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We introduce a new, more general type of nonlinear gauge transformation in non-
relativistic quantum mechanics that involves derivatives of the wave function and
belongs to the class of Bklund transformations. These transformations satisfy
certain reasonable, previously proposed requirements for gauge transformations.
Their application to the Schdinger equation results in higher order partial differ-
ential equations. As an example, we derive a general family of sixth-order nonlinear
Schralinger equations, closed under our nonlinear gauge group. We also introduce
a new gauge invariant curreat=pVA In p, wherep= ¢siy. We derive gauge invari-

ant quantities, and characterize the subclass of the sixth-order equations that is
gauge equivalent to the free ScHilger equation. We relate our development to
nonlinear equations studied by Doebner and Goldin, and by Puszka200®
American Institute of Physics[DOI: 10.1063/1.1465514

[. INTRODUCTION

The notion of nonlinear gauge transformation, introduced in quantum mechanics by Doebner
and Goldin, extends the usual group of unitary gauge transformétidii$ie resulting nonlinear
transformations act on a parametrized family of nonlinear Sthger equation§NLSES that
includes the linear Schdinger equation as a special case. They are called gauge transformations
because they leave invariant the outcomes of all physical measurements. In this paper we extend
the notion of gauge transformation further to include transformations that depend explicitly on
derivatives of the wave function. The result is a group of transformations cfl&ad type?

As described in earlier worka (nonlineay gauge transformation is implemented by a trans-
formation ¢’ = A ], assumed to satisfy the following conditions.

(1) The principle of gauge-independence of positional measuremémisriance is required
of all quantities describing outcomes of positional measurements, inclisgiggencesf mea-
surements performed successively at different times. In partigeart) =| ¢(x,t)|? should be
invariant underV for the single-particle wave functio.

(2) Strict locality: If # is a single-particle function, the value g@f at (x,t) is assumed to
depend only on the value of the value oft, and the value off at (x,t).

(3) A separation conditionif ) is a wave function describing a set Nf noninteracting
particles(i.e., a product stajethen z//(N)' is well defined as the product of gauge transformed
single-particle wave functions. This condition ensures that gauge transformations extend to the
whole N-particle hierarchy of wave functions in a way that subsystems that are uncorrelated
remain so in the gauge-transformed theory.

Here we modify the condition of strict locality, allowing’(x,t) to depend not only on the
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values ofy(x,t), X, andt, but also on finitely many spatial derivatives @#fevaluated atX,t).
Thus our transformations are local, in that(x,t) does not depend on space-time points any
distance fromx,t), but they are no longer “strictly” local, since derivative terms are allowed. We
shall call this propertyweak locality One motivation for introducing this generalization is to
explore the relation between the resulting nonlinear gauge generalization of theliSgkreequa-
tion and the equations proposed by PuszRarz.

The condition that our set of transformations forms a grdup., that it is closed under
composition and includes all inverse transformatjonkile the number of derivatives af re-
mains bounded, imposes an additional restriction. §rasip propertyis automatically satisfied in
the strictly local theory, but here it requires explicit discussion. Thus, we shall add it to the
conditions already mentioned. We then call the transformations that obey the following four
conditionsweakly local gauge transformationél) the principle of gauge-independence of posi-
tional measurements; (R weak locality;(3) the separation condition; arid) the group property.

In Sec. Il of this paper, we first consider a general class of nonlinear, single-particle- Schro
dinger equations that are equivalent to the free Stihger equation under the assumption that
condition(1) is satisfied. Using the other three conditions, we obtain a particularly simple form for
weakly local gauge transformations. Following the method of “gauge generalizafiove’then
derive a general family of sixth-order nonlinear Salingjer equations, closed under our nonlinear
gauge group, which are not all equivalent to the free second-order diehen equation. In Sec.

