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a b s t r a c t

A comparative study of approximate symmetry and approximate homotopy symmetry to
a class of perturbed nonlinear wave equations is performed. First, complete infinite-order
approximate symmetry classification of the equation is obtained by means of the method
originated by Fushchich and Shtelen. An optimal system of one-dimensional subalgebras is
derived and used to construct general formulas of approximate symmetry reductions and
similarity solutions. Second, we study approximate homotopy symmetry of the equation
and construct connections between the two symmetry methods for the first-order and
higher-order cases, respectively. The series solutions derived by the two methods are
compared.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Symmetrymethods for differential equations, originally developed by Sophus Lie, have been evolved into one of themost
explosive developments of mathematics and physics throughout the past century. There have been considerable important
generalizations in this method which include nonclassical symmetry, Lie–Ba̋cklund symmetry, potential symmetry,
etc. [1–6]. Usually, with a continuous differential equation, we can study its invariance, symmetry properties and similarity
reductions by means of the Lie symmetry method [1,3]. In particular, for the mathematical models described by differential
equations containing arbitrary elements (parameters or functions) which have been found experimentally and so are not
strictly fixed, the symmetry approach allows one to simplify them which make the models admit a symmetry group with
certain properties or the most extensive symmetry group [7–9].

It is well known that there exist differential equations of physical interest with a small parameter possessing few exact
symmetries or none at all and even if exist, the small parameter also disturbs symmetry group properties of the unperturbed
equation [10,11]. Hence, two methods were introduced to study approximate symmetry of this type of equations. The
first method due to Baikov et al. [10,11] represents a perturbation technique embedded into the standard procedure of
the classical Lie symmetry method, which implements perturbation for symmetry generators. In 1989, Fushchich and
Shtelen [12] proposed the second method which expand the dependent variables in terms of a small parameter (may be
a physical parameter or artificially introduced) as the usual perturbation analysis and the method was later followed by
Euler et al. [13–15]. In [16,17], two methods are applied to several equations and the comparisons are discussed.

Later, Liao [18,19] introduced the homotopy analysis method, which is a combination of the classical perturbation
technique and homotopy concept as used in topology, to get series solutions of various types of nonlinear problems. In
this method, the solution is considered as the sum of an infinite series, which converges rapidly to accurate solutions of the
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governing equations. Quite recently, Jiao et al. [20] have proposed the approximate homotopy symmetry method (AHSM),
which is an integration of the homotopy concept, perturbation analysis and the symmetry method, to study the sixth-order
ill-posed Boussinesq equation [21].

In this paper, we study approximate symmetry and approximate homotopy symmetry of a class of perturbed nonlinear
wave equations

utt + ϵut = [F(u)ux]x, (1)
where ϵ is a small parameter, F(u) is an arbitrary smooth function of u and make Eq. (1) nonlinear. Eq. (1) describes
wave phenomena in shallow water, long radio engineering lines and isentropic motion of a fluid in a pipe etc. [11,22]. The
perturbing term ϵut arises in the presence of dissipation and the function F(u) is defined by the properties of themediumand
the character of the dissipation. For Eq. (1), first- and second-order approximate symmetry analysis are discussed in [23,24],
respectively.

Eq. (1) plays an important role in various applied problems. For example, when F(u) = u, Eq. (1) becomes
utt + ϵut = (uux)x, (2)

which attracts many researchers’ attention. Eq. (2) arise from the one-dimensional gas dynamics [25] and the longitudinal
wave propagation on a moving threadline [26] and one-dimensional wave propagation in nonlinear rate-dependent
materials [27]. The approximate classical symmetries of Eq. (2) and the corresponding approximate solutionswere discussed
by Baikov et al. [11]. Solutions of Eq. (2) obtained by the approximate conditional symmetries were considered in [28].

In this paper, we solve the following three problems for Eq. (1).
1. Obtaining complete infinite-order approximate symmetry classification and constructing reduced equations and

similarity solutions by a one-dimensional optimal system of subalgebras of approximate Lie algebra.
2. Performing complete infinite-order approximate homotopy symmetry classification and carrying out reductions by an

optimal system of one-dimensional subalgebras of approximate homotopy Lie algebra.
3. Studying the connections between the approximate symmetry method (ASM) and the AHSM for different orders.
The rest of the paper is arranged as follows. After introducing some basic notions in Section 2, we concentrate on

the complete infinite-order approximate symmetry classification of Eq. (1) by the method originated by Fushchich and
Shtelen; the results are summarized in Section 3. Section 4 is devoted to construct approximate symmetry reductions and
series solutions using the corresponding one-dimensional optimal system of subalgebras. Finally, complete approximate
homotopy symmetry classification of Eq. (1) is performed and the connections between the twomethods are established in
Section 5. The last section contains a conclusion of our results.

2. Basic notions

We take the following nonlinear perturbed partial differential equation (PDE)
E(u) = E0(u) + ϵE1(u) = 0, (3)

for example to review several concerning definitions, where E, E0, E1 are differential operators, ϵ is a perturbed parameter,
u = u(x, t) is an undetermined function, and x, t are independent variables.

2.1. Approximate symmetry method

Up until now, there exist the following two main methods to obtain approximate symmetry of perturbed PDE.

2.1.1. The method due to Fushchich and Shtelen
First, we consider an approximate symmetry of Eq. (3) by the method due to Fushchich and Shtelen. This method

employs a perturbation of dependent variable and then the approximate symmetry of original equation is defined to an
exact symmetry of the system corresponding to each order in the small parameter.

Expanding the dependent variable with respect to the small parameter ϵ yields

u =

∞−
k=0

ϵkuk, 0 < ϵ ≪ 1, (4)

then inserting it into Eq. (3) and separating at each order of ϵ, one obtains a coupled system
O(ϵ0) : E0(u0) = 0,

O(ϵ1) :
∂

∂ϵ
E(u0 + ϵu1)|ϵ=0 = 0,

O(ϵ2) :
∂2

∂ϵ2
E(u0 + ϵu1 + ϵ2u2)|ϵ=0 = 0,

. . . ,

O(ϵ i) :
∂ i

∂ϵ i
E


i−

k=0

ϵkuk


|ϵ=0 = 0, . . . . (5)
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Definition 1 (Approximate Symmetry [12]). The kth order approximate symmetry of the nonlinear equation (3) is defined to
an exact symmetry of the system of the first k + 1 equations in Eq. (5).

2.1.2. The method due to Baikov et al.
In this approach, there is no perturbation of the dependent variables but a perturbation of the symmetry generator

[10,11].
An approximate symmetry, X = X0 + ϵX1, of Eq. (3) is obtained by solving for X1 in

X1(E0(u)) |E0(u)=0 +H = 0, (6)

where the auxiliary function H is obtained by

H =
1
ϵ
X0(E(u)) |E(u)=0 . (7)

X0 is an exact symmetry of unperturbed PDE E0(u) = 0.

2.2. Approximate homotopy symmetry method

For approximate homotopy symmetry of Eq. (3), we consider the following homotopy model

H(u, q) = 0, (8)

with q ∈ [0, 1] an embedding homotopy parameter. The above homotopy model has the property

H(u, 0) = H0(u), H(u, 1) = E(u), (9)

where H0(u) = 0 is a differential equation of which the solutions can be easily obtained.
Assuming that Eq. (3) has the homotopy series solutions of the form

u =

∞−
k=0

qkuk, (10)

where uk solve the following system

O(q0) : H0(u0) = 0,
O(q1) : H ′

0(u0)u1 + F1(u0) = 0,

O(q2) : H ′

0(u0)u2 + F2(u0, u1) = 0,
. . .

