
EPSILON-DELTA SURGERY OVER Z

STEVEN C. FERRY

ABSTRACT. This manuscript fills in the details of the lecture I gave on “squeezing structures” in
Trieste in June, 2001. The goal is to develop a controlled surgery theory of the sort discussed/used
in [3]. This material will appear as part of the writeup of my CBMS lectures.

1. INTRODUCTION

Let p : X → B be a map. We will say that a mapf : Y → X is anε-equivalence overB if there
exist a mapg : X→ Y and homotopiesht : f ◦ g ∼ id, kt : g ◦ f ∼ id so that the tracksp ◦ ht(x)
andp ◦ f ◦ kt(y) have diameter less thanε for all x ∈ X andy ∈ Y.

Let (M, ∂M) be a manifold. Ifp : M → B is a map, anε-structure on(M, ∂M) overB will
mean an equivalence class of pairs(N, f), wheref : (N, ∂N) → (M, ∂M) is anε-equivalence
overB which restricts to a homeomorphism of the boundaries. Pairs(N, f) and(N ′, f ′) are said
to beε-related if there is an homeomorphismφ : N→ N ′ so thatf ′ ◦ φ is ε-homotopic tof over
B rel boundary. Our notion of “equivalence” forε-structures is the equivalence relation generated

by this relation. We will use the symbolS ′
ε

(M↓
B

)
to denote the collection of equivalence classes of

ε-structures onM.

The purpose of this paper is to prove anε-δ surgery exact sequence.

Theorem 1.1. If Mn is a compact topological manifold,n ≥ 6, or n ≥ 5 when∂M = ∅, B is a
finite polyhedron with the barycentric metric, andp : M → B is aUV1 map1, then there exist an
ε0 > 0 and aT > 0 depending only onn andB so that for everyε ≤ ε0 there is a surgery exact
sequence

. . . Hn+1(B; L) //___ Sε
(M↓
B

)
// [M, ∂M; G/TOP] // Hn(B; L)

whereL is the periodicL-spectrum of the trivial group and

Sε
(M↓
B

)
= im

(
S ′
ε

(M↓
B

)→ S ′
Tε

(M↓
B

))
.

Moreover, forε ≤ ε0, Sε
(M↓
B

)
∼= Sε0

(M↓
B

)
.
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1See definition 5.1 below
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Definition 1.2. A connected locally finite polyhedronB with a metric bilipschitz equivalent to the
barycentric metric is said to havebounded geometryif there is a (finite) bound on the number of
vertices ofB adjacent to a given vertex. We will call this bound thecomplexityof B. We will
say that a topological manifoldM has bounded geometry if there is anL > 0 so thatM has a
handle decomposition so that each handleH is L−bilipschitz equivalent to the standard handle of
that dimension and index. Classically, a smooth manifoldM is said to have bounded geometry if
it has bounded sectional curvature and if there is a lower bound on the injectivity radius. Work of
Cheeger, M̈uller, and Schrader [7] shows that the classical definition implies the definition that we
have given in the topological category.

Remark 1.3.
(i) If a polyhedron of bounded geometry is given the barycentric metric, then up to isometries,

there are only finitely many possibilities for vertex stars.
(ii) We can go further and declare a finite-dimensional ANR to have bounded geometry if

it has a manifold mapping cylinder neighborhoodM(r) → M so thatM(r) has bounded
geometry as a topological manifold and so that the projection mapM(r)→M is uniformly
continuous. This level of generality is not needed in the present paper.

Addendum 1.4.
(i) This surgery sequence is also valid in the smooth and PL categories. The point is that the

PL and smooth surgery groups are the same as the TOP surgery groups, so the argument in
theorem 10.2 gives “squeezing” and a surgery exact sequence in those categories, as well.
In the smooth and PL categories,[M,G/TOP] should be replaced by[M,G/CAT].

(ii) Theorem 1.1 is true as stated, i.e. with a linear relation betweenε andTε, for B a polyhe-
dron of bounded geometry with the barycentric metric provided that we use locally finite
homologyH`fn (B; L) at the appropriate spots in the surgery sequence. Of course,M will
be a noncompact manifold in this case. We will state our results for finite polyhedra and
use addenda to discuss the extension to the bounded geometry case. The special case
B = P × R, whereP is a finite polyhedron, is used in the proof of theorem 1.1 for finite
polyhedra. The use of the barycentric metric is for definiteness. Theorem 1.1 remains true
as stated in any metric bilipschitz equivalent to the barycentric metric.

(iii) Theorem 1.1 is true forB a compact ANR, except that in that case we lose the linear

dependence in the definition ofSε
(M↓
B

)
. ForB a compactANR, the theorem should say

that there is anε0 > 0 so that for everyε ≤ ε0 there is aδ > 0 so that the surgery exact

sequence is true withSε
(M↓
B

)
= im

(
S ′
δ

(M↓
B

)→ S ′
ε

(M↓
B

))
and that forε ≤ ε0, Sε

(M↓
B

)
∼=

Sε0

(M↓
B

)
.

The proof of theorem 1.1 is quite easy in principle. The first basic slogan is that aπ − π theorem
lets you set up a surgery theory. It turns out to be straightforward to adapt the proof of the bounded
π−π theorem of [11] to give an “epsilon-delta”π−π theorem. The result is a “pro” surgery theory.
A second well-known slogan is that “once you understand one manifold with a given fundamental



EPSILON-DELTA SURGERY OVERZ 3

group well, you know a lot about all manifolds with that fundamental group.” The “Alexander
trick” of section 9 of this paper shows that the rel boundary structure set of the projection map
N(B) → B sending a regular neighborhood of a polyhedronB to B has trivial structure set. This
uses the alpha approximation theorem of [6] and it allows us to compute the controlled surgery
groups overB with Z coefficients. This is analogous to Sullivan’s use of the generalized Poincaré
conjecture to compute the homotopy groups of G/TOP, but in this case we reversed the process
to compute the controlled surgery groups. Once the surgery groups are known to be stable, the
stability for the structure set follows from a form of the five lemma. The rest of theorem 1.1
follows immediately.

The most confusing part of this program is the “pro surgery theory,” but an excellent model for
this construction can be found in Chapman’s development of a very general theory of controlled
Whitehead torsion in [5]. Recapitulating, our basic plan for proving theorem 1.1 was to com-
bine the approaches of [5] and [11] to prove anε-δ pi-pi theorem and use it to give a formal
“chapter 9” development of a pro-surgery theory. We then computed the high-dimensional surgery
groups by plugging the Chapman-Ferry alpha-approximation theorem into this theory. The lower-
dimensional groups were then computed using a 4-periodic algebraic description of the groups.
The stability of the surgery groups was then used to deduce the stability of the structure set in all
dimensions. This version of the proof was presented in a series of five lectures at Notre Dame
University in May 2002. The author would like to thank the topologists of Notre Dame for their
hospitality during a pleasant visit.

This plan worked, but it turns out to have been overly elaborate. It is considerably simpler to
work directly with the algebraically defined surgery groups. Applying the alpha approximation
theorem shows the stability of the algebraic system in high dimensions and periodicity extends
this immediately to all dimensions. One proceeds as before to prove the stability of the structure
sets – again, this is basically a “pro” form of the five lemma. The surgery sequence of theorem 1.1
then follows as usual.

The author apologizes for being slow in writing up this paper.2 It does involve quite a lot of writ-
ing for such a trivial result and the author hoped for some time to find a quick way of proving
this theorem as a consequence of [11]. Sadly, this included an attempt called “Squeezing struc-
tures” which turned out to contain an error. Also, the author has developed a pleasant addiction to
working on the question of whether ANR homology manifolds with the disjoint disk property are
homogeneous. This is a wonderfully basic problem in high-dimensional topology. It is the author’s
hope that this paper will allow others to explore this new area of topology.

Here is the statement of the alpha-approximation theorem:

2A competing presentation of this material has appeared in [17]. The author disagrees with the “historical” state-
ments in the introduction to that paper.
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Theorem 1.5(Alpha-approximation theorem [6]).
(i) LetMn be a closed topological manifold of dimension≥ 5. For everyε > 0 there is a
δ > 0 so that iff : N → M is a δ-homotopy equivalence from another manifold of the
same dimension toM, thenf is ε-homotopic to a homeomorphism.

(ii) If Mn is a compact topological manifold, then for everyε > 0 there is aδ > 0 so that if
f : N →M is a δ-homotopy equivalence from a compact manifold of the same dimension
to M such thatf|∂N is a homeomorphism from∂N to ∂M, thenf is ε-homotopic to a
homeomorphism.

Remark 1.6.
(i) Since the manifolds in the theorem above are topological, the metric in whichε andδ are

measured is merely a topological metric. The proof of the alpha-approximation theorem is
a handle induction, so the size ofδ is some fraction of the size of the smallest handle in
a handle decomposition ofM. As noted by Farrell and Jones, this means that the relation
betweenε andδ is linear in any metric which allows handle decompositions to be subdi-
vided linearly. In particular, the relation is linear for PL manifolds with the barycentric
metric. We will always assume that polyhedra in this paper have been given metrics which
are Lipschitz equivalent to barycentric metrics.

(ii) The full statement of the theorem in [6] is valid for noncompact manifolds and uses open
coversα andβ in place ofε andδ, hence the name. The proof of the alpha approximation
theorem is a handle induction, so the theorem is true in its original form – withε’s andδ’s
for manifolds of bounded geometry. One only has to deal with finitely many isomorphism
type of handles in a PL manifold of bounded geometry.

(iii) The alpha-approximation theorem is valid in dimension 4 as an easy consequence of work
of Freedman and Quinn. See [12].

(iv) The alpha-approximation theorem is a purely topological theorem. It is false in the PL and
smooth categories.

2. GEOMETRIC ALGEBRA

One of the main ideas in proving the thinh−cobordism theorem and related results is to do ordinary
algebraic topology while keeping track of the sizes of various homotopies and chain homotopy
equivalences. To facilitate this, we follow [8], [18], [24], and introduce the language of geometric
modules. One reason that geometric chain modules turn out to be useful is that in certain situations
they allow us to use homological data to construct homotopy equivalences of non simply connected
CW complexes without passing to the universal cover and/or dealing with modules over the group
ring. The general strategy is that if we can keep our cell manipulations localized, then the loops
that arise in our constructions will all bound small disks which can be found without invoking the
universal cover. See Proposition 6.3 below.

Definition 2.1.
(i) A geometricZ-module on a space Eis a free moduleZ[S] on a setS together with a map
f : S→ E. In this paper,S will always be locally finite overE. We will often suppress the
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functionf and pretend that the elements ofS are points ofE. GeometricΛ−modules can
be defined similarly for any ringΛ.

