
STABLE COMPACTIFICATIONS OF POLYHEDRA

STEVEN C. FERRY

Abstract. We prove that if X is a locally �nite n-dimensional polyhedron such that X �
Q admits a Z-compacti�cation, then X � I2n+5 also admits a Z-compacti�cation. Our
argument relies on an extension of Dierker's Lemma [6], [2] which says that if P p and Qq

are locally �nite polyhedra, p � 3 and c : P ! Q is a PL surjection with contractible point-
inverses, then Q� I2p+1 collapses to P . See Proposition 1.5 for details, including control on
the collapse. In the last section, we give an example of a uniformly contractible manifold
with bounded geometry which does not satisfy Chapman-Siebenmann's tameness condition
at in�nity and which therefore does not admit a Z-compacti�cation.

1. Introduction

To set the stage, we begin with some de�nitions.

De�nition 1.1. i.) If X is a compact metric space and Z � X is closed, Z is said to be
a Z-set if there is an homotopy ht : X ! X; 0 � t � 1, so that h0(x) = x for all x and
ht(X) � X � Z for all t > 0. The model case is the case in which X is a topological
manifold and Z = @X. Another interesting case is the visual compacti�cation of a
CAT(0) space.

ii.) A separable metric space X is said to be an ANR if X can be embedded in separable
Hilbert space in such a way that there is an open neighborhood U of X which retracts
to X. All locally contractible �nite-dimensional metric spaces are ANR's.

iii.) The Hilbert cube I1 is de�ned to be the product
Q

1

i=1[0; 1]. A Hilbert cube manifold

X is a separable metric space such that each point in X has an open neighborhood
which is homeomorphic to an open subset of the Hilbert cube. Fundamental work of
Chapman and West says that every Hilbert cube manifold is the product of a locally
�nite polyhedron with I1 and that for a given Hilbert cube manifold the polyhedron is
unique up to simple-homotopy.

iv.) If X is a locally compact ANR, a compact metric space �X containing X is said to be
a Z-compacti�cation of X if Z = �X � X is a Z-set in �X. It follows easily from the
de�nition of Z-set and Hanner's criterion for ANR'ness [10] that in this case �X is also
an ANR.
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v.) If f(Ki; �i)g1i=1 is a sequence of �nite CW complexes Ki and maps �i : Ki ! Ki�1, the
inverse mapping telescope Tel(Ki; �i) is obtained from the disjoint union of the mapping
cylinders of the �i's by identifying the top of the mapping cylinder of �i with the base
of the mapping cylinder of �i+1.

In [4], Chapman and Siebenmann gave necessary and su�cient conditions for a noncompact
Hilbert cube manifold X to admit a Z-compacti�cation. Stated geometrically, their con-
dition said that X admits a Z-compacti�cation if and only if X is homeomorphic to the
product of an inverse mapping telescope with the Hilbert cube. In the same paper, they
asked whether a locally �nite polyhedron X admits a Z-compacti�cation whenever X � Q
admits a Z-compacti�cation.

In [9], Guilbault gave an example of a locally-�nite two-dimensional polyhedron X such
that X � Q is Z-compacti�able, but such that X itself admits no Z-compacti�cation. In
that paper, he asked whether X � Ik was Z-compacti�able for any �nite k. Our theorem
answers his question in the a�rmative. We note that there has been a good deal of interest
in Z-compacti�cations, particularly in the case of compacti�cations of universal covers of
�nite aspherical polyhedra. See [?] for a nice discussion of this topic.

Theorem. If X is a locally �nite n-dimensional polyhedron and X � Q admits a Z-com-

pacti�cation, then X � I2n+5 admits a Z-compacti�cation.

De�nition 1.2. Let f : X ! Y be a proper map with X and Y locally compact �nite-
dimensional ANR's. If �Y = Y [B is a compacti�cation of Y , we de�ne �f : �X = X [B ! �Y
to be f

`
id and give �X the topology generated by the open subsets of X together with sets

of the form �f�1(U), where U � �Y is open. By a slight abuse of notation, we will denote �X
by X [f B.