O(qi) : H ′

0(u0)ui + Fi(u0, u1, . . . , uk−1) = 0,
. . . , (11)

in which the operator H ′

0(u0) is defined as

H ′

0(u0)f =
∂

∂α
H0(u0 + αf )|α=0, (12)

with arbitrary function f (x, t), and all Fi satisfy

Fi =
1
i!

∂ i

∂qi
E

−
k≠i

ukqk


|q=0, i = 1, 2, 3, . . . . (13)

Based on the above homotopy model, approximate homotopy symmetry is defined as follows.

Definition 2 (Approximate Homotopy Symmetry [20]). The kth order approximate homotopy symmetry of the nonlinear
equation (3) corresponds to an exact symmetry of the first k + 1 equations in Eq. (11).

The homotopy model (8) can be freely chosen. Later for simplicity, the following simple homotopy model is exclusively
taken

H(u, q) = (1 − q)E0(u) + qωE(u) = 0, (14)

where, thereinafter, q ∈ [0, 1] is defined as in Eq. (8), ω denotes the convergence-control parameter.
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3. Infinite-order approximate symmetry classification

In this section, we generalize the method in [12–15] to obtain complete infinite-order approximate symmetry
classification of Eq. (1). Note that all symmetries in this paper are obtained by means of the differential characteristic set
method [29,30].

Expanding the dependent variable with respect to ϵ as in expression (4), then one can expand F(u) in a series in ϵ

F(u) = F


∞−
k=0

ϵkuk


=

∞−
k=0

ϵk

k!

[
∂kF(u)
∂ϵk


ϵ=0

]
. (15)

Inserting the expansions into Eq. (1) and separating at each order of perturbation parameter, one has

uk,tt + uk−1,t =


k−

i=0

F (j)(u0)

j0!j1! · · · ji!
uj0
l0
uj1
l1

. . . uji
li
uk−i,x


x

, k = 0, 1, . . . , (16)

where, hereinafter, u−1 = 0, uji
li

= (uli)
ji , j0 + j1 + · · · + ji = j, l0j0 + l1j1 + · · · + liji = i, 0 ≤ j ≤ i and l0, l1, . . . , li are

not equal to zero and mutual inequivalent. ji, li, j, k (i = 0, 1, 2, . . .) are nonnegative integers. The kth order approximate
symmetries of Eq. (1) correspond to exact symmetries of the first k + 1 equations in Eq. (16).

To simplify our calculations, we use the following equivalence transformation of Eq. (16). In particular, one has
Proposition 1.

Proposition 1. Any transformation of the form

x = c1x + c2, t =t + c3, uk = c4uk + ck+5, F (j)(u0) = c j4c
−2
1 F (j)(u0), j, k = 0, 1, . . . , (17)

where c1c4 ≠ 0, is an equivalence transformation of Eq. (16), i.e., transformation (17)maps Eq. (16) into

uk,tt +uk−1,t =


k−

i=0

F (j)(u0)

j0!j1! · · · ji!
uj0

l0
uj1

l1
. . .uji

li
uk−i,x


x . (18)

Now, we consider a one-parameter Lie symmetry group of local transformations with an infinitesimal operator of the
form

X = ξ(x, t, u0, u1 . . .)∂x + τ(x, t, u0, u1 . . .)∂t +

∞−
i=0

ηi(x, t, u0, u1 . . .)∂ui , (19)

which leaves Eq. (16) invariant. Consequently, using Lie infinitesimal criterion [1,3], acting on the first k + 1 equations in
(16) with the second prolongation of operator X , one has

X (2)


uk,tt + uk−1,t −


k−

i=0

F (j)(u0)

j0!j1! · · · ji!
uj0
l0
uj1
l1

. . . uji
li
uk−i,x


x


= 0, k = 0, 1, . . . , (20)

for any ui (i = 0, 1, . . . , k) solve the first k + 1 equations in Eq. (16). X (2) is given by

X (2)
= X +

k−
i=0

[ηx
i ∂ui,x + ηt

i ∂ui,t + ηxx
i ∂ui,xx + ηtt

i ∂ui,tt ], (21)

with

ηx
i = Dxηi − ui,xDxξ − ui,tDxτ , ηt

i = Dtηi − ui,xDtξ − ui,tDtτ ,

ηxx
i = Dxη

x
i − ui,xxDxξ − ui,xtDxτ , ηtt

i = Dtη
t
i − ui,xtDtξ − ui,ttDtτ , (22)

where Dx,Dt are total differential operators about x, t , respectively.
Until now, there is no general method to construct infinite-order approximate symmetry classification of perturbed PDE,

especially for the PDE containing arbitrary functions. Here, we adopt the method of mathematical induction. Inducing from
the first-, second- and third-order approximate symmetry classifications and enlarging the domain of k by degrees and
repeating similar procedures, we discover the formal coherence of ξ, τ and ηi for infinite-order approximate symmetry of
Eq. (1).
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Table 1
Approximate symmetries obtained by the approach of Baikov et al.

F(u) Approximate symmetry operators

Arbitrary X1 = ϵ(x∂x + t∂t )
αeu X1, X2 = x∂x + t∂t + ϵt

 t
2 ∂t − 2∂u


, X3 = ϵ(x∂x + 2∂t )

αuµ X1, X4 = t∂t −
2
µ
u∂u + ϵ

µt
µ+4 t


t
2 ∂t +

2
µ
u∂u


, X5 = ϵ

x∂x +

2
µ
u∂u


αu−4/3 X1, X5, X7 = ϵ(x2∂x − 3xu∂u)
αu−4 X1, X5, X7 = ϵ(t2∂t + tu∂u)

Table 2
Optimal system of one-dimensional subalgebras of Eq. (1) by ASM.

F(u) The operators of the optimal system

Arbitrary X1, X2 + cX3, c ∈ R
eλu X1 + aX4, X2 + cX3, aX3 + X4, −λ/2X1 + X4 + aX2, a ∈ R
uλ

u ≠ −

4
3


X1 + aX5, X2 + aX3, X1 + X5 + aX3, −

1
2 (λ − 2)X1 + X5 + aX2, a ∈ R

u−
4
3 In addition to the operators of F(u) = uλ in this table:

aX3 +X6, 5X1 + 3X5 + aX6, X3 +X6 − bX2, X2 + bX3 −X6, X5 +X6 − bX2, X2 +X5 − bX6, X1 +X6 − bX2, X1 +X2 − bX6, a ∈ R, b ∈ R+

Case 1. F(u) is arbitrary.
Splitting of the determining system with respect to the arbitrary elements and their non-vanishing derivatives gives

ξ = c1x + c3, τ = c1t + c2, ηi = c1iui. As a result, Eq. (1) has a three-dimensional Lie algebra spanned by the operators

X1 = x∂x + t∂t +

∞−
i=0

iui∂ui , X2 = ∂x, X3 = ∂t . (23)

Studying all possible cases of Eq. (1) up to the extended equivalence group leads to the following cases.
Case 2. F(u) = eλu.
In this case, in addition to the infinitesimal operators X1, X2, X3, Eq. (1) admits approximate Lie symmetry operator

X4 =
λ

2
x∂x + ∂u0 . (24)

Case 3. F(u) = uλ(λ ≠ −4/3).
We obtain X1, X2, X3 and

X5 =
1
2
(λ − 2)x∂x − t∂t + u0∂u0 −

∞−
i=1

iui+1∂ui+1 . (25)

Case 4. F(u) = u−4/3.
The approximate invariance algebra of Eq. (1) is generated by the operators X1, X2, X3, X5 and

X6 = −
1
3
x2∂x + x

∞−
i=0

ui∂ui . (26)

Remarks 1. Comparing with the method developed by Baikov et al. for Eq. (1), we obtain more new infinite-order
approximate symmetries. Table 1 gives the approximate symmetries obtained by the approach of Baikov et al. [11].

