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The two most popular and practically useful approaches to calculate approximate symmetries of differential 
equations with a small parameter are the Baikov–Gazizov–Ibragimov (BGI) and Fushchich–Shtelen (FS) 
frameworks. It is proven that BGI approximate symmetries form a subset of FS approximate symmetries. Examples 
are provided.
1. Introduction

For a system of differential equations, a symmetry is a transforma-
tion of its solution set into itself (see, e.g., [1,2] and references therein). 
Symmetries that can be constructed systematically include discrete sym-
metries [3], such as reflections, other geometrical symmetries that can 
be found by inspection, such as rotational, translational, scaling, and 
Galilei symmetries, and more generally, infinitesimal Lie-type point, 
contact, higher, and nonlocal symmetries. For a system with indepen-
dent variables 𝑥 = (𝑥1, … , 𝑥𝑛) and dependent variables 𝑢 = (𝑢1, … , 𝑢𝑚), 
a point symmetry generator has the form 𝑋 = 𝜉𝑖𝜕𝑥𝑖 + 𝜂𝑗𝜕𝑢𝑗 (the Ein-
stein summation convention is implied throughout this paper), a point 
or contact or higher symmetry in the evolutionary form is generated 
by 𝑋̂ = 𝜑𝑗𝜕𝑢𝑗 where 𝜑𝑗 are functions of independent variables, de-
pendent variables and a finite number of derivatives. In the case of 
nonlocal symmetries, generators involve nonlocal variables (e.g., [1]). 
In many situations that arise in applications, a system of equations at 
hand is a perturbation of some well-known system 𝐹0 = 0, having the 
form 𝐹 = 𝐹0 + 𝜖𝐹1 = 𝑜(𝜖) (denoted 𝐹 ≈ 0) in terms of a small param-
eter 𝜖. Examples include Euler vs. Navier-Stokes equations with small 
viscosity, MHD plasma models with small but nonzero magnetic perme-
ability, nonlinear wave models in mechanics with a small viscoelastic 
contribution, linear or linearizable equations with a small nonlinear per-
turbation, etc. It is often the case that the exact symmetry algebra of the 
unperturbed equation 𝐹0 = 0, that may be relatively rich, is significantly 
diminished for the perturbed equation 𝐹 ≈ 0.

In order to be able to recover, in some sense, at least some addi-
tional symmetries that hold for 𝐹0 = 0 but do not exactly hold for the 
system 𝐹 ≈ 0, two main approaches have been introduced. In the ap-
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proach of Baikov, Gazizov and Ibragimov (BGI) [4,5], the symmetry 
generator is split into two parts: 𝑋̂ = 𝜑

𝑗

0𝜕𝑢𝑗 + 𝜖𝜑
𝑗

1𝜕𝑢𝑗 , with determin-

ing equations pr 𝑋̂(𝐹 )|||𝐹≈0
≈ 0. In an alternative approach by Fuschich 

and Shtelen [6], one introduces a series expansion of the dependent 
variable 𝑢 = 𝑣 + 𝜖𝑤 + 𝑜(𝜖), and splits the approximate system 𝐹 ≈ 0
into two sets of equations in 𝑣, 𝑤 corresponding to 𝑂(𝜖0) and 𝑂(𝜖1)
terms; the latter system is treated as exact, and its symmetries are cal-
culated. The two approaches have been known to yield different results, 
in particular, some symmetries of 𝐹0 = 0 are stable (that is, arise as ap-
proximate symmetries) in the BGI approach, while different symmetries 
of 𝐹0 = 0 may be stable in the FS framework (e.g., [7] and references 
therein). The algebraic form of the generators appears different, too: in 
the BGI approach, the number of functions defining symmetry compo-

nents is doubled, while the dependencies remain the same; in the FS 
approach, the number of generator components is doubled for depen-
dent variables, remains the same for independent variables, and their 
dependence includes two components 𝑣, 𝑤 of the expansion for 𝑢 sep-

arately. Symmetries obtained by either of the BGI and FS approaches 
have been demonstrated to yield useful approximate solutions of the 
governing equations (e.g., [4–8]).

An exact relationship between BGI and FS approximate symmetries 
has not been established since their introduction in 1989. Based on the 
results of comparative symmetry analysis, it has been observed that BGI 
approximate symmetries were ‘almost always’ included in the FS clas-

sification, and when a PDE system involves arbitrary components, FS 
approximate symmetries arise in a larger number of cases than do the 
BGI. It thus has been conjectured that FS is a more general approach.
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In this work we prove that for a regular PDE system, every BGI 
approximate symmetry is an FS approximate symmetry, whereas the 
converse is generally not true. This makes the FS approximate symmetry 
analysis the method of choice. We illustrate the result with two exam-
ples, the Boussinesq system with small advection and dispersion terms, 
and the equation of nonlinear hyperelastic shear wave propagation with 
a small quadratic term.