(ii) A geometric morphismh : Z[S] → Z[T ] of geometricZ-modules withf : S → E and
g : T → E is a homomorphismZ[S] → Z[T ]. If we write h = (hst) with respect to the
basesS andT , then the radius ofh is sups,t{d(f(s), g(t))|hst 6= 0}. This is less general
than the definition from [24], but it will suffice for the purposes of this paper.

(iii) A geometric morphismh : Z[S] → Z[T ] of radiusε is anε-isomorphismif there is a
geometric morphismk of radiusε, k : Z[T ]→ Z[S], so thath ◦ k = id andk ◦ h = id.

Definition 2.2.
(i) A geometricZ-module chain complexC on E is a sequence of morphisms of geometric

Z-modules onE

C : . . . // Ci
di // Ci−1

di−1 // . . .

such thatd ◦ d = 0. C will be called anε-chain complex onE if each morphismdi has
radius less thanε.

(ii) A chain map f between geometricZ-module chain complexesC andD is a sequence of
geometric morphismsfi : Ci → Di so thatdi−1 ◦ fi = fi−1 ◦ di. The mapf hasradius ε if
eachfi has radiusε.

(iii) A chain homotopybetween two geometric chain mapsf andg is a collection{Hi} of geo-
metric morphismsHi : Ci → Di+1 so thatdi+1 ◦Hi +Hi−1 ◦ di = fi − gi. Theradius of
H is its radius as a geometric morphism.

(iv) An ε-chain contractions : C∗ → C∗ is anε-chain homotopy between id and0.

Example 2.3. A good example of a geometricZ−module chain complex to keep in mind arises
whenX is a finite polyhedron. The simplicialk-chains onX form a geometric moduleCk(X)
where eachk-simplexσ is associated to its barycenterσ̂ ∈ X. If the simplices in the subdivision
have diameter< ε, then the boundary map∂ : Ck(X)→ Ck−1(X) has radius< ε.

It is often useful to extend this example in the following manner: Letp : K → B be a map
from a finite polyhedron to a compact metric space. The simplicial chains ofK give rise to a chain
complex of geometric modules overB by associating each simplex with the image of its barycenter
in B.

The biggest change in moving to this “controlled” or “epsilon-delta” world from ordinary algebraic
topology is that we no longer have kernels or quotients, the problem being that except in very
restricted circumstances it is difficult to assign a position in the underlying space to an element of
a kernel or a quotient. Happily, other standard constructions of algebraic topology carry over to
this situation without difficulty. In particular, we have the notions of thealgebraic mapping cone3

andalgebraic mapping cylinderof a morphism of geometric chain complexes.

Definition 2.4. If E andF are geometric chain complexes over a spaceB, andf : E→ F is a chain
map, then

3It’s a good thing that the algebraic mapping cone has no cone point.
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(i) The algebraic mapping cone of f is the chain complexC(f)k = Ek−1 ⊕ Fk with boundary
map given by

( ∂E 0

(−1)deg ff ∂F

)
.

(ii) The algebraic mapping cylinder of f is the chain complexM(f)k = Ek ⊕ Ek−1 ⊕ Fk with

boundary map given by

(
−∂E (−1)kidE 0
0 ∂E 0

0 (−1)kf ∂F

)
.

If f is aδ−morphism, thenC(f)∗ is aδ chain complex.

Since we do not have kernels and cokernels available in this setting, we do not have homology
groups, so we must find a new proof that showing the contractibility of the mapping cone of a map
f is equivalent to showing thatf is a chain homotopy equivalence.

Proposition 2.5. LetE andF be geometric chain complexes over a spaceB, and letf : E → F be
a δ−chain map.

(i) If C(f)∗ is δ−chain contractible, thenf is aδ−chain homotopy equivalence.
(ii) If f is aδ−chain homotopy equivalence, thenC(f)∗ is k0δ−chain contractible, wherek0 is

a fixed integer.

Proof. The first part is a straightforward computation using the definitions. The second part
amounts to showing that iff is a δ−chain homotopy equivalence, then there is a retractionr :
M(f)∗ → E∗ which isk0δ−chain homotopic to the identity relE∗. See proposition 1.1 of [21],
which gives an explicit formula for a controlled chain contraction. The analogous statement for
spaces is proven in [10] using “mapping cylinder calculus”. �

Here is an algebraic version of handle sliding or handle addition, as it is sometimes called. We will
use this operation frequently to modify chain complexes.

Lemma 2.6(Handle Sliding). Given aδ−chain complex

· · ·→ Cn+1

(
a
b

)
// // C ′
n ⊕ C ′′

n

(
c d

)
// Cn−1

and aδ−morphisms : C ′
n → C ′′

n, there is a2δ− isomorphism to the2δ−chain complex

· · ·→ Cn+1

(
a

b−sa

)
// // C ′
n ⊕ C ′′

n

(
c+ds d

)
// Cn−1

Proof. The isomorphism is given by identity maps on the ends and
(

id 0
−s id

)
in the middle. Notice

that the slide performed a block row operation on the first boundary map and a compensating block
column operation on the second one. IfE =

(
id 0
s id

)
in the discussion above, then the new boundary

map on the left isE−1∂ and the new boundary map on the right is∂E. �

Another very useful construction iscancellation of cells.

Lemma 2.7. There is an integerk so that if a portion of aδ−chain complex looks like

. . .→ A→ B⊕ C→ D⊕ C′ → . . .
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with the composite

C→ B⊕ C→ D⊕ C′ → C′

aδ-isomorphism then the chain complex iskδ−chain homotopy equivalent to akδ− chain complex

. . .→ A→ B→ D→ . . .

Proof. Let the boundary mapB ⊕ C → D ⊕ C ′ be given by
(
α β
η γ

)
. The mapγ : C → C ′ is

a δ−isomorphism, so an elementary column operation followed by an elementary row operation
reduces the boundary map to

(
α ′ 0
0 γ

)
. Performing appropriate handle slides inB ⊕ C andD ⊕ C ′

produces an isomorphic chain complex with boundary map of this diagonal form. It is now a
simple matter to show that this chain complex iskδ−chain homotopy equivalent to one of the
form · · ·→ A→ B→ D→ . . ..

If the original chain complex has the form

. . . // A

(
σ
τ

)
// B⊕ C

(
α β
η γ

)
// D⊕ C′

(
λ µ

)
// E // . . .

then the new complex has the form

. . . // A
σ // B

α−βγ−1η // D
λ // E // . . .

In particular, the collapsed complex is what it “should” be if eitherβ : C → D or η : B → C ′ is
zero, i.e., if the cells inC are attached only to cells inC ′ or if no cells inB are attached to cells in
C ′. The condition onβ allows us, for instance, to collapse a cone to a subcone, while the condition
onη is to familiar “free face” condition from PL topology. �

Remark 2.8. The sophisticated reader may wonder where the Whitehead group has gone in this
discussion. The K-theory vanishing theorem stated in the next section will show that the hypothesis
that the isomorphismC→ C ′ be simple is unnecessary when working with geometricZ−modules.

Lemma 2.9. If A is a geometric chain complex andC ⊂ A is a geometric chain complex which is
δ−contractible, thenA is kδ−chain homotopy equivalent toA− C. The new complexA− C is a
δ− chain complex. Here,k = k(n) is a fixed integer, wheren is the dimension ofC.

Proof. C isδ−chain homotopy equivalent to Cone(C) relC, soA isδ− chain homotopy equivalent
to the union ofA with Cone(C) alongC. Cancelling the cells of Cone(C) starting from the top
dimension of Cone(C) gives the desired equivalence. Since the higher-dimensional cells in each
collapse attach only intoC, the boundary maps onA− C are unchanged by this process. �

Here is an algebraic cell-trading lemma. It involves introducing cells, adding cells, and cancelling
cells, the final result being thatn-cells are “traded for”(n+ 2)-cells.
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Lemma 2.10. Suppose given anε-chain complex decomposed as modules asB# ⊕ A# for which
the boundary map has the form

B#

��

⊕ A#

��zzvvvvvvvvv

B#−1 ⊕ A#−1

If there is anε-chain homotopys, with (s|B#) = 0, from the identity to a morphism which is0 on
A# for #< `, thenB# ⊕A# is chain-homotopy equivalent toB# ⊕A′

# whereA′
# = 0 for #< ` and

A′
# = A# for #≥ `+ 2. The new chain complex is a3`ε-chain complex with a3`ε-contraction.

Proof. First introduce cancelling 1- and 2-cells corresponding toA0 to obtain

B2

��

⊕ A2

��}}zz
zz

zz
zz

⊕ A0

��
B1

��

⊕ A1

��}}zz
zz

zz
zz

⊕ A0

B0 ⊕ A0

Now perform a handle slide usings| : A0 → A1 to obtain

B2

��

⊕ A2

��{{wwwwwwwww
⊕ A0

��
B1

��

⊕ A1

��{{wwwwwwwww
A0

⊕soo

B0 ⊕ A0

The lower map fromA0 toA0 is the identity, so the lower copies ofA0 may be canceled to obtain

B2

��

⊕ A2

��{{wwwwwwwww
⊕ A0

{{vvvvvvvvv

B1

��

⊕ A1

{{wwwwwwwww

B0

Repeat this process, and defineA′
# so thatB# ⊕A′

# is the resulting chain complex. �
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Proposition 2.11. If we have a commuting diagram:

A∗
α //

f
��

B∗

g

��
A ′
∗

β // B ′
∗

of δ−chain complexes, then there is a commuting diagram

A∗
α //

f
��

B∗

g

��

// C(α)

f+g
��

A ′
∗

β //

��

B ′
∗

��

// C(β)

��

C(f)
α+β // C(g) // C(α+ β)

iso
= C(f+ g)

Proof. Chase the definitions. �

The next proposition gives us a controlled replacement for the five lemma.

Proposition 2.12. If we have a commuting diagram

A∗
α //

f
��

B∗
iB //

g

��

C(α)

f+g
��

A ′
∗

β // B ′
∗

//
iB ′ // C(β)

whereA∗, B∗, A
′
∗, B

′
∗ aren−dimensionalδ−chain complexes andg andf + g are δ−chain ho-

motopy equivalences, then there is ak = k(n) so thatf is akδ−chain homotopy equivalence.

Proof. We extend the diagram to the right and down

A∗
α //

f
��

B∗
iB //

g

��

C(α)

f+g
��

// C(iB) ' Σ(A)

Σ(f)
��

A ′
∗

β // B ′
∗

//
iB ′ //

��

C(β)

��

// C(iB ′) ' Σ(A ′)

��
C(g) // C(f+ g) // C(Σ(f))

This is an algebraic version of the Puppe sequence. The first two mapping cones on the bottom
are controlled chain contractible, so the last one is, as well. HereΣ just shifts the dimensions in
the chain complex by one. This shows thatΣ(f) is akδ−equivalence for somek and thatf is, as
well. �
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Remark 2.13. By continuing to the right, we can prove the analogous results whenever two of the
three vertical maps areδ−chain homotopy equivalences.

