
Proceedings of 10th International Conference in MOdern GRoup ANalysis 2005, 236–243

Approximate Symmetries for a Model

Describing Dissipative Media

Antonino VALENTI

Dipartimento di Matematica e Informatica
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Approximate symmetries of a mathematical model describing one-dimensional
motion in a nonlinear medium with a small dissipation are studied. In a physical
application, the approximate solution is calculated making use of the approxi-
mate generator of the first-order approximate symmetry.

1 Introduction

We consider the nonlinear wave equation with a small dissipation of the form

wtt − f(wx)wxx = εwxxt, (1)

where f is a smooth function, w(t, x) is the dependent variable, ε¿ 1 is a small
parameter and subscripts denote partial derivative with respect to the independent
variables t and x.
The equation (1) can describe one-dimensional wave propagation in nonlinear

dissipative media and some mathematical questions related to (1), as the exis-
tence, uniqueness and stability of weak solutions can be found in [1], moreover
a study related to a generalized “shock structure” is showed in [2], while, for
ε = λ0 ( λ0 is the viscosity positive coefficient), a symmetry analysis is performed
in [12].
As it is well known, a small dissipation is able to prevent the breaking of the

wave profile allowing to study the so called “far field”.
A technique widely used in studying nonlinear problems is the perturbation

analysis performed by expanding the dependent variables in power series of a small
parameter (may be a physical parameter or often artificially introduced).
Combination of the Lie group theory and the perturbation analysis give rise

to the so-called approximate symmetry theories. The first paper on this sub-
ject is due to Baikov, Gazizov and Ibragimov [3]. Successively another method
for finding approximate symmetries was proposed by Fushchich and Shtelen [4].
In the method proposed by Baikov, Gazizov and Ibragimov, the Lie operator is
expanded in a perturbation series so that an approximate operator can be found.
While in the method proposed by Fushchich and Shtelen the dependent variables
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are expanded in a perturbation series; equations are separated at each order of
approximation and the approximate symmetries of the original equations are de-
fined to be the exact symmetries of the system coming out from equating to zero
the coefficients of the smallness parameter. Pakdemirli et al. in a recent paper [5]
have made a comparison of those two methods. We summarize the main results
of their analysis in the following two statements:
a) The expansion of the approximate operator assumed in the method proposed

by Baikov, Gazizov and Ibragimov, does not reflect well an approximation in
the perturbation sense; in fact, even if one uses a first order approximate operator,
the corresponding approximate solution could contain higher order terms;
b) The method proposed by Fushchich and Shtelen is consistent with the per-

turbation theory and yields correct terms for the approximate solutions but it is
impossible to work in hierarchy; in the searching of symmetries there is a cou-
pled system between the equations at several order of approximation, therefore
the algebra can increase enormously.
In this paper we follow the guide lines of the method proposed by Fushchich and

Shtelen [4] and remove the “drawback” of the impossibility to work in hierarchy.
We perform the group classification of the nonlinear function f(wx) through which
equation (1) with the small parameter ε is approximately invariant and search for
approximate solutions.
The plan of the paper is the following: the approximate symmetry method is

introduced in the next section; the group classification via approximate symme-
tries is performed in Sec.3; in Sec.4, in a physical application, the approximate
solution is calculated by means of the approximate generator of the first-order
approximate group of transformations.

2 Approximate Symmetry Method

In general, any solution of (1) will be of the form w = w(t, x, ε)and the one-
parameter Lie group of infinitesimal transformations in the (t, x, w)-space of the
equation (1), can be considered in the following form:

t̂ = t+ a ξ1(t, x, w(t, x, ε), ε) +O(a2),

x̂ = x+ a ξ2(t, x, w(t, x, ε), ε) +O(a2),

ŵ = w + a η(t, x, w(t, x, ε), ε) +O(a2),

(2)

where a is the group parameter.
Let us suppose that w(t, x, ε) and ŵ(t̂, x̂, ε), analytic in ε, can be expanded in

power series of ε, i.e.

w(t, x, ε) = w0(t, x) + εw1(t, x) +O(ε
2), (3)

ŵ(t̂, x̂, ε) = ŵ0(t̂, x̂) + ε ŵ1(t̂, x̂) +O(ε
2), (4)

where: w0 and w1 are some smooth functions of t and x; ŵ0 and ŵ1, are some
smooth functions of t̂ and x̂.
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Upon formal substitution of (3) in (1), equating to zero the coefficients of zero
and first degree powers of ε we arrive at the following system of PDEs

L0 := w0tt − f(w0x)w0xx = 0, (5)

L1 := w1tt − f(w0x)w1xx = g(w0x)w0xxw1x + w0xxt, (6)

where we have set

f(w0x) = f(wx) |ε=0, g(w0x) =
d f(wx)

dwx

∣

∣

∣

ε=0
.

