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Introduction

Wall's �niteness obstruction is an algebraic K-theory invariant which decides if
a �nitely dominated space is homotopy equivalent to a �nite CW complex. The
object of this survey is to describe the invariant and some of its many applications
to the classi�cation of manifolds. The book of Varadarajan [27] and the survey
of Mislin [17] deal with the �niteness obstruction from a more homotopy theoretic
point of view.

1. Finite domination

A space is �nitely dominated if it is a homotopy retract of a �nite complex. More
formally:

De�nition 1.1. A topological space X is �nitely dominated if there exists a �nite
CW complex K with maps d : K ! X, s : X ! K and a homotopy d � s ' idX :
X ! X.

Example 1.2. (i) A compact ANR X is �nitely dominated (Borsuk [2]). In fact,
a �nite dimensional ANR X can be embedded in RN (N large), and X is a retract
of an open neighbourhood U � RN { there exist a retraction r : U ! X and a com-
pact polyhedron K � U such that X � K, so that the restriction d = rj : K ! X
and the inclusion s : X ! K are such that d � s = idX : X ! X .
(ii) A compact topological manifold is a compact ANR, and hence �nitely domi-
nated.

The problem of deciding if a compact ANR is homotopy equivalent to a �-
nite CW complex was �rst formulated by Borsuk [3]. (The problem was solved
a�rmatively for manifolds by Kirby and Siebenmann in 1969, and in general by
West in 1974 { see section 8 below.) The problem of deciding if a �nitely domi-
nated space is homotopy equivalent to a �nite CW complex was �rst formulated by
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J.H.C.Whitehead. Milnor [16] remarked: \It would be interesting to ask if every
space which is dominated by a �nite complex actually has the homotopy type of a
�nite complex. This is true in the simply connected case, but seems like a di�cult
problem in general."

Here is a useful recognition criterion for recognizing �nite domination:

Proposition 1.3. A CW complex X is �nitely dominated if and only if there is a
homotopy ht : X ! X such that h0 = id and h1(X) has compact closure.

Proof. If d : K ! X is a �nite domination with right inverse s, let ht be a homotopy
from the identity to d � s. Since h1(X) � d(K), the closure of h1(X) is compact in
X. Conversely, if the closure of h1(X) is compact inX, letK be a �nite subcomplex
of X containing h1(X). Setting d equal to the inclusion K ! X and s equal to
h1 : X ! K shows that X is �nitely dominated.

It is possible to relate �nitely dominated spaces, �nitely dominated CW com-
plexes and spaces of the homotopy type of CW complexes, as follows.

Proposition 1.4. (i) A �nitely dominated topological space X is homotopy equiv-
alent to a countable CW complex.
(ii) If X is homotopy dominated by a �nite k-dimensional CW complex, then X is
homotopy equivalent to a countable (k + 1)-dimensional CW complex.

Proof. The key result is the trick of Mather [15], which shows that if d : K ! X,
s : X ! K are maps such that d�s ' idX : X ! X then X is homotopy equivalent
to the mapping telescope of s � d : K ! K. This requires the calculus of mapping
cylinder, which we now recall.
By de�nition, the mapping cylinder of a map f : K ! L is the identi�cation space

M (f) = (K � [0; 1][L)=((x; 1) ' f(x)) :

We shall use three general facts about mapping cylinders:

� If f : K ! L and g : L ! M are maps and k : K ! M is homotopic to
g � f , the mapping cylinder M (k) is homotopy equivalent rel K [M to the
concatenation of the mapping cylinders M (f) and M (g) rel K [M .

� If f; g : K ! L with f � g, then the mapping cylinder of f is homotopy
equivalent to the mapping cylinder of g rel K [ L.

� Every mapping cylinder is homotopy equivalent to its base rel the base.