Lemma 2.14. Let A∗
i // B∗ be a δ−chain map ofδ−chain complexes so that there is a

δ−chain mapj : B∗ → A∗ with j ◦ i δ−chain homotopic to the identity. ThenB∗ is 2δ−chain
homotopy equivalent toA∗ ⊕ C∗(i).

Proof. B∗ is δ−chain homotopy equivalent toM∗(i). We will show thatM∗(i) splits. Writing
Mk(i) = Ak⊕Ak−1⊕Bk, definer : M∗(i)→ A∗ by r(a, a ′, b) = a+(−1)ks(a ′)− j(b), where
s is the chain homotopy fromj ◦ i to the identity. This retractsM∗(i) ontoA∗, splittingM∗(i) as
A∗ ⊕ C∗(i). �

3. EPSILON-DELTA K-THEORY

In this section we will review controlledK-theory as described in [5] and [18].

Definition 3.1. Leth be anε-automorphism of a geometric moduleA over a spaceB. We will say
thath is ε-elementary if A can be written as a based direct sumE ⊕ F in such a way thath has
matrix

(
I ∗
0 I

)
.

Definition 3.2. We will identify α : A → A with α ⊕ id : A ⊕ F → A ⊕ F for any geometric
Z-moduleF overB. If α andβ areε-automorphisms ofA, we writeα

ε
∼ β if α ◦ β−1 is ε-

elementary. The relation
ε
∼ generates an equivalence relation and we denote the set of equivalence

classes ofε-automorphisms byK1,ε(B). Direct sum makes this set into an additive semigroup. The
Whitehead identities(

α 0

0 α−1

)
=

(
1 1

0 1

) (
1 0

−1 1

) (
1 1

0 1

) (
1 0

α 1

) (
1 −α−1

0 1

) (
1 0

α 1

)
(
α 0

0 β

)
=

(
1 1

0 1

) (
1 0

−1 1

) (
1 1

0 1

) (
1 0

α 1

) (
1 −α−1

0 1

) (
1 0

α 1

) (
1 0

0 αβ

)
.

show that the image ofK1,ε(B) in K1,2ε(B) is an abelian group. We will defineWhε(B) to be
K1,ε(B)/{±1}.

The most unsatisfactory feature of this definition is the phrase “equivalence relation generated by
ε
∼.” The next lemma makes this relation more palatable.

Lemma 3.3. If α andβ are equivalent inK1,ε(B), thenα
13ε
∼ β.

This follows immediately from the next lemma.

Lemma 3.4(Chapman’s swindle). If α,β : A→ A inK1,ε(B) are automorphisms andeηk
. . . eη1

α =

β with radius(αi) < ε for all i, αi = eηi
. . . eη1

α, then there existeξj
: ⊕2k+1i=1 A → ⊕2k+1i=1 A,

j = 1 . . . 13, with radius(eξj
) < ε for all j such that(eξ13

. . . eξ1
) (α⊕ id) = β⊕ id.
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Proof. We have:

α⊕ (id⊕ id)⊕ (id⊕ id)⊕ . . .⊕ (id⊕ id)
ε
∼α⊕ (α−1

1 ⊕ α1)⊕ (α−1
2 ⊕ α2)⊕ · · · ⊕ (α−1

k ⊕ αk)
=(α⊕ α−1

1 )⊕ (α1 ⊕ α−1
2 )⊕ · · · ⊕ (αk−1 ⊕ α−1

k )⊕ αk
ε
∼(αα−1

1 ⊕ id)⊕ (α1α
−1
2 ⊕ id)⊕ · · · ⊕ (αk−1α

−1
k ⊕ id)⊕ β

=(e−1
η1
⊕ id)⊕ (e−1

η2
⊕ id)⊕ · · · ⊕ (e−1

ηk
⊕ id)⊕ β

ε
∼(id⊕ id)⊕ (id⊕ id)⊕ · · · ⊕ (id⊕ id)⊕ β

The first “∼” uses the first 6 term identity disjointlyk times and the next line reassociates paren-
theses. The third line uses the second 6 term identity disjointlykmore times and also uses the fact
thatαk = β. The last line combinesk disjoint elementary operations. �

Theorem 3.5(Controlled K̃1 vanishing [18]). For any finite polyhedronB there exist anε0 > 0
and ak so that for anyε < ε0 the mapWhε(B)→Whkε(B) is zero.

Remark 3.6.
(i) The lemma and theorems above have a remarkable consequence: given a compact metric
B, for everyε > 0 there is aδ > 0 so that everyδ-automorphism withZ-coefficients can
be written (stably) as a product of at most 13ε-elementary automorphisms.

(ii) The controlled vanishing theorem is also true as stated for polyhedra of bounded geometry.
Since there are only finitely many isomorphism types of vertex stars, the inductive tech-
nique used to prove vanishing in the case whereB is a finite polyhedron applies without
alteration. The linearity is not stated in the original argument of Quinn, but follows easily
from a subdivision argument due to Farrell-Jones.

The derivation of the surgery exact sequence of Theorem 1 will make extensive use of Quinn’s
Thin h-cobordism theorem, which we state here.

Theorem 3.7(Thin h-cobordism theorem [18]). Let B be a finite polyhedron. Then for every
ε > 0 there is aδ > 0 so that ifn ≥ 4 andp : Mn

0 → B is aUV1(δ)-map4 and(W;M0,M1) is a
cobordism with strong deformation retractionsrt andst retractingW toM0 andM1 such that the
lengths of the pathsp(r1(rt(x))) andp(r1(s1(st(x)))) are less thanδ for eachx ∈W, then there
is a product structure onW so that the composition ofp with the projection toM0 is ε-homotopic
to p ◦ r1.

Addendum 3.8. The thin h-cobordism theorem remains true as stated ifB is a compact ANR or a
polyhedron with bounded geometry. For the latter, one simply notes that most existing proofs work
“in parallel” to prove the bounded geometry case along with the finite case.5 More specifically,
note that in dimensionsn ≥ 5 the topological thin h-cobordism theorem parameterized by the

4See definition 5.1 below.
5The proofs of the finite case are already parallel processes, so no modification is necessary to extend them to the

bounded geometry case.
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identity mapM0 →M0 is an immediate corollary of the alpha approximation theorem. Using the
given data, one constructs a homotopy equivalence fromW toM0 × [0, 1], which turns out to be
controlled. One then applies the alpha approximation theorem twice, first toM1 → M0 and then
toW →M× [0, 1] rel boundary.6 The smooth and PL versions of the thin h-cobordism theorem
can then be recovered using concordance smoothing results of Kirby-Siebenmann (see [15], p.
25). In particular, since any controlled torsion overM can be realized on a thin h-cobordism,
this gives the vanishing of the epsilon Whitehead group controlled over a manifold of bounded
geometry. Applying the “Alexander trick” of proposition 9.2 extends this to show vanishing of
the controlled Whitehead group parameterized over any polyhedron of bounded geometry. This
general procedure of realizing and algebraic obstruction and then using geometric methods to
prove that it vanishes will play a major role in this paper.

Definition 3.9. LetA be a geometric module on a metric spaceX.

(i) An ε−deformationh : A→ A is anε− morphism which is a product
∏`
i=1 Ei of elemen-

taryε−morphisms so that each product
∏k
i=1 Ei is anε−morphism fork ≤ `.

(ii) An ε−projectionp onA is anε morphismp : A → A such thatp ◦ p = p. We say that
p is geometricif A can be written as a direct sumA1 ⊕A2 of geometric submodules with
p|A1 = id andp|A2 = 0, that is, ifp is the standard projection ofA onto the summand
A1.

Theorem 3.10(Controlled K̃0 vanishing, Thm 8.4 [18]). Let B be a finite polyhedron. There
existε0 > 0 andk so that for everyε > 0 with ε < ε0 there is aδ > 0 so that ifA is a geometric
Z− module onB andp : A → A is anδ−projection, then there exist a geometricZ− moduleC
onB and a geometric projectionq : C → C andε−deformationsH1 andH2 onA ⊕ C so that
H1 ◦ (p⊕ q) ◦H2 is geometric.

Remark 3.11. If p : A→ A is anε− projection of a geometricZ−module overX, thenp+t(1−p)
is a 2ε− isomorphism of the associated geometricZ[t, t−1]−moduleA ⊗ Z[t, t−1] with inverse
p+ t−1(1−p). One can show ([8], [18]) that this automorphism is trivial in a controlledK1 if and
only if the projectionp is trivial in controlledK0 , i.e., that

(i) There existsk1 so that ifH1 ◦ (p ⊕ q) ◦ H2 is geometric, as in definition 3.9, then some
stabilization ofp+ t(1− p) is ak1ε−deformation.

(ii) There existsk2 so that ifp+t(1−p) is anε−deformation, then there existk2ε−deformations
H1,H2 and a geometric projectionq as above so thatH1 ◦ (p⊕ q) ◦H2 is geometric.

ControlledK̃0 vanishing is the key algebraic ingredient in the proof of the following controlled
version of Browder’sM×R theorem which is a special case of Quinn’s Approximate End Theorem
(see p. 283 of [18] forn ≥ 6 and p. 505 of [19] for n=5 ).

Theorem 3.12(Controlled M ×R ). Suppose thatn ≥ 5, andB is a finite polyhedron with the
barycentric metric. Then there exist aδ0 > 0 and ak > 0 so that ifδ < δ0 andK → B is a
UV1(δ)-map from a finite polyhedron toB andWn → K× R1 is a properδ-equivalence from an

6Squeezing the “active” area of the homotopy into[0, ε] establishes control in the [0,1]-coordinate.
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n-manifoldW without boundary toK × R1 overB × R1, then there is a closed codimension one
submanifoldM ofW which is akδ-strong deformation retract ofW overB. Thek andδ0 depend
on the dimension ofW and the dimension ofB.

If Wn is a manifold with boundary and∂W has a controlled splitting, then the splitting extends
to the interior, provided thatn ≥ 5. The theorem is also valid ifB is a polyhedron with bounded
geometry. In this case,M will not be closed and thek andδ0 depend on the dimension ofW and
the complexity ofB.

Addendum 3.13.Most recent proofs of topological invariance of torsion also prove the vanishing
of the controlled Whitehead group of geometricZ[t, t−1]−modules. This yields the vanishing of
the controlled projective class group withZ coefficients, since that group embeds in the controlled
Whitehead group of geometricZ[t, t−1]−modules. This is the algebraic key to proving the con-
trolledM × R theorem. The argument in [18] produces the desired splitting when it is given this
algebraic data. As before, the proof extends without alteration to the case of polyhedral control
spaces with bounded geometry. For readers who prefer to work with manifolds, a similar analysis
to that of addendum 3.8 establishes the vanishing of controlled projective class groups over these
same spaces. After embedding the epsilon projective class group into the epsilon Whitehead group
of M × S1 and realizing an obstruction by a controlledh−cobordism, one solves the manifold
problem using Chapman’s generalization of the alpha approximation theorem (see [4]).

