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1. INTRODUCTION

ANR homology n-manifolds are finite-dimensional absolute neighborhood retracts X
with the property that for every x € X, H;(X,X — {z}) is 0 for i # n and Z for i =
n. Topological manifolds are natural examples of such spaces. To obtain nonmanifold
examples, we can take a manifold whose boundary consists of a union of integral homology
spheres and glue on the cone on each one of the boundary components. The resulting
space is not a manifold if the fundamental group of any boundary component is a non-
trivial perfect group. It is a consequence of the double suspension theorem of Cannon and
Edwards that, as in the examples above, the singularities of polyhedral ANR homology
manifolds are isolated. There are, however, many examples of ANR, homology manifolds
which have no manifold points whatever. See [12] for a good exposition of the relevant
theory. The purpose of this paper is to begin a surgical classification of ANR homology
manifolds, sometimes referred to in the sequel simply as homology manifolds.

One way to approach this circle of ideas is via the problem of characterizing topological
manifolds among ANR homology manifolds. In Cannon’s work on the double suspension
problem [7], it became clear that in dimensions greater than 4, the right transversality

hypothesis is the following (weak) form of general position.

THE DisJoINT DIsKs PROPERTY (DDP). For any ¢ > 0 and maps f,g: D* — X, there
are maps f', g’ : D> — X so that d(f, f') <€, d(g,9") < € and f'(D*) ng'(D?) = 0.

The following result is an astonishing, powerful extension of the double suspension

theorem.

THEOREM (EDWARDS, [12]). Let X", n > 5, be an ANR homology manifold satisfy-
ing the DDP. If ¢ : M — X is a resolution of X, then ¢ is the limit of a sequence of
homeomorphisms h; : M — X.
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Recall that resolutions are maps ¢ : M — X with the property that ¢| $p-L(U)
¢~1(U) — U is a homotopy equivalence for every open set U C X, where M is a topolog-
ical n-manifold. Resolutions are therefore, fine homotopy equivalences that desingularize
homology manifolds; they were introduced by Lacher in [21]. The conclusion of Edwards’
theorem is that in the presence of the disjoint disks property, any resolution can be approxi-
mated by homeomorphisms. An important consequence is that a resolvable ANR homology
manifold of dimension > 5 is a manifold if and only if it has the DDP.

A natural question then arises: Are all homology manifolds resolvable? In other words,
is every homology manifold with the DDP a manifold? In [6], Cannon proposed the

following conjecture.
THE RESOLUTION CONJECTURE. Every ANR homology manifold is resolvable.

This in turn, by Edwards’ theorem, implies the topological manifold characterization

conjecture.

THE CHARACTERIZATION CONJECTURE. Every ANR homology manifold of dimension
> 5 which has the DDP is a topological manifold.

Early results supporting these conjectures were obtained by Cannon and Bryant-Lacher
[8], when the dimension of the singular set of the homology manifold is in the stable range.

Quinn made a critical advance with the following resolution theorem.

THEOREM (QUINN, [28]). There is a locally defined invariant +(X ) € 1+ 8Z for connected

ANR homology manifolds X which measures the obstruction to resolution. X is resolvable,

if and only if, +(X) = 1.

The local character of Quinn’s invariant implies that if X is connected and any open
set of X is a manifold (or even just resolvable), then X is resolvable. Thus, if X is an
ANR homology manifold which is a “manifold with singularities” of any sort, then it is
resolvable. The existence problem of nonresolvable homology manifolds, however, remained
unanswered.

The main result of this paper is a systematic disproof of the Resolution Conjecture,
one that yields positive results. Before stating our main theorem we discuss some of its

consequences.



Let M™ be a closed, simply connected manifold, n > 6.

COROLLARY. Given 1 € 1 4+ 8Z, there is a canonical choice of a s-cobordism class of

homology manifolds homotopy equivalent to M with resolution obstruction .

Hence, simply connected manifolds have, via the resolution obstruction, homotopy
equivalent homology manifold parallels, one (s-cobordism class) for each » € 1 + 8Z.

There is also a relative version of this result for 2-connected manifold pairs, which has
yet another corollary regarding the bordism of homology manifolds, answering a question
of David Segal.

Let Q5H and 037°P denote the oriented bordism groups of ANR, homology manifolds

and topological manifolds, respectively.

COROLLARY. In dimensions > 6, there is an isomorphism Q5H — Q27°[14-8Z] of graded

(oriented) bordism groups.

One shows that every connected homology manifold is cobordant by a simply connected
bordism to a simply connected homology manifold (a well-known fact for manifolds), and
then uses the correspondence between between manifolds and homology manifolds given by
the resolution obstruction. Note that there is no analogue of connected sum; disconnected
homology manifolds whose components have different local indices need not be bordant to
connected homology manifolds.

The fact that for 2-connected bordisms, the local type can be freely changed is not
without parallel in other problems in geometry and topology (see e.g. [19]). When this is
the case, it is important to consider K (7, 1) spaces. The following observation is somewhat

more elementary than the main theorem.

PROPOSITION (COMPARE [16]). If X is a closed K(m,1) homology manifold, and the
Novikov Conjecture holds for the group =, then every ANR homology manifold homotopy

equivalent to X has the same local type.

Thus, it follows from [18] that for groups of nonpositive curvature, the local type is rigid.
For example, any ANR homology manifold which is a homotopy torus is resolvable (and in
fact, by a torus). This was observed in [16]. Similar considerations give rise to (necessarily
nonsimply connected) homology manifolds not homotopy equivalent to manifolds.

The main theorem requires a certain amount of surgery theory to state. Before dis-
cussing the result in its general form, we consider a slightly weaker version, suggested by
Cappell, that supports our contention that homology manifolds are as natural as manifolds

and should be present in any complete theory of topological manifolds.
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Recall that classical surgery theory can be phrased as being the study of manifold
structures on Poincaré spaces X. We shall consider more generally, ANR homology manifold
structures on X. Define the homology manifold structure set of X, S¥(X), to be the set
of equivalence classes of pairs (Y, f), where Y is a homology manifold and f : Y — X
is a (simple) homotopy equivalence. (Y, f) and (Y’, f’) are equivalent if there exist an
s-cobordism (Z;Y,Y") of homology manifolds and a map F' : Z — X extending f and f’.
As usual, we shall use §(X) to denote the manifold structure set of X. For objects with
boundary, where the boundary is already given the structure of a (homology) manifold,
we will write SH (X, 9) for the structure set relative to the boundary.

Siebenmann observed that S(X) almost has a four-fold periodicity if X is a manifold.

See [24] for a detailed treatment explaining how a Z factor obstructs genuine periodicity.
COROLLARY. If X is a manifold, S?(X) = SE(X x D*,0).

The right hand side of the formula is a set which consists entirely of structures with
manifold representatives, due to the rel 9 condition. Thus, to get a fully periodic theory
of manifolds, we need homology manifolds to fill in for some “missing objects”. Note that
this formula fails for manifold structure sets, for example, when X = S™.

While surgery theory is usually stated using the language of normal invariants and
surgery obstructions (see [3] and [32]), for the purposes of this paper it is more convenient
to work with a variant of the more algebraic formulation due to Ranicki [16] that makes
use of advances in controlled topology (see also [27] and yamasaki).

In conventional surgery theory one starts with a degree one normal invariant, which can
be viewed as a first approximation to a given Poincaré space by a manifold; it corresponds
to a topological reduction of the Spivak normal bundle of X (not all Poincaré spaces have
normal invariants, but all ANR homology manifolds do [16]). The surgery obstruction is
an element of a Witt group of quadratic forms (or their automorphisms) and measures the
obstruction to finding a normal cobordism from this normal map to a (simple) homotopy
equivalence.

Ranicki, following an earlier lead of Mischenko, viewed the surgery obstruction as just
the algebraic cobordism class of the chain complex (with duality) of the mapping cone
of the normal map. In [16], the group of controlled algebraic Poincaré complexes over
X was identified with a group isomorphic to the normal invariant group of X. One can
now consider the algebraic mapping cone of the duality of a Poincaré space X; it is the
assembly of the local mapping cones of X. This is often called the peripheral complex.
Since X satisfies Poincaré duality, the algebraic mapping cone is (globally) contractible,

but its local structure reflects the local geometry of X. The total surgery obstruction of
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X is the obstruction to algebraically cobording the peripheral complex of X to a locally
contractible complex through contractible algebraic complexes. For a homology manifold,
the total surgery obstruction vanishes since duality holds locally.