The mapping telescope of a map � : K ! K is the countable union
1[
i=0

M (�) =
1[
i=0

K � [i; i+ 1]=f(x; i) ' (�(x); i+ 1)g :

For any maps d : K ! X, s : X ! K we have
1[
i=0

M (d � s) = X � I [
1[
i=0

M (s � d)

with
S1
i=0M (s � d) a deformation retract, so that

1[
i=0

M (d � s) '
1[
i=0

M (s � d) :

To see why this holds, note that
S1
i=0M (d�s) is homotopy equivalent to an in�nite

concatenation of alternating M (d)'s and M (s)'s which can also be thought of as



A SURVEY OF WALL'S FINITENESS OBSTRUCTION 3

an in�nite concatenation of M (s)'s and M (d)'s. Essentially, we're reassociating an
in�nite product. Here is a picture of this part of the construction.

. . .

. . .

. . .

(i) If d : K ! X, s : X ! K are such that d � s ' idX : X ! X there is de�ned a
homotopy idempotent of a �nite CW complex

� = s � d : K ! K ;

with � � � ' � : K ! K. We have homotopy equivalences

X ' X � [0;1) '
1[
i=0

M (idX) '
1[
i=0

M (d � s) '
1[
i=0

M (s � d) =
1[
i=0

M (�):

The mapping telescope
S
1

i=0M (�) is a countable CW complex.
(ii) As for (i), but with K k-dimensional.

This proposition is comforting because it shows that the �niteness problem for
arbitrary topological spaces reduces to the �niteness problem for CW complexes.
One useful consequence of this is that we can use the usual machinery of algebraic
topology, including the Hurewicz and Whitehead theorems, to detect homotopy
equivalences.

Proposition 1.5. (Mather [15]) A topological space X is �nitely dominated if and
only if X � S1 is homotopy equivalent to a �nite CW complex.

Proof. The mapping torus of a map � : K ! K is de�ned (as usual) by

T (�) = (K � [0; 1])=f(x; 0)' (�(x); 1)g :

For any maps d : K ! X, s : X ! K there is de�ned a homotopy equivalence

T (d � s : X ! X)! T (s � d : K ! K) ; (x; t) 7! (s(x); t) :

If d � s ' idX : X ! X and K is a �nite CW complex we thus have homotopy
equivalences

X � S1 ' T (idX) ' T (s � d)
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with T (s � d) a �nite CW complex.
Conversely, if X � S1 is homotopy equivalent to a �nite CW complex K then the
maps

d : K ' X � S1
proj:
�! X ;

s : X
incl:
�! X � S1 ' K

are such that d � s ' idX , and X is dominated by K.

2. The projective class group K0

Let � be a ring.

De�nition 2.1. A �-module P is �nitely generated projective if it is a direct sum-
mand of a �nitely generated free �-module �n, with P � Q = �n for some direct
complement Q.

A �-module P is �nitely generated projective if and only if P is isomorphic to
im(p) for some projection p = p2 : �n ! �n.

De�nition 2.2. The projective class group K0(�) is the Grothendieck group of
stable isomorphism classes of �nitely generated projective �-modules.

The reduced projective class group eK0(�) is the quotient of K0(�) by the subgroup
generated by formal di�erences [�m]� [�n] of �nitely generated free modules.

Thus an element of eK0(�) is an equivalence class [P ] of �nitely generated pro-
jective �-modules, with [P1] = [P2] if and only if there are �nitely generated free
�-modules F1 and F2 so that P1 � F1 is isomorphic to P2 � F2. In particular, [P ]
is trivial if and only if P is stably free, that is, if there is a �nitely generated free
module F so that P � F is free.

Example 2.3. There are many groups � for whicheK0(Z[�]) = 0 ;

including virtually polycyclic groups, a class which includes free and free abelian
groups.

At present, no example is known of a torsion-free in�nite group � with eK0(Z[�]) 6=

0. Indeed, Hsiang has conjectured that eK0(Z[�]) = 0 for any torsion-free group �.
On the other hand:

Example 2.4. (i) There are many �nite groups � for whicheK0(Z[�]) 6= 0 ;

including the cyclic group Z23.
(ii) The reduced projective class group of the quaternion group

Q(8) = f�1;�i;�j;�kg

is eK0(Z[Q(8)]) = Z2 ;

generated by the �nitely generated projective Z[Q(8)]-module

P = im

��
1� 8N 21N
�3N 8N

�
: Z[Q(8)]�Z[Q(8)]!Z[Q(8)]�Z[Q(8)]

�
with N =

P
g2Q(8)

g.
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We refer to Oliver [18] for a survey of the computations of eK0(Z[�]) for �nite
groups �.

