of $f x D™ and attachi + 1)-handles tdl®¥, forming U+,

We extendd ¥ to @ 1) in the obvious manner. This process terminates with the construction of
nt . n+ . n+ . . —[nt1 .

ul*=, Turning ul*=" upside down, we see that "2 is obtained frorri\/l[ ] by attaching

— [nt+1

handles of index- [*']. Thus, the composite md‘ﬂ[ 2l L pis (e, [5])-connected oveP.

In casedP # (), the argument is similar. We first construdtover thed (and, therefore, over a

collar neighborhood of the boundary) and then consttuotver the interior. O

Remark 5.6.

() The Poincag duality of P was never used. This result is true for arbitr@rgnd arbitrary
mapsp : P — B. The spac® can be an arbitrary metric space.

(i) Notice that direct manipulation of cells and handles has replaced the usual appeals to homo-
topy theory and the Hurewicz-Namioka Theorem. This is a general technique for adapting
arguments from ordinary algebraic topologyet@ontrolled topology.

(i) The construction in the proof yields somewhat more — we wind up Wih, oM) C
(P,0P). Whenn = 2k + 1, M andP are equal through the k-skeleton. Whee= 2k, oM
is equal todP through the(k — 1)-skeleton andM contains everk-cell of P — 9P. Since
M — P is k-connected, everi-cell in dP is homotopic rel boundary to a map inkd.
By attaching gk + 2)-cell to this homotopy along a face, we can guarantee that for every
k-cellin 9P — M there is d k + 1)-cell in P so that half of the boundary of th& + 1)-cell
maps homeomorphically onto thecell and the other half maps infel. Alternatively,
the same effect can be obtained by adding a colla&@R@and giving it the product CW
structure.

oP

6. CONTROLLED CELL-TRADING

In this section we prove a controlled version of Whitehead’s cell-trading lemma and apply it to
prove a useful controlled Hurewicz-Whitehead theorem. The operations we describe apply equally
well to cells in a finely subdivided CW complex and to handles in a finely subdivided handle
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decomposition. We will use cell terminology throughout, except for the term “handle addition” or
“handle slide.”

We will write the operation of sliding handles Biover handles irC corresponding ton : B —
C schematically as

| A

D

and call itadding theB-cells to C via m. When the sequenck — B & C — D is a part of a
cellular chain complex, this operation is realized geometrically by handle-addition by taking each
generatorx in B and sliding it acrossn(x). Changing the attaching maps of the cells this way
has the effect described above on the cellular chains. i ane—morphism, then the new chain
complex is @e— chain complexXe—isomorphic to the old one.

Lemma 6.1. Let{ > 0 be given and leB be a polyhedron with the barycentric metric. Then there
existdy = 6o(¢) andk = k(£) > 0 so that if6 < 6, and
() (X,Y)isad-CW pair overB.
(i) p:(X,Y) — Bisamap sothap andp|Y are UV'(5)-maps.
(iii) The cellular chain compleg.(X) is decomposed as (based) modulgy); & Cx(X —Y)
for which the boundary map has the form

C(Y)« ) Ca(X—=Y)

L

CY)gr @ Cua(X=Y)

(iv) There is and-chain homotopy with s|C(Y)x = 0, from the identity to a morphism which
isOonCy(X —Y) for# < L.

thenX may be changed by a simple homotopy equivalence ok&ifea complexX’, so that the
cellular chainsCx(X’) have the fornC(Y)s @& Cx(X’ — Y) whereCy(X’' —Y) = 0 for # < £ and
Ca(X'—=Y)=Cuy(X—=Y)for# > 1+ 2.

Proof. Using theUV'(§) condition we can trade away 0- and 1-cellsf- Y. Now perform the

same operations as in the algebraic cell-trading lemma, but do them geometrically, using handle
additions and cell cancellations, rather than algebraically. The corstanincluded to guarantee

that all intersections take place in simply connected regions of the space, so that geometric inter-
sections can be manipulated to agree with algebraic intersection numbers without taking the global
fundamental group into account. There are discussions of controlled cell-trading in section 6 of
[18] and on page 84 of [5]. O
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Addendum 6.2. The argument above works f@& a uniformly locally simply connected space,
except that the relation betweérandkd is no longer linear.

Controlled cell-trading is a very useful tool in epsilon-delta topology. Here’s a controlled White-
head theorem whose proof relies on cell-trading. Bdte a finite polyhedron endowed with the
barycentric metric.

Proposition 6.3(Controlled Hurewicz—Whitehead). Let an integem > 0 be given. There exist
ak > 0 and ad, > 0 depending om so that if
(i) 0 < do
(i) (X,Y)is ann—dimensional polyhedral pair with cells of sizeverB andp : X — Bisa
UV'(8)-map such thap| Y is alsoUV'(§).
(ii) C.(Y) — C,(X) is ad-chain homotopy equivalence.
ThenY — X is akdé-homotopy equivalence.