IIl we construct a complete set of gauge invariant quantities. As particular cases, we use these to
characterize the subclass of the sixth-order equations that are gauge equivalent to thm&ehro
equation, and those equivalent to the wider class of nonlinear equations studied by Doebner and
Goldin. We further relate our development to the nonlinear equations proposed by Puszkarz based
on additional quantum currents that involve higher derivativeg.of

II. GAUGE TRANSFORMATIONS AND NLSEs

Consider the transformation

P (X1 =€"Pih(x,1), (2.2)

whereg is a real-valued functional that dependsi#x, andt. By this we mean thap can depend
explicitly on ¢, ¢, derivatives ofys and ¢ of arbitrary order, integrals or integral transformsyof
and ¢, etc., as well as directly om andt. Equation(2.1) preserves the probability density

p(X,t)zE(x,t)gz/(x,t), as required by the first condition in Sec. I, but if nonlocal it does not
generally respect sequences of positional measurements. The following then describes the general
class of NLSEs that are equivalent {2 1) to the free Schidinger equation: ifiy’ satisfies

ay' h Yy’
i&—'/:+ﬁw’=ia—'/:—v1w’=o, 2.2
then ¢ satisfies the NLSE
Y
|——v1A¢+|I[¢xt]w+R[¢xt]¢ 0, (2.3
where
R[th]———Zvl(%-i— Z(Ve )) 2.4

and
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Ap+

Iy, xt]=vy

Vgo-Vp) _
="

1
;V'(pvw)} (2.5

with

=m_ L YV — (Vi) 2.6
1= 1= 5 [V = (Vyl. (2.6
The verification is by direct substitution ¢2.1) into (2.2).
As was shown by Doebner and Goldim general form for strictly local gauge transforma-
tions (that satisfy all the initial requirements discussed in Sgcotresponds to the choice
e=3y(O)INp+[A(t)—1]S+6(x,t), A#O0, (2.7
where = /p €'S. For simplicity, we considery and A independent ot, and 6(x,t)=0. The

family of NLSEs with arbitrary coefficients that directly generaliZ8s3) and is invariantas a
family) under gauge transformatiof.1) with ¢ as in(2.7), then has the forfn

(91// 2 5
i—=1i> yR+> R (2.9
ot =1 =1

where, thev; and u; are real, and

V) Ap ? 3Vp (Vp)?
Ri=—, R,=—, R3=—, R;= , = . 2.9
1= 2=, 3= ,2 a=7 5= 7 (2.9

In obtaining(2.8), one uses the identity ¥/ y=iR,+ 3R,— R;— 3Rs. Invariance of the family
(2.8) under(2.1) and(2.7) means that if/s satisfies an equation in this family with coefficients
and u;, theny’ satisfies another equation in the family with coefficienﬁsand ,uj’ ; thus our
choice of the primed coefficient; in writing Eq. (2.2).

Now the class of nonlinear gauge transformations in quantum mechanics can be essentially
extended if we replace strict locality by weak locality, thus allowing the gauge functipial
depend on derivatives @f. Under this assumption the gauge transformation is no longer simply a
point transformation; it is Backlund transformatioff Here we consider gauge transformations of
Backlund type that form a group, satisfying the physically motivated requirements discussed in
Sec. |, with strict locality replaced by weak locality.

We observe that ifp is permitted to depend on derivatives $fas well as derivatives g,
then the set of gauge transformations in general does not respect the group property. However, if
the derivatives ofS are excluded fromp, then the transformations do respect this property. One
way to see this is to write nonlinear gauge transformations as they act on logarithmic coordinates
T andS, with In =T+iS (so thatT=%In p), omitting for simplicity the explicitx andt depen-

dence:
g L G\/s
(T’>: 0 1 (T

wherelL is a linear or nonlinear functional & and its derivatives, an@ is a linear or nonlinear
functional of T and its derivatives. In the strictly local case, we hdje&S]=AS and G[T]
=yT. If we perform two transformations(2.10 successively, T"=T'=T and S'=
L,o[L4[S]+G4[T] ]+ G,[T]. Then derivatives present in the form@fnever act successively, so
that their order does not increase; but derivatives in the forin db act successively. Thus the
group property, with the condition that the number of derivativeg eémains bounded, rules out
derivative terms irL—but not inG.