4. An optimal system and approximate reductions

4.1. An optimal system of one-dimensional subalgebras

A Lie group (or Lie algebra) usually contains infinitelymany one-dimensional subgroups (or subalgebras), it is impossible
to use all of them to construct invariant solutions. Hence, a well-known standard procedure [1,2] allows us to classify all
one-dimensional subalgebras into subsets of conjugate subalgebras, i.e. an optimal system. In this subsection, we investigate
one-dimensional optimal system of subalgebras of approximate Lie algebra of Eq. (1).

Proposition 2. For each case of approximate symmetry classification results of Eq. (1), the corresponding optimal system of one-
dimensional subalgebras is given in Table 2.

Proof. We take the case F(u) = u−4/3 for example to present how to construct an optimal system of one-dimensional
subalgebras, while the other three cases can be done with similar method.

Table 3 shows the Lie brackets of X1, X2, X3, X5, X6.
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Table 3
Lie brackets of X1, X2, X3, X5, X6 .

X1 X2 X3 X5 X6

X1 0 −X2 −X3 0 X6

X2 X2 0 0 −
5
3X2 X1 + X5

X3 X3 0 0 −X3 0
X5 0 5

3X2 X3 0 −
5
3X6

X6 −X6 −X1 − X5 0 5
3X6 0

Table 4
Adjoint representation of X1, X2, X3, X5, X6 .

X1 X2 X3 X5 X6

X1 X1 eϵX2 eϵX3 X5 e−ϵX6

X2 X1 − ϵX2 X2 X3 X5 +
5
3 ϵX2 X6 −ϵ(X1 +X5)−

ϵ2

3 X2
X3 X1 − ϵX3 X2 X3 X5 + ϵX3 X6

X5 X1 e−
5
3 ϵX2 e−ϵX3 X5 e

5
3 ϵX6

X6 X1 + ϵX6 X2 + ϵ(X1 + X5) −
ϵ2

3 X6 X3 X5 −
5
3 ϵX6 X6

In Table 4, the adjoint representation of X1, X2, X3, X5, X6 are presented, with the (i, j) entry indicating Ad(exp(ϵXi))Xj
defined as

Ad(exp(ϵXi))Xj = Xj − ϵ[Xi, Xj] +
ϵ2

2
[Xi, [Xi, Xj]] − · · · . (27)

Before proceedingwith the classification schemewe need to identify invariants of the full adjoint action. These invariants
place restrictions on how far we can expect to simplify a given arbitrary element spanned by X1, X2, X3, X5, X6

X = a1X1 + a2X2 + a3X3 + a5X5 + a6X6, (28)

where ai (i = 1, 2, 3, 5, 6) are arbitrary constants. Here, we only concentrate on the case a6 ≠ 0 because the case a6 = 0
belongs to the cases F(u) = uλ


u ≠ −

4
3


in Table 2.

The adjoint representation group is generated (via Lie equations) by Lie algebra X1, X2, X3, X5, X6 spanned by the
following symmetries (see [10, vol. 2])

∆i = ckije
j ∂

∂ek
, i, j = 1, 2, 3, 5, 6, (29)

where ckij are the structure constants in Table 3. Explicitly, we have

∆1 = −a2
∂

∂a2
− a3

∂

∂a3
+ a6

∂

∂a6
,

∆2 = a1
∂

∂a2
−

5
3
a5

∂

∂a2
+ a6


∂

∂a1
+

∂

∂a5


,

∆3 = (a1 − a5)
∂

∂a3
,

∆5 =
5
3
a2

∂

∂a2
+ a3

∂

∂a3
−

5
3
a6

∂

∂a6
,

∆6 = −a1
∂

∂a6
− a2


∂

∂a1
+

∂

∂a5


+

5
3
a5

∂

∂a6
. (30)

If a function ρ(a1, a2, a3, a5, a6) is an invariant of the full adjoint action, then one has

∆i(ρ) = 0, i = 1, 2, 3, 5, 6. (31)

Using the method of characteristic equations [1], after direct computations, we get general solutions of Eq. (31)

ρ = f

a1 − a5, a1a5 −

4
3
a25 − a2a6


. (32)

In particular,

ρ1 = a1 − a5, ρ2 = a1a5 −
4
3
a25 − a2a6 (33)

are two invariants of the full adjoint action given in Table 4.
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The invariants ρ1 and ρ2 provide us a key condition to simplify X by the action of adjoint maps. For example, if ρ1 ≠ 0,
we cannot simultaneously make a1 and a5 zero through adjoint maps.

To begin the classification process, we investigate the coefficients a1, a2, a3, a5 and a6. If X is presented in (28), thenX = Ad(exp(βX6)) ◦ Ad(exp(αX2))X = a1X1 + a2X2 + a3X3 + a5X5 + a6X6 (34)

has coefficients

a1 = a1 − αa6 + β


a2 − a1α +

5
3
a5α −

1
3
a6α2


,

a2 = a2 − a1α +
5
3
a5α −

1
3
a6α2,

a3 = a3, a5 = a5 − a6α + β


a2 − a1α +

5
3
a5α −

1
3
a6α2


,

a6 = a6 + β


a1 −

5
3
a5 +

2
3
a6α


−

1
3
β2

a2 − a1α +

5
3
a5α −

1
3
a6α2


. (35)

In the proceeding, we discuss the coefficients of Xi (i = 1, 2, 3, 5, 6) inX by virtue of the arbitrary real constants α and
β . For the quadratic equation a2 = 0, the discriminant of it is ∆ = (5a5/3 − a1)2 + 4a2a6/3 = ρ2

1 − 4ρ2/3, we therefore
consider three cases for the classification of one-dimensional subalgebras which depend on the sign of ∆.

Case 1. ∆ > 0.
In this case, we choose α = (−3a1 + 5a5 + 3

√
∆)/(2a6), β = −a6/

√
∆, then a2 = a6 = 0,X becomes

X =
5
2
(ρ1 +

√
∆)X1 + a3X3 +

3
2
(ρ1 +

√
∆)X5. (36)

Applying the adjoint map Ad(exp(γ X3)) toX and setting γ = a3/(ρ1 +
√

∆), we arrive at

X̄ =
5
2
(ρ1 +

√
∆)X1 +

3
2
(ρ1 +

√
∆)X5, (37)

which is scaled to X = 5X1 + 3X5.
Case 2. ∆ = 0.
In this case, we consider the following two subcases.
Subcase 1. ρ1 = 0.
The case ρ1 = 0 implies α = a1/a6, then we obtainX = a3X3 + a6X6, (38)

which is scaled to X̄ = aX3 + X6, a ∈ R.
Subcase 2. ρ1 ≠ 0.
Acting onX by the adjoint map Ad(exp(κX3)), we have

X =
5
2
ρ1X1 + (a3 − ρ1κ)X3 +

3
2
ρ1X5 + a6X6, (39)

assuming κ = a3/ρ1, we obtain

X =
5
2
ρ1X1 +

3
2
ρ1X5 + a6X6, (40)

which is scaled to X = 5X1 + 3X5 + aX6, a ∈ R.
Case 3. ∆ < 0.
Since ∆ < 0, we cannot make two of the coefficients a1, a2, a5 and a6 vanish simultaneously but make one of the

coefficients vanish. ∆ < 0 means that the curve of quadratic function f (α) = a2 has no intersection point with the α-
axis, i.e. a6 > 0, f (α) < 0 and a6 < 0, f (α) > 0.