Proof. By cell-trading, there is &; depending om so that(X, Y) is k;(n)4-homotopy equivalent
relYtoa CW pair(X’,Y) so that all cells oK’—Y are of dimension greater than Let$ : X — X’
andy : X’ — X be thek;(n)d-homotopy equivalence and homotopy inverse.

By cellular approximation (or general position), we can take® be a map fronX intoY c X'.
This approximation loses as much3#§'Xs more in control, since cell trading may make the cells
larger. The controlled homotopy fromh o ¢ to the identity gives a controlled strong deformation
retraction fromX to Y, establishing the desired controlled homotopy equivalence. O

7. THE EPSILON-DELTA 7t-7t THEOREM

Definition 7.1. If f4 : Ay — By is a chain homomorphism, we defiké(f) to be the algebraic
mapping cone of” : B¥ — A*. We defineK4(f) to be the dual okK*(f). Unraveling this, we see
thatK*(f) = A% @ B*!, K (f) = A ® By1, and that up to signs in the boundary m¥p(f) is
the algebraic mapping cone Bfwith dimensions shifted by one.

Now, suppose that we are given a degree one gnapM — P from a manifold to a-Poincaé
space over a metric spage We need to show that the compl&x(¢) described above has-
Poincaé duality for somé = k(n). Following [20], Proposition 2.2, we have a controlled chain
homotopy commuting diagram
(i)#
C¥(P) —— C*(M) ——K¥(¢)
zl [PIN_ zl M]N_

Crr(P) <2 Co (M)

which splits the top row of the diagram up to chain homotopy. By lemma 2.14, this gives us a
chain-homotopy equivalence
C* (M) =K*(p) & C*(P).
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Dualizing, we have

C.(M) = K.(¢) & C.(P).
As in the classical case, these splittings preserve cap product with the fundamental class, so by
lemma 2.12 there is a controlled chain homotopy equival@wgen _: K*($p) — K, (d).

Remark 7.2. In general, there is a formal device which convertsltheéheoretic constructions of

[22] and many of the bounded constructions of [11] into the epsilon-delta constructions used in
this paper. An illustrative example is Ranicki’s proof that the mapping cone of a chairf leap
contractible if and only iff is a chain-homotopy equivalence. Ranicki’s proof holds in additive
categories. The bounded categories of [11] are additive, so the proof transfers over to the bounded
category.

The “device” is this. As objects in a new category, consider a disjoint union of bounded compact
and noncompact control spaces and consider geontetriecnodules over the entire collection.

Formmn—dimensional chain complexes of bound 1 out of these objects. We’ll consider a morphism
in our new category to be a collection of morphisms over the various metric control spaces with a
uniform bound for the entire collection. This is also an additive category, so Ranicki’s argument
applies to produce bounded chain contractions for the entire collection if and only if the morphisms
are all bounded chain homotopy equivalences with a uniform bound. If we take our disjoint union

to be large enough, something ligg'* spaces should do, then we can simultaneously solve all
problems of dimension with uniform initial data of size 1 over separable metric control spaces.
The point is that since the definition of “bounded” requires a uniform bound over all of the control
spaces, the proof must produce contractions with a single uniform bound, kalik(n). A
simple rescaling argument then shows thét ifA, — B, is ane—chain homotopy equivalence
betweem—dimensionak-chain complexes, then the mapping cdhé). is ke—contractible.

In this particular case, easy enough to look at Ranicki’s formula and check that it produces the
desired bounded contractions, but this “device” shows that it isn’t just luck that makes the bounds
work out.

A similar device works in the bounded world, but a bit more care must be exercised. One considers
disjoint unions of noninteracting bounded problems with uniform initial data and notes that the
algebraic proofs in [11] typically do not make use of any particular structure in the control spaces.

For more geometric results, one must be careful that all hypotheses on the control map and on the
control space hold uniformly, as well. In particular, one must be careful in applying the rescaling
argument to make sure that any uniform hypothesis on the control spaces and the maps are not lost
by rescaling. For polyhedral control spaces with the barycentric metric the important property is
local contractibility and this causes a typical theorem in the epsilon-delta world to have the form
“there is ane, > 0 so that for all{initial data of sizee < e€,} there is ak = k(n) so that
{conclusion of sizé&e} holds.”

Because of the expository goals of this paper, we will nevertheless provide proofs of the key
algebraic results. For further details, the reader should see [11] and the cited works of Ranicki.
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At this point, the reader whose primary interest is in getting to the proof of Theorem 1.1 as
directly as possible should move forward to the next section.

The next lemma is standard, as in Browder-Levine-Livesay [2] or Siebenmann’s thesis.

Lemma 7.3.If M is atopological manifold anth C M is a handle attached tdoM, then the effect
of excising the interior oH from (M, oM) is to kill im(H,(H,HN oM) — H,(M,0M)) and to
create homology in the next dimension correspondingetdH,.(H,HN oM) — H,(M, oM)).