, (2.10
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Now a simple gauge transformation that is no longer strictly local, but satisfies the four
requirements discussed in Sec. |, has the f@@r) with

e=3yInp+(A—-1)S+pAInp=3yInp+(A—1)S+ 7(R,—Rs), (2.11

where 7 is a real parameter that, likeand A, can in principle depend oh This corresponds to
the choiceG[T]=y T+ 7AT in (2.10. Thus we have a group of nonlinear gauge transformations
modeled on thre@n general time-dependgrparameters, obeying the group law

'/\[(72~A2r’72)0'/v(71 A1) :M72+A271 Ao mptAgng) (212

But we note further thaG[T] need not be linear i. Indeed, while the linear term In p=
R,—R; satisfies the separation condition, its nonlinear pRst&nd Rg do so separately! Consid-
ering a two-particle product wave functiof®(x;, X,, t)= y1(x1,t)¥(X,,t), and defining

pP=y@y2) b=y, andp,= ih,, we have

A@p@) A2

P1P2)_A1P1 Ay
@ = = +

Pz _ Rol 1]+ Rl ¢2],
P2

RELy @)=

p P1P2 P1

whereA@=A,+A,. Similarly for Rs:

(V&2 [(V1.V2)papa]?

ROy = (p))? (p1p2)*

=Rs[ 1]+ Rs[ #,].

Thus a further generalization ¢2.11) that gives weakly local nonlinear gauge transformations is
to allow the derivative terms to enter with different coefficients:

e=3yInp+(A—1)S+ R+ 7,Rs. (2.13

Let us next write the gauge generalized family of NLSEs derived fi@1hl). Beginning with
the standard, free Schdimger equation in the form

oY
j—=— —

iR!+
at 2m| 1

1 ’ ’ 1 ’ ’
>R2=Rs= 7Rs |14, (2.14

WhereRj’ meansR;[ '], we transform by2.1) with ¢ as in(2.11), and from(2.3) to (2.5 we find

the form of the resulting NLSEs fo#. We generalize, following Ref. 3, by allowing arbitrary
coefficients for the nonlinear functionals, maintaining the invariance of the family of NLSEs under
the nonlinear gauge group. In this fashion, we obtain

12
J A A

Jadmy > yR+ X wiRy={ii+R}y, (2.19

at j=1,2,6 j=1

whereR,, ... ,Rs are as in(2.9), and where the new functionai, . . . R, are given by
S L A [ (2.16
6 p ’ 7 p2 ’ 8 p2 ’ .
0_2
Rgz?, RlOZARll Rll:ARZI RlzzARG,

with

o=pVAInp=pV(R,—Rg). (2.17
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Note that the functional&g, . .. ,R;; involve no higher than fourth derivatives of, but the
presence of the teriR;, in (2.15 makes it in general of sixth order. If we ugé213 in place of
(2.11), we shall need separately the new currgr¥RR, andpVRs. These give rise to additional
nonlinear functionals inp.

Equation(2.15 still conserves the quantum probabilitys. It gives rise to the gauge invariant
current

9= —2(vy3+ v,Vp+ vgo) (2.18
that enters the continuity equation

a_p:_v.\]gizzi (2.19
at p- '

IIl. GAUGE TRANSFORMATIONS AND INVARIANTS FOR THE FAMILY OF
SIXTH-ORDER NLSEs

Under the gauge transformatio.1), with ¢ given by (2.11), the coefficientsy;, u; of
(2.15 transform as follows:

vy 1 v nvy
VIS V2TVaT oY Ve Ve p (3.1)
2
, Y , 1 Y , M3
M= H1T 3 MZZAM2_§7M1+ SAVIT Y2, M3T A
1 2
pampa— 02, wb=Aps— 5 yiat ox b,
A 2 4\
/ nY , 27mpg
Me=Ape= yve— it V1 M7 My T (3.2
1 ynus "us 27w,
pg=Aug— Na™ 5 Y7t T mo=Apg— mu7+ A 0 MoTH0T TR
, 1 yovr o, 29°v,
M= Apg—2mvy— 5 Y10t T M= A p1o— 26— nuigt A
Note that as expecteaj, does not enter the transformation laws fqr, v,, or uq, . .. ,us, Which

are the same as in Refs. 1-3. Note also that if we begin witk=0, then »#0 leads to
11,7 0; thus we cannot have an invariant family of fourth-order partial differential equations for
these transformations.

