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We introduce a new, more general type of nonlinear gauge transformation in non-
relativistic quantum mechanics that involves derivatives of the wave function and
belongs to the class of Ba¨cklund transformations. These transformations satisfy
certain reasonable, previously proposed requirements for gauge transformations.
Their application to the Schro¨dinger equation results in higher order partial differ-
ential equations. As an example, we derive a general family of sixth-order nonlinear
Schrödinger equations, closed under our nonlinear gauge group. We also introduce
a new gauge invariant currents5r¹D ln r, wherer5c̄c. We derive gauge invari-
ant quantities, and characterize the subclass of the sixth-order equations that is
gauge equivalent to the free Schro¨dinger equation. We relate our development to
nonlinear equations studied by Doebner and Goldin, and by Puszkarz. ©2002
American Institute of Physics.@DOI: 10.1063/1.1465514#

I. INTRODUCTION

The notion of nonlinear gauge transformation, introduced in quantum mechanics by Do
and Goldin, extends the usual group of unitary gauge transformations.1–3 The resulting nonlinear
transformations act on a parametrized family of nonlinear Schro¨dinger equations~NLSEs! that
includes the linear Schro¨dinger equation as a special case. They are called gauge transform
because they leave invariant the outcomes of all physical measurements. In this paper we
the notion of gauge transformation further to include transformations that depend explicit
derivatives of the wave function. The result is a group of transformations of Ba¨cklund type.4

As described in earlier work,3 a ~nonlinear! gauge transformation is implemented by a tran
formationc85N@c#, assumed to satisfy the following conditions.

~1! The principle of gauge-independence of positional measurements:Invariance is required
of all quantities describing outcomes of positional measurements, includingsequencesof mea-
surements performed successively at different times. In particular,r(x,t)5uc(x,t)u2 should be
invariant underN for the single-particle wave functionc.

~2! Strict locality: If c is a single-particle function, the value ofc8 at (x,t) is assumed to
depend only on the value ofx, the value oft, and the value ofc at (x,t).

~3! A separation condition:If c (N) is a wave function describing a set ofN noninteracting
particles~i.e., a product state!, then c (N)8 is well defined as the product of gauge transform
single-particle wave functions. This condition ensures that gauge transformations extend
whole N-particle hierarchy of wave functions in a way that subsystems that are uncorre
remain so in the gauge-transformed theory.

Here we modify the condition of strict locality, allowingc8(x,t) to depend not only on the

a!Electronic mail: gagoldin@dimacs.rutgers.edu
b!Electronic mail: shtelen@math.rutgers.edu
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values ofc(x,t), x, and t, but also on finitely many spatial derivatives ofc evaluated at (x,t).
Thus our transformations are local, in thatc8(x,t) does not depend on space-time points a
distance from (x,t), but they are no longer ‘‘strictly’’ local, since derivative terms are allowed.
shall call this propertyweak locality. One motivation for introducing this generalization is
explore the relation between the resulting nonlinear gauge generalization of the Schro¨dinger equa-
tion and the equations proposed by Puszkarz.5

The condition that our set of transformations forms a group~i.e., that it is closed unde
composition and includes all inverse transformations! while the number of derivatives ofc re-
mains bounded, imposes an additional restriction. Thisgroup propertyis automatically satisfied in
the strictly local theory, but here it requires explicit discussion. Thus, we shall add it to
conditions already mentioned. We then call the transformations that obey the following
conditionsweakly local gauge transformations:~1! the principle of gauge-independence of po
tional measurements; (28) weak locality;~3! the separation condition; and~4! the group property.

In Sec. II of this paper, we first consider a general class of nonlinear, single-particle S¨-
dinger equations that are equivalent to the free Schro¨dinger equation under the assumption th
condition~1! is satisfied. Using the other three conditions, we obtain a particularly simple form
weakly local gauge transformations. Following the method of ‘‘gauge generalization,’’3 we then
derive a general family of sixth-order nonlinear Schro¨dinger equations, closed under our nonline
gauge group, which are not all equivalent to the free second-order Schro¨dinger equation. In Sec
III we construct a complete set of gauge invariant quantities. As particular cases, we use th
characterize the subclass of the sixth-order equations that are gauge equivalent to the Sch¨dinger
equation, and those equivalent to the wider class of nonlinear equations studied by Doebn
Goldin. We further relate our development to the nonlinear equations proposed by Puszkarz
on additional quantum currents that involve higher derivatives ofc.