Acting on X with the adjoint map Ad(exp(αX2)), we obtain

X = (a1 − αa6)X1 +


a2 − a1α +

5
3
a5α −

1
3
a6α2


X2 + a3X3 + (a5 − a6α)X5 + a6X6.

Next, we only consider the case a6 > 0, f (α) < 0, while the case a6 < 0, f (α) > 0 gives the same classification results.
Subcase 1. Setting α = a1/a6, we get

X = −
ρ2

3a6
X2 + a3X3 + ρ1X5 + a6X6. (41)
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Since ∆ < 0 implies ρ2 > 3ρ2
1/4 ≥ 0, then one has ρ2/(3a6) > 0. Hence, we consider the following two cases.

(I) If ρ1 = 0,X becomes −ρ2/(3a6)X2 + a3X3 + a6X6, then applying Ad(exp(γ X1)) to it, we get

X = −
ρ2

3a6
eγ X2 + a3eγ X3 + a6e−γ X6. (42)

To proceed, two different cases arise.
(a) a3 > 0.
In this case, X is equivalent to X3 + X6 − aX2 after scaling the coefficients of it, where a ∈ R+.
(b) a3 < 0.
Here, X is equivalent to X2 − X6 + aX3 after scaling the coefficients of it, where a ∈ R+.
(II) If ρ1 ≠ 0, by the adjoint map Ad(exp(κX3)), we have

X = Ad(exp(κX3))X = −
ρ2

3a6
X2 + (a3 + κρ1)X3 + ρ1X5 + a6X6. (43)

Assume κ = a3/ρ1, Eq. (43) becomes X = −ρ2/(3a6)X2 + ρ1X5 + a6X6. Again, with adjoint map Ad(exp(γ X1)), we obtain

X = Ad(exp(γ X1))X = −
ρ2

3a6
eγ X2 + ρ1X5 + a6e−γ X6. (44)

(a) ρ1 > 0.
In this case, X is equivalent to X5 + X6 − aX2 after scaling the coefficients of it, where a ∈ R+.
(b) ρ1 < 0.
Here, X is equivalent to X2 + X5 − aX6 after scaling the coefficients of it, where a ∈ R+.
Subcase 2. Setting α = a5/a6, we get

X = ρ1X1 −
ρ2

3a6
X2 + a3X3 + a6X6. (45)

The case ρ1 = 0 is same to (I) of subcase 1 in Case 3. If ρ1 ≠ 0, with the adjoint map Ad(exp(a3/ρ1X3)), we have

X = ρ1X1 −
ρ2

a6
X2 + a6X6. (46)

Again, with adjoint map Ad(exp(λX1)), we obtain

X = Ad(exp(λX1))X = −
ρ2

a6
eλX2 + ρ1X1 + a6e−λX6. (47)

Hence, we consider the following two cases.
(a) ρ1 > 0.
In this case,X is equivalent to X1 + X6 − aX2 after scaling the coefficients of it, where a ∈ R+.
(b) ρ1 < 0.
Here,X is equivalent to X1 + X2 − aX6 after scaling the coefficients of it, where a ∈ R+.
This proves it. �

4.2. Approximate symmetry reduction

The group properties are very useful for the construction of invariant solutions of the differential equation under study.
Using the invariants of the subgroups associated with the generators, one can reduce the original equation (1) to ordinary
differential equations and then construct approximate solutions. In this subsection, different subclasses arewell investigated
based on the optimal systemof preceding subsection and affluent approximate symmetry reductions and invariant solutions
are constructed. Note that c1, c2, c3, c4 are arbitrary constants and Pi exist for i = 0, 1, 2, . . . if no special notes are added in
this section.

4.2.1. Reduction by X1

The similarity variables of X1 is derived from the determining equations

dx
x

=
dt
t

=
du0

0
=

du1

u1
= · · · =

duk

kuk
, (48)

which are z = x/t, P0 = u0. Viewing P0 as a function of z, we have u0 = P0(z). Similarly, we get other similarity variables

u1 = tP1(z), u2 = t2P2(z), u3 = t3P3(z), . . . , uk = tkPk(z). (49)
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Inserting these variables into Eq. (16), we have kth order reduced equations given by

z2Pk,zz − zPk−1,z + (k − 1)[kPk − 2zPk,z + Pk−1] =


k−

i=0

F (j)(P0)
j0!j1! · · · ji!

P j0
l0

· · · P ji
li
Pk−i,z


z

. (50)

In terms of Eq. (4), we obtain series solutions of Eq. (1) in the form

u =

∞−
k=0

(ϵt)kPk(z). (51)

4.2.2. Reduction by cX2 + X3
When c = 0, the invariant solution generated by cX2 + X3 is a steady one and when c ≠ 0 provides traveling wave

solutions, where c is the speed of wave. We assume c ≠ 0 and omit the procedure of calculating invariants thereinafter.
Following standard procedure, we integrate the characteristic equations for cX2 + X3 to get similarity variables z =

x − ct, ui = Pi. Then we get series solutions of Eq. (1) in the form

u =

∞−
k=0

ϵkPk(x − ct), (52)

where Pk satisfy

c2Pk,zz − cPk−1,z =


k−

i=0

F (j)(P0)
j0!j1! · · · ji!

P j0
l0

· · · P ji
li
Pk−i,z


z

. (53)

4.2.3. Reduction by aX3 + X4
Here, we consider two different cases.
(I) a = 0
By X4, Eq. (16) with F(u) = eλu can be reduced to

Pk,zz + Pk−1,z = −2eλP0
k−

i=0

λj−1

j0!j1! · · · ji!
P j0
l0
P j1
l1

. . . P ji
li
, (54)

where z = t, P0 = u0 − 2 ln x/λ, Pi = ui, (i = 1, 2, . . .).
(II) a ≠ 0
By aX3 + X4, Eq. (16) with F(u) = eλu can be reduced to

1
a2

P0,zz = −
2
λ
eλP0(P0,z − 1) +

4
λ2

[eλP0(P0,z − 1)]z,

1
a2

P1,zz +
1
a
P0,z = −

2
λ
eλP0(P1,z + λP1P0,z − λP1) +

4
λ2

[eλP0(P1,z + λP1P0,z − λP1)]z,

1
a2

Pk,zz +
1
a
Pk−1,z = −2eλP0

k−
i=0

λj−1

j0!j1! · · · ji!
P j0
l0
P j1
l1

· · · P ji
li
Pk−i,z + 4


eλP0

k−
i=0

λj−2

j0!j1! · · · ji!
P j0
l0
P j1
l1

. . . P ji
li
Pk−i,z


z

, (55)

where z = t/a − 2 ln x/λ, P0 = u0 − 2 ln x/λ, Pi = ui, (i = 1, 2, . . . , k).