3. The finiteness obstruction

Here is the statement of Wall's theorem.

Theorem 3.1. ([28]) (i) A �nitely dominated space X has a �niteness obstruction

�(X) 2 eK0(Z[�1(X)])

such that �(X) = 0 if and only if X is homotopy equivalent to a �nite CW complex.

(ii) If � is a �nitely presented group then every element � 2 eK0(Z[�]) is the �nite-
ness obstruction of a �nitely dominated CW complex X with �(X) = �, �1(X) = �.

Outline of proof (i) Here is an extremely condensed sketch of Wall's argument from
[28]. If d : K ! X is a �nite domination with X a CW complex, we can assume
that d is an inclusion by replacing X, if necessary, by the mapping cylinder of d.
For each ` � 2, we then have a split short exact sequence of abelian groups

0! �`+1(X;K)! �`(K)! �`(X)! 0 :

Wall gives a special argument to show that d can be taken to induce an isomor-
phism on �1 and then shows that �`+1(X;K) is �nitely generated as a module over
Z[�1(X)], provided that �q(X;K) = 0 for q � `; ` � 2. This allows him to attach

` + 1-cells to form a complex K � K and a map d : K ! X extending d so that
d induces isomorphisms on homotopy groups through dimension `. Since d is a
domination with the same right inverse s, this process can be repeated. In case
` � dim(K), Wall shows that �`+1(X;K) is a �nitely generated projective module
over Z[�1(X)]. If �`+1(X;K) is free (or even stably free) we can attach ` + 1-cells
to kill �`+1(X;K) without creating new problems in higher dimensions. The result
is that d is a homotopy equivalence from K to X. If this module is not stably free,
we are stuck and the �niteness obstruction is de�ned to be

�(X) = (�1)`+1[�`+1(X;K)] 2 eK0(Z[�1(X)]) :

(ii) Given a �nite CW complex K and a nontrivial � 2 eK0(Z[�1(K)]), here is one
way to construct aCW complex with �niteness obstruction ��: let � be represented
by a �nitely generated projective module P and let F = P � Q be free of rank n.
Let A be the matrix of the projection p : F ! P ! F with respect to a standard
basis for F . Now let

L = K _
n_
i=1

S`i :

There is a split short exact sequence

0 // �`(K)
i�

// �`(L)
r�

oo

// �`(L;K) // 0;

where r : L! K is the retraction which sends the S`'s to the basepoint. Since

�`(L;K) �= �`(~L; ~K) �= H`(~L; ~K) �= F;
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we can de�ne � : L! L so that �jK = id and so that �� : �`(L) ! �`(L) has the
matrix �

id 0
0 A

�

with respect to the direct sum decomposition �`(L) �= �`(K) � F . Since A2 = A,
it is easy to check that � is homotopy idempotent, i.e. that � � � � � rel K.

Let X be the in�nite direct mapping telescope of � pictured below.

Let d : L ! X be the inclusion of L into the top level of the leftmost mapping
cylinder of X and de�ne s0 : X ! L by setting s0 equal to � on each copy of L
and using the homotopies � � � � � to extend over the rest of X. One sees easily
that d � s0 induces the identity on the homotopy groups of X and is therefore a
homotopy equivalence. If � is a homotopy inverse for d � s0, we have d � s � id,
where s = s0 � �. This means the d is a �nite domination with right inverse s. It
turns out that �(X) = (�1)`+1[P ].

In particular, if � is a �nitely presented group such that eK0(Z[�]) 6= 0 then there
exists a �nitely dominated CW complex X with �1(X) = � and such that X is not
homotopy equivalent to a �nite CW complex. See Ferry [8] for the construction
of �nitely dominated compact metric spaces (which are not ANR's, still less CW
complexes) which are not homotopy equivalent to a �nite CW complex.