As before, realizing the algebraic problems as geometric problems, solving them, and using the
well-definedness of the algebraic obstructions as in [8] or [18] completes the proof. This and the
argument in addendum 3.8 extend the thinh−cobordism theorem, end theorem and approximate
end theorem to the situation ofδ-controlkδ-vanishing over manifolds and polyhedra of bounded
geometry.

4. REMARKS ON PRO THEORY

Throughout this paper, we will be working with systems of sets and/or groups. The purpose of this
section is to establish some definitions and notation. The setup we’re describing is pro-theory, but
only for the comparatively uncomplicated case of systems indexed by the natural numbers. For the
reader unfamiliar with these things, a good example to keep in mind is the system of homology
groups near infinity in an open manifold. If we have a basis{Ui} of neighborhoods of infinity,
it’s actually the system{Hk(Ui)} as a whole that we’re interested in, not the individual groups.
A proper map from one manifold to another induces a homomorphism of homology systems at
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infinity, but a certain amount of passing to subsequences and reindexing is necessary in order to
write down a pleasant commutative diagram representing the map of homology systems.

Definition 4.1.

(i) In this paper, asystemwill be an inverse system of sets and maps indexed by the integers,
most often positive, but sometimes including 0. We write such a system as{Ai, αi} where
αi : Ai → Ai−1. The mapsαi are calledbonding maps.

(ii) The relation ofequivalenceon systems is the equivalence relation generated by passing
to subsequences. Of course we must also allow passing to “supersequences” in order to
maintain symmetry. When we pass to subsequences we will automatically compose the
bonding maps and reindex the remaining spaces.

(iii) Defining a map{Ai, αi} → {A ′
i, α

′
i} of systems in full generality is messy. The official

definition is limk colimj Maps(Aj, A ′
k). This allows allows a bit more flexibility in defining

maps than we’ll need in this paper. Suffice to say that after passing to subsequences and
reindexing, maps can be represented by a commuting diagram of level-preserving maps

A1

��

A2
α2oo

��

A3
α3oo

��

A4
α4oo

��

. . .oo

A ′
1 A ′

2
oo
α ′

2oo A ′
3

oo
α ′

3oo A4
α ′

4oo . . .oo

(iv) If we have maps in both directions, it may not be possible to represent both by level-
preserving maps in the same diagram and the best we can get by passing to subsequences
and reindexing is a diagram like

A1

β1

��

A2
α2oo

β2

��

A3
α3oo

β3

��

A4
α4oo

β4

��

. . .oo

A ′
1 A ′

2
oo
α ′

2oo

γ2

``AAAAAAAA

A ′
3

oo
α ′

3oo

γ3

``AAAAAAAA

A4
α ′

4oo

γ4

``AAAAAAAA
. . .oo

with commuting squares and parallelograms. Note that if all of the triangles commute, such
a diagram implies equivalence of the systems{Ai, αi} and{A ′

i, α
′
i}, since it is easy to build

a larger system which contains both as subsystems. The systems would still be equivalent
if we only hadαi−1 ◦ γi ◦ βi = γi ◦ α ′

i ◦ βi for eachi, rather than strict commutativity
in the diagram above. In general, composing with bonding maps to get commutativity is
allowed as long as the commuting subdiagrams are cofinal in the original system. See [13]
for more information, including a translation of limk colimj Maps(Aj, A ′

k) into something
more readable.

Definition 4.2.

(i) A system isMittag-Lefflerif it is equivalent to a system of epimorphisms.
(ii) A system isstableif it is equivalent to a system of isomorphisms.
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After passing to subsequences and reindexing, stability of a system{Ai, αi} leads to a commuting
diagram like the one below, from which one can see that eachαi maps the image ofAi+1 in Ai
bijectively onto the image ofAi in Ai−1.

A1

β1

��

A2
α2oo

β2

��

A3
α3oo

β3

��

A4
α4oo

β4

��

. . .oo

A A
idoo

γ2

aaBBBBBBBB

A
idoo

γ3

aaBBBBBBBB

A
idoo

γ4

aaBBBBBBBB
. . .oo

5. SURGERY BELOW THE MIDDLE DIMENSION

We begin with some definitions.

Definition 5.1.
(i) We will say that a mapp : K → B between finite polyhedra isUV1(δ) if for every map
α : P2 → B of a 2-complex intoB with lift α0 : P0 → K defined on a subcomplexP0, there
is a mapᾱ : P → K with ᾱ|P0 = α0 so thatp ◦ ᾱ is δ−homotopic toα.

P0
α0 //

_�

��

K

p

��
P2

α //

ᾱ
??�

�
�

�
B

This can be thought of as saying thatp hasČechδ−simply connected point-inverses. If` is
a loop nearp−1(b) for someb, then the image of̀ in B is contractible and the contraction
can beδ−lifted toK, giving a contraction of̀ close top−1(x). The mapp is said to beUV1

if it is UV1(δ) for everyδ > 0. More generally, we will say that a mapp : K → B with
B a not necessarily finite polyhedron isUV1(δ) if it is proper7 and satisfies the conditions
above. See [16] for details.

(ii) If p : P → B is aUV1(δ) control map, we will say thatf : M→ P is (δ, k)-connected over
B if whenever(L, L0) is a CW pair with dim(L) ≤ k andα : L0 → M is a map such that
there is a mapβ : L→ P with f◦α = β|L0, then there exist a mapγ : L→M with γ|L0 =
α and a homotopyht : L→ P relL0 with h0 = f◦γ, h1 = β, and diam(p◦h({x}×I)) < δ
for eachx ∈ L.

M
f // P

p

��
L0

α
>>}}}}}}}}

� � // L

γ

OO�
�
�
β

??~~~~~~~~
B

Definition 5.2. If P is a finite polyhedron andB is compact metric, we say thatP is anunrestricted
ε-Poincaŕe complex of formal dimensionn overB if there exist a subdivision ofP so that images
of simplices have diameter< ε in B and so that there is a cycley in the simplicial chainsCn(P) so
thaty ∩ : C#(P) → Cn−#(P) is anε-chain homotopy equivalence. The definition of arestricted

7i.e., inverse images of compact sets are compact.
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ε-Poincaŕe complex of formal dimensionn is similar except that we require in addition that the
control mapp : P → B beUV1(ε).

Addendum 5.3. If B is merely locally compact andP is a finite-dimensional locally finite complex,
we will require thaty be a locally finite cycle in the definitions of ourε−Poincaŕe complexes.

For simplicity, we will restrict our discussion below to the oriented case. The unoriented case can
be handled as usual by using the orientation double cover. In a similar vein, we will omit mention
of the orientation character in our definition of theε−Wall groups below.

Definition 5.4. Let P be an unrestrictedδ-Poincaŕe duality space of formal dimensionn over a
metric spaceB and letν be a (TOP, PL or O) bundle overP. A δ-surgery problemor degree
one normal mapis a triple (Mn, φ, F) whereφ : M → P is a map from a closed topological
n-manifoldM to P such thatφ∗([M]) = [P] andF is a stable trivialization ofτM ⊕ φ∗ν. Two
problems(M,φ, F) and(M, φ̄, F̄) areequivalentif there exist an(n + 1)-dimensional manifold
W with ∂W =M

∐
M, a proper mapΦ : W → P extendingφ andφ̄, and a stable trivialization

of τW ⊕Φ∗ν extendingF andF̄. Such an equivalence is called a normal bordism. See p. 9 of [23]
for further details.

We will use the notationM
φ // P

��
B

to denote aδ-surgery problem. WhenB is understood, we will

shorten the notation toφ : M → P or even toφ. We will follow tradition in pretending that our
topological manifolds are PL in order to simplify details of the proofs. In all cases, the bundle
information is included as part of the data. Our theorem on surgery below the middle dimension
and its proof are parallel to Theorem 1.2 on p. 11 of [23]. As usual, surgery below the middle
dimension is unobstructed.

Theorem 5.5.Let (Pn, ∂P) be an unrestrictedε-Poincaŕe duality pair over a finite polyhedronB,
n ≥ 6, or n ≥ 5 if ∂P is empty. Consider anε-surgery problemφ : (M,∂M) → (P, ∂P). Then
φ : (M,∂M) → (P, ∂P) is normally bordant to anε- surgery problemφ̄ : (M,∂M) → (P, ∂P)

such thatφ̄ is (ε,
[
n
2

]
)-connected overB andφ̄| : ∂M→ ∂P is (ε,

[
n−1
2

]
)-connected.

Proof. We start by considering the case in which∂P = ∅. TriangulateM so thatφ is simplicial and
the diametersp ◦ φ(τ), τ ∈M andp(σ), σ ∈ P, are< ε. ReplacingP by the simplicial mapping
cylinder ofφ, we can assume thatM ⊂ P. We inductively define a bordismU(i), −1 ≤ i ≤

[
n+1
2

]
and mapsΦ(i) : U(i) → M ∪ P(i), so that∂U(i) = M

∐
M

(i)
and so thatΦ(i) is anε- homotopy

equivalence. We begin by settingU(−1) = M × I, and lettingΦ(−1) → P beφ ◦ proj. LetU(0)

be obtained fromU(−1) by adding a disjoint(n + 1)-ball corresponding to each0-cell of P −M.
The mapΦ(0) is constructed by collapsing each new ball to a point and sending the point to the
corresponding0-cell of P − M. Assume thatΦ(i) : U(i) → P has been constructed in such a
way thatU(i) is an abstract regular neighborhood of a complex consisting ofM together with cells
in dimensions≤ i corresponding to the cells ofP − M in those dimensions. Assume further
thatΦ(i) is the composition of the regular neighborhood collapse with a map which takes cells to
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corresponding cells. Each(i+1)-cell ofP−M induces an attaching mapSi → U(i). If 2i+1 ≤ n,
general position allows us to move this map off of the underlying complex and approximate the

attaching map by an embeddingSi → M
(i)

. The bundle information tells us how to thicken this
embedding to an embedding of ofSi × Dn−i and attach(i + 1)-handles toU(i), formingU(i+1).
We extendΦ(i) toΦ(i+1) in the obvious manner. This process terminates with the construction of

U[n+1
2 ]. TurningU[n+1

2 ] upside down, we see thatU[n+1
2 ] is obtained fromM[n+1

2 ] by attaching

handles of index>
[
n+1
2

]
. Thus, the composite mapM[n+1

2 ] → P is (ε,
[
n
2

]
)-connected overP.

In case∂P 6= ∅, the argument is similar. We first constructU over the∂ (and, therefore, over a
collar neighborhood of the boundary) and then constructU over the interior. �

Remark 5.6.

(i) The Poincaŕe duality ofP was never used. This result is true for arbitraryP and arbitrary
mapsp : P → B. The spaceB can be an arbitrary metric space.