M H M'

Theorem 7.4(Simply connected controlledr-rt theorem). If B is a finite polyhedron with the
barycentric metric, then there exist> 0 and e, > 0 so that if(P™,0P), n > 6, is ane-Poincat
duality space oveB, € < €q, and

(M, M) -2~ (P, oP)

ll:

is an e-surgery problem with bundle information assumed as part of the notation so that both
p:P — Bandp|: 9P — B are UV'(e), then we may do surgery to obtain a normal bordism
from (M,0M) — (P,0P) to (M’,0M’) — (P,0P), where the second map isk&-homotopy
equivalence of pairs. Heré, and e, will depend om.

Proof. The argument is a translation intsterms of the bounded-7t Theorem of [11]. We first
focus on the case = 2(. By Theorem 5.5 we may do surgery below the middle dimension.

We obtain a surgery problem’ o P so thatd’ is an inclusion which is the identity through
dimension.

This means that cancelling cells in the algebraic kekgéP, 0P; M’, 0M’) yields a complex which

is 0 through dimensiof — 1. Abusing the notation, we will assume that the chain complex
Ky(P,0P; M/, 0M’) is 0 for # < { — 1. The generators dk, (P, M) correspond td-cells in

0P — M. Cancelling these against tfie+ 1)-cells described in Remark 5.6ii and leaving out the
primes for notational convenience, we have

Ke(P,OP;M,0M) =0  #<(—1
Ke(P,M) =0  #<0—1.
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SinceK™#(P,9P; M, 0M) is e— chain homotopic t&4(P, M), there is an algebraic-homotopy

o onkK#(P,0P; M, O0M) satisfyingod+50 = 1 for # > (+1. Taking duals, there is an algebraic ho-
motopy s orkg(P, 0P; M, 0M) such thakd+0s = 1 for# > {+1. SinceKy = Ky(P,0P; M, 0M)

is finite-dimensional, the “cell trading” procedure may be applied upside down, so thi ke
changed to

0 Kbz 2 Kot > Ky 0

together with a homotopy s so that + ds = 1 except at degreé Again, we leave out the primes
for notational convenience. Corresponding to each generatky.gf(and at a point near where
the generator sits in the control space) we introduce a pair of cancéllingl )- and {-handles
and excise the interior of thg — 1)-handle from(M, oM ), modifying the map so that the new
boundary maps tdP. The chain complex for this modifigdl is:

00— K3 K2 Kot 0
@D

Ko

All generators oK, & K, are represented by discs. We may represent any linear combination of
these discs by an embedded disc, and these embedded discs may be assumed to be disjoint by the
usual piping argument. See p. [23], p. 39. T’ condition on the interior is used here. We do
surgery on the following elements: For each generatuirkK,, we do surgery ofix — dsx, sx) and

for each generatay of K., ,, we do surgery oif0, dy). We can think of the process as introducing

pairs of cancelling- and({+ 1)-handles, performing handle additions with theandles, and then
excising thel-handles from{M, 0M). The resulting chain complex is:

0 Key2 Kot Ky
® 1—-0s @
Ky > Ky 0
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which is easily seen to be contractible, the contraction being

0 Koo =<—— Koy Ky

0

Key2

Dualizing, we see that after surgeiy(P, 0P; M, 0M) is e-chain contractible. Poincarduality
shows thaK,(P, M) is k’e-chain contractible. Together, these imply #i&- chain contractibility
of Kx(0P,0M). Using the controlled Hurewicz-Whitehead theorem now showsaRat: oM
andP — M areke-homotopy equivalences for sorkedepending om. This application of the
controlled Hurewicz-Whitehead theorem, proposition 6.3, uses Hath conditions. An easy
argument composing deformations in the mapping cylindéMfoM) — (P, 0P) completes the
proof that(M, oM) — (P, 0P) is a controlled homotopy equivalence.

To obtain ther-nt-theorem in the odd dimensional case we resort to a trick.

(1) Cross withS' to get back to an even dimension and do the surgery.
(2) Go to the cyclic cover and split using the controlledx R theorem to obtain a controlled
homotopy equivalence of the ends.

This completes the proof. O

Remark 7.5. There are a number of useful extensions ofther theorem. The theorem remains

true in the presence of multiple boundary components, provided that the restrictions to the extra
components aré—equivalences. The theorem also remains true if the “active” boundary compo-
nent is divided into two submanifolds with boundary provided that the original normal map is a
d—equivalence over one piece and satisfiegther condition over the other. In fact, the theorem
remains true if the “inert” boundary components are unrestricted objects and the restrictions to
these objects induae—duality at the chain level.

8. ALGEBRAIC 6-SURGERY GROUPS

In this section, we will define our algebradc-surgery groups over a polyhedr@ In even
dimensions, we will define these groups to be systems-aditt groups overB. Our (2k+1)-
dimensional groups oveB will be the (2k+2)-dimensional groups ov8r x R. Thus, in this
section we will be looking at locally finite geometric chain complexes over finite polyhedra and
noncompact polyhedra of bounded geometry. Restricting ourselves to locally finite polyhedra of
this special form allows us to phrase our work in terms of epsilons and deltas, rather than working
with collections of open covers.
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In this section, we will define a sequence of abelian semigrdupss(e)}. We will show that this
sequence is equivalent to a sequence of groups and homomorphisms and that this system serves as
an appropriate system of Wall groups for epsilon-delta surgery. To begin with, we will restrict our
attention to even-dimensional manifolds.