Wall [29] obtained the �niteness obstruction of a �nitely dominatedCW complex

from the cellular chain complex C�( eX) of the universal cover eX of X, proving that

C�( eX) is chain homotopy equivalent to a �nite chain complex of �nitely generated
projective modules over Z[�1(X)]

P : � � � ! 0! Pn
@
! Pn�1

@
! � � �

@
! P1

@
! P0 :

De�nition 3.2. The projective class of X is the projective class of P

[X] =
1X
i=0

(�1)i[Pi] 2 K0(Z[�1(X)]) :

The projective class is a well-de�ned chain-homotopy invariant of C�( eX), with
components

[X] = (�(X); �(X)) 2 K0(Z[�1(X)]) = K0(Z)� eK0(Z[�1(X)]) ;

with

�(X) =
1X
i=0

(�1)i# of i-cells 2 K0(Z) = Z

the Euler characteristic of X, and �(X) the �niteness obstruction.
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The instant �niteness obstruction (Ranicki [19]) of a �nitely dominated CW
complex X is a �nitely generated projective Z[�1(X)]-module P representing the
�niteness obstruction

�(X) = [P ] 2 eK0(Z[�1(X)])

which is obtained directly from a �nite domination d : K ! X, s : X ! K,
a homotopy h : d � s ' idX : X ! X and the cellular Z[�1(X)]-module chain

complex C( eX) of the universal cover eX of X, namely

P = im(p :Z[�1(X)]n !Z[�1(X)]n)

with

p =

0
BBB@

s � d �@ 0 : : :
�s � h � d 1� s � d @ : : :
�s � h2 � d s � h � d s � d : : :

...
...

...
. . .

1
CCCA : Z[�1(X)]n =

1X
i=0

C( eX)i !
1X
i=0

C( eX)i

a projection of a �nitely generated freeZ[�1(X)]-module of rank n =
1P
i=0

# of i-cells.

The �niteness obstruction has many of the usual properties of the Euler charac-
teristic �. For instance, if X is the union of �nitely dominated complexes X1 and
X2 along a common �nitely dominated subcomplex X0, then

�(X) = i1��(X1) + i2��(X2)� i0��(X0):

This is the sum theorem for �niteness obstructions, which was originally proven in
Siebenmann's thesis [25].

The projective class of the product X � Y of �nitely dominated CW complexes
X;Y is given by

[X � Y ] = [X]
 [Y ] 2 K0(Z[�1(X � Y )]) ;

leading to the product formula of Gersten [10] for the �niteness obstruction

�(X � Y ) = �(X) 
 �(Y ) + �(X) 
 �(Y ) + �(X) 
 �(Y ) 2 eK0(Z[�1(X � Y )]) :

In particular, �(X � S1) = 0, giving an algebraic proof of the result (1.5) that
X � S1 is homotopy equivalent to a �nite CW complex.

4. The topological space-form problem

Another problem in which a �niteness obstruction arises is the topological space-
form problem. This is the problem of determining which groups can act freely and
properly discontinuously on Sn for some n.

Swan, [26], solved a homotopy version of this problem by proving that a �nite
group G of order n which has periodic cohomology of period q acts freely on a �nite
complex of dimension dq � 1 which is homotopy equivalent to a (dq � 1)-sphere.
Here, d is the greatest common divisor of n and �(n), � being Euler's �-function.

One might ask whether such a G can act on Sq�1, but this re�nement leads to
a �niteness obstruction. It follows from Swan's argument that G acts freely on a
countable q�1-dimensional complexX homotopy equivalent to Sq�1 and that X=G
is �nitely dominated. The �niteness obstruction of X=G need not be zero, however,
so not every group with cohomology of period q can act freely on a �nite complex
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homotopy equivalent to Sq�1. Algebraically, the point is that �nite groups with
q-periodic cohomology have q-periodic resolutions by �nitely generated projective
modules but need not have q-periodic resolutions by �nitely generated free modules.

After a great deal of work involving both the �niteness obstruction and surgery
theory, see Madsen, Thomas and Wall [14], it turned out that a group G acts freely
on Sn for some n if and only if all of its subgroups of order p2 and 2p are cyclic (the
condition of Milnor). This is in contrast to the linear case. A group G acts linearly
on Sn for some n if and only if all subgroups of order pq, p and q not necessarily
distinct primes, are cyclic. See Davis and Milgram [6] for a book-length treatment,
and Weinberger [30], p. 110, for a brief discussion.