(ii) Notice that direct manipulation of cells and handles has replaced the usual appeals to homo-
topy theory and the Hurewicz-Namioka Theorem. This is a general technique for adapting
arguments from ordinary algebraic topology toε-controlled topology.

(iii) The construction in the proof yields somewhat more – we wind up with(M,∂M) ⊂
(P, ∂P). Whenn = 2k+ 1,M andP are equal through the k-skeleton. Whenn = 2k, ∂M
is equal to∂P through the(k− 1)-skeleton andM contains everyk-cell of P − ∂P. Since
M → P is k-connected, everyk-cell in ∂P is homotopic rel boundary to a map intoM.
By attaching a(k+ 2)-cell to this homotopy along a face, we can guarantee that for every
k-cell in ∂P−M there is a(k+ 1)-cell in P so that half of the boundary of the(k+ 1)-cell
maps homeomorphically onto thek-cell and the other half maps intoM. Alternatively,
the same effect can be obtained by adding a collar to∂P and giving it the product CW
structure.

P

M

�
P

ekek+1

6. CONTROLLED CELL-TRADING

In this section we prove a controlled version of Whitehead’s cell-trading lemma and apply it to
prove a useful controlled Hurewicz-Whitehead theorem. The operations we describe apply equally
well to cells in a finely subdivided CW complex and to handles in a finely subdivided handle
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decomposition. We will use cell terminology throughout, except for the term “handle addition” or
“handle slide.”

We will write the operation of sliding handles inB over handles inC corresponding tom : B→
C schematically as

A

f
��

g

��@
@@

@@
@@

B

k
��

⊕m // C

l��~~
~~

~~
~

D

and call itadding theB-cells toC via m. When the sequenceA → B ⊕ C → D is a part of a
cellular chain complex, this operation is realized geometrically by handle-addition by taking each
generatorx in B and sliding it acrossm(x). Changing the attaching maps of the cells this way
has the effect described above on the cellular chains. Ifm is anε−morphism, then the new chain
complex is a2ε− chain complex2ε−isomorphic to the old one.

Lemma 6.1. Let ` > 0 be given and letB be a polyhedron with the barycentric metric. Then there
existδ0 = δ0(`) andk = k(`) > 0 so that ifδ < δ0 and

(i) (X, Y) is aδ-CW pair overB.
(ii) p : (X, Y)→ B is a map so thatp andp|Y areUV1(δ)-maps.

(iii) The cellular chain complexC#(X) is decomposed as (based) modulesC(Y)# ⊕ C#(X− Y)
for which the boundary map has the form

C(Y)#

��

⊕ C#(X− Y)

��vvnnnnnnnnnnnn

C(Y)#−1 ⊕ C#−1(X− Y)

(iv) There is anδ-chain homotopys with s|C(Y)# = 0, from the identity to a morphism which
is 0 onC#(X− Y) for #< `.

thenX may be changed by a simple homotopy equivalence of sizekδ to a complexX′, so that the
cellular chainsC#(X

′) have the formC(Y)# ⊕ C#(X
′ − Y) whereC#(X

′ − Y) = 0 for # < ` and
C#(X

′ − Y) = C#(X− Y) for #≥ `+ 2.

Proof. Using theUV1(δ) condition we can trade away 0- and 1-cells ofX − Y. Now perform the
same operations as in the algebraic cell-trading lemma, but do them geometrically, using handle
additions and cell cancellations, rather than algebraically. The constantδ0 is included to guarantee
that all intersections take place in simply connected regions of the space, so that geometric inter-
sections can be manipulated to agree with algebraic intersection numbers without taking the global
fundamental group into account. There are discussions of controlled cell-trading in section 6 of
[18] and on page 84 of [5]. �
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Addendum 6.2. The argument above works forB a uniformly locally simply connected space,
except that the relation betweenδ andkδ is no longer linear.

Controlled cell-trading is a very useful tool in epsilon-delta topology. Here’s a controlled White-
head theorem whose proof relies on cell-trading. LetB be a finite polyhedron endowed with the
barycentric metric.

Proposition 6.3(Controlled Hurewicz–Whitehead). Let an integern > 0 be given. There exist
a k > 0 and aδ0 > 0 depending onn so that if

(i) δ < δ0
(ii) (X, Y) is ann−dimensional polyhedral pair with cells of sizeδ overB andp : X→ B is a

UV1(δ)-map such thatp| Y is alsoUV1(δ).
(iii) C∗(Y)→ C∗(X) is aδ-chain homotopy equivalence.

ThenY → X is akδ-homotopy equivalence.

Proof. By cell-trading, there is ak1 depending onn so that(X, Y) is k1(n)δ-homotopy equivalent
relY to a CW pair(X ′, Y) so that all cells ofX ′−Y are of dimension greater thann. Letφ : X→ X ′

andψ : X ′ → X be thek1(n)δ-homotopy equivalence and homotopy inverse.

By cellular approximation (or general position), we can takeφ to be a map fromX into Y ⊂ X ′.
This approximation loses as much as3dimXδmore in control, since cell trading may make the cells
larger. The controlled homotopy fromψ ◦ φ to the identity gives a controlled strong deformation
retraction fromX to Y, establishing the desired controlled homotopy equivalence. �

7. THE EPSILON-DELTA π-π THEOREM

Definition 7.1. If f# : A# → B# is a chain homomorphism, we defineK#(f) to be the algebraic
mapping cone off# : B# → A#. We defineK#(f) to be the dual ofK#(f). Unraveling this, we see
thatKk(f) = Ak ⊕ Bk+1, Kk(f) = Ak ⊕ Bk+1, and that up to signs in the boundary map,K#(f) is
the algebraic mapping cone off# with dimensions shifted by one.

Now, suppose that we are given a degree one mapφ : M → P from a manifold to aδ-Poincaŕe
space over a metric spaceX. We need to show that the complexK#(φ) described above haskδ-
Poincaŕe duality for somek = k(n). Following [20], Proposition 2.2, we have a controlled chain
homotopy commuting diagram

Ck(P)
φ#

//

[P]∩∼=
��

Ck(M) //

[M]∩∼=
��

Kk(φ)

Cn−k(P) Cn−k(M)
φ#oo

which splits the top row of the diagram up to chain homotopy. By lemma 2.14, this gives us a
chain-homotopy equivalence

C∗(M) ∼= K∗(φ)⊕ C∗(P).



20 STEVEN C. FERRY

Dualizing, we have
C∗(M) ∼= K∗(φ)⊕ C∗(P).

As in the classical case, these splittings preserve cap product with the fundamental class, so by
lemma 2.12 there is a controlled chain homotopy equivalence[M] ∩ : K∗(φ)→ Kn−∗(φ).

Remark 7.2. In general, there is a formal device which converts theL−theoretic constructions of
[22] and many of the bounded constructions of [11] into the epsilon-delta constructions used in
this paper. An illustrative example is Ranicki’s proof that the mapping cone of a chain mapf is
contractible if and only iff is a chain-homotopy equivalence. Ranicki’s proof holds in additive
categories. The bounded categories of [11] are additive, so the proof transfers over to the bounded
category.

The “device” is this. As objects in a new category, consider a disjoint union of bounded compact
and noncompact control spaces and consider geometricZ− modules over the entire collection.
Formn−dimensional chain complexes of bound 1 out of these objects. We’ll consider a morphism
in our new category to be a collection of morphisms over the various metric control spaces with a
uniform bound for the entire collection. This is also an additive category, so Ranicki’s argument
applies to produce bounded chain contractions for the entire collection if and only if the morphisms
are all bounded chain homotopy equivalences with a uniform bound. If we take our disjoint union
to be large enough, something like22

2c

spaces should do, then we can simultaneously solve all
problems of dimensionn with uniform initial data of size 1 over separable metric control spaces.
The point is that since the definition of “bounded” requires a uniform bound over all of the control
spaces, the proof must produce contractions with a single uniform bound, call itk = k(n). A
simple rescaling argument then shows that iff : A∗ → B∗ is anε−chain homotopy equivalence
betweenn−dimensionalε-chain complexes, then the mapping coneC(f)∗ is kε−contractible.

In this particular case, easy enough to look at Ranicki’s formula and check that it produces the
desired bounded contractions, but this “device” shows that it isn’t just luck that makes the bounds
work out.

A similar device works in the bounded world, but a bit more care must be exercised. One considers
disjoint unions of noninteracting bounded problems with uniform initial data and notes that the
algebraic proofs in [11] typically do not make use of any particular structure in the control spaces.

For more geometric results, one must be careful that all hypotheses on the control map and on the
control space hold uniformly, as well. In particular, one must be careful in applying the rescaling
argument to make sure that any uniform hypothesis on the control spaces and the maps are not lost
by rescaling. For polyhedral control spaces with the barycentric metric the important property is
local contractibility and this causes a typical theorem in the epsilon-delta world to have the form
“there is anε0 > 0 so that for all{initial data of sizeε < ε0} there is ak = k(n) so that
{conclusion of sizekε} holds.”

Because of the expository goals of this paper, we will nevertheless provide proofs of the key
algebraic results. For further details, the reader should see [11] and the cited works of Ranicki.
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At this point, the reader whose primary interest is in getting to the proof of Theorem 1.1 as
directly as possible should move forward to the next section.

The next lemma is standard, as in Browder-Levine-Livesay [2] or Siebenmann’s thesis.

Lemma 7.3. IfM is a topological manifold andH ⊂M is a handle attached to∂M, then the effect
of excising the interior ofH from (M,∂M) is to kill im(H∗(H,H ∩ ∂M)→ H∗(M,∂M)) and to
create homology in the next dimension corresponding toker(H∗(H,H ∩ ∂M)→ H∗(M,∂M)).

Theorem 7.4(Simply connected controlledπ-π theorem). If B is a finite polyhedron with the
barycentric metric, then there existk > 0 andε0 > 0 so that if(Pn, ∂P), n ≥ 6, is anε-Poincaŕe
duality space overB, ε ≤ ε0, and

(M,∂M)
φ // (P, ∂P)

p

��
B

is an ε-surgery problem with bundle information assumed as part of the notation so that both
p : P → B andp| : ∂P → B areUV1(ε), then we may do surgery to obtain a normal bordism
from (M,∂M) → (P, ∂P) to (M′, ∂M′) → (P, ∂P), where the second map is akε-homotopy
equivalence of pairs. Here,k andε0 will depend onn.

Proof. The argument is a translation intoε-terms of the boundedπ-π Theorem of [11]. We first
focus on the casen = 2`. By Theorem 5.5 we may do surgery below the middle dimension.

We obtain a surgery problemM ′ φ ′
// P so thatφ ′ is an inclusion which is the identity through

dimensioǹ .