2. Basic notation

Let us introduce notation and briefly recall basic concepts related to 
jets and differential equations.

2.1. Jets (see, e.g., [9])

Let 𝜋 ∶ 𝐸 → 𝑀𝑛 be a locally trivial smooth vector bundle over a 
smooth manifold 𝑀 , dim𝐸 = 𝑛 + 𝑚. Suppose 𝑈 ⊂ 𝑀 is a coordinate 
neighborhood such that the bundle 𝜋 becomes trivial over 𝑈 . Choose 
local coordinates 𝑥1, . . . , 𝑥𝑛 in 𝑈 and 𝑢1, . . . , 𝑢𝑚 along the fibers of 𝜋
over 𝑈 . In local coordinates, a section ℎ of the bundle 𝜋 defines func-
tions 𝑢1 = ℎ1(𝑥1, … , 𝑥𝑛), … , 𝑢𝑚 = ℎ𝑚(𝑥1, … , 𝑥𝑛). Sections ℎ1, ℎ2 of 𝜋
represent the same ∞-jet at a point 𝑥0 ∈𝑈 if for 𝑖 = 1, … , 𝑚, the Taylor 
series of the functions ℎ𝑖1 and ℎ𝑖2 at 𝑥0 coincide. Denote the ∞-jet of a 
section ℎ at a point 𝑥0 ∈𝑀 by [ℎ]∞

𝑥0
.

Local coordinates. It is convenient to treat a multi-index 𝛼 as a formal 
sum of the form 𝛼 = 𝛼1𝑥

1 + … + 𝛼𝑛𝑥
𝑛 = 𝛼𝑖𝑥

𝑖, where all 𝛼𝑖 are non-
negative integers; |𝛼| = 𝛼1 +… + 𝛼𝑛. One can introduce the following 
local coordinates on the set 𝐽∞(𝜋) of all ∞-jets of sections of 𝜋.

𝑥𝑖([ℎ]∞𝑥0 ) = 𝑥𝑖(𝑥0) , 𝑢𝑖𝛼([ℎ]
∞
𝑥0
) = 𝜕|𝛼|ℎ𝑖

(𝜕𝑥1)𝛼1 …(𝜕𝑥𝑛)𝛼𝑛
(𝑥0) .

We call such local coordinates adapted and further consider only 
adapted coordinates.

Functions and sections. A function 𝑓 ∶ 𝐽∞(𝜋) →ℝ is smooth if there 
is a non-negative integer 𝑘 ∈ ℕ0 such that in any adapted local coordi-
nates, 𝑓 has a form of a real-valued 𝐶∞-function depending on indepen-
dent variables 𝑥1, … , 𝑥𝑛, dependent variables 𝑢1, … , 𝑢𝑚 and derivatives 
𝑢𝑖𝛼 such that |𝛼| ⩽ 𝑘. Denote by  (𝜋) the algebra of smooth functions 
on 𝐽∞(𝜋). In applied literature, smooth functions on jet manifolds are 
often called differential functions.

If 𝑝∶ 𝐸1 → 𝑀 is a locally trivial smooth vector bundle over the 
same base as 𝜋, then by the induced bundle 𝜋∗

∞(𝑝) we mean the 
bundle 𝜋∗

∞(𝑝)∶ 𝜋∗
∞(𝐸1) → 𝐽∞(𝜋), where 𝜋∗

∞(𝐸1) = {(𝑦; 𝑒) ∈ 𝐽∞(𝜋) ×
𝐸1 | 𝜋∞(𝑦) = 𝑝(𝑒)}, 𝜋∗

∞(𝑝)∶ (𝑦; 𝑒) ↦ 𝑦. If both 𝜋 and 𝑝 become trivial 
over a coordinate neighborhood 𝑈 ⊂𝑀 , one can use the corresponding 
adapted local coordinates on 𝐽∞(𝜋) and coordinates along the fibers 
of 𝑝 as local coordinates on 𝜋∗

∞(𝐸1). We also call such coordinates on 
𝜋∗
∞(𝐸1) adapted and assume that for each section of the induced bundle 

𝜋∗
∞(𝑝), there is 𝑘 ∈ℕ0 such that its components in adapted local coordi-

nates are 𝐶∞-functions of independent variables, dependent variables, 
and derivatives of orders ⩽ 𝑘.