We now write functionally independent gauge invariant§ =1,2,...,12) asfollows:

M1 M3 M3

_ _ _ _ A 2
TIT V2T 5 TS VifoT Maba, Ts—V_ly T4—M4_/-L1V_1a T5= pspz— (L/14) uy,

M3
Te= MeV1™ M1V6, T7:M7_2V6v_1’ Tg= MgV1— MaVet etz — (12 uzpmy, (3.9

2 2 2
To=pop3— (U u7, Ti0= 10— 2V6, T11= KR11V1— MigV2,  Ti2= M1ov1— Ve— (1/4) uio.
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In this list of gauge invariants, we have included a new quarititynstead of the original
T5= Vb= Vogt V%(Mg/Vl) that was used in Refs. 1-3, since the expressiorrfas simpler.
The relation between these two gauge invariants is, of course, wholly gauge invagant:
TaTs+ 11 73( 74— T173) — (UA)T5= Tam5— (1173 374)°.

It should be noted thaR.15 is invariant under Galilean transformations

~ ~ o~ i 1
X=x—-vt, t=t, Lp('f(,t):w(x,t)exy{— x-v+—vzt> (3.9
2V1 2
when
M3
V—lz—l, M1t ua=0, p7t+p0=0, (3.9
and consequently, the gauge invarian{s. . ., 71, must satisfy the conditions
7-3:—1, 7'420, ’T7+ 7'1020. (36)

Under time reversal, all the coefficients, u; change sign. Thus time reversal invariance requires
T]_:O, 7'4:0, 7'7:0, Tlozo. (37)

In particular, when2.15 is the Schrdinger equation, we have

_ _h _h _h 38
PITTom M T am M Tome 'u5_8_m’ (3.8
and all other coefficients are zero. Equatid8s’) then give
h? h?
TZZWV 73:_11 TSZWV (39)

with all other 7’s equal to zero. For the equations studied by Doebner and Galgin, . ,75 are
arbitrary, butrg, . .. ,71, are zero.

Some of the equations discussed by Puszkdrelong to the clas$2.15, when u;,=0.
Puszkarz's modification of the Schioger equation is the formal extension of the equations of
Doebner and Goldin obtained by modifying the curréai6), adding to it any or all of the
following terms with higher derivatives:

j
A(—
P2

j2

i*Vp
, pV;Z’ pVR,, pVRs.

. pV|——
P

Since Puszkarz's modification directly affects only the imaginary part of the nonlinear functional
for i(dylat)l, namely (—1/20)V-J where J is the current that appears in the equation of
continuity, and does not change the real part, the resulting equation is fouth-order. Our equations
are in general sixth-order because of the term ViRth, which is needed in order to maintain
invariance under the nonlinear gauge group. The equations of Puszkarz with the first three currents
do not belong to any family that is closed under a group of weakly local nonlinear gauge trans-
formations, since the transformations giving rise to those currents involve derivatives of the phase
S. His equations with the latter two currents belong to the family obtained fébd®) through

gauge generalization.

In short, we have obtained a natural family of sixth-order partial differential equations invari-
ant(as a family under nonlinear gauge transformations otBand type, that includes a subclass
gauge equivalent to the linear ScHimger equation, a wider subclass gauge equivalent to the
equations that Doebner and Goldin studied, and another subclass that intersects the family of
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equations proposed by Puszkarz. Given a particular equation in our family, we can calculate the 12
gauge-invariant parameters, and from these immediately determine whether the equation is physi-
cally equivalent to the free Schiimger equation or an equation of Doebner—Goldin type, and
whether it is Galilean and/or time-reversal invariant.
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