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Abstract

We extend and solve the classical Kolmogorov problem of finding general classes of Kolmo
equations that can be transformed to the backward heat equation. These new classes incl
mogorov equations with time-independent and time-dependent coefficients. Our main ide
include nonlocal transformations. We describe a step-by-step algorithm for determining such
formations. We also show how all previously known results arise as particular cases in this
framework.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we extend previous work on finding one-dimensional Kolmogorov e
tions that can be mapped into the backward heat equation. Letp(t, x) satisfy a Kolmogorov
equation

∂p

∂t
+ a(t, x)

∂2p

∂x2
+ b(t, x)

∂p

∂x
= 0, a(t, x) > 0. (1)

The Kolmogorov equation (1) is the partial differential equation (PDE) satisfied b
Green’s function for the Fokker–Planck equation
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e

e

to the
∂q

∂t
− ∂2

∂x2

(
a(t, x)q

) + ∂

∂x

(
b(t, x)q

) = 0.

We find new sets of coefficients{a(t, x), b(t, x)} for which (1) can be transformed to th
backward heat equation

∂p̄

∂ t̄
+ ∂2p̄

∂x̄2
= 0. (2)

The Kolmogorov equation (1) can be transformed to the backward canonical PDE

∂P

∂T
+ ∂2P

∂X2 +G(T ,X)P = 0 (3)

through the transformation

T = t,

X =X(t, x)=
x∫

dz√
a(t, z)

,

P (T ,X) = e1/2
∫X

D(t ′,Z) dZp(t, x), (4)

where

D(T ,X) = ∂X

∂t
+ a(t, x)

∂2X

∂x2 + b(t, x)
∂X

∂x
(5)

and, in terms ofD(T ,X), the coefficientG(T ,X) of (3) satisfies

∂G

∂X
= −1

2

[
∂D

∂T
+ ∂2D

∂X2 +D
∂D

∂X

]
. (6)

From (6), it follows that if we set

D(T ,X) = 2
∂

∂X
log

∣∣θ(T ,X)∣∣, (7)

thenθ(T ,X) satisfies the backward equation

∂θ

∂T
+ ∂2θ

∂X2 + [
G(T ,X)+ Γ (T )

]
θ = 0 (8)

for arbitraryΓ (T ).
Let u1 = u1(T ,X) = P(T ,X) and letG1(T ,X) =G(T ,X). Then Eq. (3) becomes th

canonical PDE

∂u1

∂T
+ ∂2u1

∂X2 +G1(T ,X)u1 = 0. (9)

Consequently, the problem of mapping (1) into (2) reduces to mapping PDE (9)
backward heat equation (2).
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In his celebrated paper [9], Kolmogorov posed the problem of finding the most ge
equation of the form (1) that can be mapped into the backward heat equation (2) by
transformation. Cherkasov ([8]; see also [2,11,12]) partially solved this problem b
stricting himself to a special class of point transformations considered by Kolmogoro
The complete solution of Kolmogorov’s problem was given in [3].

The main idea of the present paper is as follows. Suppose the Kolmogorov equat
can be embedded in an auxiliary system of PDEs so that the set of all solutions
auxiliary system yields all solutions of the Kolmogorov equation but there is not a
to-one correspondence between solutions of the Kolmogorov equation and those
related auxiliary system. Then a point transformation of the variables of the aux
system, which maps a component of the auxiliary system into the backward heat
tion, could yield a nonlocal transformation which maps the given Kolmogorov equ
to a backward heat equation. We exhibit such nonlocal transformations, yielding
classes of Kolmogorov equations transformable to the backward heat equation tha
previously obtained by point (local) transformations. This is accomplished by embe
a Kolmogorov equation in an auxiliary “potential” system obtained through replace
of the Kolmogorov equation by an equivalent conservation law [4].

In Section 2 we present the previously known results on mapping Kolmogorov equ
to the backward heat equation by point transformations.

In Section 3 we present our basic framework for obtaining mappings by non
transformations. We begin by observing that any solution of the adjoint equation
canonical PDE (9) yields a factor for an equivalent conservation law. In turn this co
vation law yields a potential system. We then find the most general canonical PD
which a point transformation maps a corresponding potential system to a special po
system related to the backward heat equation. Each component of this special p
system satisfies the backward heat equation. Such a point transformation of a po
system is shown to yield a nonlocal transformation of a canonical PDE to the bac
heat equation.