Definition 8.1. Letn) = £1. Let[, = {0} forn = 1 and2Z forn = —1. By a special geometric
(Z—)quadration—form overB, we will mean a triplg A, A, 1) whereA is a geometriZ —module
overB,A: A x A — Zis Z—bilinear,u: A — Z/1,

(i) Alx, ) NA(y,x) X,y €A
(i) Alx, r(x) +np(x) x €A
(iif) u(X+y m(x) — p(y) = Alx,y) mod I, X, yeA
(iv) p(xa) = a?p(x) XxXEA, acZ

(v) AX: A — A* defined byAA(x)(y) = A(x,y) forx, y € A is an isomorphisr.

The radius of this form i< € if A(x,y) = 0whend(x,y) > €.

Definition 8.2.

() Letn = £1. If A is a geometric module ové, thenonsingulam—hyperbolic quadratic
form onA @ A is the formnH(A) which has matrix(f];) corresponding to each basis
element ofA with u(1,0) = w(0,1) = 0. This simply means thatH(A) has a standard
2 x 2n-hyperbolic form (the intersection form &f x S* for £ even and odd) corresponding
to each basis element &f.

(i) Two special geometric quadratig—forms (A, A, u) and (A’, A, u’) of radius< 6 are
d—isomorphic oveB if there is ad—isomorphisnh : A — A’ overB sothat\’(h(x), h(y)) =
Alx,y) forall x,y € A andu/(h(x)) = u(x) forallx € A.

@iy If (A,A,u) and (A’ A, u') are geometric quadratig—forms of radius< 6, we will

write (A A, 1) ~ (A’ A, u') if there are geometric moduldsand G over B such that
(A' N, )@nH(F) is 5—|somorphic to(A, A, 1) ®nH(G).
(iv) We defineLn,B,g,(Z) to be the abelian semigroup of geometric special quadnatforms

of radius< &, modulo the equivalence relation generateeﬁby

Here is the statement of the theorem which is our first main goal. It says that our surgery groups
tell us, at least in the pro-sense, when we can do even-dimensional surgery.

Theorem 8.3.Let{ > 3 be given. Therd 8, > 0 so that ford < &, the following holds:
Letd : (W2 0W) — (P*,0P) be a degree one normal map with: P — B andp|oP both
UV'(8)—maps. HereB is either a finite polyhedron or a polyhedron of bounded geometry. Let
n = (—1)%. Suppose, in addition, that| OW is a 6—equivalence. There is a numbler= k(1) so

that that:

8The usual simplicity condition is not needed because of the vanishing of contzMgditehead groups. We're
getting away with a certain amount in this section because the controlled Whitehead group vanishes and we don'’t have
to prove simplicity at each stage of our argument.
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(i) There is a surgery obstruction(¢) € L;, g xs(Z).

(i) Theimage ot s(Z) In L, g xs(Z) is an abelian group.

(i) o(d) is well-defined on normal bordism classed.ifg «25(Z). In particular, if ¢ can be
surgered to @—equivalence, theo(dp) = 0in L, g 125(Z).

(iv) If o(p) =0in L, 525(Z), thend can be surgered to &*5—equivalence.

(v) Every element of,, 5 5(Z) is realized on a manifold with two boundary components such
that the restriction otp to the first boundary component is the identity and the restriction
of ¢ to the second boundary component is&a-equivalence.

Let (P, oP) be a2{—dimensionab—Poincaé duality pair withUV'(5)—mapp : P — B such that

p|OP is alsoUV'(8). Letd : (N, ON) — (P, dP) be a degree one normal map such thadN

is ad—equivalence. We will assume that surgery has been done below the middle dimension as in
theorem 5.5.

The kernel complex is &'6—Poincaé duality chain complex for some = k’(n), with homol-
ogy concentrated in dimensidn Trading cells from the bottom and then flipping the complex
over (algebraically) and trading down from the top shows that the kernel comple&ischain
homotopy equivalent to a complex of geometric modules with cells in only two dimengiens,
and/{ or, if we choosef and{ + 1. This means that we have the diagram below, whgsnd

are controlled chain-homotopy inverses.

0 Cey Ce 0 0
ltl) @T iw @T
0 0 Ci="Cly=——0

Since the compositiop o is controlled chain homotopic to the identity, we have a diagram:

0<—Cpy S Ce=—0
lid\ lid_q)oq)
0<~—Cpg=—C=—0

with 0 o s = id.

Unfortunately, we are in a land without kernels, so this is not enough by itself to split the sequence

Ce 0

However, we do havés o d) o (so0d) =(s0d),s0(sod):Cy— Cyisa controlled projection.
The Ko—Vvanishing result of theorem 3.10 says that there exist a geometric projecton e
deformationsH; andH, so thatH;((s o 0) & g)H, is a geometric projection.
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If we stabilize by doing trivial surgeries and adding cancelling paifs-cénd({—1)—handles, we
can assume thdt; o (s 0 9) o H, is geometric. This means, in particular, that the image pé s
is geometric. By Chapman’s swindle, we can assume, after stabilization {h&t product of no
more than 13 elementary matrices.