Let X™, n > 6, be a (simple) Poincaré complex.

MAIN THEOREM. There is a homology manifold (simple) homotopy equivalent to X, if
and only if, the total surgery obstruction of X vanishes. If this is the case, there is a

covariantly functorial 4-periodic exact sequence of abelian groups,
oo Hy (X5 L) = Ly (Zm (X)) — SH(X) — H,(X;L) — L, (Zm1(X)),

where L = LL(e) is the surgery spectrum of the group ring of the trivial group.

The difference between this spectrum and G/Top (i.e., the 1-connective surgery spec-
trum [29]) accounts for Quinn’s obstruction. There is also a relative version of this theorem
which we will not state here, although relative constructions are necessary for the proof of
the main theorem. A weaker form of this result was announced in [4].

A word about the organization of the paper. In order to prove the above theorem,
we will use results regarding controlled surgery proven in [17]. The idea is to perform
constructions of ordinary surgery while keeping careful control on the size of handles.
This will be reviewed in §2. In section 3, we reprove Quinn’s resolution theorem using
this surgery theory. This serves as an introduction to our setup and also shows how the
resolution obstruction of the examples constructed will be detected. We are led to the
use of controlled topology since homology manifolds can be characterized as those spaces
which are controlled Poincaré complexes over themselves. The self-referential aspect of
the solution will necessitate consideration of e-Poincaré complexes realizing the resolution
obstruction. Section 4 contains a discussion of these approximate homology manifolds and
of other homotopy theoretical aspects of the problem. §5 gives a detailed construction of
homology manifolds modelled on simply connected closed manifolds with arbitrary resolu-
tion obstruction. The main theorem is proved in §6 using similar techniques. In the final
section of the paper we apply the theorem to the construction of homology manifolds that

are not homotopy equivalent to any closed manifold.

2. A REVIEW OF (€,0)-SURGERY THEORY

This section contains a discussion of the controlled surgery theory we will be using in
this paper. Quinn discussed such a theory in lectures given in the late 1970’s and early
1980’s, but details, except for those in [27], [28], and [34] have never appeared.
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DEFINITION 2.1. If p: N — B is a map and € > 0 is given:

(i) A map f: M — N is said to be a p~1(€)-equivalence if there exist a map g : N — M
and homotopies h; : go f ~ idys, k¢ : f o g ~ idx so that diam(p o f o hy(z)) < € for
all z € M and diam(p o k:(z)) < € for all z € N. That is, we require that the tracks of
the homotopies have diameter less than e as viewed from B. We will also refer to such

an f as an e-equivalence over B.

(ii) Maps f,g: M — N are said to be e-homotopic over B if there is a homotopy h; : f ~ g
so that diam(p o ht(x)) < € for all z € M.

DEFINITION 2.2. A proper surjection p : K — Lisa UV map, if for every € > 0 and every
map « : P? — L of a 2-complex into L with lift o : Py — K defined on a subcomplex Py,
there is a map @ : P — K with @|Py = ap and d(p o &, «) < e. This can be thought of as
saying that p has simply-connected point-inverses. See [22] for details.

N
DEFINITION 2.3. If N is a manifold and p: N — B is a UV '-map, S/ (é ) is the set of

equivalence classes of p~!(¢) equivalences f : M — N where “equivalence” is the relation
generated by saying that f; : M; — N and fo : My — N are equivalent if there is a
homeomorphism h : M1 — Ms so that the diagram

My

h\lf \I fi

M, % N
i
B

e-homotopy commutes.

THEOREM 2.4 ((€,0)-SURGERY EXACT SEQUENCE [17]). If N™ is a compact topological
manifold, n > 6 or n > 5 when ON = (), B is a finite polyhedron, and p: N — B is UV,
then there exist an g > 0 and aT > 1 depending only on n and B so that for every e < €y

there is a surgery exact sequence

N
.— Hy11(B;L) — S. (; ) — [N, G/Top] — H,(B;L)

where L is the periodic L-spectrum of the trivial group and

() (1) . (2))

6



N N
Moreover, for € < €, Sé (g ) = Séo (é )

REMARK 2.5.
(i) If we rewrite [N, G/Top| = H°(N;G/Top) as H,,(N,G/Top), then the surgery sequence
is functorial in the obvious fashion with respect to UV'-maps B — B;. The cases

B = pt (for N simply connected) and B = N are particularly instructive. We have a

diagram:
s Hpa(N;L) — s(g) s H.(N,G/Top) —s Hy(N;L)
l iN l l
s H,.(BiL) — 56( g) s H,(N,G/Top) — H,(B;L)
l l l

s Hpy(pt;L) — se(pi) s H,(N,G/Top) — Hy(pt;L)

N
The a-approximation theorem of Chapman-Ferry ([10]) shows that S. ( k,) is trivial,

so the diagram becomes:

.— H,11(N;L) — 0 — H,(N,G/Top) — H,(N;L)
J{p* J{N J{% J{P*
.~ H,1(BiL) — 56( g) H,(N,G/Top) — Hy(B;L)
L o
L — Lyt —  S(N — H,(N,G/Top) — L,

where p, is the induced map on homology, S(N) is the ordinary structure set of N, proj
is the composition H, (B; L) — H,(pt; L) = Hy(pt; L,) = L,,, and Ly = Z,0,Z/2Z,0,
for k = 0,1,2,3 mod(4). This computes the map H, (N;G/Top) — H,(B;L) in the
surgery exact sequence of a manifold N as being the composition of the map from
the connective L-theory to the periodic L-theory with the induced map H,(N;L) —
H,(B;L). The reader should be careful hereabouts when working with Poincaré duality
spaces rather than manifolds. The map H, (X;G/Top) — H,(B;L) in Theorem 2.8
below is an equivariant map of H, (X;G/Top)-sets with action on H,(B;L) induced
by p., rather than a homomorphism. The fact that 0 need not go to 0 gives rise to the
resolution obstruction.

(ii) The homology groups H, (X;G/Top) and H,(X;IL) are easily computed, since away
from odd primes these spectra are products of Eilenberg-MacLane spectra and at odd
primes, they give real K-theory [23], [31]. This means that in the absence of odd torsion,
Ho(X3L) = @pyqenHy (X Ly) and Hy(X;G/Top) = Bpygen.go0Hp(X; Ly). Induced
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homomorphisms between such groups are the induced homomorphisms on ordinary
homology.

(iii) The (e, d)-surgery exact sequence is proven in [17] by comparing the e-structure set to
the bounded structure set of [16].
There is a corresponding surgery theory at the existence level. In order to state the

theorem, we need some definitions.

DEFINITION 2.6. If X and B are finite polyhedra and p : X — B is a UV '-map, we say
that X is an (oriented) e-Poincaré of formal dimension n over B if there exist a subdivision
of X so that images of simplices have diameter < € in B and a cycle y in the simplicial

chains C,,(X) so that Ny : C#(X) — C,,_x(X) is an e-chain homotopy equivalence.

This last means that the morphism Ny and the chain homotopies have size < € in the
sense that the image of each generator ¢ only involves generators whose images under p
are within € of p(0) C B. We define Poincaré duality as usual in the unoriented case by

using an orientation double cover.

DEFINITION 2.7. Let P be an e-Poincaré duality space of formal dimension n over a metric
space X and let v be a (Top, PL or O) bundle over X. An e-surgery problem or degree
one normal map is a triple (M™, ¢, F) where ¢ : M — P is a map from a closed n-
manifold M to P such that ¢, ([M]) = [P] and F is a stable trivialization of 7p; & ¢*v.
Two problems (M, ¢, F') and (M, ¢, F) are equivalent if there exist an (n + 1)-dimensional
manifold W with 0W = M ][ M, a proper map ® : W — P extending ¢ and ¢, and
a stable trivialization of 7y ® ®*v extending F' and F. Such an equivalence is called a

normal bordism. See p. 9 of [32] for further details.