The theorem is a consequence of the following three propositions.

Proposition 1.3. If P is a locally �nite polyhedron of dimension � n such that P � Q
admits a boundary, then P is simple-homotopy equivalent to an inverse mapping telescope

of n-dimensional polyhedra.

Proposition 1.4. If f : X ! Y is a proper CE map between locally compact ANR's, and
�Y = Y [B is a Z-compacti�cation of Y , then �X = X [f B is a Z-compacti�cation of X.

Proposition 1.5. If P n is a locally �nite n-dimensional polyhedron, n � 3, and P collapses

to a locally �nite subpolyhedron Q, then Q� I2n+1 collapses to P . In fact, if c : P ! Q is a

proper PL surjection with contractible point-inverses, then given any function � : Q! (0;1),
we can �nd a proper PL surjection with contractible point-inverses k : Q � I2n+1 ! P so

that the composition c � k : Q� I2n+1 ! Q is �-close to projection.

Given these propositions, here's the proof of our theorem.
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Proof. If X is a locally �nite n-dimensional polyhedron such that X�Q admits a boundary,
Proposition 1.3 says that X is simple-homotopy equivalent to an inverse mapping telescope
T = Tel(Ki; �i), where the Ki are �nite n-dimensional polyhedra and the �i's are PL maps.

In [17], Wall shows that if K and L are simple-homotopy equivalent �nite CW complexes of
dimension � n, n � 3, then there is a �nite CW complex P of dimension � n+1 such that P
collapses to bothK and L. Using the simple homotopy theory of [7], Wall's proof carries over
to locally �nite polyhedra. Given the PL version of this result for locally �nite complexes,
we get a locally �nite polyhedron P of dimension n + 2 with CE-PL maps to X and to T .
By the Cylinder Completion Theorem on page 180 of [4], T admits a Z-compacti�cation.
Since P has CE map to T , P also admits a Z-compacti�cation. Since P has a CE map to X,
Proposition 1.5 shows that X� I2n+5 collapses to P and, by Proposition 1.4, that X� I2n+5

admits a Z-compacti�cation.

We now proceed with the proofs of Propositions 1.3-1.5.

Proof. Except for the dimension estimate, this is the Geometric Characterization Theorem
of [4], which says that X�Q admits a Z-compacti�cation if and only if X is in�nite simple-
homotopy equivalent to an inverse mapping telescope. We obtain the dimension estimate by
examining the proof in [4]. If X is a locally �nite n-dimensional polyhedron such that X�Q
admits a Z-compacti�cation, choose a nested collection Vi of cocompact subpolyhedra of X
with bicollared boundaries so that \1i=1Vi = ;. SinceX�Q admits a Z-compacti�cation, each
of the Vi's has the homotopy type of some �nite n-dimensional polyhedron Ki. The inclusion
maps Vi+1 ! Vi induce maps �i+1 : Ki+1 ! Ki which are well-de�ned up to homotopy. The
argument on pages 204-206 of [4] shows that X is simple-homotopy equivalent near in�nity
to the inverse mapping telescope Tel(Ki; �i) and in�nite simple-homotopy equivalent to a
telescope which agrees with Tel(Ki; �i) everywhere except at the �rst stage. At the end of
this paper, we will sketch a proof of this result.

We begin the proof of Proposition 1.4 with a useful homotopy invariance result for Z-sets .

Proposition 1.6. Let (X;Z) and (Y; Z) be compact metric pairs which are homotopy equiv-

alent rel Z by maps and homotopies which are the identity on Z and which take the comple-

ment of Z to the complement of Z. Then Z is a Z-set in X if and only if Z is a Z-set in

Y .