Proposition 2.6 says that

0 Ce Cy 0
is isomorphic to the chain complex
oH; !
0 Ce Ce 0

which is split byH;s. Since the image oH;s is geometric,C, splits as geometric modules
C; @ C# with dH;|C} : C] — C,_ a controlled isomorphism anaH;| C = 0. Since the
controlled Whitehaead group vanishes, another controlled handle slide arranggs it@t takes
generators to generators. At this point, we can cancel the cells against those of ;.

The result is that the chain complex representing our surgery kernel has generators only in di-
mensiont. It follows from Poincagé duality and self-intersection, as in the classical case, that our
surgery kernel has the structure of a special geométriquadratiocn—form. This establishes part

(i) of theorem 8.3.

Next, suppose that the surgeries of part (i) have been performed and that our normél map
(N, oN) — (P, oP) is normally cobordant rel boundary to another such degree one normal map,
call it ¢’ : (N/, oN) — (P, oP) . We can controlled surger the normal bordism rel ends and
boundary to make the map from the bordisn®te I into an{—connected map. By handle trading,
first up fromP and then down from the other end, it follows tldats normally bordant tep’ via a
bordism (with small handles, since any bordism can be subdivided) in dimerisaoia€ + 1 and

no handles outside of those dimensions.

We now look at the effect on the surgery kernel of passing through these layers of cells. Starting
from the left in the diagram below, the first set of cells is trivially attached, so the algebraic effect
on the surgery kernel is to add a geometric hyperbolic form to the algebraic kernePfrohis is

the surgery kernel at the level Bf' below. On the other hand, we can begin at the right end of the
bordism, where the surgery kernel is trivial, and see that addin{(thel )-cells, which become
{—cells when viewed from that side, exhibR$’s surgery kernel as a hyperbolic form. Combined,

this shows the forms representing the kernels on the two ends are stably equivalent. In particular,
if ¢’ is a controlled homotopy equivalence, then the surgery kernglratist be controlled stably

hyperbolic, i.e., it must bé 0. Again, we havék = k(n). Moreover, if the surgery kernel of a

degree one normal map is stably controlled hyperbolic, we can proceed exactly as in [11], which

is modelled on chapter 5 of [23] to surger tk&—equivalence for somk = k(n). Since this

step passes through geometry, we need to assume that the control space is a bounded geometry
polyhedron endowed with the barycentric metric. This establishes parts (iii) and (iv) of theorem
8.3.
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-1 cells [ cells

P P P

Finally, we note that the algebraic proof of Wall realization given in Theorem 5.8 of [23] works
without modification to show that every geometric special quadfatid‘—form can be realized
on a manifold with boundary. The statement is given below.

Theorem 8.4(Wall Realization). Let B be a polyhedron with bounded geometry andnlet 6
be given. Then there exikt= k(n) and &, such that given alV'(8)-mapp : V' — B and
x € Laps(Z), & < 8o, we can represent the image @fin L,, 5 xs(Z) by a map withV x I as
target.

We now return to algebra. The next proposition is needed to prove part (ii) of theorem 8.3.
Proposition 8.5.1f (A, A, 1) is a geometric special quadratic—form of radius< 8, then(A, A, u)&

(A, —A, —u) N nH(A) for somek = k(n).

Proof. We give a geometric argument, so our proof is only valid over polyhedra of bounded geome-
try. This is a deficiency of our “quick-and-dirty” geometric approach. It would be better to imitate
Wall's algebraic proof in Lemma 5.4 of [23] and recover the result for arbitrary control spaces.
Given a geometric special quadratic1)‘—form, we Wall realize it on a manifoldW?% N, N’)

with boundary. Consider th#+ 1-dimensional surgery problem obtained by crossing our problem
with J = [0, 1].

N Y N'

I
p NxJ W xJ

NxI

If (A, A, ) isthe surgery kernel iV — N x I, thenW x | gives a normal bordism from the dark
region in the figure, which i3V U N’ x JU (—=W), to N x ], where we have a homeomorphism.
The surgery kernel for the dark region(i&, A, 1) & (A, —A, —u). This shows that a controlled
surgery problem with kernélA, A, 1) & (A, —A, —u) can be solved and that the suvk, A, 1) &
(A, —A, —u) is therefore stably hyperbolic. This completes the proof of theorem 8.8 th¢he
statement of the theorem is the maximum of kf'eeappearing in the proofs of parts (i)-(v). O

By part (ii) of theorem 8.3, the systefh,, 5 5. (Z)} of abelian semigroups is equivalent to a system
of groups. By abuse of notation, we will refer{io, s 5, (Z)} as a system of groups.