II. GAUGE TRANSFORMATIONS AND NLSEs

Consider the transformation

c8~x,t !5eiwc~x,t !, ~2.1!

wherew is a real-valued functional that depends onc,x, andt. By this we mean thatw can depend
explicitly on c, c̄, derivatives ofc andc̄ of arbitrary order, integrals or integral transforms ofc

and c̄, etc., as well as directly onx and t. Equation ~2.1! preserves the probability densit
r(x,t)5c̄(x,t)c(x,t), as required by the first condition in Sec. I, but if nonlocal it does
generally respect sequences of positional measurements. The following then describes the
class of NLSEs that are equivalent via~2.1! to the free Schro¨dinger equation: ifc8 satisfies

i
]c8

]t
1

\

2m
Dc85 i

]c8

]t
2n18Dc850, ~2.2!

thenc satisfies the NLSE

i
]c

]t
2n18Dc1 i I @c,x,t#c1R@c,x,t#c50, ~2.3!

where

R@c,x,t#5
]w

]t
22n18S ¹w"¤̂

r
1

1

2
~¹w!2D ~2.4!

and



a-

entially

ly a
of
ed in

ever, if
ne
inates

o
e
t

2182 J. Math. Phys., Vol. 43, No. 5, May 2002 G. A. Goldin and V. M. Shtelen

 09 February 2024 20:38:00
I @c,x,t#5n18S Dw1
¹w"¹r

r D5n18F1

r
¹"~r¹w!G , ~2.5!

with

¤̂5
m

\
j5

1

2i
@c̄¹c2~¹c̄!c#. ~2.6!

The verification is by direct substitution of~2.1! into ~2.2!.
As was shown by Doebner and Goldin,1 a general form for strictly local gauge transform

tions ~that satisfy all the initial requirements discussed in Sec. I! corresponds to the choice

w5 1
2 g~ t !ln r1@L~ t !21#S1u~x,t !, LÞ0, ~2.7!

where c5Ar eiS. For simplicity, we considerg and L independent oft, and u(x,t)[0. The
family of NLSEs with arbitrary coefficients that directly generalizes~2.3! and is invariant~as a
family! under gauge transformations~2.1! with w as in ~2.7!, then has the form1

i
]c

]t
5H i (

j 51

2

n jRj1(
j 51

5

m jRj J c, ~2.8!

where, then j andm j are real, and

R15
¹"¤̂

r
, R25

Dr

r
, R35

¤̂

2

r2 , R45
¤̂"¹r

r2 , R55
~¹r!2

r2 . ~2.9!

In obtaining ~2.8!, one uses the identityDc/c5 iR11 1
2R22R32 1

4R5 . Invariance of the family
~2.8! under~2.1! and~2.7! means that ifc satisfies an equation in this family with coefficientsn j

and m j , thenc8 satisfies another equation in the family with coefficientsn j8 and m j8 ; thus our
choice of the primed coefficientn18 in writing Eq. ~2.2!.

Now the class of nonlinear gauge transformations in quantum mechanics can be ess
extended if we replace strict locality by weak locality, thus allowing the gauge functionalw to
depend on derivatives ofc. Under this assumption the gauge transformation is no longer simp
point transformation; it is aBäcklund transformation.4 Here we consider gauge transformations
Bäcklund type that form a group, satisfying the physically motivated requirements discuss
Sec. I, with strict locality replaced by weak locality.

We observe that ifw is permitted to depend on derivatives ofS as well as derivatives ofr,
then the set of gauge transformations in general does not respect the group property. How
the derivatives ofS are excluded fromw, then the transformations do respect this property. O
way to see this is to write nonlinear gauge transformations as they act on logarithmic coord
T andS, with ln c5T1iS ~so thatT5 1

2 ln r!, omitting for simplicity the explicitx and t depen-
dence:

S S8
T8 D5S L G

0 1 D S S
TD , ~2.10!

whereL is a linear or nonlinear functional ofS and its derivatives, andG is a linear or nonlinear
functional of T and its derivatives. In the strictly local case, we haveL@S#5LS and G@T#
5g T. If we perform two transformations~2.10! successively, T95T85T and S95
L2@L1@S#1G1@T# #1G2@T#. Then derivatives present in the form ofG never act successively, s
that their order does not increase; but derivatives in the form ofL do act successively. Thus th
group property, with the condition that the number of derivatives ofc remains bounded, rules ou
derivative terms inL—but not inG.