Evolutionary fields. There is the natural projection 𝜋∞∶ 𝐽∞(𝜋) →𝑀

defined by the formula 𝜋∞([ℎ]∞𝑥0 ) = 𝑥0. Denote by 𝜘(𝜋) the  (𝜋)-module 
of sections of the induced bundle 𝜋∗

∞(𝜋). We call elements of this mod-
ule characteristics, as they can be identified with symmetries of 𝐽∞(𝜋). 
More specifically, for each 𝜑 ∈ 𝜘(𝜋), the operators of total derivatives 
𝐷𝑥𝑖 = 𝜕𝑥𝑖 + 𝑢

𝑗

𝛼+𝑥𝑖 𝜕𝑢𝑗𝛼
(𝑖 = 1, … , 𝑛) commute with the corresponding evo-

lutionary vector field

𝐸𝜑 =𝐷𝛼(𝜑𝑖)𝜕𝑢𝑖𝛼 .

Here 𝜑1, … , 𝜑𝑚 are components of 𝜑; 𝐷𝛼 denotes the composition 
𝐷

𝛼1
𝑥1
◦ … ◦𝐷𝛼𝑛

𝑥𝑛
.

Product rule. Let 𝑝 be a locally trivial smooth vector bundle of rank 𝑟
2

over 𝑀 . Denote by 𝑃 (𝜋) the module of sections of the induced bundle 
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𝜋∗
∞(𝑝). In coordinates, a section 𝐹 ∈ 𝑃 (𝜋) has components 𝐹 1, … , 𝐹 𝑟. 

We say that Δ∶ 𝑃 (𝜋) → 𝑃 (𝜋) is an operator in total derivatives if it has 
the form Δ𝑘𝛼

𝑖
𝐷𝛼 in coordinates, i.e., for 𝐹 ∈ 𝑃 (𝜋), 𝑘-th component of 

Δ𝐹 ∈ 𝑃 (𝜋) is Δ𝑘𝛼
𝑖
𝐷𝛼𝐹

𝑖, where Δ𝑘𝛼
𝑖

are components of Δ (and they are 
𝐶∞-functions defined on the coordinate domain).

For an operator in total derivatives Δ∶ 𝑃 (𝜋) → 𝑃 (𝜋) and 𝜑 ∈ 𝜘(𝜋), 
we denote by 𝐸𝜑Δ∶ 𝑃 (𝜋) → 𝑃 (𝜋) the operator that has the form 
𝐸𝜑(Δ𝑘𝛼

𝑖
) 𝐷𝛼 in adapted local coordinates. Since evolutionary fields 

commute with all total derivatives, 𝐸𝜑(Δ𝑘𝛼
𝑖

𝐷𝛼𝐹
𝑖) = 𝐸𝜑(Δ𝑘𝛼

𝑖
)𝐷𝛼𝐹

𝑖 +
Δ𝑘𝛼
𝑖

𝐷𝛼(𝐸𝜑𝐹
𝑖) and hence the product rule

𝐸𝜑(Δ𝐹 ) = (𝐸𝜑Δ)𝐹 +Δ(𝐸𝜑𝐹 )

holds for any 𝜑 ∈ 𝜘(𝜋), 𝐹 ∈ 𝑃 (𝜋).

2.2. Differential equations

Consider a differential equation 𝐹 = 0. In adapted local coordinates, 
this equation takes the form of the system

𝐹 1 = 0 , … , 𝐹 𝑟 = 0 .

In particular, 𝑟 can coincide with 𝑚. We assume that for each point 
𝑞 ∈ {𝐹 = 0} ⊂ 𝐽∞(𝜋), the differentials 𝑑𝐹 1

𝑞 , …, 𝑑𝐹 𝑟
𝑞 are linearly in-

dependent. By infinite prolongation of an equation 𝐹 = 0, we mean the 
subset  ⊂ 𝐽∞(𝜋) that is defined by the infinite system

𝐷𝛼(𝐹 𝑖) = 0 , |𝛼| ⩾ 0 , 𝑖 = 1,… , 𝑟 .

We also assume that 𝜋∞() =𝑀 .

Regularity assumptions. We say that the infinite prolongation  of a 
differential equation 𝐹 = 0 is regular if for every function 𝑓 ∈  (𝜋) that 
vanishes on  , there is an operator in total derivatives Δ∶ 𝑃 (𝜋) →  (𝜋)
such that 𝑓 =Δ𝐹 . In what follows, we consider only regular systems.

Infinitesimal symmetries. An evolutionary field 𝐸𝜑 on 𝐽∞(𝜋) is a sym-
metry of a differential equation {𝐹 = 0} ⊂ 𝐽∞(𝜋) if there is an operator 
in total derivatives Δ∶ 𝑃 (𝜋) → 𝑃 (𝜋) such that

𝐸𝜑𝐹 =Δ𝐹 .