Hence, w0 is a solution of the nonlinear wave equation (5) which we call unper-
turbed equation, while w1 can be determined from the linear equation (6).
In order to have an one-parameter Lie group of infinitesimal transformations

of the system (5)–(6), which is consistent with the expansions of the dependent
variables (3) and (4), we introduce these expansions in the infinitesimal transfor-
mations (2). Upon formal substitution, equating to zero the coefficients of zero
and first degree powers of ε, we get the following one-parameter Lie group of
infinitesimal transformations in the (t, x, w0, w1)-space

t̂ = t+ a ξ1
0(t, x, w0) +O(a

2),

x̂ = x+ a ξ2
0(t, x, w0) +O(a

2),

ŵ0 = w0 + a η0(t, x, w0) +O(a
2),

ŵ1 = w1 + a [η10(t, x, w0) + η11(t, x, w0)w1] +O(a
2),

(7)

where we have set

ξi
0(t, x, w0) = ξi(t, x, w(t, x, ε), ε) |ε=0, i = 1, 2

η0(t, x, w0) = η(t, x, w(t, x, ε), ε) |ε=0,

η10(t, x, w0) + η11(t, x, w0)w1 =
d η

d ε

∣

∣

∣

ε=0
.

Similarly to Fushchich and Shtelen [4], we give the following definition:

Definition 1. We call approximate symmetries of equation (1) the (exact) sym-
metries of the system (5)–(6) through the one-parameter Lie group of infinitesimal
transformations (7).

Consequently, the one-parameter Lie group of infinitesimal transformations (7)
the associated Lie algebra and the corresponding infinitesimal operator

X = ξ1(t, x, w0)
∂

∂t
+ ξ2(t, x, w0)

∂

∂x
+ η(t, x, w0)

∂

∂w0

+ [η10(t, x, w0) + η11(t, x, w0)w1]
∂

∂w1
, (8)
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are called the approximate Lie group, the approximate Lie algebra and the ap-
proximate Lie operator of the equation (1), respectively.
Moreover, after putting

X0 = ξ10(t, x, w0)
∂

∂t
+ ξ20(t, x, w0)

∂

∂x
+ η0(t, x, w0)

∂

∂w0
, (9)

the approximate Lie operator (8) can be rewritten as

X = X0 + [η10(t, x, w0) + η11(t, x, w0)w1]
∂

∂w1
(10)

and X0 can be regarded as the infinitesimal operator of the unperturbed equa-
tion (5).
It is worthwhile noticing that, thanks to the functional dependencies of the

coordinates of the approximate Lie operator (8) (or (10)), now we are able to work
in hierarchy in finding the invariance conditions of the system (5)–(6): firstly, by
classifying the unperturbed equation (5) through the operator (9) and after by
determining η10 and η11 from the invariance condition that follows by applying
the operator (10) to the linear equation (6). In fact the invariance condition of
the system (5)–(6) reads:

X
(2)
0 (L0)

∣

∣

∣

L0=0
= 0, (11)

X(3)(L1)
∣

∣

∣

L0=0, L1=0
= 0, (12)

where X
(2)
0 and X(3) are the second and third extensions of the operators X0

and X, respectively.
Finally, the procedure outlined above is a variant of that developed by Donato

and Palumbo [7, 8] and successively by Wiltshire [9].

3 Group Classification via Approximate Symmetries

The classification of the equation (5) is well known (see for details Ibragimov [6]
and bibliography therein). From (11), we arrive at the following result:

ξ10 = a5 t
2 + a3 t+ a1, ξ20 = a4 x+ a2,

η0 = (a5 t+ a6)w0 + a7 t x+ a8 t+ a9 x+ a10,

[(a6 − a4) w0x + a9]
d f(w0x)

dw0x

− 2 (a4 − a3) f(w0x) = 0,

(a5w0x + a7)
d f(w0x)

dw0x

+ 4 a5 f(w0x) = 0,

(13)

where ai, i = 1, 2, . . . , 10 are constants.
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Taking (13) into account, from (12) we obtain the following additional condi-
tions:

a5 = a7 = 0, (14)

η10 = a11 t+ a12, η11 = a3 − 2 a4 + a6, (15)

[(a6 − a4) w0x + a9]
d g(w0x)

dw0x

+ (2 a3 − 3 a4 + a6) g(w0x) = 0, (16)

with a11 and a12 constants.
After observing that conditions (14) impose restrictions upon to X0, summa-

rizing we have to manage the following relations:

ξ10 = a3 t+ a1, ξ20 = a4 x+ a2, η0 = a6w0 + a8 t+ a9 x+ a10, (17)

η10 = a11 t+ a12, η1 = a3 − 2 a4 + a6, (18)

[(a6 − a4) w0x + a9]
d f(w0x)

dw0x

− 2 (a4 − a3) f(w0x) = 0, (19)