four

ons

-

is

y
nder

2183J. Math. Phys., Vol. 43, No. 5, May 2002 On gauge transformations of Bäcklund type
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Now a simple gauge transformation that is no longer strictly local, but satisfies the
requirements discussed in Sec. I, has the form~2.1! with

w5 1
2 g ln r1~L21!S1hD ln r5 1

2 g ln r1~L21!S1h~R22R5!, ~2.11!

whereh is a real parameter that, likeg andL, can in principle depend ont. This corresponds to
the choiceG@T#5g T1hDT in ~2.10!. Thus we have a group of nonlinear gauge transformati
modeled on three~in general time-dependent! parameters, obeying the group law

N(g2 ,L2 ,h2)+N(g1 ,L1 ,h1)5N(g21L2g1 ,L2L1 ,h21L2h1) . ~2.12!

But we note further thatG@T# need not be linear inT. Indeed, while the linear termD ln r5
R22R5 satisfies the separation condition, its nonlinear partsR2 andR5 do so separately! Consid
ering a two-particle product wave functionc (2)(x1 , x2 , t)5c1(x1 ,t)c2(x2 ,t), and defining
r (2)5c (2)c (2), r15c̄1c1 , andr25c̄2c2 , we have

R2
(2)@c (2)#5

D (2)r (2)

r (2) 5
D (2)~r1r2!

r1r2
5

D1r1

r1
1

D2r2

r2
5R2@c1#1R2@c2#,

whereD (2)5D11D2 . Similarly for R5 :

R5
(2)@c (2)#5

@¹ (2)r (2)#2

~r (2)!2 5
@~¹1 ,¹2!r1r2#2

~r1r2!2 5R5@c1#1R5@c2#.

Thus a further generalization of~2.11! that gives weakly local nonlinear gauge transformations
to allow the derivative terms to enter with different coefficients:

w5 1
2 g ln r1~L21!S1h1R21h2R5 . ~2.13!

Let us next write the gauge generalized family of NLSEs derived from~2.11!. Beginning with
the standard, free Schro¨dinger equation in the form

i
]c8

]t
52

\

2m F iR181S 1

2
R282R382

1

4
R58D Gc8, ~2.14!

whereRj8 meansRj@c8#, we transform by~2.1! with w as in~2.11!, and from~2.3! to ~2.5! we find
the form of the resulting NLSEs forc. We generalize, following Ref. 3, by allowing arbitrar
coefficients for the nonlinear functionals, maintaining the invariance of the family of NLSEs u
the nonlinear gauge group. In this fashion, we obtain

i
]c

]t
5H i (

j 51,2,6
n jRj1(

j 51

12

m jRj J c5$ i Î 1R̂%c, ~2.15!

whereR1 , . . . ,R5 are as in~2.9!, and where the new functionalsR6 , . . . ,R12 are given by

R65
¹"s

r
, R75

¤̂"s

r2 , R85
s"¹r

r2 , ~2.16!

R95
s2

r2 , R105DR1 , R115DR2 , R125DR6 ,

with

s5r¹D ln r5r¹~R22R5!. ~2.17!
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Note that the functionalsR6 , . . . ,R11 involve no higher than fourth derivatives ofc, but the
presence of the termR12 in ~2.15! makes it in general of sixth order. If we use~2.13! in place of
~2.11!, we shall need separately the new currentsr¹R2 andr¹R5 . These give rise to additiona
nonlinear functionals inc.

Equation~2.15! still conserves the quantum probabilityc̄c. It gives rise to the gauge invarian
current

Jgi522~n1¤̂1n2¹r1n6s! ~2.18!

that enters the continuity equation

]r

]t
52¹"Jgi52Îr. ~2.19!

III. GAUGE TRANSFORMATIONS AND INVARIANTS FOR THE FAMILY OF
SIXTH-ORDER NLSEs

Under the gauge transformations~2.1!, with w given by ~2.11!, the coefficientsn j , m j of
~2.15! transform as follows:

n185
n1

L
, n285n22

1

2
g

n1

L
, n685n62

hn1

L
, ~3.1!

m185m12
gn1

L
, m285Lm22

1

2
gm11

g2

2L
n12gn2 , m385

m3

L
,

m485m42
gm3

L
, m585Lm52

1

2
gm41

g2

4L
m3 ,

m685Lm62gn62hm11
hg

L
n1 , m785m72

2hm3

L
, ~3.2!

m885Lm82hm42
1

2
gm71

ghm3

L
, m985Lm92hm71

h2m3

L
, m108 5m102

2hn1

L
,

m118 5Lm1122hn22
1

2
gm101

ghn1

L
, m128 5Lm1222hn62hm101

2h2n1

L
.