Let us recall that each point symmetry 𝜉𝑖(𝑥1, … , 𝑥𝑛, 𝑢1, … , 𝑢𝑚)𝜕𝑥𝑖 +
𝜂𝑖(𝑥1, … , 𝑥𝑛, 𝑢1, … , 𝑢𝑚)𝜕𝑢𝑖 of an equation 𝐹 = 0 gives rise to its evolu-
tionary symmetry 𝐸𝜑 for 𝜑𝑖 = 𝜂𝑖 − 𝑢𝑖

𝑥𝑗
𝜉𝑗 (𝑖 = 1, … , 𝑚). The same applies 

to contact symmetries (provided that 𝑝 is a line bundle).

3. Perturbed differential equations

Suppose now that 𝐹 denotes a family of sections of 𝑃 (𝜋) depending 
on a small parameter 𝜖. We consider perturbations of first order in 𝜖. 
It is convenient to use the approximate equality symbol ≈ for relations 
that hold up to 𝑜(𝜖). Then the approximate equation

𝐹 = 𝑜(𝜖) ⇔ 𝐹 ≈ 0 (3.1)

can be considered a perturbation of the unperturbed equation 𝐹0 = 0, 
where 𝐹0 = 𝐹 |𝜖=0. There is the section 𝐹1 ∈ 𝑃 (𝜋) such that 𝐹 ≈ 𝐹0+𝜖𝐹1. 
Then one can rewrite equation (3.1) in the form 𝐹0 + 𝜖𝐹1 ≈ 0.

Similarly, if a characteristic 𝜑 depends on a small parameter 𝜖, we 
denote by 𝜑0, 𝜑1 ∈ 𝜘(𝜋) sections such that 𝜑 ≈ 𝜑0 + 𝜖𝜑1 and call the 
corresponding evolutionary field 𝐸𝜑 approximate.

4. Baikov-Gazizov-Ibragimov approximate symmetries

Definition 1. An approximate evolutionary field 𝐸𝜑 is a BGI approxi-
mate symmetry of equation (3.1) if there exist operators in total deriva-
tives Δ0, Δ1 ∶ 𝑃 (𝜋) → 𝑃 (𝜋) such that
𝐸𝜑𝐹 ≈Δ𝐹 , where Δ=Δ0 + 𝜖Δ1, 𝜑 ≈ 𝜑0 + 𝜖𝜑1. (4.1)



K. Druzhkov and A. Cheviakov

We call a BGI approximate symmetry 𝐸𝜑 trivial if 𝜑0 vanishes on 
the infinite prolongation of the unperturbed equation, i.e., if there is an 
operator in total derivatives ∇∶ 𝑃 (𝜋) → 𝜘(𝜋) such that 𝜑0 = ∇𝐹0. Since 
𝐸𝜑0+𝜖𝜑1

=𝐸𝜑0
+ 𝜖𝐸𝜑1

, relation (4.1) takes the form 𝐸𝜑0
𝐹0 + (𝐸𝜑0

𝐹1 +
𝐸𝜑1

𝐹0) 𝜖 = Δ0𝐹0 + (Δ0𝐹1 + Δ1𝐹0) 𝜖 + 𝑜(𝜖). Analysis of the coefficients 
leads to the following

Lemma 1. An approximate evolutionary field 𝐸𝜑 is a BGI approximate sym-

metry of equation (3.1) if and only if there are operators in total derivatives 
Δ0, Δ1 ∶ 𝑃 (𝜋) → 𝑃 (𝜋) such that

𝐸𝜑0
𝐹0 = Δ0𝐹0 , 𝐸𝜑0

𝐹1 +𝐸𝜑1
𝐹0 = Δ0𝐹1 + Δ1𝐹0 .

5. Fushchich-Shtelen approximate symmetries

Let us consider the Whitney sum 𝜋 ⊕ 𝜋 ∶ 𝜋∗(𝐸) → 𝑀 and de-
note local coordinates along its fibers by 𝑣1, … , 𝑣𝑚, 𝑤1, … , 𝑤𝑚. De-
note by 𝑓 a unique function 𝑓 ∶ 𝐽∞(𝜋 ⊕ 𝜋) → 𝐽∞(𝜋) such that 
𝑓 ([ℎ]∞𝑥0 ) = [𝜋∗(𝜋)◦ℎ]∞𝑥0 , where 𝜋∗(𝜋)∶ 𝜋∗(𝐸) → 𝐸 is the induced bun-

dle. In adapted local coordinates, 𝑓 is given by the formulae 𝑢𝑖𝛼 = 𝑣𝑖𝛼 . 
For a mapping 𝑔 that has 𝐽∞(𝜋) as its domain, we denote by 𝑔 the 
pullback (composition) 𝑓∗(𝑔) = 𝑔◦𝑓 . We use the notation 𝐷̃𝑥𝑖 for the 
corresponding total derivatives on 𝐽∞(𝜋 ⊕ 𝜋). For an operator in total 
derivatives Δ∶ 𝑃 (𝜋) → 𝑃 (𝜋) having the form Δ𝑘𝛼