Proof. We start the proof of the proposition by giving a more precise statement of the
properties of the maps and homotopies described in its statement. Here is what we are
given:

i.) A map f : (X;Z)! (Y; Z) with f jZ = id and f(X � Z) � Y � Z.
ii.) A map g : (Y; Z)! (X;Z) with gjZ = id and g(Y � Z) � X � Z.
iii.) A homotopy ht : X ! X with h0 = id and htjZ = id for all t. Moreover, we have

ht(X � Z) � X � Z for all t.
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iv.) A homotopy kt : Y ! Y with k0 = id and ktjZ = id for all t. Moreover, we have
kt(Y � Z) � Y � Z for all t.

v.) A homotopy �t : Y ! Y with �0 = id and �t(Y ) � Y � Z for all t > 0.

Our goal is to produce a homotopy �t : X ! X so that �0 = id and �t(X) � X � Z for all
t > 0. This will show that Z is a Z-set in X when it is a Z-set in Y . The other half of the
argument is completely symmetric.

We �rst show that we can construct �� having property (v) above and so that ��t(y) = y
whenever d(y; Z) � t. To get this, we de�ne � : Y � [0; 1]! [0; 1] by the formula

�(y; t) =

�
t� d(y; Z) d(y; Z) � t

0 d(y; Z) � t

and then let ��t(y) = ��(y;t)(y). To conserve notation, we will drop the bar and assume that
�t(y) = y when d(y; Z) � t.

Next, let ��t(x) = g � �t � f : X ! X. We see that �t(x) � X � Z for all t > 0 and that
�t(x) = g � f(x) when d(f(x); Z) � t. Let � : X � (0; 1]! [0; 1] be de�ned by the formula

�(x; t) =

8<
:

0 d(f(x); Z) � 2t

2� d(f(x);Z)
t

t � d(f(x); Z) � 2t
1 d(f(x); Z) � t:

Let �ht(x) = h�(x;t)(x). Strictly speaking, this function �ht is only de�ned for t > 0, but it
extends over t = 0 by setting �h0(x) = x for all x. To prove continuity, we need to show
that if (xi; ti) ! (x�; 0), then �hti(xi) ! x�. We consider two cases: If x� 2 X � Z, then
�hti(xi) = xi for large i and �hti(xi) ! x�. If x� 2 Z, then for every � > 0 there is a � > 0 so
that if d(x; x�) < �, then d(ht(x); x

�) < � for all t. It follows immediately that �hti(xi)! x�

in this case, as well.

Finally, we de�ne �t(x) by the formula

�t(x) =

�
�ht(x) d(f(x); Z) � t
��t(x) d(f(x); Z) � t:

It's easy to check that �t(x) is well-de�ned and satis�es property (v). When d(f(x); Z) = t,
we have �ht(x) = ��t(x) = g � f(x). When t=0, we have �0(x) = �h0(x) = x for all x, and for
t > 0, we have either

�t(x) = g � �t � f(x) � g(Y � Z) � X � Z

or �t(x) = h�(x;t)(x). We have �t(x) 2 X � Z in this last case, since x =2 Z. (To clarify this
last assertion, note that x 2 Z and t > 0 guarantees that �t(x) = ��t(x):) It follows that
�t(x) � X � Z for all t > 0, so Z is a Z-set in X.

We are now in a position to prove Proposition 1.4.
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Proof. Proposition 1.4 follows immediately from Proposition 1.6 using a general property
of cell-like maps between ANR's: If f : X ! Y is a cell-like map between locally compact
ANR's, then for any open cover � of Y there is a map g : Y ! X so that f �g is �-homotopic
to the identity and g�f is f�1(�)-homotopic to the identity. (A homotopy ht : Z ! Z is a U -
homotopy, U an open cover of Z, if for each z 2 Z, we have fht(z) j 0 � t � 1g � Uz for some
Uz 2 U . If U is an open cover of Y and f : X ! Y is continuous, then f�1(U) is the cover
of X consisting of sets f�1(U) with U 2 U .) See [12] for a proof in the �nite-dimensional
case and [11] for an extension to the in�nite-dimensional case.

Adopting the notation of Proposition 1.4, it is not hard to use this fact to produce a map
�g : �Y ! �X and homotopies ht : �X ! �X and kt : �Y ! �Y which are the identity on B and
which send complements of B to complements of B. Since we have given ourselves that B
is a Z-set in �Y , it follows that B is a Z-set in �X (and that �X is an ANR).