This means that cancelling cells in the algebraic kernelK#(P, ∂P;M
′, ∂M ′) yields a complex which

is 0 through dimensioǹ − 1. Abusing the notation, we will assume that the chain complex
K#(P, ∂P;M

′, ∂M′) is 0 for # ≤ ` − 1. The generators ofK`−1(P,M) correspond tò -cells in
∂P −M. Cancelling these against the(` + 1)-cells described in Remark 5.6ii and leaving out the
primes for notational convenience, we have

K#(P, ∂P;M,∂M) = 0 #≤ `− 1

K#(P,M) = 0 #≤ `− 1.
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SinceKn−#(P, ∂P;M,∂M) is ε− chain homotopic toK#(P,M), there is an algebraicε-homotopy
σ onK#(P, ∂P;M,∂M) satisfyingσδ+δσ = 1 for #≥ `+1. Taking duals, there is an algebraic ho-
motopy s onK#(P, ∂P;M,∂M) such thats∂+∂s = 1 for #≥ `+1. SinceK# = K#(P, ∂P;M,∂M)
is finite-dimensional, the “cell trading” procedure may be applied upside down, so that theK# is
changed to

0 // K′`+2
∂ // K′`+1

∂ // K` // 0

together with a homotopy s so thats∂+ ∂s = 1 except at degreè. Again, we leave out the primes
for notational convenience. Corresponding to each generator ofK`+1 (and at a point near where
the generator sits in the control space) we introduce a pair of cancelling(` − 1)- and`-handles
and excise the interior of the(` − 1)-handle from(M,∂M), modifying the map so that the new
boundary maps to∂P. The chain complex for this modifiedM is:

0 // K`+3 // K`+2 // K`+1 // 0

⊕
K`+2

All generators ofK` ⊕ K`+1 are represented by discs. We may represent any linear combination of
these discs by an embedded disc, and these embedded discs may be assumed to be disjoint by the
usual piping argument. See p. [23], p. 39. TheUV1 condition on the interior is used here. We do
surgery on the following elements: For each generatorx of K`, we do surgery on(x−∂sx, sx) and
for each generatory of K`+2, we do surgery on(0, ∂y). We can think of the process as introducing
pairs of cancelling̀- and(`+1)-handles, performing handle additions with the`-handles, and then
excising thè -handles from(M,∂M). The resulting chain complex is:

0 // K`+2
∂ // K`+1 // K`

⊕ ⊕

K`

1−∂s

<<xxxxxxxxxxxx s // K`+1 // 0

⊕

K`+2

∂

<<xxxxxxxxxxx
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which is easily seen to be contractible, the contraction being

0 K`+2oo K`+1
soo K`

1−∂s

||xxxxxxxxxxxx
oo

⊕ ⊕

K` K`+1
∂oo

s

||xxxxxxxxxxx
0oo

⊕

K`+2

Dualizing, we see that after surgery,K#(P, ∂P;M,∂M) is ε-chain contractible. Poincaré duality
shows thatK#(P,M) isk ′ε-chain contractible. Together, these imply thek ′′ε- chain contractibility
of K#(∂P, ∂M). Using the controlled Hurewicz-Whitehead theorem now shows that∂P → ∂M

andP → M arekε-homotopy equivalences for somek depending onn. This application of the
controlled Hurewicz-Whitehead theorem, proposition 6.3, uses bothUV1 conditions. An easy
argument composing deformations in the mapping cylinder of(M,∂M)→ (P, ∂P) completes the
proof that(M,∂M)→ (P, ∂P) is a controlled homotopy equivalence.

To obtain theπ-π-theorem in the odd dimensional case we resort to a trick.

(1) Cross withS1 to get back to an even dimension and do the surgery.
(2) Go to the cyclic cover and split using the controlledM×R theorem to obtain a controlled

homotopy equivalence of the ends.

This completes the proof. �

Remark 7.5. There are a number of useful extensions of theπ−π theorem. The theorem remains
true in the presence of multiple boundary components, provided that the restrictions to the extra
components areδ−equivalences. The theorem also remains true if the “active” boundary compo-
nent is divided into two submanifolds with boundary provided that the original normal map is a
δ−equivalence over one piece and satisfies theπ−π condition over the other. In fact, the theorem
remains true if the “inert” boundary components are unrestricted objects and the restrictions to
these objects induceδ−duality at the chain level.

8. ALGEBRAIC δ-SURGERY GROUPS

In this section, we will define our algebraicδ−surgery groups over a polyhedronB. In even
dimensions, we will define these groups to be systems ofδ−Witt groups overB. Our (2k+1)-
dimensional groups overB will be the (2k+2)-dimensional groups overB × R. Thus, in this
section we will be looking at locally finite geometric chain complexes over finite polyhedra and
noncompact polyhedra of bounded geometry. Restricting ourselves to locally finite polyhedra of
this special form allows us to phrase our work in terms of epsilons and deltas, rather than working
with collections of open covers.
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In this section, we will define a sequence of abelian semigroups{Ln,B,δ(e)}. We will show that this
sequence is equivalent to a sequence of groups and homomorphisms and that this system serves as
an appropriate system of Wall groups for epsilon-delta surgery. To begin with, we will restrict our
attention to even-dimensional manifolds.

Definition 8.1. Let η = ±1. Let Iη = {0} for η = 1 and2Z for η = −1. By a special geometric
(Z−)quadraticη−form overB, we will mean a triple(A, λ, µ) whereA is a geometricZ−module
overB, λ : A×A→ Z is Z−bilinear,µ : A→ Z/Iη

(i) λ(x, y) = ηλ(y, x) x, y ∈ A
(ii) λ(x, x) = µ(x) + ηµ(x) x ∈ A

(iii) µ(x+ y) − µ(x) − µ(y) = λ(x, y) mod Iη x, y ∈ A
(iv) µ(xa) = a2µ(x) x ∈ A, a ∈ Z
(v) Aλ : A→ A∗ defined byAλ(x)(y) = λ(x, y) for x, y ∈ A is an isomorphism.8

The radius of this form is< ε if λ(x, y) = 0 whend(x, y) ≥ ε.

Definition 8.2.
(i) Let η = ±1. If A is a geometric module overB, thenonsingularη−hyperbolic quadratic

form onA ⊕ A is the formηH(A) which has matrix
(
0
η
1
0

)
corresponding to each basis

element ofA with µ(1, 0) = µ(0, 1) = 0. This simply means thatηH(A) has a standard
2×2 η-hyperbolic form (the intersection form ofS`×S` for ` even and odd) corresponding
to each basis element ofA.

(ii) Two special geometric quadraticη−forms (A, λ, µ) and (A ′, λ ′, µ ′) of radius≤ δ are
δ−isomorphic overB if there is aδ−isomorphismh : A→ A ′ overB so thatλ ′(h(x), h(y)) =
λ(x, y) for all x, y ∈ A andµ ′(h(x)) = µ(x) for all x ∈ A.

(iii) If (A, λ, µ) and (A ′, λ ′, µ ′) are geometric quadraticη−forms of radius≤ δ, we will

write (A, λ, µ)
δ
∼ (A ′, λ ′, µ ′) if there are geometric modulesF andG overB such that

(A ′, λ ′, µ ′)⊕ ηH(F) is δ−isomorphic to(A, λ, µ)⊕ ηH(G).
(iv) We defineLη,B,δ(Z) to be the abelian semigroup of geometric special quadraticη−forms

of radius≤ δ, modulo the equivalence relation generated by
δ
∼.

Here is the statement of the theorem which is our first main goal. It says that our surgery groups
tell us, at least in the pro-sense, when we can do even-dimensional surgery.

Theorem 8.3. Let ` ≥ 3 be given. Then∃ δ0 > 0 so that forδ < δ0 the following holds:
Let φ : (W2`, ∂W) → (P2`, ∂P) be a degree one normal map withp : P → B andp|∂P both
UV1(δ)−maps. Here,B is either a finite polyhedron or a polyhedron of bounded geometry. Let
η = (−1)`. Suppose, in addition, thatφ|∂W is aδ−equivalence. There is a numberk = k(n) so
that that:

8The usual simplicity condition is not needed because of the vanishing of controlledZ-Whitehead groups. We’re
getting away with a certain amount in this section because the controlled Whitehead group vanishes and we don’t have
to prove simplicity at each stage of our argument.
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(i) There is a surgery obstructionσ(φ) ∈ Lη,B,kδ(Z).
(ii) The image ofLη,B,δ(Z) in Lη,B,kδ(Z) is an abelian group.

(iii) σ(φ) is well-defined on normal bordism classes inLη,B,k2δ(Z). In particular, if φ can be
surgered to aδ−equivalence, thenσ(φ) = 0 in Lη,B,k2δ(Z).

(iv) If σ(φ) = 0 in Lη,B,k2δ(Z), thenφ can be surgered to ak3δ−equivalence.
(v) Every element ofLη,B,δ(Z) is realized on a manifold with two boundary components such

that the restriction ofφ to the first boundary component is the identity and the restriction
ofφ to the second boundary component is akδ−equivalence.

Let (P, ∂P) be a2`−dimensionalδ−Poincaŕe duality pair withUV1(δ)−mapp : P → B such that
p|∂P is alsoUV1(δ). Letφ : (N, ∂N) → (P, ∂P) be a degree one normal map such thatφ|∂N

is aδ−equivalence. We will assume that surgery has been done below the middle dimension as in
theorem 5.5.

The kernel complex is ak ′δ−Poincaŕe duality chain complex for somek ′ = k ′(n), with homol-
ogy concentrated in dimensioǹ. Trading cells from the bottom and then flipping the complex
over (algebraically) and trading down from the top shows that the kernel complex isk ′′δ−chain
homotopy equivalent to a complex of geometric modules with cells in only two dimensions,`− 1
and` or, if we choose,̀ and` + 1. This means that we have the diagram below, whereϕ andψ
are controlled chain-homotopy inverses.

0 C`−1

ψ

��

oo C`

ψ
��

∂oo 0oo 0oo

0 0oo C ′
`

ϕ

OO

oo C ′
`+1

ϕ

OO

∂oo 0oo

Since the compositionϕ ◦ψ is controlled chain homotopic to the identity, we have a diagram:

0 C`−1

id
��

oo

s

!!DD
DD

DD
DD

C`

id −φ◦ψ
��

∂oo 0oo

0 C`−1oo C`oo ∂oo 0oo

with ∂ ◦ s = id.

Unfortunately, we are in a land without kernels, so this is not enough by itself to split the sequence

0 C`−1oo
s

44 C`
∂oo 0oo

However, we do have(s ◦ ∂) ◦ (s ◦ ∂) = (s ◦ ∂), so(s ◦ ∂) : C` → C` is a controlled projection.
The K̃0−vanishing result of theorem 3.10 says that there exist a geometric projectiong andε
deformationsH1 andH2 so thatH1((s ◦ ∂)⊕ g)H2 is a geometric projection.
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If we stabilize by doing trivial surgeries and adding cancelling pairs of`− and(`−1)−handles, we
can assume thatH1 ◦ (s ◦ ∂) ◦H2 is geometric. This means, in particular, that the image ofH1 ◦ s
is geometric. By Chapman’s swindle, we can assume, after stabilization, thatH1 is a product of no
more than 13 elementary matrices.