We can now set up our systefh, s 5, (Z)} of even-dimensional algebraic surgery groups Bor
a polyhedron of bounded geometry. We can add elements, gf. (Z) immediately this time,
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because direct sum does not increase the radius. Each elemepnt §{Z) has a negative in

L, 8.5 (Z), butthe sumis onlﬁé 0, so elements don’t have inverses until we increabg a factor

of k. Chapman’s swindle then shows that the imagé.pf s, (Z) in L, 55 _,(Z) is an abelian

group, provided thal; ; is bigger thard; by a factork = k(n) for eachi. Theorem 8.3 shows that

in even dimensions and in a “pro” sense these groups do determine when surgery to a controlled
homotopy equivalence is possible.

The next proposition shows that we can solve a controlled surgery probler8 dwand only if we

can solve (problemyR overB x R. Thus, we can always choose to work with even-dimensional
surgery problems. Note that this is the basic philosophy of [11], as expressed in the introduction
to that paper — the major difference being that here we use a product metric rather than a conelike
metric.

Proposition 8.6. Letn > 6 and letp : (P™, 9P) — B beUV'(8) with B a polyhedron of bounded
geometry, and lep : (N, 9N) — (P, oP) be a degree one normal map withoN a d—homotopy
equivalence.

(i) Thereexist& = k(n)andady, = dp(n) sothatifs < 6pandpxid: NxR — (P, 0P) xR
is normally cobordant reb to a 6—equivalence controlled ové¥ x R, thend is normally
cobordant to ad—equivalence controlled ovéd.

(ii) If & is normally cobordant to @—equivalence, therp x id : N x R — (P, 9P) x R is
normally cobordant to @ —equivalence.

Proof. Part (i) is a direct application of the controlldd x R theorem stated in section 2 plus the
thin h-cobordism theorem. Part (ii) is clear. 0J

Definition 8.7. Let N = N(M) be the set of normal bordism classes of degree one normal maps
(M,0M) — (N, 0N) which restrict to a homeomorphism on the boundary. The bordisms here
should be through maps which are fixed on the boundary. By work of Sullivan, this collection is in
one-to-one correspondence with, oN; G/TOR, makingXN into a group.

Remark 8.8. There also is a 1-1 correspondence between normal bordism classes of of degree one
normal mapsww — M x R and normal bordism classes of degree one normal maps M.

This means that the groufs_ ;)1 gxr 5(Z) give the obstructions fof2¢ + 1)— d—controlled
dimensional surgery in the same “pro-" sense as the even-dimensional drpsipZ) which we

have already discussed.

The map in one direction is the product and the map in the other direction is given by transversality.
To see that the compositiod(M x R) — N(M) — N(M x R) is the identity on bordism, note

that we can arrange for the composition to be the identity erft,} for somet, and then enlarge a
collar to make the composition equal to the identity everywhere. Again, this is the basic approach
of [11].

Notation 8.9. By L,, g 5(Z), we will meanL _;y 5 5(Z) forn = 2t even and__;ye+1 pyg s5(Z) for
n =2{+ 1 odd.
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9. STABILITY OF CONTROLLED WALL SYSTEMS FORM LARGE

Definition 9.1. A system consisting of groupg\, A, As -+ is stableif it is
equivalent to a sequence of groups and isomorphisms.

Our goal in this section is to prove the stability of the sequence
I—q,B,51 (Z) <~ I—q,B,52 (Z) <~ I—q,B,53 (Z) <~

for all ¢ whenevelrd;} is a sequence of positive real numbers converging monotonically to zero .
We will accomplish this by first proving the result fgr> 2dimB + 2 and then noting that the
result for arbitraryq follows from the periodicity of the Wall groups.

Let N = N(B) be a regular neighborhood &fin R9, g > 2dimB + 2, and letN be the set

of normal bordism classes of degree one normal mapsoM) — (N, 0N) which restrict to a
homeomorphism on the boundary. By work of Sullivan, this collection is in one-to-one correspon-
dence withiN, oN; G/TOR, makingN into a group.

Taking rel boundarg—surgery obstructions gives us the commuting diagram below. In this special
case,N = N(B) has the formN’ x [0, 1], whereN’ is a regular neighborhood &f in RI~".
Addition in N can be defined by gluing elements together along pieces of the boundary. The
vertical maps in this diagram are homomorphisms, see [23], p. 111 for details.

N id N id N

| | |

I—q,B,51 (Z) D I—q,B,Sz (Z) D I—q,B,53 (Z) <~

We will show that the vertical maps are eventual isomorphisms. We begin with the argument for
surjectivity. Consider an elemeatof L, 5 5, (Z). By arel boundary adaptation of Wall realization,
this element is realized by a degree one normal thap(W, oW, N’ , N”) — (N’ x I,0(N’ x

I),N’ x 0,N’ x 1) whereN’ is a regular neighborhood & in R4~ as before and restricts to
homeomorphisms ovéd’ x 0 U oN’ x I and akd—equivalence oveB on N”, wherek = k(n).

In order to show thad is in the image ofN, we need to show thap is normally bordant tap’,
whered’ is a homeomorphism on the entire boundary.