Using the basic framework, in Section 4 we give a step-by-step procedure to obta
classes of Kolmogorov equations that are transformable to the backward heat eq
A theorem is proved which characterizes the richness of our extension of the known
results. We show that our new classes arise fromanysolution of the backward heat equati
other than its fundamental solution (modulo translations) or its traveling wave solutio

In Section 5 we describe further generalizations emanating from our basic fram
through a recycling procedure which yields chains of Kolmogorov equations transfor
to the backward heat equation. In Section 6 this recycling procedure is shown to
particular value when the coefficients of a Kolmogorov equation are time-independe
Section 7, as examples we exhibitd-Bessel processes [10] which are only transformab
the backward heat equation by nonlocal transformations. As a consequence, a sph
symmetric(2k + 1)-dimensional heat equation can be mapped into the one-dimens
heat equation only by a nonlocal transformation fork = 2,3, . . . .

In Section 8 we discuss connections with symmetry analysis.
The approach presented in this paper can be used in other mapping problems.

ample, new classes of Schrödinger equations transformable to the free particle equa
nonlocal transformations were found in [7].
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2. Mappings by point transformations

One can show that a point transformation

τ = τ (T ,X,u1), y = y(T ,X,u1), ũ1 = ũ1(T ,X,u1), (10)

maps any PDE (9) into a homologous PDE, namely

∂ũ1

∂τ
+ ∂2ũ1

∂y2 + G̃1(τ, y)ũ1 = 0 (11)

for someG̃1(τ, y) if and only if (10) is of the form

y = σ(T )X+ ρ(T ), τ =
T∫
σ 2(µ) dµ,

ũ1 = exp

[
σ̇

4σ
X2 + ρ̇

2σ
X + λ

]
u1, (12)

with

G̃1(τ, y)= 1

σ 2

[
G1(T ,X)+ 2σ̇ 2 − σ σ̈

4σ 2 X2 + 2σ̇ ρ̇ − σ ρ̈

2σ 2 X

+
(
ρ̇2

4σ 2 − σ̇

2σ
− λ̇

)]
, (13)

whereσ(T ), ρ(T ), λ(T ) are arbitrary functions ofT andσ̇ = dσ/dT , etc.
Consequently, with respect to a point transformation, PDE (9) can be mapped in

backward heat equation if and only ifG1(T ,X) is of the form

G1(T ,X)= α(T )X2 + β(T )X+ γ (T ) (14)

for arbitraryα(T ), β(T ), γ (T ) (see [3]). The corresponding coefficients{α(t, x), b(t, x)}
were given in [3] and will be exhibited in Section 4.

From Eq. (13), we see that ifG1(T ,X) is of the form (14), the mapping (12) whic
transforms the corresponding PDE (9) to the backward heat equation hasσ(T ), ρ(T ),
λ(T ) satisfying the system of ODEs

σ σ̈ − 2σ̇ 2

4σ 2 = α(T ),

σ ρ̈ − 2σ̇ ρ̇

2σ 2 = β(T ),

λ̇= ρ̇2

4σ 2
− σ̇

2σ
+ γ (T ). (15)

The solution of system (15) is given in Appendix A.
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In Rn, for any given linear operatorL, its adjoint operatorL∗ is defined by

φLu− uL∗φ =
n∑

i=1

Dif
i, (16)

wherex = (x1, . . . , xn), the total derivative operatorDi = ∂/∂xi , f i is a bilinear expres
sion inu,φ and their derivatives,i = 1,2, . . . , n. Consequently, if

L∗φ = 0, (17)

thenLu= 0 if and only if
∑n

i=1Dif
i = 0, i.e.,a given linear PDE

Lu= 0 (18)

is equivalent to a conservation law

n∑
i=1

Dif
i = 0 (19)

for anyφ satisfying its adjoint equation(17). Using (19), one can introduce an auxilia
potential system whose compatibility conditions yield (18). The set of all solutions of
a potential system yields the set of all solutions of (18) but the connection between
solution sets is not one-to-one (see [4]). Whenn� 3, one is confronted with the problem
a natural gauge arbitrariness. In this case, as shown in [1], the associated potential
must be augmented by gauge constraints.