4.2.4. Reduction by X1 + aX4(a ≠ 0)
By X1 + aX4, Eq. (16) with F(u) = eλu can be reduced to

λ

2
a + 1

2

z2P0,zz −


λ

2
a + 1


λ

2
a + 2


zP0,z − a = [eλP0P0,z]z,

λ

2
a + 1

2

[z2P1,zz + zP1,z] −


λ

2
a + 1


zP0,z + a = [eλP0(P1,z − λP1P0,z)]z,

λ

2
a + 1

[
λ

2
a + 1


z2Pk,zz − (2k − 1)zPk,z − zPk−1,z

]
+ (k − 1)(kPk + Pk−1)

=


eλP0

k−
i=0

λj

j0!j1! · · · ji!
P j0
l0
P j1
l1

. . . P ji
li
Pk−i,z


z

, (56)

where z = xt−(1+λa/2), P0 = u0 − a ln t, Pi = t−iui, (i = 1, 2, . . . , k).
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4.2.5. Reduction by −λ/2X1 + aX2 + X4

In the proceeding, two different cases arise.
Case 1: a ≠ 0
By −λX1/2 + aX2 + X4, Eq. (16) with F(u) = eλu can be reduced to

4
λ2

P0,zz −
2
λ
P0,z −

2
λ

=
1
a2

[eλP0P0,z]z,

4
λ2

P1,zz −
2
λ
P1,z +

2
λ

(P0,z + 1) =
1
a2

[eλP0(P1,z + λP1P0,z)]z,

4
λ2

Pk,zz +
2
λ

(2k − 1)Pk,z +
2
λ
Pk−1,z + (k − 1)(kPk + Pk−1) =

1
a2


eλP0

k−
i=0

λj

j0!j1! · · · ji!
P j0
l0
P j1
l1

. . . P ji
li
Pk−i,z


z

, (57)

where z = x/a + 2 ln t/λ, P0 = u0 − x/a, Pi = t−iui, (i = 1, 2, . . . , k).
Case 2: a = 0
By −λX1/2 + X4, Eq. (16) with F(u) = eλu can be reduced to

[eλP0P0,z]z =
1
λ

,

[eλP0(P1,z + λP1P0,z)]z = −
2
λ

,

(k − 1)[kPk + Pk−1] =


eλP0

k−
i=0

λj

j0!j1! · · · ji!
P j0
l0
P j1
l1

. . . P ji
li
Pk−i,z


z

, (58)

where z = x, P0 = u0 + 2 ln t/λ, Pi = t−iui, (i = 1, 2, . . . , k).
From the first and second equations of Eq. (58), we obtain

P0 =
1
λ
ln

1
2
z2 + c1z + c2


, P1 = e−

1
2 zλ(2c1+z)

∫ z

1

2e
1
2 λs(s+2c1)(c3λ − 2s)

λ(s2 + 2c1s + 2c2)
ds + c4


, (59)

then the solutions of Eq. (1) are expressed in the form

u =
1
λ

[
ln

1
2
x2 + c1x + c2


− 2 ln t

]

+ ϵte−
1
2 xλ(x+2c1)

∫ x

1

2e
1
2 λs(s+2c1)(c3λ − 2s)

λ(s2 + 2c1s + 2c2)
ds + c4


+

∞−
k=2

(ϵt)kPk, (60)

where Pk, (k = 2, . . .) satisfy the third equation of Eq. (58).

4.2.6. Reduction by X5

In the proceeding, two different cases arise.
Case 1: λ = 2
By X5, Eq. (16) with F(u) = u2 can be reduced to

(k − 2)[(k − 1)Pk + Pk−1] =


k−

i=0

λ!Pλ−j
0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
Pk−i,z


z

, (61)

where z = x, Pi = t1−iui.
Case 2: λ ≠ 2
By X4, Eq. (16) with F(u) = uλ can be reduced to

z2Pk,zz + z(2kPk,z + Pk−1,z) + (k − 1)(kPk + Pk−1) =
2(4 − λ)

(λ − 2)2
z3−λ


k−

i=0

λ!Pλ−j
0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
Pk−i,z



+
4

(λ − 2)2
z4−λ


k−

i=0

λ!Pλ−j
0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
Pk−i,z


z

, (62)

where z = tx2/(λ−2), Pi = t1−iui.
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4.2.7. Reduction by X1 + aX5

Here, we consider the following two different cases.
Case 1. a ≠ 1.
By X1 + aX5, Eq. (16) with F(u) = uλ can be reduced to

1 +
λa

2(1 − a)

2

z2Pk,zz +


k +

2a − 1
1 − a

[
k +

a
1 − a


Pk + Pk−1

]
−


1 +

λa
2(1 − a)

[
k − 2 +

(2 − λ)a
2(1 − a)


zPk,z + zPk−1,z +


k +

a
1 − a


zPk,z

]

=


k−

i=0

λ!Pλ−j
0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
Pk−i,z


z

, (63)

where z = xt−1−aλ/(2−2a), Pi = t−i−a/(1−a)ui.
Case 2. a = 1.
By X1 + X5, Eq. (16) with F(u) = uλ can be reduced to

Pk,zz + Pk−1,z =
λ + 2

λ


k−

i=0

2(λ − 1)!Pλ−j
0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li


, (64)

where z = t, Pi = x−2/λui.
In particular, λ = −2, after integrating once, Eq. (64) becomes

Pk,z + Pk−1 = c1, (65)

which has the general solutions in the form

Pk =
(−1)kc1
(k + 1)!

zk+1
+

k−
i=0

(−1)i
1
i!
(ck+2−i − c1)z i + c1, (66)

then Eq. (1) for F(u) = u−2 has solution in the form

u =
1
x

∞−
k=0

ϵk


(−1)kc1
(k + 1)!

tk+1
+

k−
i=0

(−1)i
1
i!
(ck+2−i − c1)t i + c1


. (67)

4.2.8. Reduction by X1 + X5 + aX3

Here,we only consider the case a ≠ 0, sincewith a = 0, X1+X5+aX3 becomes X1+X5, which is discussed in Section 4.2.7.
By X1 + X5 + aX3, Eq. (16) with F(u) = uλ can be reduced to

1
a2

(Pk + aPk−1) −
λ

4a2
[(4 − λ)zPk,z − z2Pk,zz + 2azPk−1,z] =


k−

i=0

λ!Pλ−j
0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
Pk−i,z


z

, (68)

where z = xe−λt/(2a), Pi = e−t/aui.

4.2.9. Reduction by −(λ − 2)X1/2 + X5 + aX2

The case a = 0 is not considered here because it is included in Section 4.2.7. By −(λ − 2)X1/2 + X5 + aX2, Eq. (16) with
F(u) = uλ can be reduced to

k − 1 −
2
λ

[
k −

2
λ


Pk +

2
λ
Pk,z + Pk−1

]
+

2
λ2

[(kλ − 2)Pk,z + 2Pk,zz + λPk−1,z]

=
1
a2


k−

i=0

λ!Pλ−j
0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
Pk−i,z


z

, (69)

where z = x/a + 2 ln t/λ, Pi = t2/λ−iui.
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4.2.10. Reduction by X6

By X6, Eq. (16) with F(u) = u−4/3 can be reduced to

Pk,zz + Pk−1,z = 0, (70)

where P−1 = 0, z = t, Pi = x3ui.
Eq. (1) for F(u) = u−4/3 has solutions in the form

u =
1
x3

∞−
k=0

ϵk


(−1)kc1
(k + 1)!

tk+1
+

k−
i=0

(−1)i
1
i!
(ck+2−i − c1)t i + c1


. (71)

4.2.11. Reduction by aX3 + X6 (a ≠ 0)
By aX3 + X6, Eq. (16) with F(u) = u−4/3 can be reduced to

1
a2

Pk,zz +
1
a
Pk−1,z = 9


k−

i=0

λ!Pλ−j
0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
Pk−i,z


z

, (72)

where λ = −4/3 and z = 2/x − t/a, Pi = x3ui.