𝑖
𝐷𝛼 in adapted local 

coordinates, we denote by Δ̃ the operator of the form 𝑓∗(Δ𝑘𝛼
𝑖
)𝐷̃𝛼 . Note 

that here 𝑓 ∗(Δ𝐺) = Δ̃𝐺 for any 𝐺 ∈ 𝑃 (𝜋).
Elements of 𝜘(𝜋 ⊕ 𝜋) can be regarded as ordered pairs of sections 

of the induced bundle (𝜋 ⊕ 𝜋)∗∞(𝜋), 𝐸(𝜇0;𝜇1) =𝐷𝛼(𝜇𝑖
0)𝜕𝑣𝑖𝛼 +𝐷𝛼(𝜇𝑖

1)𝜕𝑤𝑖
𝛼
. 

For each 𝐺 ∈ 𝑃 (𝜋), the relation 𝐸(𝜑̃0;𝜇1)𝐺 = 𝑓 ∗(𝐸𝜑0
𝐺) holds for any 

𝜑0 ∈ 𝜘(𝜋) and any section 𝜇1 of the induced bundle (𝜋⊕𝜋)∗∞(𝜋). Let us 
denote by 𝛿 the evolutionary field with the characteristic (𝑤; 0)

𝛿 =𝐸(𝑤;0) =𝑤𝑖
𝛼𝜕𝑣𝑖𝛼

.

The approximate mapping 𝑢𝑖
𝛼
≈ 𝑣𝑖

𝛼
+ 𝜖𝑤𝑖

𝛼
allows one to relate solu-

tions of approximate equation (3.1) to solutions of the system of differ-
ential equations, which we call FS system of approximate equation (3.1)

𝐹0 = 0 , 𝛿𝐹0 + 𝐹1 = 0 . (5.1)

Let us denote by ̃ the infinite prolongation of system (5.1). We say that 
the FS system defines an FS-covering if 𝑓 (̃) =  , where  is the infinite 
prolongation of the unperturbed equation 𝐹0 = 0. By FS symmetries of 
approximate equation (3.1), we mean evolutionary symmetries of FS 
system (5.1). We say that an FS symmetry 𝐸(𝜇0;𝜇1) is trivial if 𝜇0 has the 
form 𝑓 ∗(𝜑0), where 𝜑0 ∈ 𝜘(𝜋) vanishes on  .

Remark 1. If an unperturbed equation 𝐹0 = 0 can be written in an 
extended Kovalevskaya form, its FS system defines an FS-covering for 
any perturbing term 𝜖𝐹1. In the general case, the situation is more 
complicated. If 𝐴∶ 𝑃 (𝜋) →  (𝜋) is an operator in total derivatives 
such that 𝐹0 ∈ ker𝐴, then on approximate solutions of (3.1), 𝜖𝐴𝐹1 =
𝐴(𝐹0 + 𝜖𝐹1) ≈ 0, and hence, among solutions to 𝐹0 = 0, those that do 
not satisfy the constraint 𝐴𝐹1 = 0 cannot be perturbed. According to 
second Noether’s theorem (e.g., [2]), such constraints can be non-trivial 
for Lagrangian gauge systems. To obtain an FS-covering, it is necessary 
to choose 𝐹1 such that 𝐴𝐹1| = 0 for any operator of this type.

6. Correspondence between BGI and FS approaches

Informal idea. One can informally say that an approximate evolu-
tionary field 𝐸𝜑 generates the flow given by the equation 𝑢𝜏 ≈ 𝜑0 + 𝜖𝜑1. 
Substituting
3

𝑢 = 𝑣+ 𝜖𝑤, (6.1)
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we obtain the system 𝑣𝜏 = 𝜑̃0, 𝑤𝜏 = 𝛿𝜑̃0 + 𝜑̃1 corresponding to the evo-
lutionary field with the characteristic (𝜑̃0; 𝛿𝜑̃0 + 𝜑̃1).

Theorem 1. Suppose the FS system of a perturbed equation 𝐹 ≈ 0 defines 
an FS-covering. An approximate evolutionary field 𝐸𝜑 is a BGI approximate 
symmetry of the equation 𝐹 ≈ 0 if and only if (𝜑̃0; 𝛿𝜑̃0 + 𝜑̃1) is the charac-

teristic of an FS symmetry.