5. The Siebenmann end obstruction

The most signi�cant application of the �niteness obstruction to the topology of
manifolds is via the end obstruction.

An end � of an open n-dimensional manifoldW is tame if there exists a sequence
W � U1 � U2 � : : : of �nitely dominated neighbourhoods of � with\

i

Ui = ; ; �1(U1) �= �1(U2) �= � � � �= �1(�) :

The end is collared if there exists a neighbourhood of the type M � [0;1) for some
closed (n� 1)-dimensional manifoldM , i.e. if � is the interior of a compacti�cation
W [M with boundary component M .

Theorem 5.1. (Siebenmann [25]) A tame end � of an open n-dimensional manifold
W has an end obstruction

�(�) = lim
�!i �(Ui) 2 eK0(Z[�1(�)])

such that �(�) = 0 if (and for n � 6 only if) � can be collared.

Novikov's 1965 proof of the topological invariance of the rational Pontrjagin
classes made use of the end obstruction in the unobstructed case when � is a free
abelian group. The subsequent work of Lashof, Rothenberg, Casson, Sullivan et.
al. ([23]) on the Hauptvermutung for high-dimensional manifolds made overt use
of the end obstruction.

See sections 8 and 9 below for a brief account of the applications of the end
obstruction to splitting theorems and triangulation of high-dimensional manifolds.

See Hughes and Ranicki [11] for a book-length treatment of ends and the end
obstruction.

6. Connections with Whitehead torsion

The �niteness obstruction deals with the existence of a �nite CW complexK in a
homotopy type, while Whitehead torsion deals with the uniqueness ofK. There are
many deep connections between the �niteness obstruction and Whitehead torsion,
which on the purely algebraic level correspond to the connections between the

algebraic K-groups K0, K1 (or rather eK0, Wh)
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The splitting theorem of Bass, Heller and Swan [1]

Wh(� �Z) = Wh(�) � eK0(Z[�])�gNil0(Z[�])�gNil0(Z[�])

involves a split injection

eK0(Z[�])!Wh(� �Z) ; [P ]! � (z : P [z; z�1]! P [z; z�1]) :

If X is a �nitely dominated space then 1.5 gives a homotopy equivalence � :
X � S1 ! K to a �nite CW complex K, uniquely up to simple homotopy equiva-

lence. Ferry [9] identi�ed the �niteness obstruction �(X) 2 eK0(Z[�1(X)]) with the
Whitehead torsion � (f) 2 Wh(� �Z) of the composite self homotopy equivalence
of a �nite CW complex

f : K
��1

�! X � S1
idX��1�! X � S1

�
�! K :

In Ranicki [20],[21] it was shown that �(X) 7! � (�) corresponds to the split injection

eK0(Z[�])!Wh(� �Z) ; [P ]! � (�z : P [z; z�1]! P [z; z�1])

which is di�erent from the original split injection of [1].

7. The splitting obstruction

The �niteness obstruction arises in most classi�cation problems in high-dimen-
sional topology. Loosely speaking, proving that two manifolds are homeomorphic
involves decomposing them into homeomorphic pieces. Finiteness obstructions arise
as obstructions to splitting a manifold into pieces. The nonsimply-connected version
of Browder's M �RTheorem is a case in point. In [4], Browder proved that ifMn,
n � 6, is a PL manifold without boundary, f : M ! K � R1 is a (PL) proper
homotopy equivalence, and K is a simply-connected �nite complex, then M is
homeomorphic to N �R1 for some closed manifold N homotopy equivalent to K.

In case K is connected but not simply-connected, a �niteness obstruction arises.
Here is a quick sketch of the argument: It is not di�cult to show that M is 2-
ended. The proper homotopy equivalence f : M ! K � R1 gives us a proper
PL map p : M ! R. If c 2 R is not the image of any vertex, then p�1(c) is a
bicollared PL submanifold of M which separates the ends. Connected summing
components along arcs allows us to assume that P0 = p�1(c) is connected and a
disk-trading argument similar to one in Browder's paper allows us to assume that
�1P0 ! �1M is an isomorphism. See Siebenmann [25] for details. An application
of the recognition criterion discussed in the third paragraph of this paper shows
that the two components of M �P0, which we denote by RHS(M ) and LHS(M ),
respectively, are �nitely dominated. By the sum theorem,

�(RHS(M )) + �(LHS(M )) = 0:
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It turns out that the vanishing of �(RHS(M )) = ��(LHS(M )) is necessary and
su�cient forM to be homeomorphic to a product N�R, provided that dim(M ) � 6.
This is one of the main results of [25].