4.2.12. Reduction by 5X1 + 3X5 + bX6

In this case, we consider the following two different cases.
Case 1. b ≠ 0.
By 5X1 + 3X5 + bX6, Eq. (16) with F(u) = u−4/3 can be reduced to

Pk,zz + Pk−1,z = 3b
k−

i=0

[−4z2(APk−i,z)z + 2(2k − 2i + 3)z(APk−i)z

+ (2k − 1)(2k − 2i + 3)APk−i − 2(2k − 1)zAPk−i,z], (73)

where λ = −4/3 and z = te−6/(bx), Pi = x3 exp[−3(2i + 3)/(bx)]ui and
k−

i=0


3(2k − 1)APk−i + 6z(APk−i)z + (2k − 2i + 3)APk−i + 2zAPk−i,z


≡ 0,

A =
λ!Pλ−j

0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
, (74)

which is proved by mathematical induction in the Appendix.
Case 2. b = 0.
By 5X1 + 3X5, Eq. (16) with F(u) = u−4/3 can be reduced to

k +
3
2

[
k +

1
2


Pk + Pk−1

]
=

 k−
i=0

λ!Pλ−j
0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
Pk−i,z


z
, (75)

where λ = −4/3 and z = x, Pi = t−i−3/2ui.

4.2.13. Reduction by X3 + X6 − bX2

Here, due to b > 0, without loss of generality, we set b = 3µ2 in order to simplify the computations. By X3 + X6 − bX2,
Eq. (16) with F(u) = u−4/3 can be reduced to

1
9


Pk,zz+3µ(1 − θ)

k−1−
i=0

θ k−1−iPk−1,z


=

k−
i=0


λ!Pλ−j

0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
Pk−i,z


z

−
27µ2λ!Pλ−j

0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
Pk−i


,

(76)

where
k−

i=0


λ!Pλ−j

0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
Pk−i,z + 3


λ!Pλ−j

0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
Pk−i,z


z


≡ 0, (77)

and λ = −4/3 and z = t/3 + 1/(3µ) arctan[x/(3µ)], Pi = (9µ2
+ x2)3/2ui. Eq. (77) can be proved with similar method as

Eq. (74) in the Appendix.
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4.2.14. Reduction by X5 + X6 − bX2

In this case, the characteristic equations for X5 + X6 − bX2 are

dx
−

1
3x

2 −
5
3x − b

=
dt
−t

=
dui

(x − i + 1)ui
, (78)

so the following three different cases arise based on the discriminant of quadratic equation x2/3 + 5/3x + b = 0.
Case 1. 12b − 25 > 0.
By X5 + X6 − bX2, Eq. (16) with F(u) = u−4/3 can be reduced to

1
9
e6z[(Pk,zz + 3Pk,z) − 3e3zPk−1,z] =

k−
i=0


(3k − 4)APk−i,z − 9bAPk−i

+ 3(k − i − 1)[(4 − 3k)APk−i + (APk−i)z] + (APk−i,z)z


, (79)

where λ = −4/3,

z =
2

√
12b − 25

arctan


2x + 5
√
12b − 25


−

1
3
ln t,

Pi = (x2 + 5x + 3b)
3
2 exp


3(2i + 3)

√
12b − 25

arctan


2x + 5
√
12b − 25


ui, (80)

and

A =
λ!Pλ−j

0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
,

k−
i=0

[3(APk−i)z + 3(4k − i)APk−i + APk−i,z] ≡ 0, (81)

which can be proved with similar method as Eq. (74) in the Appendix.
Case 2. 12b − 25 = 0.
By X5 + X6 − bX2, Eq. (16) with F(u) = u−4/3 can be reduced to

1
144

e24z[Pk,zz + 12Pk,z] − 12e12zPk−1,z =

k−
i=0


4(3k − 4)APk−i,z − 300APk−i

− 48(i − 1)(4 − 3k)APk−i + 12(i − 1)(APk−i,z)z


, (82)

where λ = −4/3 and z = −1/(4x + 10) − ln t/12, Pi = (2x + 5)3 exp(6i + 9)/(2x + 5)ui and

A =
λ!Pλ−j

0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
,

k−
i=0

[APk−i,z + 40APk−i + 12(3k + i)APk−i,z + 3(APk−i)z] ≡ 0, (83)

which can be proved with similar method as Eq. (74) in the Appendix.
Case 3. 12b − 25 < 0.
By X5 + X6 − bX2, Eq. (16) with F(u) = u−4/3 can be reduced to

1
9
e6z[(Pk,zz + 3Pk,z) − 3e3zPk−1,z] =

k−
i=0

[(3k − 4)APk−i,z − 9bAPk−i − 3(i − 1)(4 − 3k)APk−i + (APk−i,z)z], (84)

where λ = −4/3,

z = −
2

√
25 − 12b

arctanh


2x + 5
√
25 − 12b


−

1
3
ln t,

Pi = (x2 + 5x + 3b)
3
2 exp


3(2i + 3)

√
25 − 12b

arctanh


2x + 5
√
25 − 12b


ui, (85)
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and

A =
λ!Pλ−j

0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
,

k−
i=0

[3(APk−i)z + 3(3k + i)APk−i + APk−i,z] ≡ 0, (86)

which can be proved with similar method as Eq. (74) in the Appendix.
The reduced equations by the operators X1 + X6 − bX2 and X1 + X2 − bX6 are similar with the one by X5 + X6 − bX2, so

we omit them.

5. Connections between ASM and AHSM for Eq. (1)

In this section, we first concentrate on the complete approximate homotopy symmetry classification of Eq. (1), and then
give a comparative study of ASM and AHSM for Eq. (1).

5.1. Approximate homotopy symmetry classification

For approximate homotopy symmetry of Eq. (1), we consider the following simple homotopy model

H(u, q) = (1 − q)[utt − [F(u)ux]x] + qω[utt − [F(u)ux]x + µut ] = 0 (87)

with µ = ϵ. The above homotopy model has the property

H(u, 0) = utt − [F(u)ux]x, H(u, 1) = utt − [F(u)ux]x + µut . (88)

Assuming ω = 1 − θ , one has

(1 − θq)[utt − [F(u)ux]x] + qµ(1 − θ)ut = 0. (89)

Expanding the dependent variablewith respect to q as (10), then one can expand F(u) in a series in homotopy parameter q

F(u) = F


∞−
k=0

qkuk


=

∞−
k=0

qk

k!


∂kF(u)
∂qk


q=0


. (90)

Substituting the expansions into Eq. (1) and separating at each order of homotopy parameter, one has

uk,tt −


k−

i=0

F (j)(u0)

j0!j1! · · · ji!
uj0
l0
uj1
l1

· · · uji
li
uk−i,x


x

+ µ(1 − θ)

k−1−
i=0

θ k−1−iui,t = 0. (91)

The kth order approximate homotopy symmetries of Eq. (1) correspond to exact symmetries of the first k + 1 equations in
Eq. (91).

Obviously, when θ = 0, Eq. (91) is identical to Eq. (16) after using the scaling transformation uk = µkuk (k = 0, 1, 2, . . .).
For θ ≠ 0, the relationship between the coupled system from perturbation with first-order precision derived by two
methods for Eq. (1) is easily obtained and given in Theorem 1.

Theorem 1. For Eq. (1), the first-order coupled system obtained from two methods are equivalent under the scaling
transformation u0 =u0, u1 = µ(1 − θ)u1.

The proof of Theorem 1 is directly obtained by expanding Eqs. (16) and (91) with k = 1, so we omit it.
Based on Theorem 1 and Lie algorithm, first-order approximate homotopy symmetries are the same with first-order

approximate symmetries. However, for the higher-order cases with θ ≠ 0, the relationship between Eqs. (16) and (91)
cannot be determined easily. Hence, we perform approximate homotopy symmetry reductions to search for the links.