N" N'x 1

W | — |N'xI

id

N' N'x0
The restriction okp to N” is a homeomorphism odN"”. In order to show thad is in the image
of N, we apply the alpha approximation theorem (theorem 1.5 of the introduction) together with a

variation on the classical Alexander trick.
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Here is our Alexander trick. Lgt be the mapping cylinder projectign: N" — B. The homo-

topy equivalence is controlled over this map. Now, repeat the boundary homeomorphism over a
boundary collar irfN”, rescaling so that the image of this homeomorphism contains all but a very
small regular neighborhood & in N’ x 1. After this modification,|N” becomes a controlled
homotopy equivalence ov@®’ x 1, not just overB, and we can use the alpha approximation theo-
rem to find a small homotopy fromp|N” to a homeomorphism. This means thakéf, is chosen

to be so small that alpha approximation workshfto produce a homeomorphissp—homotopic

to the originald, then the image ok in Ly s, (Z) is in the image ofN. This proves eventual
surjectivity and we pass to a subsequence so that “surjectivity” takes place (in-thg)st place

for eachi.

Now for the proof of injectivity. Consider an elemefite N whose image in, say,q s, (Z) is
trivial. This means thap : M — N with ¢ a homeomorphism oveéXN and thatp is bordant as a
restrictedd;—object to a>;—equivalence. We denote this bordism®y P — N x 1. Our goal is
to show thatp is equivalent irlN to a homeomorphism.

Nx1

—@ | N B

e

De
)

Nx0

The restriction ofD to 0P — M gives ad;—equivalence t@(N x I) — N x 1 which is a homeo-
morphism on the boundary. Reparameterizing, this gives a bordismdrtora 6;—equivalence
over the shaded area . Using the same Alexander trick, the restrictibri@the shaded area is
e—homotopic rel boundary to a homeomorphism, whergrelated tad; as in the alpha approxi-
mation theorem. This shows that the elemigtis trivial in N and that the sequen¢k, g s, (Z)}

is equivalent to the sequen®é«— N « .. ..

The groupX is isomorphic to[N, dN; G/TOH, which is in turn isomorphic td14(N, G/TOP),
Hq(B, G/TOP), andH,(B, L(e)). Thus, we have shown:

Proposition 9.2. GivenB andq > 2dimB + 2, we can choose a sequertgef positive real num-
bers monotonically approaching zero so that the imageQf s, (Z) in Lq s, ,(Z) is isomorphic
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toHq(B,L(Z)) for all i. By periodicity of_q 5 5, (Z) andH4(N, G/TOP), this establishes the same
result for all g

Remark 9.3. The proof above is closely related to the proof of the surgery exact sequence. The
point of our Alexander trick is that it allows us to use the alpha approximation theorem to show

N

that the rel boundary structure &t( v ) is equivalent to a trivial system and then to use this
B

fact to prove that the normal maps are isomorphic to the surgery groups as systems. Rather than

set up a structure set which is going to be zero (in this specific instance, anyway) we have chosen

to delay setting up the official surgery sequence and make our argument on the level of individual

representatives of elements of the structure-set-to-be.

10. STABILITY OF CONTROLLED STRUCTURE SETS

Next, we want to show how to use stability of the controlleegroups to prove a similar stability
result for manifold structures. We can always replat8\d (6)—mapp : M™ — B, M a manifold
andn > 5, by aUV'-map. Here is a theorem from [14] which is a modified version of a theorem
of Bestvina [1].

Theorem 10.1.

() Let a finite polyhedro® andn > 5 be given. Then givea > 0 there is ad > 0 so that if
p’:N™ — BisaUV'(§)-map from a compact manifold ®, thenp’ is e-homotopic to a
uv'-mapp : N — B.

(i) LetN be a compact manifold and suppose that¥'-mapq : N — B onto a polyhedron
B is given. Then for eack > 0 there is ad = &(e,q) > 0 such that for each map
f: M — N of any compact PL manifoltl with dimM > 5 which is1-connected with
5-control with respect tag, there is aUV'-mapg : M — N which is e-close tof as
measured irB.

Here is the long-awaited stabilty theorem for structures.

Theorem 10.2.Letn > 5. If M™ is a closedn—manifold andp : M — B is aUV'—map, then
for everye > O thereisad > 0 so that foranyw > 0, if ¢ : N — M is ad—homotopy equivalence
overB then there is ar—homotopy oveB from ¢ to a ut—homotopy equivalenog : N — M. A
similar result holds for rel boundary structuresM is a manifold with bondary.

In other words, if we are willing to allow a homotopy of fixed size, then if we start with a suffi-
ciently well-controlled homotopy equivalence we can improve the control of that homotopy equiv-
alence by an arbitrary amount. This is the “squeezing theorem” for struétures.

9Note that we daot claim to have constructed a fixed map which is-aequivalence for all..