Proposition 2.6 says that

0 C`−1oo C`
∂oo 0oo

is isomorphic to the chain complex

0 C`−1oo C`
∂H−1

1oo 0oo

which is split byH1s. Since the image ofH1s is geometric,C` splits as geometric modules
C1` ⊕ C2` with ∂H1|C1` : C1` → C`−1 a controlled isomorphism and∂H1|C2` = 0. Since the
controlled Whitehaead group vanishes, another controlled handle slide arranges that∂H1|C

1
` takes

generators to generators. At this point, we can cancel the cells inC1` against those ofC`−1.

The result is that the chain complex representing our surgery kernel has generators only in di-
mensioǹ . It follows from Poincaŕe duality and self-intersection, as in the classical case, that our
surgery kernel has the structure of a special geometricZ−quadraticη−form. This establishes part
(i) of theorem 8.3.

Next, suppose that the surgeries of part (i) have been performed and that our normal mapφ :
(N, ∂N) → (P, ∂P) is normally cobordant rel boundary to another such degree one normal map,
call it φ ′ : (N ′, ∂N) → (P, ∂P) . We can controlled surger the normal bordism rel ends and
boundary to make the map from the bordism toP× I into an`−connected map. By handle trading,
first up fromP and then down from the other end, it follows thatφ is normally bordant toφ ′ via a
bordism (with small handles, since any bordism can be subdivided) in dimensions` and`+ 1 and
no handles outside of those dimensions.

We now look at the effect on the surgery kernel of passing through these layers of cells. Starting
from the left in the diagram below, the first set of cells is trivially attached, so the algebraic effect
on the surgery kernel is to add a geometric hyperbolic form to the algebraic kernel fromP. This is
the surgery kernel at the level ofP ′′ below. On the other hand, we can begin at the right end of the
bordism, where the surgery kernel is trivial, and see that adding the(` + 1)-cells, which become
`−cells when viewed from that side, exhibitsP ′′’s surgery kernel as a hyperbolic form. Combined,
this shows the forms representing the kernels on the two ends are stably equivalent. In particular,
if φ ′ is a controlled homotopy equivalence, then the surgery kernel ofφmust be controlled stably

hyperbolic, i.e., it must be
kδ
∼ 0. Again, we havek = k(n). Moreover, if the surgery kernel of a

degree one normal map is stably controlled hyperbolic, we can proceed exactly as in [11], which
is modelled on chapter 5 of [23] to surger to akδ−equivalence for somek = k(n). Since this
step passes through geometry, we need to assume that the control space is a bounded geometry
polyhedron endowed with the barycentric metric. This establishes parts (iii) and (iv) of theorem
8.3.
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P P'P''

l-1 cells l cells

Finally, we note that the algebraic proof of Wall realization given in Theorem 5.8 of [23] works
without modification to show that every geometric special quadratic(−1)`−form can be realized
on a manifold with boundary. The statement is given below.

Theorem 8.4(Wall Realization). LetB be a polyhedron with bounded geometry and letn ≥ 6

be given. Then there existk = k(n) andδ0 such that given aUV1(δ)-mapp : Vn−1 → B and
α ∈ Ln,B,δ(Z), δ < δ0, we can represent the image ofα in Ln,B,kδ(Z) by a map withV × I as
target.

We now return to algebra. The next proposition is needed to prove part (ii) of theorem 8.3.

Proposition 8.5. If (A, λ, µ) is a geometric special quadraticη−form of radius≤ δ, then(A, λ, µ)⊕
(A,−λ,−µ)

kδ
∼ ηH(A) for somek = k(n).

Proof. We give a geometric argument, so our proof is only valid over polyhedra of bounded geome-
try. This is a deficiency of our “quick-and-dirty” geometric approach. It would be better to imitate
Wall’s algebraic proof in Lemma 5.4 of [23] and recover the result for arbitrary control spaces.
Given a geometric special quadratic(−1)`−form, we Wall realize it on a manifold(W2`;N,N ′)
with boundary. Consider the2`+1-dimensional surgery problem obtained by crossing our problem
with J = [0, 1].

If (A, λ, µ) is the surgery kernel ofW → N× I, thenW× J gives a normal bordism from the dark
region in the figure, which isW ∪N ′ × J ∪ (−W), toN × J, where we have a homeomorphism.
The surgery kernel for the dark region is(A, λ, µ) ⊕ (A,−λ,−µ). This shows that a controlled
surgery problem with kernel(A, λ, µ) ⊕ (A,−λ,−µ) can be solved and that the sum(A, λ, µ) ⊕
(A,−λ,−µ) is therefore stably hyperbolic. This completes the proof of theorem 8.3 thek in the
statement of the theorem is the maximum of thek’s appearing in the proofs of parts (i)-(v). �

By part (ii) of theorem 8.3, the system{Lη,B,δi
(Z)} of abelian semigroups is equivalent to a system

of groups. By abuse of notation, we will refer to{Lη,B,δi
(Z)} as a system of groups.

We can now set up our system{Lη,B,δi
(Z)} of even-dimensional algebraic surgery groups forB

a polyhedron of bounded geometry. We can add elements ofLη,B,δi
(Z) immediately this time,
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because direct sum does not increase the radius. Each element ofLη,B,δi
(Z) has a negative in

Lη,B,δi
(Z), but the sum is only

kδ
∼ 0, so elements don’t have inverses until we increaseδ by a factor

of k. Chapman’s swindle then shows that the image ofLη,B,δi
(Z) in Lη,B,δi−1

(Z) is an abelian
group, provided thatδi−1 is bigger thanδi by a factork = k(n) for eachi. Theorem 8.3 shows that
in even dimensions and in a “pro” sense these groups do determine when surgery to a controlled
homotopy equivalence is possible.

The next proposition shows that we can solve a controlled surgery problem overB if and only if we
can solve (problem)×R overB × R. Thus, we can always choose to work with even-dimensional
surgery problems. Note that this is the basic philosophy of [11], as expressed in the introduction
to that paper – the major difference being that here we use a product metric rather than a conelike
metric.

Proposition 8.6. Letn ≥ 6 and letp : (Pn, ∂P)→ B beUV1(δ) withB a polyhedron of bounded
geometry, and letφ : (N, ∂N)→ (P, ∂P) be a degree one normal map withφ|∂N a δ−homotopy
equivalence.

(i) There exist ak = k(n) and aδ0 = δ0(n) so that ifδ < δ0 andφ×id : N×R→ (P, ∂P)×R
is normally cobordant rel∂ to aδ−equivalence controlled overB×R, thenφ is normally
cobordant to akδ−equivalence controlled overB.

(ii) If φ is normally cobordant to aδ−equivalence, thenφ × id : N × R → (P, ∂P) × R is
normally cobordant to aδ−equivalence.

Proof. Part (i) is a direct application of the controlledM× R theorem stated in section 2 plus the
thin h-cobordism theorem. Part (ii) is clear. �

Definition 8.7. Let N = N(M) be the set of normal bordism classes of degree one normal maps
(M,∂M) → (N,∂N) which restrict to a homeomorphism on the boundary. The bordisms here
should be through maps which are fixed on the boundary. By work of Sullivan, this collection is in
one-to-one correspondence with[N, ∂N; G/TOP], makingN into a group.

Remark 8.8. There also is a 1-1 correspondence between normal bordism classes of of degree one
normal mapsW → M × R and normal bordism classes of degree one normal mapsN → M.
This means that the groupsL(−1)`+1,B×R,δ(Z) give the obstructions for(2` + 1)− δ−controlled
dimensional surgery in the same “pro-” sense as the even-dimensional groupsLη,B,δ(Z) which we
have already discussed.

The map in one direction is the product and the map in the other direction is given by transversality.
To see that the compositionN(M × R) → N(M) → N(M × R) is the identity on bordism, note
that we can arrange for the composition to be the identity onB×{t0} for somet0 and then enlarge a
collar to make the composition equal to the identity everywhere. Again, this is the basic approach
of [11].

Notation 8.9. By Ln,B,δ(Z), we will meanL(−1)`,B,δ(Z) for n = 2` even andL(−1)`+1,B×R,δ(Z) for
n = 2`+ 1 odd.
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9. STABILITY OF CONTROLLED WALL SYSTEMS FORn LARGE

Definition 9.1. A system consisting of groupsA1 A2oo A3oo . . .oo is stable if it is
equivalent to a sequence of groups and isomorphisms.

Our goal in this section is to prove the stability of the sequence

Lq,B,δ1
(Z) Lq,B,δ2

(Z)oo Lq,B,δ3
(Z)oo . . .oo

for all q whenever{δi} is a sequence of positive real numbers converging monotonically to zero .
We will accomplish this by first proving the result forq ≥ 2dimB + 2 and then noting that the
result for arbitraryq follows from the periodicity of the Wall groups.

Let N = N(B) be a regular neighborhood ofB in Rq, q ≥ 2dimB + 2, and letN be the set
of normal bordism classes of degree one normal maps(M,∂M) → (N,∂N) which restrict to a
homeomorphism on the boundary. By work of Sullivan, this collection is in one-to-one correspon-
dence with[N, ∂N; G/TOP], makingN into a group.

Taking rel boundaryδ−surgery obstructions gives us the commuting diagram below. In this special
case,N = N(B) has the formN ′ × [0, 1], whereN ′ is a regular neighborhood ofB in Rq−1.
Addition in N can be defined by gluing elements together along pieces of the boundary. The
vertical maps in this diagram are homomorphisms, see [23], p. 111 for details.

N

σ
��

N
idoo

σ
��

N

σ
��

idoo . . .oo

Lq,B,δ1
(Z) Lq,B,δ2

(Z)oo Lq,B,δ3
(Z)oo . . .oo

We will show that the vertical maps are eventual isomorphisms. We begin with the argument for
surjectivity. Consider an elementα of Ln,B,δ2

(Z). By a rel boundary adaptation of Wall realization,
this element is realized by a degree one normal mapφ : (W,∂W,N ′,N ′′) → (N ′ × I, ∂(N ′ ×
I),N ′ × 0,N ′ × 1) whereN ′ is a regular neighborhood ofB in Rq−1 as before andφ restricts to
homeomorphisms overN ′ × 0 ∪ ∂N ′ × I and akδ−equivalence overB onN ′′, wherek = k(n).
In order to show thatφ is in the image ofN, we need to show thatφ is normally bordant toφ ′,
whereφ ′ is a homeomorphism on the entire boundary.