THEOREM 2.8 ((€,0)-SURGERY EXISTENCE [17]). If B is a finite complex and n > 5 is

given, then there exist an ¢g > 0 and a T > 1 so that for every e with ¢¢ > € > 0,
M Lo x
if | pis an e-surgery problem with U V! control map p, then there is a well-

B
defined obstruction in H,(B;L) which vanishes if and only if f is normally bordant to a

Te-equivalence over B.

REMARK 2.9.

(i) We will refer to €y as the (n-dimensional) stability constant for B. T will be called the
(n-dimensional) stability factor for B.

(ii) The situation is similar in the non-simply connected case, i.e. for control maps which
are not UV'!, but it is somewhat more complicated because the surgery groups are not

quite homology groups.



3. QUINN’S RESOLUTION THEOREM AND THE OBSTRUCTION TO RESOLUTION

To acclimate the reader to our notation and to our setup, we reprove Quinn’s resolution
theorem and obstruction to resolution from our (e, d) point of view. The argument we give
is similar to proofs given by Quinn in lectures and is even more similar to the bounded
proof given in [16]. It differs from the proof in [27], [28] in that the use of a full-featured

e-surgery theory makes parts of the argument easier to describe.

THEOREM 3.1(QUINN [Q3], [Q4]). Let X be a connected ANR homology n-manifold,
n > 5. Then there is an integral invariant I(X) of X such that:

(i) I(X) = 1(mod 8).

(ii)) If U C X is open, then I(X) = I(U).

(iii) I(X x V) = I(X) x I(Y).

(iv) I(X) = 1 if and only if there is a topological manifold M™ and a CE map f: M"™ — X.

Proof. By theorem 15.6 of [16], there is a degree one normal map f : M — X. By Theorem
2.8, there is a surgery obstruction oy € H,(X;L) = [X,G/Top x Z] which vanishes if and
only if f is normally bordant to an d-equivalence fs5 : Ms — X for each 6 > 0. Changing
the map f changes oy by an element of [X,G/Top|, so we have an invariant in [X, Z]
which measures the component of G/T'op x Z which is hit by X under o¢. This is Quinn’s
invariant I(X).

Property (ii) is clear, since U and X must map to the same component of G/Top x Z.
Properties (i) and (iii) follow from the interpretation of I(X) as a difference of signatures.
This is discussed in [28], where Quinn defines the invariant by crossing with CP? and
looking at the signature of the inverse image of * x CP? in M x CPZ2.

Suppose that the invariant is 1. Choose a sequence {¢;} with lim; o €¢; = 0. The

e-structure set of X parameterized over itself is trivial, since we have:

X
Hy41(X;G/Top) = Hy 41 (X5L) — Se (; ) — H,(X;G/Top) = H,(X; L).

The “=” and the “1 —1” follow immediately from the Atiyah-Hirzebruch spectral sequence
and the fact that H.(X,Z) = 0 for * > n.

Thus, we can choose a sequence {J;} so that for each i there is a homeomorphism
M, Ly Ms,,, with the property that d(fs,., o hs, fs;) < €;. Consider the maps

f5iohi—lo---oh1:M51—)X_

Since

d(f5i+1 oh;o ...Ohl,f(;i oh;_10... Ohl) = d(f5i7f5i+1 ohq;) < €,
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the sequence converges to a map f : M5, — X, provided that ) €; < oo. Since f5, oh;—10

...o hy is a d;-equivalence, f is CE, giving a resolution of X. [ ]

REMARK 3.2.

(i)

There is a technical point which should be addressed here — strictly speaking, X is
not a polyhedron, so (e, d)-surgery theory does not apply to maps parameterized over
X. Such difficulties are only apparent and are discussed in [25]-[28]. A quick way of
avoiding the problem in the present case is to let M be a mapping cylinder neighborhood
of X in R%, ¢ large. If ) is the Hilbert cube, there is a homeomorphism X x Q) — M x @
whose inverse is as close as we like to ¢ x id, where ¢ : M — X is the mapping cylinder
projection [9]. Thus there is a CE map ¢; : X x Q — M so that coc; is as close as
we like to projection. On the other hand, there is a UV'-map cy : T5 — Q x T° ([15],
[2]) so that composition with projection is as close as we like to id. Composition gives

a UV'! homotopy equivalence
X x T5 22 x5 Q x T5 22 < T8

so that composition with ¢ x id : M x T® — X x T® is as close as we like to the
X xT°

identity. We can consider the structure set S. 4 , where our UV'! homotopy
M x T3

equivalence is used as a control map. The argument goes through as before to show

that there are manifold structures on X x 7 which are arbitrarily well controlled over
M x T3, and therefore over X x T° via ¢ x id. This leads as above to a resolution
of X x T®. Passing to a cyclic cover and applying Quinn’s End Theorem leads to a
resolution of X x T* and repeating the destabilization process leads to a resolution of
X.

It is not really necessary to invoke Theorem 15.6 of [16]. We could work with small
patches of X over which the Spivak normal bundle is trivial. On the other hand, that
is the road to the proof given in [16] that Top reductions exist. Alternatively, we could
work with a controlled version of Ranicki’s total surgery obstruction and avoid making

explicit assumptions about the Spivak bundle.

4. SOME TECHNICAL PRELIMINARIES

This section contains technical lemmas which will be needed in the construction of the

counterexamples. The reader is advised to skim this section quickly and then come back

to 1t as needed.
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DEFINITION 4.1. We will say that a map p : L. — B between finite polyhedra has the
absolute 8-lifting property AL (9) if whenever (P, Q) is a polyhedral pair with dim/(P) < k,
ap : Q — Lis amap, and @ : P — B is a map with p o ay = «|Q, then there is a map
a: P — L extending g with d(po @, a) < 6.

REMARK 4.2. Note that p: K — L is UV if and only if it is AF?() for all 6.

Here is our first main technical result concerning UV*-maps. Results of this sort
are originally due to Bestvina-Walsh-Wilson [2]. This particular formulation appears as
theorem 3.1 of [15].

PROPOSITION 4.3. Let M™ be a compact connected manifold and let B be a connected
finite polyhedron. For every ¢ > 0 there is a 6 > 0 so that for every y > 0, ifp: M — B
is AL**Y(68), 2k + 3 < n, then p is e-homotopic to an AL**Y(u)-map. It follows that there
is a 6o > 0 so that every AL**1(8y)-map is homotopic to a UV*-map. If U C B is open,
plp~Y(U) is UV*, and C C U is compact, then we may choose the limiting UV *-map to

be equal to p on the inverse image of C'.

The next theorem is a global version of the result above in the sense that it dispenses
with the ALF(§) hypothesis and replaces it with the hypothesis that the map have simply
connected homotopy fiber. Theorems of this type first appeared in Bestvina’s thesis [2].

THEOREM 4.4. If f: (M™,0M) — K is a map from a compact manifold to a polyhedron,
n > 5, and the homotopy fiber of f is simply connected, then f is homotopic to a UV'*
map. If flOM is UV, f is homotopic rel O to a UV '-map.

We will also need some results concerning controlled Poincaré duality. In his thesis,
Spivak proves that a polyhedron P is a Poincaré duality space of formal dimension & if and
only if when N (P) is a regular neighborhood of P in R""*, n large, the inclusion N — N
has homotopy fiber S*~1 [30]. This says that (N, dN) looks like a tubular neighborhood of
P from the viewpoint of homotopy theory. If P is a Poincaré duality space, a cycle which
links the top class of P generates the homology of the fiber. Conversely, if S¥~1 — ON — P
is nullhomotopic, we have a cocycle in (N,dN) corresponding to (D*, S¥~1) whose dual

in H,(P) is the top class of P. The next proposition is an estimated version of this result.

PrROPOSITION 4.5. Given n and B, there is an €y > 0 and T > 0 such that if 0 < € < ¢y
and X is an e-Poincaré duality space of topological (not formal) dimension < n over B

with UV control map p : X — B, then for every abstract regular neighborhood N of X in
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which X has codimension at least 3, the restriction of the regular neighborhood projection

to ON has the Te-lifting property.