Finally, we prove Proposition 1.5.

Proof. Let c : P n ! Q be a PL map with contractible point-inverses. For simplicity, we
will assume that n, the dimension of P , is at least 3. Choose a 1-1 (locally?) PL map
� : P ! int I2n+1 and consider the diagram

c� � : P ! Q� I2n+1 ! Q

where the last map is the projection. To conserve notation, we will identify P with its image
under c� �.

Let � be a simplex of Q in some (�xed) triangulation and denote the intersection of P with
Q� = �� I2n+1 by P�. Of course, P� is just c�1�. Now let N� be a regular neighborhood of
P� [ (@� � I2n+1) in Q�: The inclusion N� ! Q� is a homotopy equivalence, so by excision
the inclusion @N� ! (Q� � int(N�)) is a homology equivalence. Since P� is codimension-3
in � � I2n+1, @N� ! (Q� � int(N�)) is a homotopy equivalence, as well. By the relative
h-cobordism theorem, (Q� � int(N�)) is homeomorphic to @N� � [0; 1]. It follows that there
is a PL collapse from Q� to P� [ (@� � I2n+1). Inducting down from the top-dimensional
simplices of Q gives a PL collapse from Q� I2n+1 to P . The �-estimate in the statement of
Proposition 1.5 follows immediately by taking a triangulation ofQ with �-small simplices.

Remark 1.7. i.) For experts, the estimates { both the dimension estimate and the �(x)-
estimate { in Proposition 1.5 will probably be the most interesting novelties in this
paper. Dierker's original idea was to note that if X % Y , then Y � X � [0; 1] and
X � [0; 1]& Y . Iterating this construction, one gets a proof that if X and Y are �nite
polyhedra and X & Y , then Y � Iq & X for some q. There is no estimate on the q
in terms of dimX and dimY and there is no hint as to whether a similar result should
hold for locally �nite polyhedra. Brown and Cohen [2] modi�ed Dierker's construction
to obtain a somewhat di�erent �(x)-estimate for �nite polyhedra. Dierker's dimension
estimate remained unchanged. They used their improved Dierker's Lemma to give a
short proof that if X and Y are simple-homotopy equivalent polyhedra, then X � Q
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and Y �Q are homeomorphic Hilbert cube manifolds. Proposition 1.5 leads to such a
proof for locally �nite polyhedra.

ii.) Proposition 1.6 gives a quick proof that if K and L are homotopy equivalent �nite
aspherical polyhedra and ~K admits a Z-structure in the sense of [1], then so does ~L.
This is also proven in [1] { it's a design criterion for the de�nition of Z-structure { but
it's occasionally useful1 to have proofs of such facts which come directly from formulas,
rather than relying on Hurewicz and Whitehead-type theorems.

2. An expanded proof of Proposition 1.3

We begin with some further discussion of Proposition 1.3.

Proof. If X is a �nite-dimensional polyhedron such that X�Q admits a Z-compacti�cation,
choose cocompact subpolyhedra Vi � X so that X = V1 � V2 � : : : and \1i=1Vi = ;: The
compacti�cation of X � Q induces compacti�cations of the Vi � Q's. These are compact
ANR's, so by West's theorem [18], they have the homotopy types of �nite complexes Ki. For
n � 3, Wall [16] showed that an n-dimensional complex which is homotopy equivalent to a
�nite complex is homotopy equivalent to a �nite n-dimensional complex, so we can assume
that each Ki has dimension equal to max(n; 3). Let �i : Ki ! Ki�1 and ji : Ki ! Vi be
maps such that the diagrams

Ki

ji�=
��

Ki+1

�i+1
oo

ji+1�=
��

Vi Vi+1?
_oo

homotopy commute for all i. There is an obvious map from Tel(Ki; �i) to X which is equal
to ji on each Ki. It is easy to verify that this map satis�es the conditions of the proper
Whitehead theorem of [8], so the map is a proper homotopy equivalence. This uses the
�nite-dimensionality of both X and Tel(Ki; �i). It remains to show that this homotopy
equivalence is a simple-homotopy equivalence near in�nity.