32 STEVEN C. FERRY

Proof. As above, the proof consists of working our way through the not-yet-existent surgery exact
sequence. We start with the systefbhgs 5, (Z) } reindexed so that we have commutative diagrams:

X | |

Hn(B;L(Z)) <— Hn(B;L(Z)) <— Hyn(B;L(Z)) <— -

and

NMxT) =4  NMxD)—2  NMxI)~— ..

| | |

Ln+l,B,51 (Z) Ln+1,B,6z (Z) Ln—H ,B,53 (Z) <~

I =

Hni1(B;L(Z)) <— Hn1 (B L(Z)) <— Hna (BSL(Z)) <— -

Assume, further, that th&’s have been chosen so that fpe=n, n + 1

(i) Degree one normal mags: N — M with vanishing surgery obstruction In, g 5, (Z) are
normally bordant t@; ;—equivalences.
(i) Eachx € Lyps (Z) can be Wall-realized by a normal bordism to &n;—equivalence
overB.
(iif) Each d;—thin h-cobordism oveB has &; ;—product structure oves.
(IV) dp =€ and64 = M.

We taked = 63. Suppose that we are giverba—controlled homotopy equivalende: N — M.

The surgery obstruction dfp] vanishes inL,, 5 s,(Z), S0 an easy diagram chase shows that the
surgery obstruction okp] vanishes ifL,, g 5, (Z) for all i > 3, so[¢] is normally bordant to some
d;—equivalence for each Choose as—equivalenceps : Ns — M normally bordant tap. The
normal bordism®ds : W5 — M x I has a surgery obstructian in L,, g s, (Z). Wall realize an
elemento € L, 55, (Z) whose image i, g 5,(Z) is the same as the image ot starting with
¢s5: N5 — M to get a normal bordis® : W — M x I from ¢5 to ads,—homotopy equivalence
¢ N — M.



EPSILON-DELTA SURGERY OVERZ 33

33-equiv ¢ (P‘ 84 -equiv

MxI

The obstruction to surgering/s U W to a controlledh—cobordism dies ifL, 5 5, (Z), SO we can
surger the bordism rel boundary todg-h-cobordism which has &,—product structure. This
provides the desired—homotopy from¢ to ad,—equivalencep’ o h, whereh : N — N’ is the
homeomorphism coming from the product structure. O

We now repeat our definition éf—controlled structure sets.
Definition 10.3. Let M be a closed manifold and lgt : M — B be aUV'—map. We define

M

8g< v ) to consist of equivalence classeséefhomotopy equivalence$ : N — M overB
B

modulo the relationthap : N — M andd’ : N’ — M are equivalent if there is a homeomorphism

M
h: N — N’ so thatd is >—homotopic top’ o h overB. We declareSz—,( v ) to be the image of

B
M M
sgi< v )insg”( v )
B B

M
Given stability of the system of surgery groups, proposition 10.2 shows that the 5{&@76 v )
B

is stable as a sequence of sets, that is, it is equivalent to a sequence of bijections. The proposition
shows immediately that the sequence is equivalent to a sequence of surjections and the relative
version of the proposition shows that the sequence is equivalent to a system of injections. This
completes our proof of stability in dimensions5.

Remark 10.4. As usual, all of the above extends to the bounded geometry case. The most interest-
ing extra step in this case is that we need to find a bounded geometry thickening of a polyhedron of
bounded geometry. For this, we note that a polyhed @i complexity{ immerses in a simplex

of dimension{ + 1. We obtain the required thickening Bfby pulling back a regular neighborhood

of A®1in R™'. The rest of the argument goes through as above.
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11. THE SURGERY SEQUENCEFUNCTORIALITY, AND EVERYTHING ELSE

If any neophytes have made it this far, here is the proof of the surgery exact sequence, which we
recall below:

---Hn—H(B;L) - >Se( ) — N(M) HHn(B;L)

W<

If we start with a normal map, we can take its controlled surgery obstruction. If that dies, then
it can be surgered to ae—equivalence for ang > 0. Thus, it comes from a controlled struc-
ture. Conversely, if the normal map comes from a controlled structure, then its controlled surgery
obstruction dies.

Starting with a controlled structure, we can consider it as a normal map and ask if itis normally bor-
dant to a homeomorphism. If it is, there is a controlled relative surgery obstructlén,if(B; L)

to surgering the normal bordism to a controlled product. If this obstruction dies, then we can
surger to a controlled product, which shows that the original structure woas controlled homotopic
to a homeomorphism.

Wall realization gives an action &i,,,1(B;IL) on the controlled structures: start with a controlled
homotopy equivalencé : N — M and Wall realize an element € H, ;(B;LL), obtaining a
bordism(W,, N, N’). The controlled equivalendd’ — M is the result of acting ofiby «. If a
controlled structure goes to 0 in the normal maps, then it is obtained by acting o/ ieh M by
somex.

If we have allV'-mapp : B — B/, then the entire surgery sequence controlled & eraps to
the surgery sequence controlled o%ér This also works if the map V' (5) for § < 5, with 5
depending o8’ andp. If p happens to be Lipschitz with constant 1, tlgronly depends oB’.
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