Proof. Let us denote by 𝑋 the evolutionary vector field with the char-
acteristic (𝜑̃0; 𝛿𝜑̃0 + 𝜑̃1). Since 𝑋 and 𝛿 are evolutionary symmetries 
of 𝐽∞(𝜋 ⊕ 𝜋), their commutator is also an evolutionary symmetry of 
𝐽∞(𝜋 ⊕ 𝜋). Thus, [𝑋, 𝛿] is completely determined by its characteristic 
having the form (𝜑̃1; …). Using this observation, we find

𝑋(𝛿𝐹0 + 𝐹1) = 𝛿(𝑋𝐹0) +𝐸(𝜑̃1;…)𝐹0 +𝐸(𝜑̃0;…)𝐹1 .

1) Let 𝐸𝜑 be a BGI approximate symmetry of the equation 𝐹 ≈ 0. There 
are operators in total derivatives Δ0, Δ1 ∶ 𝑃 (𝜋) → 𝑃 (𝜋) from Lemma 1. 
Since 𝑋𝐹0 = 𝐸(𝜑̃0;…)𝐹0 = 𝑓 ∗(𝐸𝜑0

𝐹0) = 𝑓 ∗(Δ0𝐹0), the relation 𝑋𝐹0 =
Δ̃0𝐹0 holds and we can apply the product rule:

𝑋(𝛿𝐹0 + 𝐹1) =

= 𝛿(Δ̃0𝐹0) +𝐸(𝜑̃1;…)𝐹0 +𝐸(𝜑̃0;…)𝐹1 =

= (𝛿Δ̃0)𝐹0 + Δ̃0(𝛿𝐹0) +𝐸(𝜑̃1;…)𝐹0 +𝐸(𝜑̃0;…)𝐹1 =

= (𝛿Δ̃0)𝐹0 + Δ̃0(𝛿𝐹0 + 𝐹1) − Δ̃0𝐹1 +𝐸(𝜑̃1;…)𝐹0 +𝐸(𝜑̃0;…)𝐹1 =

= (𝛿Δ̃0)𝐹0 + Δ̃0(𝛿𝐹0 + 𝐹1) + 𝑓 ∗(−Δ0𝐹1 +𝐸𝜑1
𝐹0 +𝐸𝜑0

𝐹1) =

= (𝛿Δ̃0)𝐹0 + Δ̃0(𝛿𝐹0 + 𝐹1) + 𝑓 ∗(Δ1𝐹0) =

= (𝛿Δ̃0 + Δ̃1)𝐹0 + Δ̃0(𝛿𝐹0 + 𝐹1) .

Both (𝛿Δ̃0 + Δ̃1)𝐹0 and Δ̃0(𝛿𝐹0 +𝐹1) vanish on the infinite prolongation 
̃ of the FS system. Thus, 𝑋𝐹0 and 𝑋(𝛿𝐹0 + 𝐹1) vanish on the infinite 
prolongation of the FS system and hence 𝑋 is an FS symmetry.

2) Suppose now that 𝑋 is an FS symmetry. Then 𝑓∗(𝐸𝜑0
𝐹0) vanishes on 

̃ due to the relation 𝑋𝐹0 = 𝑓 ∗(𝐸𝜑0
𝐹0). Since the FS system defines an 

FS-covering, 𝐸𝜑0
𝐹0 vanishes on the infinite prolongation  of the un-

perturbed equation. Hence, there exists an operator in total derivatives 
Δ0 ∶ 𝑃 (𝜋) → 𝑃 (𝜋) such that 𝐸𝜑0

𝐹0 = Δ0𝐹0. The relation 𝑋𝐹0 = Δ̃0𝐹0
and the product rule yield

𝑋(𝛿𝐹0 + 𝐹1)= (𝛿Δ̃0)𝐹0 + Δ̃0(𝛿𝐹0 + 𝐹1) + 𝑓 ∗(−Δ0𝐹1 +𝐸𝜑1
𝐹0 +𝐸𝜑0

𝐹1).

The terms (𝛿Δ̃0)𝐹0 and Δ̃0(𝛿𝐹0 + 𝐹1) vanish on ̃ . Then 𝑓 ∗(−Δ0𝐹1 +
𝐸𝜑1

𝐹0 +𝐸𝜑0
𝐹1) also vanishes on ̃ because 𝑋 is an FS symmetry. Since 

the FS system defines an FS-covering, −Δ0𝐹1 +𝐸𝜑1
𝐹0 +𝐸𝜑0

𝐹1 vanishes 
on  . So, there is an operator in total derivatives Δ1 ∶ 𝑃 (𝜋) → 𝑃 (𝜋) such 
that Δ1𝐹0 = −Δ0𝐹1+𝐸𝜑1

𝐹0+𝐸𝜑0
𝐹1. This result and Lemma 1 complete 

the proof.