By the Geometric Characterization Theorem of [4], we know that X is proper homotopy
equivalent to Tel(Li; �i) for some �nite polyhedra Li and maps �i, so it su�ces to prove that
proper homotopy equivalent telescopes are simple equivalent near in�nity. Our argument is
extracted from an old argument of Siebenmann [14].

First, note that if X
f

// Y
g

// Z is a sequence of �nite polyhedra and maps, then there
is a simple homotopy equivalence rel X

`
Z from M(f) [Y M(g) to M(g � f). Here, M(f)

denotes the mapping cylinder of f . Also, if f; g : X ! Y are homotopic maps, then there
is a simple homotopy equivalence rel X

`
Y from M(f) to M(g). These lemmas can be

1For instance, one might someday want a parameterized version of the theorem.
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found in [5]. One consequence of this is that an inverse mapping telescope is in�nite simple-
homotopy equivalent to a telescope obtained by \passing to subsequences," i.e., by passing
to a subsequence of the polyhedra and composing the appropriate bonding maps.

If Tel(Ki; �i) and Tel(Li; �i) are proper homotopy equivalent, we can pass to subsequences
and, retaining our original notation, obtain a homotopy commuting diagram:

K1

f1
��

K2

f2
��

�2
oo K3

f3
��

�3
oo K4

�4
oo

f4
��

: : :oo

L1 L2
�2

oo

g2
aaB
B
B
B
B
B
B
B

L3
�3

oo

g3
aaB
B
B
B
B
B
B
B

L4
�4

oo

g4
aaB
B
B
B
B
B
B
B

: : :oo

Using the simple-homotopy lemmas mentioned above, one sees that Tel(Ki; �i) is in�nite
simple-homotopy equivalent to the inverse telescope of the sequence

K1 L2

g2
oo K2

f2
oo L3

g3
oo K3

f3
oo : : :oo

and that Tel(Li; �i) is in�nite simple-homotopy equivalent to the inverse telescope of the
sequence

L1 K1

f2
oo L2

g2
oo K2

f2
oo L3

g3
oo K3

f3
oo : : :oo

The map f1 is a homotopy equivalence, since K1 and L1 are both homotopy equivalent to X.
The last mapping telescope is therefore in�nite simple-homotopy equivalent to the mapping
telescope of the sequence

K 0

1 L2

g0

2
oo K2

f2
oo L3

g3
oo K3

f3
oo : : :oo

where K 0

1 is an n-dimensional complex simple-homotopy equivalent to L1. This, in turn is
in�nite simple-homotopy equivalent to the mapping telescope of the sequence

K 0

1 K2

g0

2�f2
oo K3

g3�f3��3
oo K4

g4�f4��4
oo : : :oo

which shows both that X is in�nite simple-homotopy equivalent to the mapping telescope
of a sequence of �nite n-dimensional polyhedra, as desired, and that the telescope can be
taken to be Tel(Ki; �i), except for a possible change in the �rst term of the sequence.

On page 207 of [4], the authors refer to an unpublished theorem of Ferry. Since the result
has never been published, it seems reasonable to include the original proof in this paper.
The result is also an immediate corollary of Torunczyk's characterization [15] of Hilbert cube
manifolds.

Theorem. If M is a Hilbert cube manifold and �M =M [B is a Z-compacti�cation of M ,

then �M is a Hilbert cube manifold.
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Proof. �M is �-dominated by M for every � > 0, so by Hanner's criterion [10], �M is an ANR.
By a well-known theorem of Edwards [3], �M�Q is a Hilbert cube manifold. Z-set unknotting
shows that the cell-like map �M � Q ! ( �M � Q)= � obtained by shrinking out factors of
Q in B � Q is shrinkable, so ( �M � Q)= � is a Hilbert cube manifold. But the projection
M �Q!M is a can be approximated arbitrarily closely by homeomorphisms, so �M �Q is
homeomorphic to �M and �M is a Hilbert cube manifold.