Proof. Let N be a regular neighborhood of X with dim N = n +m, m > 3, and with
regular neighborhood retraction v : N — X. The composition yop : N — B provides a
control map for N.

Assume N D X are triangulated so that v is simplicial and diam(y o p)(c) < € for
each simplex o in N. By hypothesis, there is an n-cycle y in C,(X) such that Ny :
C*(X) — Cp—4(X) is an e-chain homotopy equivalence over B. Given § > 0 the inclusion
induced maps ¥ : C*(N) — C*(X) and iy : C4(X) — Cy(N) can be chosen to be §-chain
homotopy equivalences over X by taking a sufficiently fine triangulation of N. Similarly,
there is a fundamental cycle z € C),(N,9N) giving a d-chain homotopy equivalence Nz :
C*(N,ON) = Cpym—z(N) over X. Consider the following diagram

CHIN,ON) % Cusg(N) 5 Cusyl(X)

—

Gq Nt My (y) TNy

it
—

C9(N) Ci(X)

Since Ny is an e-chain homotopy equivalence over B, we can make § sufficiently small so
that Néz(y) is an e-equivalence. We get Gy by composing Niy(y) with a chain homotopy
inverse to Nz. Hence, we may assume that G, is a e-chain homotopy equivalence over B
and that the left triangle is e-chain homotopy commutative. By [30], we may take G, = Ug,
where g = Go(1), since for each ¢ € C1(N), (cUGo(1)) Nz = ¢ N (Go(1) N z), which is
e-chain homotopy equivalent to ¢ N (1 Nz (y)) = cNig(y).

Let w : P — X denote the path fibration associated with the map y|ON : ON — X.
Here, P = {(z,\) € ON x X1 : y(x) = A\(0)} and w(x, A\) = A(1). The inclusion j : ON — P
given by j(x) = (x,\;), where A, is the constant path at z, is a homotopy equivalence.
Let C, denote the mapping cylinder of w with mapping cylinder retraction w : C,, — X.
Since N is the mapping cylinder of v : N — X, the inclusion 0N C P extends to an
inclusion j : (N,0ON) — (C,,P) such that wo j = v|0N and Wo j = 7. By [30], w is a
spherical fibration, since m > 3. Thus, given 4 > 0, one can take a fine triangulation of
X and inductively construct, as in the proof of theorem 5.3 of [15], a finite CW complex

P and a spherical block bundle w : P — X, for which there is a homotopy equivalence
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h : P — P with homotopy inverse h’ : P — P, such that the diagram

P SN P
w N\ v w
X

is p-homotopy commutative. In particular, w : P — X will have the p-homotopy lifting
property. One can construct a Thom cocycle ¢ € C™(C,, P) such that U¢ : C4(Cy,) —
C™*e(Cy,, P) is a p-chain homotopy equivalence over X. Assume that A’ o j is a cellular

map. Consider the diagram

C™T4(N,dN) M C™te(C,,, P)

T Ug U
C9(N) e C1(Cy)
YN W
CYX)

where the maps h; and hy are induced by h' o j. The definition of ¢ guarantees that
the upper square is e-chain homotopy commutative. The maps 7%, w¥, U¢, and hsy are
controlled chain homotopy equivalences over X, hence over B, and the map Ug is an e-
chain homotopy equivalence over B. Hence, h; is an e-chain homotopy equivalence over
B. Comparing the short exact sequences of chain complexes for the pairs (N,0N) and
(Cyw, P), one sees that the map h' o j : 9N — P, which we may assume is an inclusion,
induces an e-chain homotopy equivalence hs : C*(P) — C*(ON). Consequently, the pair
(P,0N) is homologically (e, k)-connected for all k£ > 0 (see [Q]).

Pick €5 > 0 and a T" > 0 such that if 0 < € < ¢p, then any two maps of a space into
B within € of each other are Te-homotopic, and any subset of B of diameter < ¢ can
be contracted in subset of diameter < T'e. The constants ¢y and 7' can be obtained, for
example, from a fixed regular neighborhood 7 : W — B, using the fact the the regular
neighborhood projection is Lipschitz. For such a choice of ¢, the pair (P,0N) is (Te, 1)-
connected, since all control maps are UV'. We may assume that w is UV! by Proposition
4.3. By the controlled Hurewicz theorem [1], it follows that (P,0N) is (T¢, k)-connected
for all k£ so that b’ o j : ON — P is a Te-homotopy equivalence over B. Therefore,
v|ON : ON — X has the Te-homotopy lifting property over B. |

If we paste together two Poincaré pairs using a homotopy equivalence on the boundary,

we get a Poincaré duality space. The following is an e-controlled analogue of that result.
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PROPOSITION 4.6. Given n and B there is an €g > 0 and T > 0 such that if 0 < € < ¢,
(My,0M;) and (Ms,0Ms) are orientable manifolds, p; : My — B and ps : M — B are
UV maps, and h : 9M; — OM> is an orientation preserving e-equivalence over B (this

includes d(py,p2 o h) < €), then My Uy, My is a Te-Poincaré duality space over B.

Proof. Asin the proof of Proposition 4.5, there is an g > 0 and a T' > 0 such that if 0 < e <
€0, then any two maps of a space into B that are within € of each other are T'e-homotopic.
Given 0 < € < €p, suppose that (M, 0M,), (Ma,0Ms), and h : OM; — OMs, are given,
where h is an e-equivalence over B. Assume M; and M, are equipped with triangulations
such that h : 9M; — 0Ms5 is simplicial. Let C}, be the simplicial mapping cylinder of h. We
can take C}, to be a subcomplex of (0M1)"(0Ms)’, the join of first barycentric subdivisions
of M, and dMs; C, is topologically homeomorphic to the topological mapping cylinder
of h [11]. The maps p; : OM; — B extend to a map py : C;, — B with respect to
which 0M; is a Te-deformation retract of Cj. Hence, the chain complexes Cy(Mq,0M;)
(C*(My,0My), resp.) and C’éﬁ)(Ml U Ch, OMs) (C*(My U Cy,,0My), resp.) are Te-chain
homotopy equivalent.

Let X1 = M1 Usar, Chy Xo = Mo, X = X1UXs, Xo = X1 N X2 =0Ms, andp: X — B
be the union of the p;’s, i = 0,1,2. The fundamental cycles y; € C,,(M;,0M;) give rise
to d-chain homotopy equivalences Ny; : C*(M;,0M;) — Cp_y(M;) and Ny; : C*(M;) —
Cy—4(M;,0M;), where ¢ can be made arbitrarily small by refining the triangulations of
M, and M. Let y; € C,,(X1,Xp) be the fundamental cycle corresponding to y; under
the Te-chain equivalence Cy(M;,0M;) — Cy(X1, Xo). Choose orientations of 7, and ys
so that 0y; = —0y2 € Cp,—1(Xop). Then y = j1(71) + j2(y2) € C,(X) is a fundamental
cycle for X, where j; is the composition Cy(X;, Xo) — Cy(X;) — Cy(X). Write C¥(X) =
C*(X1) ® C* (X2, Xo) and Cp,_4(X) = Cp_y (X1, Xo) ® Cpi—y(X2). Then, Ny = N(j1(y,) +
g2(y2)) : C*(X1) ® C*(Xa, Xo) — Cr—y(X1, Xo) ® Cp—y (X2) is easily seen to be a Te-chain

homotopy equivalence. [

A map between simply connected Poincaré spaces which is an equivalence through the
middle dimension is a homotopy equivalence. The following is an € version of that (see
[17]).

PROPOSITION 4.7. Givenn and B thereisaT > 0 so that ifp; : X1 — Bandps : Xo —» B
are e-Poincaré spaces over B of the same formal dimension and topological dimension < n
with UV control maps and f : X; — Xo is a map with d(pz o f,p1) < € such that
the algebraic mapping cone of f is e-acyclic through the middle dimension, then f is a

Te-equivalence.

We will also need an estimated version of the classical homotopy extension theorem.