Assuming that operator (19) leaves the first k + 1 equations in Eq. (91) invariant, with similar method as approximate
symmetry, we get the following results in Table 5.

By means of the method adopted in Section 4.1, we obtain an optimal system of one-dimensional subalgebras of the
approximate homotopy Lie algebra admitted by Eq. (1) in Proposition 3.

Proposition 3. For each case of the approximate homotopy symmetry classification results of Eq. (1), the corresponding optimal
system of one-dimensional subalgebras is given in Table 6.

In general, after obtaining the optimal system, one should perform approximate homotopy symmetry reductions for
Eq. (1) via the Lie method. However, there is no need to construct the reduced equations by b1Y1 + biYi in Table 6 by the
standard Lie method, since we can achieve the goal by acting a scaling transformation on the reductions by the operators
b1X1 + biXi in Table 2, where b1 ≠ 0, bi (i = 2, . . . , 6) are arbitrary constants in what follows.
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Table 5
Approximate homotopy symmetry classification of Eq. (1).

F(u) Approximate homotopy symmetry operators

Arbitrary Y1 = x∂x + t∂t +
∑

∞

i=0[iui − (i − 1)θui−1]∂ui , Y2 = ∂x, Y3 = ∂t
eλu Y1, Y2, Y3, Y4 =

λ
2 x∂x + ∂u0

uλ

λ ≠ −

4
3


Y1, Y2, Y3, Y5 =

1
2 (λ − 2)x∂x − t∂t +

∑
∞

i=0(i − 1)[θui−1 − ui]∂ui
u−4/3 Y1, Y2, Y3, Y5, Y6 = −

1
3 x

2∂x + x
∑

∞

i=0 ui∂ui

Table 6
Optimal system of one-dimensional subalgebras of Eq. (1) by AHSM.

F(u) The operators of the optimal system

Arbitrary Y1, Y3 + aY2, a ∈ R
eλu Y4, Y1 + aX4, Y2 + cY3, aY3 + Y4, −

λ
2 Y1 + Y4 + aX2, a ∈ R

uλ

u ≠ −

4
3


Y5, Y1 + aY5, Y2 + aY3, Y1 + Y5 + aY3, −

1
2 (λ − 2)Y1 + Y5 + aY2, a ∈ R

u−
4
3 In addition to the operators of F(u) = uλ in this table:

aY3+Y6, 5Y1+3Y5+aY6, Y3+Y6−bY2, Y2+bY3−Y6, Y5+Y6−bY2, Y2+Y5−bY6, Y1+Y6−bY2, Y1+Y2−bY6, a ∈ R, b ∈ R+

5.2. Connections between ASM and AHSM for Eq. (1)

In this subsection, we first give approximate homotopy symmetry reductions based on the results with ASM, and then
perform a comparison of three-order series solutions.

5.2.1. Reductions by b1Y1 + biYi

According to the reduction results by ASM for Eq. (1), we construct the higher-order reduced equations derived by
b1Y1 + biYi through a scaling transformation in Theorem 2.

Theorem 2. The reduced equations constructed by the operators b1Y1+biYi are equivalent to the corresponding one by b1X1+biXi
under the scaling transformation

P0 =P0, P1 = µ(1 − θ)P1, P2 = [µ(1 − θ)]2P2, . . . , Pk = [µ(1 − θ)]kPk. (92)

Proof. We take operator Y1 as an example to show it, the other cases can be done with similar method. The reduced
equations by Y1 for each order are listed as follows

k = 0 : z2P0,zz + 2zP0,z − [F(P0)P0,z]z = 0,

k = 1 : z2P1,zz − [P1,zF(P0) + F ′(P0)P1P0,z]z + µ(1 − θ)zP0,z = 0,

k = 2 : z2P2,zz − 2zP2,z − [P2,zF(P0) + F ′(P0)P1P1,z +
1
2
P0,zP2

1 F
′′(P0) + P2F ′(P0)]z

+ 2P2 + µ(1 − θ)[P1 − zP1,z] = 0,
. . .

The kth : z2Pk,zz + (k − 1)[kPk − 2zPk,z] −


k−

i=0

F (j)(P0)
j0!j1! · · · ji!

P j0
l0

. . . P ji
li
Pk−i,z


z

+ µ(1 − θ)[Pk−1 − zPk−1,z] = 0. (93)

Obviously, the first equation in (93) is the unperturbed equations which is identical to the first equation in Eq. (50) with
k = 0.

The second equation is linear about P1 and P1,z, P1,zz , so setting P1 = µ(1 − θ)P1, then we convert it to the form

z2P1,zz − [P1,zF(P0) + F ′(P0)P1P0,z]z + zP0,z = 0, (94)

which has the same form as the second one in Eq. (50).
For k = 2, assuming P1 = µ(1 − θ)P1, P2 = [µ(1 − θ)]2P2, we have

z2P2,zz − 2zP2,z − [P2,zF(P0) + F ′(P0)P1P1,z +
1
2
P0,zP2

1 F
′′(P0) +P2F ′(P0)]z + 2P2 + [P1 − zP1,z] = 0, (95)

which has the same form as the third one in Eq. (50).
Deriving by inductive reasoning, using the transformation

P0 =P0, P1 = µ(1 − θ)P1, P2 = [µ(1 − θ)]2P2, . . . , Pk = [µ(1 − θ)]kPk, (96)
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we convert Eq. (93) to Eq. (50). That is to say, the two reduced equations, Eqs. (50) and (93), are equivalent under the scaling
transformation (92). This establishes the theorem. �

Using Theorem 2, one can obtain approximate homotopy series solutions through acting transformation (92) on
approximate solutions with ASM for the same equations.

5.2.2. Other reductions by AHSM
The operators which do not contain parameter θ are the same, so do the corresponding similarity variables, but the

reduced equations are different. Below, we perform symmetry reductions using these operators.
A1. Reduction by cY2 + Y3
In terms of the similarity variables z = x − ct, ui = Pi, Eq. (91) is converted to

c2Pk,zz − cµ(1 − θ)

k−1−
i=0

θ k−1−iPi,z =


k−

i=0

F (j)(P0)
j0!j1! · · · ji!

P j0
l0

· · · P ji
li
Pk−i,z


z

. (97)

A2. Reduction by aY3 + Y4
To proceed, two different cases are distinguished.
(I) a ≠ 0
By aY3 + Y4, Eq. (91) with F(u) = eλu can be reduced to

1
a2

P0,zz = −
2
λ
eλP0(P0,z − 1) +

4
λ2

[eλP0(P0,z − 1)]z,

1
a2

P1,zz +
1
a
µ(1 − θ)P0,z = −

2
λ
eλP0(P1,z + λP1P0,z − λP1) +

4
λ2

[eλP0(P1,z + λP1P0,z − λP1)]z,

1
a2

Pk,zz +
1
a
µ(1 − θ)

k−1−
i=0

θ k−1−iPi,z = −2eλP0
k−

i=0

λj−1

j0!j1! · · · ji!
P j0
l0
P j1
l1

· · · P ji
li
Pk−i,z

+ 4


eλP0

k−
i=0

λj−2

j0!j1! · · · ji!
P j0
l0
P j1
l1

. . . P ji
li
Pk−i,z


z

, k > 1, (98)

where z = t/a − 2/λ ln x, P0 = u0 − 2/λ ln x, Pi = ui, (i = 1, 2, . . . , k).
(II) a = 0
By Y4, Eq. (91) with F(u) = eλu can be reduced to