3. A sobering example

Recently, there has been a resurgence of interest in the problem of Z-compactifying poly-
hedra. Much of this interest involves the case in which the polyhedron in question is the
universal cover of a �nite aspherical polyhedron.2 There is a nice discussion of this in [1].

In this section, we will focus on Chapman-Siebenmann's tameness condition, which must
be satis�ed if a locally �nite polyhedron X is to admit a Z-compacti�cation. Here is the
statement of the condition.

De�nition 3.1. A locally �nite polyhedronX is tame at in�nity if for every compact A � X
there is a larger compact B so that the inclusion X � B ! X � A factors up to homotopy
through a �nite complex. Thus, we require that there exist a �nite complex K and maps
j : X � B ! K, p : K !M � A so that � � � is homotopic to the inclusion.

Question: If K is a �nite aspherical polyhedron, must eK be tame at in�nity?3

In order to answer this question positively, one would presumably have to �nd some geometric
or homotopy-theoretic property of universal covers of �nite polyhedra which was strong
enough to imply that any locally �nite polyhedron possessing these properties is tame at
in�nity. Two popular properties of universal covers which have been abstracted to other
spaces are that a space should be uniformly contractible and that it should have bounded

geometry. Our goal in this section is to construct an example of a smooth 5-manifold having
both of these properties but which is not tame at in�nity.

De�nition 3.2. i.) A metric space X is uniformly contractible if for every R > 0 there is
an S > 0 so that for each x 2 X, the ball of radius R centered at x contracts in the
ball of radius S centered at x.

ii.) A smooth manifold X has bounded geometry if its sectional curvature is bounded above
and below and if its injectivity radius is bounded below.

Let D = �3� int(D3), where �3 is the Poincar�e sphere. D collapses to a 2-complex K which
embeds in R5 . Let N be a regular neighborhood of K in R5. Do surgery on the interior
of N to kill �1 and do another surgery to kill the resulting �2. The result is a contractible

2Recall that a polyhedron K is aspherical if its universal cover is contractible.
3There is no obvious relation between this question and the well-known question of whether eK must have

semistable fundamental group at in�nity. An inverse mapping telescope of S1's with degree two bonding
maps is Chapman-Siebenmann tame, but not semistable at in�nity.
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5-manifoldW whose boundary M is a 4-manifoldM with fundamental group isomorphic to
the binary icosahedral group.

Let Q be a copy of M � [0; 1] in which the Riemannian metric is multiplied by (1 + t) on
M �ftg. Thus, distances are twice as large at the M �f1g-end as they are at the M �f0g-
end. Take an interior connected sum of Q with S2 � S3 and do surgery to kill the element
2�z�z, where z is the element of �2 represented by S2�f�g and � is an element of order 2 in
�1(Q). Call this new manifold P . The point of this construction is that H�(P;M�f0g) = 0,

while H�( eP;fM � f0g) consists of 60 copies of Z=3Z.

Form a contractible open manifold Z by attaching a copy of W to M � f0g � P and
2P [ 4P [ 8P [ : : : to M � f1g � P . By kP , we mean a copy of P in which distances have
been multiplied by k. The open manifold Z is contractible because W is contractible and
H�(P;M � f0g) = 0: We will denote by Zk the union of W with P [ � � � [ 2kP:

The manifold Z does not satisfy the Chapman-Siebenmann tameness condition because the
inclusion Z � Zk ! Z �W does not factor through a �nite complex L for any k. If it did,

we could take the universal cover eZ � fW of Z � W and pull back over p and j to get a

�nite-sheeted covering space L̂ of L and maps ~j : eZ � eZk ! L̂ and ~p : L̂ ! eZ �fW whose
composition was homotopic to the identity. This is impossible, since L̂ is a �nite complex

and the image of H�( eZ � eZk) in H�( eZ �fW ) is in�nitely generated.
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