Remark 2. For any 𝜑0 ∈ 𝜘(𝜋) and any operator in total derivatives 
∇∶ 𝑃 (𝜋) → 𝜘(𝜋), the following conditions are equivalent: 𝜑0 = ∇𝐹0 ⇔
𝜑0 −∇𝐹0 = 0 ⇔ 𝑓 ∗(𝜑0 −∇𝐹0) = 0 ⇔ 𝜑̃0 = 𝑓 ∗(∇𝐹0). Thus, (non)trivial 
BGI approximate symmetries correspond to (non)trivial FS symmetries.

Theorem 1 allows one to define stable symmetries of unperturbed 
equations in the following way.

Definition 2. A symmetry 𝐸𝜑0
of an unperturbed equation 𝐹 |𝜖=0 = 0

is stable if there is a section 𝜇1 of the bundle (𝜋 ⊕ 𝜋)∗∞(𝜋) such that 
(𝜑̃0; 𝜇1) is a characteristic of an FS symmetry. This property is com-
monly referred to as symmetry stability in the FS sense.

We use more suitable indices for local coordinates on jets in the ex-

amples below.
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Example 1. Let us consider the following perturbed system of equations 
(Boussinesq’s equations)

𝑢𝑡 + 𝜂𝑥 + 𝜖
(
𝑢𝑢𝑥 −

1
2
𝑢𝑥𝑥𝑡

)
≈ 0 , 𝜂𝑡 + 𝑢𝑥 + 𝜖

(
𝑢𝑥𝜂 + 𝑢𝜂𝑥 −

1
6
𝑢𝑥𝑥𝑥

)
≈ 0 .

Here 𝜋, 𝑝∶ ℝ2 × ℝ2 → ℝ2 are the projection onto the second factor, 
𝑢1 = 𝑢, 𝑢2 = 𝜂. The FS system reads

𝑣𝑡 + ℎ𝑥 = 0 , ℎ𝑡 + 𝑣𝑥 = 0 , 𝑤𝑡 + 𝜁𝑥 + 𝑣𝑣𝑥 −
1
2
𝑣𝑥𝑥𝑡 = 0 ,

𝜁𝑡 +𝑤𝑥 + 𝑣𝑥ℎ+ 𝑣ℎ𝑥 −
1
6
𝑣𝑥𝑥𝑥 = 0 ,

where 𝑣1 = 𝑣, 𝑣2 = ℎ, 𝑤1 = 𝑤, 𝑤2 = 𝜁 ; the function 𝑓 has the form 
𝑓 ∶ 𝑢𝛼 = 𝑣𝛼 , 𝜂𝛼 = ℎ𝛼 ; 𝛿 = 𝑤𝛼𝜕𝑣𝛼 + 𝜁𝛼𝜕ℎ𝛼 . The symmetries 𝜕𝑢 and 𝜕𝜂 of 
the unperturbed system are stable since the FS system admits the sym-
metries

𝑋1 = 𝜕𝑣 − 𝑡𝑣𝑥𝜕𝑤 − 𝑡ℎ𝑥𝜕𝜁 +… ,

𝑋2 = 𝜕ℎ −
𝑥𝑣𝑥

2
𝜕𝑤 +

ℎ− 𝑥ℎ𝑥

2
𝜕𝜁 +…

(6.2)

Let us note that these symmetries are not equivalent to point ones. Nev-
ertheless, they generate flows on 𝐽∞(𝜋 ⊕ 𝜋). For instance, the flow 
generated by 𝑋2 is defined by

𝑑𝑥

𝑑𝜏
= 0 , 𝑑𝑡

𝑑𝜏
= 0 , 𝑑𝑣

𝑑𝜏
= 0 , 𝑑ℎ

𝑑𝜏
= 1 , 𝑑𝑤

𝑑𝜏
= −

𝑥𝑣𝑥

2
,

𝑑𝜁

𝑑𝜏
=

ℎ− 𝑥ℎ𝑥

2
,

𝑑𝑣𝑥

𝑑𝜏
= 0 ,

𝑑ℎ𝑥

𝑑𝜏
= 0 , …

The corresponding group of (invertible) transformations is given by

𝑥′ = 𝑥 , 𝑡′ = 𝑡 , 𝑣′ = 𝑣 , ℎ′ = ℎ+ 𝜏 , 𝑤′ =𝑤− 𝜏
𝑥𝑣𝑥

2
,

𝜁 ′ = 𝜁 + 𝜏
ℎ− 𝑥ℎ𝑥

2
+ 𝜏2

4
, …

This observation does not contradict Bäcklund’s theorem, but shows that 
its analogue is not valid in the case of infinite jets. Indeed, these trans-
formations preserve only infinite order tangency. They are produced by 
two-sided invertible differential operators. One can derive such symme-
tries systematically, seeking evolutionary fields with characteristics of a 
particular form.