Pk,zz + µ(1 − θ)

k−1−
i=0

θ k−1−iPi,z = −2eλP0
k−

i=0

λj−1

j0!j1! · · · ji!
P j0
l0
P j1
l1

· · · P ji
li
, (99)

where z = t, P0 = u0 − 2/λ ln x, Pi = ui, (i = 1, 2, . . .).
A3. Reduction by aY3 + Y6
According to parameter a, we consider two cases.
(I) When a ≠ 0, by aY3 + Y6, Eq. (91) with F(u) = u−4/3 can be reduced to

1
a2

Pk,zz +
1
a
µ(1 − θ)

k−1−
i=0

θ k−1−iPi,z = 9


k−

i=0

λ(λ − 1) . . . (λ − j + 1)Pλ−j
0

j0! · · · ji!
P j0
l0

. . . P ji
li
Pk−i,z


z

, (100)

where λ = −4/3 and z = 2/x − t/a, Pi = x3ui.
(II) For a = 0, by Y6, Eq. (91) with F(u) = u−4/3 can be reduced to

Pk,zz + µ(1 − θ)

k−1−
i=0

θ k−1−iPi,z = 0, (101)

where P−1 = 0, z = t, Pi = x3ui.
Integrate Eq. (101) once, one has

Pk,z + µ(1 − θ)

k−1−
i=0

θ k−1−iPi = c1, (102)

where c1 is an integrated constant.
Eq. (1) for F(u) = u−4/3 has solution in the form

u =
1
x3

∞−
k=0

qk
∫ 

c1 − µ(1 − θ)

k−1−
i=0

θ k−1−iPi(t)


dt. (103)
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Fig. 1. Horizontal axis denote θ , vertical axis denote the error.

A4. Reduction by Y3 + Y6 − bY2
Here, due to b > 0, without loss of generality, we set b = 3µ2 in order to simplify the computations. By Y3 + Y6 − bY2,

Eq. (91) with F(u) = u−4/3 can be reduced to

1
9


Pk,zz + 3µ(1 − θ)

k−1−
i=0

θ k−1−iPi,z


=

k−
i=0


λ!Pλ−j

0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
Pk−i,z


z

−
27µ2λ!Pλ−j

0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
Pk−i


,

(104)

where

k−
i=0


λ!Pλ−j

0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
Pk−i,z + 3


λ!Pλ−j

0

(λ − j)!j0! · · · ji!
P j0
l0

· · · P ji
li
Pk−i,z


z


≡ 0, (105)

and λ = −4/3 and z = t/3+ 1/(3µ) arctan[x/(3µ)], Pi = (9µ2
+ x2)3/2ui. Eq. (105) can be proved with similar method as

Eq. (74) in the Appendix.

5.2.3. A comparison of three-order series solutions
In this subsection, we give a comparison of three-order series solutions for the case F(u) = u2 with ASM and AHSM.
For F(u) = u2, we get particular solutions with three-order precision of Eq. (50) by ASM

P0 = y, P1 = −
y
6

+
c1
√
y
, P2 = −

y
36

−
7c1

12
√
y

+ c2,

P3 = −
1
64

y−
3
2 (5y4 + 2c1) −

y
54

+ c2
√
y +

1
96


19
√
y

− 64c1


. (106)

Then, substituting the solution

u = P0 + ϵtP1 + ϵ2t2P2 + ϵ3t3P3 (107)

into Eq. (1) and setting c1 = c2 = 1, x = t = 2, ϵ = 0.01, we get

utt + ϵut − (u2ux)x ≈ 7.82945 × 10−8. (108)

On the other hand, using transformation (92) in Theorem 3, we obtain

P0 =P0, P1 = µ(1 − θ)P1, P2 = [µ(1 − θ)]2P2, P3 = [µ(1 − θ)]3P3, (109)

then a three-order approximate homotopy series solution of Eq. (1) is given as

u = P0 + ptP1 + p2(t2P2 + tθP1) + p3(t3P3 + 2t2θP2 + tθ2P1). (110)

Inserting (110) into Eq. (1) and also choosing p = c1 = c2 = 1, x = t = 2, µ = ϵ = 0.01, we get Fig. 1 which
demonstrates the error of solution (110) with respect to the auxiliary parameter θ .

From Fig. 1, in particular, assuming convergence-control parameter θ = 0.0894, one has

ut + [F(u)ux]x + ϵuxxxx ≈ −5.7284 × 10−11. (111)

This example shows that appropriate convergence-control parameter θ can adjust the precision of series solutions.
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6. Summary and discussion

In the framework of the approximate symmetry method originated by Fushchich and Shtelen, we investigate a class
of perturbed wave equations and summarize the formulas for different order similarity reductions based on an optimal
system of one-dimensional subalgebras of Eq. (1). For arbitrary F(u) and three types of special equations of Eq. (1), zero-
order similarity reduction equations are nonlinear ordinary differential equations while kth order (k = 1, 2, . . .) similarity
reduction equations are variable coefficient linear ordinary differential equations of Pk(z) which depend on particular
solutions of the first k similarity reduction equations.

In addition, we study approximate homotopy symmetry of Eq. (1) and show that first-order coupled equations and
the higher-order reduced equations derived by the operators containing convergence-control parameter are equivalent
under two scaling transformations, respectively. The comparison of three-order series solutions demonstrates that AHSM is
superior toASM for Eq. (1) because the convergence of series solutions byAHSMcanbe controlled by adjusting the parameter
θ .

Note that the problem of classification of all possible potential symmetries for Eq. (1) still remains open and can form a
subject of future investigation of properties of Eq. (1). Furthermore, whether the present work about connections between
ASM and AHSM hold for any perturbed nonlinear PDEs is worthy of further consideration. These topics are in preparation
and will be reported in our future works.

Appendix

By means of mathematical induction, we prove the following identical equation

k−
i=0

[3(2k − 1)APk−i + 6z(APk−i)z + (2k − 2i + 3)APk−i + 2zAPk−i,z] ≡ 0 (A.1)

where A = λ!Pλ−j
0 P j0

l0
. . . P ji

li
/((λ − j)!j0! · · · ji!) with λ = −4/3.

Proof. 1. For k = 0, then i = 0. Hence, A = P−4/3
0 , Eq. (A.1) becomes

− 3P
−

4
3

0 P0 + 6z(P
−

4
3

0 P0)z + 3P
−

4
3

0 P0 + 2zP
−

4
3

0 P0,z ≡ 0. (A.2)

2. Assuming Eq. (A.1) holds for the integer k, we prove it holds for k + 1, i.e.

k+1−
i=0

[3(2k + 1)APk+1−i + 6z(APk+1−i)z + (2k − 2i + 5)APk+1−i + 2zAPk+1−i,z] ≡ 0. � (A.3)

Next, we search for all terms which contain Pk+1 in Eq. (A.3). After direct computations, we find Pk+1 only appear when
i = 0 or k + 1, hence, we list all terms as follows:

i = 0, A = Pλ
0 ; i = k + 1, A = λPk+1Pλ−1

0 . (A.4)

Calculating all terms which contain Pk+1 and Pk+1,z and setting λ = −4/3, we get

3(2k + 1)(λ + 1)Pk+1Pλ
0 + 6z(λ + 1)(Pk+1Pλ

0 )z + (2k + 5)Pk+1Pλ
0

+ 3λPk+1Pλ
0 + 2z[Pk+1,zPλ

0 + λPk+1Pλ−1
0 Pk+1P0,z] ≡ 0. (A.5)

Hence, with Eqs. (A.1) and (A.5), Eq. (A.3) is an identity, i.e., Eq. (A.1) holds for k + 1. The desired identical equation (A.1)
follows.

As for the identities (77), (81), (83) and (86), one can prove them with mathematical induction as above procedures, so
we omit them.
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