14



THEOREM 4.8 (ESTIMATED HOMOTOPY EXTENSION THEOREM). If X is a metric space,
f: X —>Zandp:Z — B are maps, A C X is closed and Z is an ANR, and F; : A — Z
is an e-homotopy over B, starting at Fy = f, then there is an e- homotopy F;, : X — Z
extending F;. Moreover, we can take F, = f outside of any neighborhood of A x 1I.

Proof. The proof is the usual one. The map F extends to a map X x0OUA x [ — Z. By
ANR’ness of Z, this map extends to a neighborhood U of X xOUA XTI — Zin X x I. We
construct a map r : X x I — U by pushing down lines {2} X I to the graph of a function.

Composing with the extension of F gives F. ]

REMARK 4.9. A similar argument works if A is an ANR and Z is arbitrary.

The next proposition shows that if r : V' — X is a retraction and X is controlled
homotopy equivalent to Y, then there is a retraction s : V' — Y which is € close to r. This

will be used in showing that the limit space we construct is an ANR.

PROPOSITION 4.10. Suppose that X and Y are finite polyhedra, V is a regular neighbor-
hood of X with dim V >2dimY + 1,p:V — Bisa map,r:V — X is a retraction
and f: Y — X is an e-equivalence over B. Then we can choose an embedding i : Y — V

so that there is a retraction s : V — i(Y') with d(por,po s) < 2e.

Proof. Since r o f = f, given 4 > 0, we can choose an embedding ¢ : Y — V with r o4
p-homotopic to f. If g: X — Y is an e-inverse for f, then we can choose p small enough
that g o r o 7 is e-homotopic to idy, which implies that g o r|Y is e-homotopic to idy.
By the estimated homotopy extension theorem, there is a retraction s : V. — i(Y) with

d(por,pos) < 2e. ]

The last proposition in this section is a partial converse to Proposition 4.5.

PROPOSITION 4.11. Suppose X is a homology n-manifold. Given € > 0 there exists § > 0
such that if Z is a polyhedron that is d-equivalent to X (over X), then Z is an e-Poincaré
duality space over X.
Proof. Let N be a mapping neighborhood of X with dim N = n+m, m > 3, and mapping
cylinder retraction v: N — X. Then y|0N:ON — X is a spherical approximate fibration.
Thus, given € > 0 there exists > 0 such that if 7 is a polyhedron and f: 7 — X is a
d-equivalence over X, with inverse g: X — Z, then v/ = go~: 9N — Z has the ¢'-lifting
property over X.

Let w: P — Z be the spherical fibration associated to y': 9N — Z (as described in the
proof of Proposition 4.5). There is a canonical strong deformation retraction A: P x I — P
of P onto ON defined by A((z,\),s) = (x,As), where As(t) = A(st). (Here, Ag is the
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retraction and A is the identity.) Then woA: P x I — Z and Ag: P — ON satisfy v oAy =
woAg. Hence, we can get a lifting A: Px I — ON with Ag = Ag and d(fo*y’of&, fowoA) < €
(in X). The claim is that for any €’ > 0 we can choose ¢ small enough so that A;: P — N
is an €’-homotopy inverse to j: 9N — P over X.

To see this recall that any two sufficiently close maps of a space into X are connected
by a small homotopy. Thus, given ¢’ > 0, we can choose €' so that there is an €¢’’-homotopy
H:(PxI)x1I— Z (over X) such that Hy=~"oA, Hi =wo A, and H|P x 0 x I is the
constant homotopy 7' o Ag = wo Ag. There is already a lift of H|(P x I x 0)U(P x0x I)U
(P x I x1)toP, namely, (7 o A)U (7" o Ag) U(woA). Thus, we may reparameterize I x I
by a homeomorphism that takes (I x 0) U (0 x I) U (I x 1) to I x 0 so that we may view
H as a homotopy of P x I into Z that equals (7' o A)U (7' o Ag) U (wo A) on P x I x 0.
Lifting H to H:P x I x I — P and restricting to (P x 0x [)U(P x I x 1)U (P x 1 x I)
gives a homotopy of j o A; to the identity that projects to an €’-homotopy over X.

Now let w: P — Z be the spherical block bundle p-approximation to w:P — Z as
in the proof of Proposition 4.5. That is, P and P are p-equivalent over Z, w has the
p-lifting property over Z, and w has a Thom cocycle £ € C™(C,,, P) (recall that C,, is
the mapping cylinder neighborhood of w) such that _U & C9(C,,) — C™14(Cy, P) is a
p-chain homotopy equivalence over Z.

We can now proceed backwards through the proof of Proposition 4.5. In the diagram

Cmte(N,ON) M cmte(C,, P)

T-Ug T-_U¢
C4(N) e C4(Cy)
SLN S wt
C1(X)

the maps hy and ho are induced by the (almost) ¢”-equivalence N — P (over X) and
g = hg (¢€) € C™(N,0N). The maps 7%, wf, and _U ¢ can all be made p-chain homotopy
equivalences over Z. We may assume that hy and ho are €’-chain homotopy equivalences
over X and, hence, that for a given € > 0, we have chosen ¢’ and p small enough so that
_Ug is an e-chain homotopy equivalence over X.

Let 2 € Cpan(N,0N) be a fundamental cycle for which _ N z:C™T4(N,ON) —
C—q(N) is a p-chain homotopy equivalence over N (and Z). Set y' = gnz € C,(N).
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Then in the diagram
C™FI(N,0N) __nf Cr—q(N) j_ﬁ Crn—q(Z)

~Ug N tony TNy

CiN)  CUZ)

~Ny" = (~Ug)Nzis an e-chain homotopy equivalence over X, and y = ~;(y’). Since i; (4%)
can be made a p-chain homotopy equivalence over Z (with chain homotopy inverse 7;), it

follows that we can make _Ny: CY(Z) — C,_4(Z) an e-chain homotopy equivalence. m

5. THE CONSTRUCTION OF SIMPLY CONNECTED EXAMPLES

Let M™ be a simply connected closed manifold of dimension n > 6. We begin the
construction of a nonresolvable ANR homology manifold homotopy equivalent to M. We
start by choosing a sequence {d;,7 > 0}, with 6; > 0 and ) d; < oc.

STEP I.

Let €9 be the stability constant for M and T{, the stability factor. Given ny > 0, our
goal in this step is to produce py : Xg — M, where:
(ag) pois UV,
(bo) Xo is no-Poincaré over M.
(co) po is a homotopy equivalence.

Choose 1y < €g. Take a triangulation of M with mesh < pg and consider a regular
neighborhood Cj of the 2-skeleton.

Let Ny be the boundary of the regular neighborhood Cjy and Dy be the closure of the
complement of Cy in M. By Proposition 4.3, there is a UV map ¢y : M — M close to
the identity that restricts to UV! maps on Ny, Cp and Dy. The restriction of gy to Ny
will be denoted g, : No — M. Let

o € Hy(M;L) 2 H,(M; Lo) x Hy(M;G/Top)
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be a nonzero element of H, (M; Lg) = Z.

According to the controlled analog of Wall’s realization theorem (theorem 5.8 of [32])
applied to the controlled surgery target No x I — M obtained by composing g, with the
projection, for each p > 0, there is a cobordism (V, Ny, N}) over M and a degree one
normal map F, : V — Ny x I so that
(i) Fy|No = id
(ii) f, = F,|N{ is a p-equivalence over M.

(iii) The controlled surgery obstruction of F, rel 0 over M is o.

By Proposition 4.3, we can take f, to be a UV! map. The map f, : Ng — N}
obtained at the upper end of the normal cobordism represents a p-controlled structure on
Ny. We compare the controlled and uncontrolled surgery exact sequences to analyze f, as
an uncontrolled structure:

No

— [ENo,G/Top] — Hp,(M;L) — S,| | —  [No, G/Top]
M

| [ | |

— [XNy,G/Top] — L, (e) — S(Np) — [Ny, G/Top].