It is possible to realize the �niteness obstruction � on an n-dimensional man-
ifold Mn proper homotopy equivalent to K � R for some �nite K whenever � +
(�1)n�1�� = 0 and n � 6. If we only require that M be properly dominated by
someK�R, then any �niteness obstruction � can be realized. A similar obstruction
arises in the problem of determining whether a map p :Mn ! S1 is homotopic to
the projection map of a �ber bundle (Farrell [7]).

The geometric splitting of two-ended open manifolds into right and left sides is
closely related to the proof of the algebraic splitting theorem of Bass, Heller and
Swan [1] for Wh(� �Z) { see Ranicki [22].

8. The triangulation of manifolds

The �niteness obstruction arises in connection with another of the fundamen-
tal problems of topology: Is every compact topological manifold without bound-
ary homeomorphic to a �nite polyhedron? We will examine this problem in much
greater detail.

The triangulation problem was solved a�rmatively for two-dimensional man-
ifolds by Rado in 1924 and for three-dimensional manifolds by Moise in 1952.
Higher dimensions proved less tractable,1 a circumstance which encouraged the
formulation of weaker questions such as the following homotopy-triangulation prob-
lem: Does every compact topological manifold have the homotopy type of some �nite
polyhedron?

The �rst solution of this problem came as a corollary to Kirby and Siebenmann's
theory of PL triangulations of high-dimensional topological manifolds. By a theo-
rem of Hirsch, every topological manifoldMn has a well-de�ned stable topological
normal disk bundle. The total space of this bundle is a closed neighborhood ofM in
some high-dimensional euclidean space. In [12], Kirby and Siebenmann proved that
a topological n-manifold, n � 6, has a PL structure if and only if this stable normal
bundle reduces from TOP to PL. As an immediate corollary, they deduced that
every compact topological manifold has the homotopy type of a �nite polyhedron,
since eachM is homotopy equivalent to the total space of the unit disk bundle of its
normal disk bundle and the total space of the normal disk bundle is a PL manifold
because its normal bundle is trivial. The argument of Kirby and Siebenmann also
shows that each compact topological manifold has a well-de�ned simple homotopy
type. A more re�ned argument, see p.104 of Kirby and Siebenmann [13], shows that
every closed topological manifold of dimension � 6 is a TOP handlebody. From
this it follows immediately that every compact topological manifold is homotopy
equivalent to a �nite CW complex and therefore to a �nite polyhedron.

This positive solution to the homotopy-triangulation problem suggests that we
should look for large naturally-occurring classes of compact topological spaces which

1In fact, Casson has shown that there are compact four-manifolds without boundary which
are not homeomorphic to �nite polyhedra. The question is still open in dimensions greater than
or equal to �ve.
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have the homotopy types of �nite polyhedra. In 1954, K. Borsuk [3] conjectured
that every compact metrizable ANR should have the homotopy type of a �nite
polyhedron. This became widely known as Borsuk's Conjecture.

The Borsuk Conjecture was solved by J. E. West, [31], using results of T. A.
Chapman, which, in turn, were based on an in�nite-dimensional version of Kirby-
Siebenmann's handle-straightening argument. In a nutshell, Chapman proved that
every compact manifold modeled on the Hilbert cube (�

Q
1

i=1[0; 1]) is homotopy
equivalent to a �nite complex and West showed that every compact ANR2 is ho-
motopy equivalent to a compact manifold modeled on the Hilbert cube. A rather
short �nite-dimensional proof of the topological invariance of Whitehead torsion,
together with the Borsuk Conjecture was given by Chapman in [5]. See Ranicki
and Yamasaki [24] for a more recent proof, which makes use of controlled algebraic
K-theory.
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