Both FS symmetries (6.2) give rise to BGI approximate symmetries. 
For example, the characteristic of 𝑋1 reads (1, 0 ; −𝑡𝑣𝑥, −𝑡ℎ𝑥). It has the 
form (𝜑̃0; 𝛿𝜑̃0 + 𝜑̃1) for 𝜑0 = (1, 0), 𝜑1 = (−𝑡𝑢𝑥, −𝑡𝜂𝑥). Accordingly, the 
corresponding BGI approximate symmetry can be written in the form 
(1 − 𝜖𝑡𝑢𝑥)𝜕𝑢 − 𝜖𝑡𝜂𝑥𝜕𝜂 +… This approximate vector field gives rise to the 
point approximate symmetry 𝜖𝑡𝜕𝑥 + 𝜕𝑢.

Example 2. Let 𝑎, 𝑏, and 𝑐 be real numbers such that 𝑐 ≠ 0, 𝑎2 + 𝑏2 > 0. 
Consider the perturbed wave equation

𝑢𝑡𝑡 ≈ 𝑐2(𝑢𝑥𝑥 + 𝑢𝑦𝑦) + 𝜖
(
𝑎(𝑢2𝑥 + 𝑢2𝑦)𝑥 + 𝑏(𝑢2𝑥 + 𝑢2𝑦)𝑦

)
(6.3)

The PDE (6.3) arises in the description of shear Love-type waves in a 
nonlinear elastic solid [10], and corresponds to the following FS system:

𝑣𝑡𝑡 = 𝑐2(𝑣𝑥𝑥 + 𝑣𝑦𝑦) ,

𝑤𝑡𝑡 = 𝑐2(𝑤𝑥𝑥 +𝑤𝑦𝑦) + 𝑎(𝑣2𝑥 + 𝑣2𝑦)𝑥 + 𝑏(𝑣2𝑥 + 𝑣2𝑦)𝑦 .

Here both 𝜋, 𝑝∶ ℝ ×ℝ2 →ℝ2 are the projection onto the second factor. 
The scaling symmetry 𝑢𝜕𝑢 + … of the unperturbed equation is stable 
since the FS system admits the evolutionary symmetry 𝑋 = 𝑣𝜕𝑣+2𝑤𝜕𝑤+
… with the characteristic (𝑣; 2𝑤). Here 𝜑0 = 𝑢, 𝜑̃0 = 𝑣, 𝛿𝜑̃0 = 𝑤. The 
characteristic (𝑣; 2𝑤) does not have the form (𝜑̃0; 𝛿𝜑̃0 + 𝜑̃1) = (𝑣; 𝑤 + 𝜑̃1)
because there is no 𝜑1 ∈ 𝜘(𝜋) such that 𝜑̃1 =𝑤. Thus, the 𝑋 does not 
correspond to any BGI approximate symmetry, and is thus unstable in 
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Conclusion

Theorem 1 establishes an important relationship between BGI and 
symmetries, in particular, that a point or a local BGI symmetry nec-
arily has an FS counterpart. Example 1 demonstrates such a corre-
ndence. The converse is generally not true: an FS symmetry may not 
respond to any local BGI symmetry. This situation is illustrated by 
mple 2.
From the computational point of view, since FS symmetries include 
I approximate symmetries, for a given PDE system, FS symmetries 
 the primary object to be calculated. At the same time, it may also 
convenient to seek BGI approximate point symmetries because in 
 case when they correspond to higher-order FS symmetries, the BGI 
culations may be technically simpler. We also note that when the un-
turbed equations 𝐹0 = 0 are linear, to be tractable, the computations 
FS and BGI approximate symmetries of the perturbed system may 
uire the use of simplifying ansätze.
In the future work, among others, it is important to address the fol-
ing questions. First, it is of interest to calculate further examples and 
sider the correspondences between the two approaches to approxi-
te symmetries (e.g., [5,7,11–13]). Second, in applications, such as 
 example shallow water-type and nonlinear anisotropic mechanical 
dels, there exist systems with multiple unrelated small parameters; 
s important to develop an optimal approach to calculate approxi-
te symmetries of such systems. Third, it is essential to clarify the 
respondence between BGI and FS symmetry approaches when a PDE 
tem contains a parameter expansion with several terms involving in-
asing powers of small parameters. In particular, for point FS and BGI 
roximate symmetries, the expansion (6.1) can be extended to in-

de additional small parameters, and the FS-BGI correspondence is 
ilar to that stated in Theorem 1. Finally, it is important to develop a 
eral approach and study detailed examples of local and nonlocal ap-
ximate symmetry classifications introducing potentials to exact and 
roximate, local and nonlocal conservation laws, and using other dif-

ential coverings [9].
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