By theorem 15.8 of [16], the vertical map A : H, (M;L) — L, (e) is the surgery assembly

map. Since M is simply connected, 4 can be factored as
H,(M;L) = H,(M;Lo) x [M,G/Top] = [M,G/Top] = Ly(e),

where 7 denotes projection. This implies that o € ker A and therefore, f, : Nj — Ny is
trivial as an uncontrolled structure on Ny. By the h-cobordism theorem we can assume
that V = Ny x I. By Proposition 4.4, we can also assume that F,, is UV after a homotopy

relative to the boundary.

Nox |

Nox |

Choose such f, : No — Ny, for p = po. Form Xy by cutting M open along Ny and
pasting the pieces back together using f,, where the copy of Ny in Dy is viewed as the

18



domain of f,. Xy is homeomorphic to the space obtained by splitting M along Ny and
pasting in a copy of the mapping cylinder Cy,_ .

(a5 [ o) ==

We extend to X, the map that coincides with gy on Dy U Cy C Xy, to obtain a UV'!
homotopy equivalence pg : Xo — M, by collapsing the bottom half of Cf, to Ny and

defining py to be the composition
Nox I -5 NgxT— Ny M

on the upper half which is identified to Ny x [ along mapping cylinder lines.

By Proposition 4.6, if ug is small enough so that T'uy < 79, then Xg is a ng-Poincaré
duality space over M. This completes Step I.

STEP II.

Embed M into IRL, L large, and approximate py by an embedding ¢y : Xg — RE.
From now on we identify Xy with +(X(). This fixes a metric on Xy. Let Wy be a regular
neighborhood of X in RY with regular neighborhood collapse ry : Wy — Xg. Let 0 < (g <

o be such that L-dimensional (g, h)-cobordisms over M admit dp-product structures® [25],

1 Recall that the sequence {§;} was chosen at the very beginning.
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and let €; > 0 be the stability constant for Xy and 737 the stability factor. Our goal in
this step is to show that if 1y was chosen sufficiently small, then for any 7; > 0 we can
construct Xy and py : X1 — X such that:

(a1) pyis UV

(b1) X is n1-Poincaré over Xj.
(c1) p1: X1 — Xo is a (p-equivalence over M.
(d1) There exist an embedding X; — Wj and a retraction r; : Wy — X3 such that

d(ro,71) < Co-
Let fo: M — X be the degree one normal map indicated in the picture below.

o
G INxI & | D) =X,
T

Here, m denotes the obvious quotient map. Since fy induces a homeomorphism on the
complement of Ng X [1,2] in M, its controlled surgery obstruction over M is o € H, (M;L).
By Proposition 4.4, after a homotopy, we can assume that fo is a UV map.

Given an arbitrary p; > 0, triangulate M so that the image of the triangulation under
fo has mesh < pq. Let C'y be a regular neighborhood of the 2-skeleton in this triangulation
and let the closure of the complement of C; be Dy. Set Ny = CiNDyandlet ¢ : M — X,
be a UV! map close to fy that restricts to UV maps on C;, D; and N;. The restriction
of ¢1 to N1 will be denoted g; : Ny — Xp.

Since pg : Xo — M is UV, (po)s : Hp(Xo; L) — H,(M;L) identifies the surgery
obstruction groups so that we can think of o as an element of H,(Xy;L). This isomor-
phism maps the component H,,(Xo; Lg) € H,(Xo;L) onto the corresponding component
H, (M;Ly) of Hy(M;L). As in Step I, realize 0 € H,(Xo;L) by a controlled surgery

problem
N1 xI — N1 x I

!
X,.

Cut M open along N; and paste in a copy of the mapping cylinder of the UV'! controlled

equivalence obtained at the upper end of this normal problem, to obtain a singular space X}
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which satisfies n;-Poincaré duality over Xy, if 1 is small enough. The surgery obstruction
of X1 — Xo over M is 0, so we can do surgery to get a Tono-controlled (over M) equivalence
p{ + X1 — Xo. The homotopy equivalence is this large because X is a ng-Poincaré duality
space over M.

Constructing p/ involves surgery on a singular space, but this is not difficult in our case.
The spheres we need can be moved off of the 2-dimensional spine of C; and pushed away
from the singular set by small moves. The bundle data tells us how to thicken the handles
in the manifold part of Xy, so the problem is the same as a controlled manifold surgery
problem. It is important to note that F,, preserves the bundle data so the map X| — Xo
is a degree one normal map between Poincaré spaces respecting the given reductions of
the Spivak normal bundles. This kind of Poincaré surgery goes back to Lowell Jones [20].

After surgery, we approximate the resulting homotopy equivalence by a UV map
p1 : X1 — Xo, which is a 2Tpng-equivalence. The existence of the embedding and the
retraction follow immediately from Proposition 4.10. Choosing 1y small allows us to verify

conditions (c;) and (dy).

STEP III.

Steps I and II differ in that p; is a controlled homotopy equivalence, while pg is
not. We continue the construction as in Step II, starting with a degree one normal map
fi + M — X; with surgery obstruction o € H,(X;_1;L). Let 0 < {; < ¢; be such that
L-dimensional ((;, h)-cobordisms over X;_; admit d;-product structures. If ¢; and T; are
the stability constant and stability factor for X;_;, we choose n;_; so that for any n; > 0
we can construct X;4+1 and p;41 @ X411 — X; so that:

(a;) piy1is UVL
(
(

(d;) There is an embedding X;1; — W; C W, and a retraction r; : Wy — X;41 so that

b;) Xiy1 1s m;-Poincaré over Xj.

¢i) Pi+1 is a (;-equivalence over X;_j.

d(ri,ri+1) < (;. Here, W; is a (very thin) regular neighborhood of X;.
STEP IV.

Let X = Ngg;W;. Taking the limit of the r;’s gives a retraction r : Wy — X this
shows that X is as ANR. X is homotopy equivalent to X;, because for i large, we can
retract a straight line homotopy from r; to r into both X and X;. We now refine the maps
{r;} to retractions p; : Wy — X; in order to argue that X is a homology manifold.

Let W; be a small regular neighborhood of X;. W;_1 \ int(W;) is a thin h-cobordism
with respect to the control map r; : Wy — X;. Deforming Wy \ int(W;) to OW; along
(thin) product structures and composing with a regular neighborhood collapse W; — Xj;
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induces a retraction p; : Wy — X;. In the limit, we obtain a new retraction p : Wy — X.
By Proposition 4.5, the restriction of r; to d(W;) has the T'9;_;-lifting property. Hence,
pi|0Wy has the Td;_;-lifting property and the restriction of p : Wy — X to d(Wpy) is an
approximate fibration. This shows that X is a homology manifold by [13].

Next, we show that the resolution obstruction of X is o. It suffices to exhibit a degree
one normal map f : M — X whose surgery obstruction over X is ¢ since, as pointed out
earlier, [ X, G/Top] acts trivially on the H, (X; Ly) = Z summand of H, (X;L) that gives
rise to Quinn’s obstruction. We assume that X is a polyhedron, since by Remark 3.2 (i)
we can do so after crossing with 7° and replacing the control map id : X x T° — X x T
by the UV composition X x T? — X x Q x T® — Wy x T®, where Q denotes the Hilbert

cube. Let i

M Xk

1 pr
Xp-1
be the surgery problem with surgery obstruction o € H,(Xy_1;L) obtained in Step III
of the construction. We show that for k£ large enough, the composition M ﬂ>Xk —
Wo—5X is a degree one normal map with surgery obstruction o € H,(X;L). After a
small deformation, we can assume that the restriction of p to X; is a small UV *-homotopy
equivalence, provided that ¢ is large enough. This implies that p, : H,(Xx_1;L) —
H,(X;L) is an isomorphism, and therefore fy : M — X} has surgery obstruction o €
H,(X;L) with respect to the control map X 25X 1-25X. Let s, : Xp_1 — Xi be
a fine homotopy inverse to pr : X — Xi_1 over X. The inclusions X,_; € Wy and
X C Wy extend to a map Hy : C5, — Wy defined on the mapping cylinder of si, that
sends mapping cylinder lines to straight lines in Wy connecting points © € Xy_1 to their
images sx(z) € Xj. Composing Hy with the retraction p induces a homotopy between the
control maps Xy, %Xk_lﬁX and Xy, . X as indicated in the picture.

id X,
Hk
XkXI e e
X
pk k-1

For k large, we can assume that all maps are UV'! after a small homotopy. This shows that

the surgery obstruction of the normal map fr : M — X} with respect to the control map
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Xp—5X is also o € H,(X;L). Since p: X, — X can be assumed to be a UV controlled

equivalence, it follows that the surgery problems

M oI ox, and M 2P x

lr 4 id
X X

have the same obstruction over X. This concludes the construction.