Note that as expected,h does not enter the transformation laws forn1 , n2 , or m1 , . . . ,m5 , which
are the same as in Refs. 1–3. Note also that if we begin withm1250, then hÞ0 leads to
m128 Þ0; thus we cannot have an invariant family of fourth-order partial differential equation
these transformations.

We now write functionally independent gauge invariantst j ( j 51,2,. . . ,12) asfollows:

t15n22
m1

2
, t25n1m22m1n2 , t35

m3

n1
, t45m42m1

m3

n1
, t̂55m5m32~1/4!m4

2 ,

t65m6n12m1n6 , t75m722n6

m3

n1
, t85m8n12m4n61m6m32~1/2!m7m1 , ~3.3!

t95m9m32~1/4!m7
2 , t105m1022n6 , t115m11n12m10n2 , t125m12n12n6

22~1/4!m10
2 .
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 09 February 2024 20:38:00
In this list of gauge invariants, we have included a new quantityt̂5 instead of the original
t55n1m52n2m41n2

2(m3 /n1) that was used in Refs. 1–3, since the expression fort̂5 is simpler.
The relation between these two gauge invariants is, of course, wholly gauge invariant:t̂55
t3t51t1t3(t42t1t3)2(1/4)t4

25t3t52(t1t32 1
2t4)2.

It should be noted that~2.15! is invariant under Galilean transformations

x̃5x2vt, t̃ 5t, c̃~ x̃, t̃ !5c~x,t !expS i

2n1
S x"v1

1

2
v2t D D ~3.4!

when

m3

n1
521, m11m450, m71m1050, ~3.5!

and consequently, the gauge invariantst1 , . . .,t12 must satisfy the conditions

t3521, t450, t71t1050. ~3.6!

Under time reversal, all the coefficientsn j , m j change sign. Thus time reversal invariance requi

t150, t450, t750, t1050. ~3.7!

In particular, when~2.15! is the Schro¨dinger equation, we have

n152
\

2m
, m252

\

4m
, m35

\

2m
, m55

\

8m
, ~3.8!

and all other coefficients are zero. Equations~3.7! then give

t25
\2

8m2 , t3521, t55
\2

16m2 , ~3.9!

with all othert’s equal to zero. For the equations studied by Doebner and Goldin,t1 , . . . ,t5 are
arbitrary, butt6 , . . . ,t12 are zero.

Some of the equations discussed by Puszkarz,5 belong to the class~2.15!, when m1250.
Puszkarz’s modification of the Schro¨dinger equation is the formal extension of the equations
Doebner and Goldin obtained by modifying the current~2.6!, adding to it any or all of the
following terms with higher derivatives:

rDS j

r D , r¹S j "¹r

r2 D , r¹S j2

r2D , r¹R2 , r¹R5 .

Since Puszkarz’s modification directly affects only the imaginary part of the nonlinear funct
for i (]c/]t)/c, namely (21/2r)¹"J where J is the current that appears in the equation
continuity, and does not change the real part, the resulting equation is fouth-order. Our equ
are in general sixth-order because of the term withR12, which is needed in order to maintai
invariance under the nonlinear gauge group. The equations of Puszkarz with the first three c
do not belong to any family that is closed under a group of weakly local nonlinear gauge
formations, since the transformations giving rise to those currents involve derivatives of the
S. His equations with the latter two currents belong to the family obtained from~2.15! through
gauge generalization.

In short, we have obtained a natural family of sixth-order partial differential equations in
ant ~as a family! under nonlinear gauge transformations of Ba¨cklund type, that includes a subclas
gauge equivalent to the linear Schro¨dinger equation, a wider subclass gauge equivalent to
equations that Doebner and Goldin studied, and another subclass that intersects the fa
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equations proposed by Puszkarz. Given a particular equation in our family, we can calculate
gauge-invariant parameters, and from these immediately determine whether the equation is
cally equivalent to the free Schro¨dinger equation or an equation of Doebner–Goldin type,
whether it is Galilean and/or time-reversal invariant.
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