Now we specialize to the situation when PDE (18) is the canonical PDE (9). He
linear operatorL is given by

L= ∂

∂T
+ ∂2

∂X2 +G1(T ,X), (20)

its adjointL∗ is given by

L∗ = − ∂

∂T
+ ∂2

∂X2 +G1(T ,X), (21)

and the conservation law (19) is given by

∂

∂T
(φu1)+ ∂

∂X

(
φ
∂u1

∂X
− ∂φ

∂X
u1

)
= 0. (22)

The potential system corresponding to (22), with auxiliary dependent variablev1(T ,X), is
given by

∂v1

∂X
= φu1,

∂v1

∂T
= ∂φ

∂X
u1 − φ

∂u1

∂X
, (23)

whereφ(T ,X) is anysolution of the adjoint PDE

L∗φ = − ∂φ − ∂2φ +G1(T ,X)φ = 0. (24)

∂T ∂X2
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Note that if(u1(T ,X), v1(T ,X),φ(T ,X)) solves the potential/adjoint system (23), (2
thenu1(T ,X) solves the canonical PDE (9) andv1(T ,X) solves the backward equation

∂v1

∂T
+ ∂2v1

∂X2
− 2

φ

∂φ

∂X

∂v1

∂X
= 0. (25)

Moreover, if u1 = U1(T ,X) solves the canonical PDE (9) andφ = Φ(T ,X) solves
(24), then from the integrability conditions of (23) it follows that there exist solut
(u1(T ,X), v1(T ,X)) = (U1(T ,X),V1(T ,X)) of potential system (23) withV1(T ,X)

unique to within an arbitrary constant. Hence for any givenφ = Φ(T ,X) which solves
(24), the relationship between the solution sets of PDE (9) and system (23) is not o
one.

For anyφ(T ,X) that satisfies (24), the point transformation

w = v1

φ
(26)

maps (25) to the canonical PDE

∂w

∂T
+ ∂2w

∂X2 +G2(T ,X)w = 0, (27)

with G2(T ,X) given by

G2(T ,X)=G1(T ,X)+ 2
∂2

∂X2 log|φ|. (28)

From Eqs. (23) and (26), it immediately follows that ifu1(T ,X) solves the canonical PD
(9) then

w = u2(T ,X)= 1

φ(T ,X)

[ X∫
k

u1(T , ξ)φ(T , ξ) dξ +B2(T )

]
, (29)

with B2(T ) satisfying the condition

dB2

dT
= ∂φ

∂X
(T , k)u1(T , k)− φ(T , k)

∂u1

∂X
(T , k) (30)

for any constantk, solves the homologous equation (27) withG2(T ,X) given by (28). Con-
versely, ifw(T ,X) solves the canonical PDE (27) andφ(T ,X) is any particular solution
of

∂φ

∂T
− ∂2φ

∂X2
+ 2φ

∂2

∂X2
log|φ| −G2(T ,X)φ = 0,

then solving the forward PDE (24) in terms ofG1(T ,X), i.e., setting

G1(T ,X)= 1

φ

[
∂φ

∂T
− ∂2φ

∂X2

]
, (31)

it follows that

u1(T ,X)= ∂w

∂X
+ w

φ

∂φ

∂X

solves the homologous canonical equation (9) withG1(T ,X) given by (31).
By direct calculation one can prove the following theorem.
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Theorem 1. Consider the canonical PDE(9). A point transformation maps the corr
sponding potential system(23) into the special backward heat equation potential syste

∂v̂

∂y
= û,

∂v̂

∂τ
= −∂û

∂y
, (32)

for which each component satisfies the backward heat equation, i.e.,∂v̂/∂τ+∂2v̂/∂y2 = 0,
∂û/∂τ + ∂2û/∂y2 = 0, if and on ifG1(T ,X) is of the form

G1(T ,X)= 2
∂2

∂X2 log|ψ| + α(T )X2 + β(T )X+ γ (T ), (33)

whereψ(T ,X) is any solution of

∂ψ

∂T
+ ∂2ψ

∂X2
+ [

α(T )X2 + β(T )X + γ (T )
]
ψ = 0 (34)

for arbitrary α(T ), β(T ), γ (T ). (Note thatψ(T ,X) satisfies(34) if φ(T ,X) = 1/ψ(T ,X)
satisfies the adjoint equation(24) with G1(T ,X) given by(33).) The corresponding map
ping of(23) into (32) is given by

y = σ(T )X+ ρ(T ),

τ =
T∫
σ 2(µ) dµ,

û= 1

σ
eg(T ,X)

{
u1 +

(
σ̇X + ρ̇

2σ
+ ψX

ψ

)
ψv1

}
,

v̂ = eg(T ,X)ψv1, (35)

where

g(T ,X) = σ̇

4σ
X2 + ρ̇

2σ
X + λ,

and (σ (T ), ρ(T ),λ(T )) are related to(α(T ),β(T ), γ (T )) through the system of ODE
(15) which is solved in AppendixA. The mapping(35) defines a point transformation o
(X,T ,u1, v1)-space that projects into a nonlocal transformation on(X,T ,u1)-space if the
coefficient ofv1 is nonzero in Eq.(35c).