6. THE GENERAL CASE
Let Z™, n > 6, be a (simple) Poincaré complex.

THEOREM 6.1. There is a homology manifold (simple) homotopy equivalent to Z, if and
only if, the total surgery obstruction of Z vanishes. If this is the case, there is a covariantly

functorial 4-periodic exact sequence of abelian groups
o= Hyop1(Z5L) = L1 (Zm(2)) — SH(Z) — H,(Z;L) = L,(Zm(Z)),

where L is the simply connected surgery spectrum.

Proof. Consider Ranicki’s algebraic surgery sequence
.= H,(Z;L) = L, (Z7(Z)) = Spn_1(Z) = H,_1(Z;L) — ...

A Poincaré duality space Z has a total surgery obstruction O(Z) € S,-1(Z) with the
property that the image of O(Z) in H,_1(Z; L) is the obstruction to lifting the Spivak
fibration to Top. When this vanishes, @(Z) is the image of o(f) € L, (Zm1(Z)), where
f: M — Z is any degree one normal map. If Z is an ANR homology manifold and
f: M — Z is a degree one normal map as promised by [16], the obstruction o.(f) to doing
surgery to an e-equivalence with respect to the control map Z 4, 7 lies in the controlled
Wall group H,,(Z;IL). By naturality, the ordinary surgery obstruction o(f) is the image of
oc(f) in L, (Zm1(Z)). Since O(Z) is the image of o(f), O(Z) = 0. When Z is homotopy
equivalent to a homology manifold, the result follows from the functoriality of the surgery
sequence.

Conversely, suppose that Z is a Poincaré duality space with O(Z) =0. If f : M — Z
is a degree one normal map, the surgery obstruction o(f) lies in the image of the controlled
surgery obstruction group H,,(Z;L). Choose o € H,(Z;L) so that the image of o is o(f)
under the natural map H,(Z;L) — L, (Zm(Z)).

Let {d;,7 > 0} be a sequence with §; > 0 and »_J; < oc.
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STEP I.

We may assume that f : M — Z is connected up to the middle dimension. By
Proposition 4.3, we may take f to be a UV! map. Let ¢y be the stability constant for Z
and Ty the stability factor. Take a triangulation of M with mesh < pg, where po < €o,
and consider the regular neighborhood Cj of the 2-skeleton.

As before, we call the boundary of the regular neighborhood Ny and let Dy be the
closure of the complement of Cy in M. Let qo : Ng — M be a UV'! map close to the identity
such that its restrictions to Cp, Do and Ny are also UV, We denote the restriction of gq

to Ny by g, : No = M. Consider the surgery exact sequence

No
= H,(Z;L) =S, | L | = [No,G/Top).
Z

By Wall realization, for u = pg, there is a cobordism (V'; Ng, N{) and a degree one normal
map F, : (V; No, Nj) = (No x I; Ng x {0}, Nog x {1}) realizing o.

N

0

N_ x|

We can assume that F,|Ng = id and that f, = F,|N} is a UV pg-equivalence over Z.

Doing surgery below middle dimension, by Proposition 4.4 we can also assume that Fj, is
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UV'. However, unlike the simply connected case, V is not necessarily a product since the
uncontrolled surgery obstruction of F,, which coincides with o(f), may be nontrivial.

Let X[, be the space obtained by splitting M along Ny and pasting in a copy of V
together with a copy of the mapping cylinder of f,.

Our next goal is to construct a degree one UV map X — Z. Let g, : No — N/, be
a UV po-controlled homotopy inverse to f, and let G/ : V — N{ x I be the composition
Gl = (g9, x id) o F,,. Using the controlled homotopy extension theorem and Proposition
4.3, we can construct G, homotopic to G so that:
(i) G,|Nj=id.
(ii) G5|No = go-
(iii) G, is UV

Form the space X/ and define a map X{) — X as pictured below.

I
x
e

We obtain a UV' map X — M by constructing a UV' map ¢ : Cy, Uy Cf, — No
which is the identity on the two ends and forming the quotient space X U. No = M.
The map c is constructed by collapsing C'y, and the bottom half of C,  to Ny and using
Proposition 4.3 to extend to a UV! map over the top half of C,_ relatively to the ends.
The composition X, — X}/ = M N gives a degree one UV map pj, : X, — Z with
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respect to which X{) is a T'pu,-Poincaré duality space. If pg is small enough, we have that

Lo < no-

The ordinary surgery obstruction of P is ¢ + (—o) = 0, so we can do surgery on X/ to
obtain an ny-controlled Poincaré space Xy with respect to a UV! homotopy equivalence
po : Xo — Z. This involves surgery on a singular space as discussed in the last section.

The rest of the construction proceeds essentially as in the simply connected case —
starting with a degree one normal map fy : My — Xy, we construct an n;-Poincaré space
X1 over Xy with respect to a (y-equivalence to Xy over Z, an ns-Poincaré space X, over
X1 with a (j-equivalence to X7 over X, etcetera. We embed the X;’s in a large Euclidean
space RL and take the limit. If the ¢;’s are such that L-dimensional (¢;, h)-cobordisms over
X;—1 admit d;-product structures, we obtain an ANR homology manifold X homotopy
equivalent to Z. The only difference is that, as in Step I, in the cut-paste construction
we insert a copy of the mapping cylinder of the gluing map together with a copy of (the
negative of) the cobordism obtained from the surgery obstruction realization theorem. We
need this variant of the construction since, as observed earlier, the image of ¢ under the
forget control map may be nontrivial. This concludes the proof of the first assertion of the
theorem.

Our argument up to this point establishes the following bounded analog of the existence

result.
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THEOREM. Let X be a bounded Poincaré complex controlled with respect to a UV'! map
X — Z. If the bounded total surgery obstruction vanishes, there is a homology manifold

W bounded simple homotopy equivalent to X over Z.

REMARK. One could, of course, relax the UV'' condition and prove controlled rather than

bounded versions of this result.

Now we can complete the proof of exactness of the ordinary surgery exact sequence
(and, by the “same” argument, the controlled and bounded surgery exact sequences).

Suppose ¢ : V7 — V5 are simple homotopy equivalent homology manifolds. Consider
V=02 (V1) UM($) UOZ'(Va),

where OZ!(X) denotes the part of the open cone on X which lies outside of the unit ball.
An easy calculation identifies the total surgery obstruction of this Poincaré Duality space
with the structure on V represented by ¢. If this obstruction vanishes, We can glue copies
of V1 and V5 onto the ends of the resulting ANR homology manifold, obtaining an ANR

homology manifold s-cobordism connecting V; and V5. ]

7. HOMOLOGY MANIFOLDS NOT HOMOTOPY EQUIVALENT

TO ANY MANIFOLD

In this section, we apply Theorem 6.1 to the construction of homology manifolds that
are not homotopy equivalent to any closed manifold.

Take a very fine triangulation of 7", n > 6, and consider the regular neighborhood Cj
of the 2-skeleton. As before, let Ny be the boundary of Cy and let Dy be the closure of
the complement of Cy in T". Let p) : No — T™ be a UV'! map close to the inclusion and

ce H,(T™";L)= @ Hy(T";Ly)
ptg=n
be a non-zero element of H,(T™;Lo) = Z. As before, by Wall realization, there is a
cobordism (V; N}, Ny) and a degree one normal map F, : V' — Ny x I realizing o, such
that F,| Ny = id and f, = F,|N/j: N — Ny is a fine homotopy equivalence over T".
Form the Poincaré complex Z by pasting Cy, Uns (=V) into 7™, and construct a uvt

control map pg : Z — T™ as in the previous section.
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We show that Z is a Poincaré space whose total surgery obstruction ©O(Z) vanishes
and that Z is not homotopy equivalent to any closed manifold. By theorem 6.1, there is a
homology manifold homotopy equivalent to Z.