The restriction ofφ toN ′′ is a homeomorphism on∂N ′′. In order to show thatφ is in the image
of N, we apply the alpha approximation theorem (theorem 1.5 of the introduction) together with a
variation on the classical Alexander trick.
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Here is our Alexander trick. Letp be the mapping cylinder projectionp : N" → B. The homo-
topy equivalenceφ is controlled over this map. Now, repeat the boundary homeomorphism over a
boundary collar inN ′′, rescaling so that the image of this homeomorphism contains all but a very
small regular neighborhood ofB in N ′ × 1. After this modification,φ|N ′′ becomes a controlled
homotopy equivalence overN ′× 1, not just overB, and we can use the alpha approximation theo-
rem to find a small homotopy fromφ|N ′′ to a homeomorphism. This means that ifkδ2 is chosen
to be so small that alpha approximation works onN ′ to produce a homeomorphismδ1−homotopic
to the originalφ, then the image ofα in Lq,B,δ1

(Z) is in the image ofN. This proves eventual
surjectivity and we pass to a subsequence so that “surjectivity” takes place in the(i − 1)st place
for eachi.

Now for the proof of injectivity. Consider an elementφ ∈ N whose image in, say,Lq,B,δ3
(Z) is

trivial. This means thatφ : M→ N with φ a homeomorphism over∂N and thatφ is bordant as a
restrictedδ3−object to aδ3−equivalence. We denote this bordism byΦ : P → N× I. Our goal is
to show thatφ is equivalent inN to a homeomorphism.

The restriction ofΦ to ∂P −
◦
M gives aδ3−equivalence to∂(N × I) −

◦
N× 1 which is a homeo-

morphism on the boundary. Reparameterizing, this gives a bordism fromφ to aδ3−equivalence
over the shaded area . Using the same Alexander trick, the restriction ofΦ to the shaded area is
ε−homotopic rel boundary to a homeomorphism, whereε is related toδ3 as in the alpha approxi-
mation theorem. This shows that the element[φ] is trivial in N and that the sequence{Lq,B,δi

(Z)}
is equivalent to the sequenceN← N← . . ..

The groupN is isomorphic to[N,∂N; G/TOP], which is in turn isomorphic toHq(N,G/TOP),
Hq(B,G/TOP), andHq(B,L(e)). Thus, we have shown:

Proposition 9.2. GivenB andq ≥ 2dimB+2, we can choose a sequenceδi of positive real num-
bers monotonically approaching zero so that the image ofLq,B,δi

(Z) in Lq,B,δi−1
(Z) is isomorphic
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toHq(B,L(Z)) for all i. By periodicity ofLq,B,δi
(Z) andHq(N,G/TOP), this establishes the same

result for allq

Remark 9.3. The proof above is closely related to the proof of the surgery exact sequence. The
point of our Alexander trick is that it allows us to use the alpha approximation theorem to show

that the rel boundary structure setSδ

(
N
��
B

)
is equivalent to a trivial system and then to use this

fact to prove that the normal maps are isomorphic to the surgery groups as systems. Rather than
set up a structure set which is going to be zero (in this specific instance, anyway) we have chosen
to delay setting up the official surgery sequence and make our argument on the level of individual
representatives of elements of the structure-set-to-be.

10. STABILITY OF CONTROLLED STRUCTURE SETS

Next, we want to show how to use stability of the controlledL−groups to prove a similar stability
result for manifold structures. We can always replace aUV1(δ)−mapp : Mn → B,M a manifold
andn ≥ 5, by aUV1-map. Here is a theorem from [14] which is a modified version of a theorem
of Bestvina [1].

Theorem 10.1.

(i) Let a finite polyhedronB andn ≥ 5 be given. Then givenε > 0 there is aδ > 0 so that if
p ′ : Nn → B is aUV1(δ)-map from a compact manifold toB, thenp ′ is ε-homotopic to a
UV1-mapp : N→ B.

(ii) LetN be a compact manifold and suppose that aUV1-mapq : N→ B onto a polyhedron
B is given. Then for eachε > 0 there is aδ = δ(ε, q) > 0 such that for each map
f : M → N of any compact PL manifoldM with dimM ≥ 5 which is1-connected with
δ-control with respect toq, there is aUV1-mapg : M → N which isε-close tof as
measured inB.

Here is the long-awaited stabilty theorem for structures.

Theorem 10.2.Letn ≥ 5. If Mn is a closedn−manifold andp : M → B is aUV1−map, then
for everyε > 0 there is aδ > 0 so that for anyµ > 0, if φ : N→M is aδ−homotopy equivalence
overB then there is anε−homotopy overB fromφ to aµ−homotopy equivalenceψ : N→M. A
similar result holds for rel boundary structures ifM is a manifold with bondary.

In other words, if we are willing to allow a homotopy of fixed size, then if we start with a suffi-
ciently well-controlled homotopy equivalence we can improve the control of that homotopy equiv-
alence by an arbitrary amount. This is the “squeezing theorem” for structures.9

9Note that we donot claim to have constructed a fixed map which is aµ−equivalence for allµ.
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Proof. As above, the proof consists of working our way through the not-yet-existent surgery exact
sequence. We start with the systems{Lq,B,δi

(Z)} reindexed so that we have commutative diagrams:

N(M)

σ

��

N(M)
idoo

σ

��

N(M)

σ

��

idoo . . .oo

Ln,B,δ1
(Z) Ln,B,δ2

(Z)
γ2

vvnnnnnnnnnnnn
oo Ln,B,δ3

(Z)
γ3

vvnnnnnnnnnnnn
oo . . .oo

Hn(B; L(Z))

OO

Hn(B; L(Z))oo

OO

Hn(B; L(Z))oo

OO

. . .oo

and

N(M× I)
σ

��

N(M× I)idoo

σ

��

N(M× I)
σ

��

idoo . . .oo

Ln+1,B,δ1
(Z) Ln+1,B,δ2

(Z)
γ2

vvlllllllllllll
oo Ln+1,B,δ3

(Z)
γ3

vvlllllllllllll
oo . . .oo

Hn+1(B; L(Z))

OO

Hn+1(B; L(Z))oo

OO

Hn+1(B; L(Z))oo

OO

. . .oo

Assume, further, that theδi’s have been chosen so that forq = n, n+ 1

(i) Degree one normal mapsφ : N→M with vanishing surgery obstruction inLq,B,δi
(Z) are

normally bordant toδi−1−equivalences.
(ii) Eachα ∈ Lq,B,δi

(Z) can be Wall-realized by a normal bordism to anδi−1−equivalence
overB.

(iii) Eachδi−thin h-cobordism overB has aδi−1−product structure overB.
(iv) δ0 = ε andδ4 = µ.

We takeδ = δ3. Suppose that we are given aδ3−controlled homotopy equivalenceφ : N → M.
The surgery obstruction of[φ] vanishes inLn,B,δ3

(Z), so an easy diagram chase shows that the
surgery obstruction of[φ] vanishes inLn,B,δi

(Z) for all i ≥ 3, so[φ] is normally bordant to some
δi−equivalence for eachi. Choose aδ5−equivalenceφ5 : N5 → M normally bordant toφ. The
normal bordismΦ5 : W5 → M × I has a surgery obstructionα in Ln,B,δ3

(Z). Wall realize an
elementᾱ ∈ Ln,B,δ5

(Z) whose image inLn,B,δ2
(Z) is the same as the image of−α starting with

φ5 : N5 →M to get a normal bordismΦ : W →M× I fromφ5 to aδ4−homotopy equivalence
φ ′ : N ′ →M.
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5 5

5

5

Φ Φ-equiv3δ -equiv4δ

The obstruction to surgeringW5 ∪W to a controlledh−cobordism dies inLn,B,δ2
(Z), so we can

surger the bordism rel boundary to aδ1-h-cobordism which has aδ0−product structure. This
provides the desiredε−homotopy fromφ to aδ4−equivalenceφ ′ ◦ h, whereh : N → N ′ is the
homeomorphism coming from the product structure. �

We now repeat our definition ofδ−controlled structure sets.

Definition 10.3. Let M be a closed manifold and letp : M → B be aUV1−map. We define

S ′
δ

(
M

��
B

)
to consist of equivalence classes ofδ−homotopy equivalencesφ : N → M overB

modulo the relation thatφ : N→M andφ ′ : N ′ →M are equivalent if there is a homeomorphism

h : N→ N ′ so thatφ is δ−homotopic toφ ′ ◦ h overB. We declareSδ

(
M

��
B

)
to be the image of

S ′
δi

(
M

��
B

)
in S ′

δi−1

(
M

��
B

)
.

Given stability of the system of surgery groups, proposition 10.2 shows that the system

Sδi

(
M

��
B

)
is stable as a sequence of sets, that is, it is equivalent to a sequence of bijections. The proposition
shows immediately that the sequence is equivalent to a sequence of surjections and the relative
version of the proposition shows that the sequence is equivalent to a system of injections. This
completes our proof of stability in dimensions≥ 5.

Remark 10.4. As usual, all of the above extends to the bounded geometry case. The most interest-
ing extra step in this case is that we need to find a bounded geometry thickening of a polyhedron of
bounded geometry. For this, we note that a polyhedronB of complexity` immerses in a simplex
of dimensioǹ +1.We obtain the required thickening ofB by pulling back a regular neighborhood
of ∆`+1 in R`+1. The rest of the argument goes through as above.
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11. THE SURGERY SEQUENCE, FUNCTORIALITY, AND EVERYTHING ELSE

If any neophytes have made it this far, here is the proof of the surgery exact sequence, which we
recall below:

. . . Hn+1(B; L) //___ Sε
(M↓
B

)
// N(M) // Hn(B; L)

If we start with a normal map, we can take its controlled surgery obstruction. If that dies, then
it can be surgered to anε−equivalence for anyε > 0. Thus, it comes from a controlled struc-
ture. Conversely, if the normal map comes from a controlled structure, then its controlled surgery
obstruction dies.

Starting with a controlled structure, we can consider it as a normal map and ask if it is normally bor-
dant to a homeomorphism. If it is, there is a controlled relative surgery obstruction inHn+1(B; L)
to surgering the normal bordism to a controlled product. If this obstruction dies, then we can
surger to a controlled product, which shows that the original structure woas controlled homotopic
to a homeomorphism.

Wall realization gives an action ofHn+1(B; L) on the controlled structures: start with a controlled
homotopy equivalencef : N → M and Wall realize an elementα ∈ Hn+1(B; L), obtaining a
bordism(Wα, N, N

′). The controlled equivalenceN ′ →M is the result of acting onf by α. If a
controlled structure goes to 0 in the normal maps, then it is obtained by acting on id: M→M by
someα.

If we have aUV1-mapp : B → B ′, then the entire surgery sequence controlled overB maps to
the surgery sequence controlled overB ′. This also works if the map isUV1(δ) for δ ≤ δ0 with δ0
depending onB ′ andp. If p happens to be Lipschitz with constant 1, thenδ0 only depends onB ′.
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