[(a6 − a4) w0x + a9]
d g(w0x)

dw0x

+ (2 a3 − 3 a4 + a6) g(w0x) = 0. (20)

For f an arbitrary function we obtain a6 = a4 = a3, a9 = 0, from which it follows
that g is also an arbitrary function.
We call the associate seven-dimensional Lie algebra the Approximate Principal

Lie Algebra of equation (1). It is spanned by the seven operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂w0
, X4 = t

∂

∂w0
,

X5 = t
∂

∂t
+ x

∂

∂x
+ w0

∂

∂w0
, X6 =

∂

∂w1
, X7 = t

∂

∂w1

and we denote it by ApproxLP .
Otherwise, from (19) and (20) we obtain that f and g are linked by the relation

g(w0x) =
d f(w0x)

dw0x

,

as we hoped and expected in order to be consistent with the perturbation theory.
The classification of f(w0x) and the corresponding extensions of ApproxLP

arising from (17)–(19), are reported in Table 1.

Table 1. Classification of f(w0x) and corresponding extensions of ApproxLP . f0, p and q are
constitutive constants with f0 > 0, p 6= 0.

Case Forms of f(w0x) Extensions of ApproxLP

I f(w0x) = f0 e
w0x

/p X8 = x
∂

∂x
+ (w0 + 2 p x)

∂

∂w0

− w1

∂

∂w1

II f(w0x) = f0 (w0x + q)2/p
X8 = x

∂

∂x
+ [(1 + p)w0 + p q x]

∂

∂w0

+(p− 1)w1

∂

∂w1
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4 A Physical Application

Let us consider a homogeneous viscoelastic bar of uniform cross-section and as-
sume the material to be a nonlinear Kelvin solid. This model is described by
the classical equation of motion (the constant density is normalized to 1 and
the mass forces are neglected)

wtt = τx (21)

and by assuming a stress-strain relation of the following form:

τ = σ(wx) + λ0wxt, (22)

where τ is the stress, x the position of a cross-section in the homogeneous rest
configuration of the bar, w(t, x) the displacement at time t of the section from its
rest position, σ(wx) the elastic tension (wx is the strain), λ0 the viscosity positive
coefficient. Taking (22) into account and setting

d σ(wx)

dwx

= f, λ0 = ε,

the equation (21) reduces to (1).
Let us consider the following form of the tension σ(wx):

σ(wx) = σ0 log(1 + wx), (23)

which was suggested by G. Capriz [10, 11].
So, we fall in the Case II of Table 1 with the following identifications:

f0 = σ0, p = −2, q = 1.

In this case, the approximate Lie operator X8 assumes the form

X8 = x
∂

∂x
− (w0 + 2x)

∂

∂w0
− 3 w1

∂

∂w1

and from the corresponding invariant surface conditions we obtain the following
representation for the different terms in the expansion of w:

w0 =
ψ(t)

x
− x, w1 =

χ(t)

x3
, (24)

which give the form of an invariant solution approximate at the first order in ε.
The functions ψ and χ must satisfy the following system of ODEs to which,

after (23), the system (5) is reduced through (24):

ψtt + 2σ0 = 0, χtt +
6σ0

ψ
χ− 2ψt = 0. (25)
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After solving (25) and taking (24) into account, we have

w0 = −σ0
t2

x
− x, w1 = −

(40σ0 log t− 8σ0 − 25) t
5 − 25

50 t2 x3
.

Therefore, the invariant solution up to the first order in ε is

w(t, x, ε) = −σ0
t2

x
− x− ε

(40σ0 log t− 8σ0 − 25) t
5 − 25

50 t2 x3
+O(ε2).

We have an unperturbed state represented by a stretching modified by the viscos-
ity effect. For large time this latter becomes dominant and the linear expansion is
not longer valid. This can be probably ascribed to the stress-strain relation (22)
which is linear in the viscosity. More sophisticated model with a non linear vis-
cosity are currently under investigation by the author and will be the subject of
a future paper.

5 Conclusions

In this paper we perform the group analysis of the nonlinear wave equation with
a small dissipation (1) in the framework of the approximate symmetries.
We follow the guide lines of the method proposed by Fushchich and Shtelen [4],

expanding in a perturbation series the dependent variables and removing the
“drawback” of the impossibility to work in hierarchy in calculating symmetries.
In order to remove that “drawback”, we introduce, according to the pertur-

bation theory, the expansions of the dependent variables in the one-parameter
Lie group of infinitesimal transformations of the equation (1). Equating to zero
the coefficients of zero and first degree powers of ε, we obtain an approximate
Lie operator which permits to solve in hierarchy the invariance condition of the
system (5)–(6) starting from the classification of the unperturbed non linear wave
equation (5).
The proposed strategy is consistent with the perturbation point of view and

can be generalized in a simple way to the higher orders of approximation in ε.
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