Let My be the manifold obtained by splitting 7" along Ny and pasting V' U N (=V)

between the two parts. Consider the normal map fy : My — Z indicated below.

C, [NgxI | G | -V D }

The surgery obstruction of fo : My — Z over T" is ¢ € H,(T™;L). Since the ordi-
nary surgery obstruction of fy is the image of o under the natural map H,(7T™;L) —
L, (Zm(T™)), it follows from Ranicki’s algebraic surgery sequence that O(Z) = 0, as
discussed in the proof of Theorem 6.1.

Any other degree one normal map f : M — Z, differs from fy by the action of
H,(Z;G/Top). Hence, the controlled surgery obstruction of f has o as its H, (T"; Lo)

component since choosing a different normal map changes the surgery obstruction by the
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action of H,(Z;G/Top) on H,(T™; L) induced by (po)., and this does not affect the
H,(T™; L) component.

The forgetful map from the controlled surgery obstruction group H,(7T™;L) to the
uncontrolled surgery obstruction group L, (Z(Z"™)) is an isomorphism (this appears dis-
guised as the map [T™ x D* 0;G/Top] — L, 4(Z(Z"))). Thus, the uncontrolled surgery
obstruction of any degree one normal map f : M — Z is also nonzero. This implies that

Z does not have the homotopy type of any closed topological manifold.

REMARK 7.1. The same construction works if we replace T™ by any closed manifold M™
for which the summand H,,(M; Lo) of H,, (M;L) injects in L,,(Zm(M)) under the assembly
map A : H,(M;L) — L,(Zr(M)). Hence, manifolds for which the Novikov conjecture

holds, give rise to homology manifolds not homotopy equivalent to manifolds.

Using techniques from [5], we can vary the construction to obtain a Z-homology
T" with fundamental group Z" which is not homotopy equivalent to a manifold. Since
S(M) = S(N) if there is a map M — M which is a m;-isomorphism and an integral ho-
mology equivalence, this gives a counterexample to a “homology” analog of the well-known
conjecture that every Poincaré duality group is the fundamental group of an aspherical

manifold. See [33].

REMARK 7.2. Here is a more concrete construction of the cobordism V' used above. We
begin with the Milnor plumbing, which gives us a degree one normal map f : M® — D83
which is a homeomorphism on the boundary. Take the product with 78. The result is a
16-dimensional surgery problem which cannot be solved rel boundary since it has nontrivial
normal invariant which is detected by the signature of the inverse image of the D® and
there are no nontrivial structures on 7" x D¥ rel 9. This problem is invariant under

passage to finite covers of the torus.

Do surgery up to middle dimension. Call the resulting problem (M, 9) — D®xT?®,d).
The remaining obstruction is a quadratic form on the 8-dimensional homology of M;. Pass
to a large finite cover of T®. We obtain a “geometric quadratic form” overt T®, that is, a
quadratic form for which the basis elements are associated to points in 7® and for which

basis elements only interact with nearby basis elements.
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The cobordism V' used in the first stage of the construction is obtained by pushing the
geometric quadratic form off of the 2-skeleton and out of Cy by general position and then
doing a “geometric” Wall realization of this form over T® starting with Ny x [0, 1]. Notice
that we have shifted dimensions. The original form was on 8-dimensional homology, while

the construction of V uses the “same” form on 4-dimensional homology.

REFERENCES

[1] D. R. Anderson and H. J. Munkholm, Bounded controlled topology, Lecture Notes in
Mathematics 1323, Springer-Verlag, Berlin-Heidelberg, 1988.

[2] M. Bestvina, Characterizing k-dimensional Menger compacta, Memoirs of the Amer.
Math. Soc. 71 380 (1988).

[3] W. Browder, Surgery on Simply Connected Manifolds, Springer-Verlag, Berlin-New
York, 1970.

[4] J. L. Bryant, S. C. Ferry, W. Mio and S. Weinberger, Topology of homology manifolds,
Bull. Amer. Math. Soc 28 (1993), 324-328.

[6] J. W. Cannon, The recognition problem: what is a topological manifold?, Bull. Amer.
Math. Soc. 84 (1978), 832-866.

, Shrinking cell-like decompositions of manifolds in codimension three, Ann. of
Math. 110 (1979), 83-112.

[8] J. W. Cannon, J. L. Bryant and R. C. Lacher, The structure of generalized manifolds
having nonmanifold set of trivial dimension, in Geometric Topology, ed. J. C. Cantrell,
Academic Press, New York, 1979, 261-300.

[5] S. Cappell and J. Shaneson, The codimension two placement problem and homology
equivalent manifolds, Ann. of Math., 99, (1974), 277-348.

[9] T. A. Chapman, A general approximation theorem for Hilbert cube manifolds, Com-
positio Math. 48 (1983), 373-407.

7]

30



[10] T. A. Chapman and S. C. Ferry, Approximating homotopy equivalences by homeo-
morphisms, Amer. J. Math. 101 (1979), 583-607.

[11] M. Cohen, Simplicial structures and transverse cellularity, Ann. of Math. 85 (1967),
218-245.

[12] R. J. Daverman, Decompositions of Manifolds, Academic Press, New York, 1986.

[13] R. J. Daverman and L. Husch, Decompositions and approximate fibrations, Michigan
Math. J. 31 (1984), 197-214.

[14] R. D. Edwards, The topology of manifolds and cell-like maps, Proc. Internat. Cong.
Mathematicians, Helsinki, 1980.

15] S. C. Ferry, Mapping manifolds to polyhedra, preprint.

16]

]

]

18] S. C. Ferry and S. Weinberger, The Novikov conjecture for compactifiable groups, in

S. C. Ferry and E. K. Pedersen, Epsilon surgery theory, preprint.

, Squeezing structures, preprint.

preparation.

[19] M. Gromov and H. B. Lawson, Positive scalar curvature in the presence of a funda-
mental group, Ann. of Math. 111 (1980), 209-230.

[20] L. E. Jones, Patch spaces: a geometric representation of Poincaré duality spaces, Ann.
of Math. 97 (1973), 306-343.

[21] R. C. Lacher, Cell-like mappings of ANR’s, Bull. Amer. Math. Soc. 74 (1968),
933-935.

, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83
(1977), 495-552.

(23] 1. H. Madsen and R. J. Milgram, The classifying space for surgery and cobordism of

[22]

manifolds, Princeton University Press, Princeton, NJ, 1979.

[24] A. Nicas, Induction theorems for groups of manifold structure sets, Mem. Amer.
Math. Soc. 267, Amer. Math. Soc., Providence, RI, 1982.

[25] F. Quinn, Ends of maps I, Ann. of Math. 110 (1979), 275-331.

[26] , Ends of maps II, Invent. Math. 68 (1982), 353-424.

[27] , Resolutions of homology manifolds, and the topological characterization of
manifolds, Invent. Math. 72 (1983), 267-284.

[28] , An obstruction to the resolution of homology manifolds, Michigan Math. J.

301 (1987), 285-292.

[29] A. A. Ranicki, Algebraic L-theory and Topological Manifolds, Cambridge University
Press, 1992.

[30] M. Spivak, Spaces satisfying Poincaré duality, Topology 6 (1967), 77-102.

31



[31] D. Sullivan, Triangulating and smoothing homotopy equivalences and homeomor-
phisms, Geometric Topology Seminar Notes, Princeton University, 1967.

[32] C. T. C. Wall, Surgery on Compact Manifolds, Academic Press, 1971.

[33] S Weinberger, The topological classification of stratified spaces, U. of Chicago Press,

to appear.

[34] M. Yamasaki, L-groups of crystallographic groups, Invent. Math. 88 (1987), 571-602.

Department of Mathematics, Florida State University, Tallahassee, FL. 32306.
Department of Mathematical Sciences, SUNY at Binghamton, Binghamton, NY 13901.
Department of Mathematics, The University of Chicago, Chicago, IL 60737.

32