The previously known result [3] about the equivalence of the canonical PDE (9) an
backward heat equation under a point transformation when the coefficientG1(T ,X) of (9)
is quadratic inX (Eq. (14)) immediately follows as a special case of Theorem 1. Inde
ψ(T ,X) satisfies

1

ψ

∂ψ

∂X
+ σ̇X+ ρ̇

2σ
= 0,

then Eq. (33) yields

G1(T ,X)= α(T )X2 + β(T )X+ γ (T )− σ̇
.

σ
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It is easy to check that the mapping (35) yields a nonlocal transformation of (9) t
backward heat equation if and only ifψ(T ,X) is a solution of (34) satisfying the conditio

∂3

∂X3 log|ψ| �≡ 0. (36)

Moreover, the resulting expression (33) forG1(T ,X) is not of the quadratic form (14) i
and only ifψ(T ,X) satisfies the condition

∂5

∂X5
log|ψ| �≡ 0. (37)

Let ψ̂(τ, y) beanysolution of the backward heat equation∂ψ̂/∂τ + ∂2ψ̂/∂y2 = 0. Then
from (12) it follows that

ψ(T ,X) = exp

[
−

{
σ̇

4σ
X2 + ρ̇

2σ
X + λ

}]
ψ̂(τ, y)

is a solution of (34), and hence (33) becomes

G1(T ,X)= α(T )X2 + β(T )X+ γ (T )− 2σ 2
[
ψ̂τ

ψ̂
+

(
ψ̂y

ψ̂

)2 ]
− σ̇

σ
, (38)

wherey = σX + ρ, τ = ∫ T
σ 2(µ) dµ, with σ(T ), ρ(T ) related toα(T ), β(T ) through

(15a,b). Hence through (38)everysolution of the backward heat equation yields a co
ficientG1(T ,X) for which the corresponding backward equation (9) can be mapped
the backward heat equation. This relationship will be considered in more detail in th
section.

4. New classes of Kolmogorov equations transformable to the backward
heat equation

Now we apply the results of Section 3 to the Kolmogorov equation (1). Letψ(T ,X) be
any solution of (34) and letG1(T ,X) be given by (33) forarbitrary α(T ), β(T ), γ (T ).
Then

∂3G1

∂X3 = 2
∂5

∂X5 log|ψ|.
Consequently, after using (6) withG=G1, the work of the previous section can be resta
as follows.

Through one of our potential systems, the Kolmogorov equation (1) can be mappe
the backward heat equation if and only ifT , X, D(T ,X) defined by (4) and (5) satisfy

∂2

∂X2

(
∂D

∂T
+D

∂D

∂X
+ ∂2D

∂X2

)
= −4

∂5

∂X5
log|ψ| (39)

for any solutionψ(T ,X) of (34).
Now we show how the above result generalizes previous work presented in [3,8].
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In [3] it was shown that the Kolmogorov equation (1) can be mapped into the back
heat equation through a point transformation if and only ifD(T ,X) satisfies

∂2

∂X2

(
∂D

∂T
+D

∂D

∂X
+ ∂2D

∂X2

)
= 0, (40)

and it was further shown that Cherkasov’s special class of point transformations res
D(T ,X) to the solutions of (40) that satisfy

∂2D

∂X2
= 0. (41)

In terms of the original independent variables(x, t), note that

∂

∂X
=

(
∂X

∂x

)−1
∂

∂x
= √

a(t, x)
∂

∂x
,

∂

∂T
= ∂

∂t
− ∂X

∂t

(
∂X

∂x

)−1
∂

∂x
= ∂

∂t
− √

a(t, x)Xt
∂

∂x
.

The previous discussion leads to the following step-by-step procedure to find new c
of Kolmogorov equations (1) that are transformable to the backward heat equation.

Let α(T ), β(T ), γ (T ) be arbitrary functions ofT .
(1) Letψ(T ,X) be a solution of (34), found as follows.
For any givenα(T ), β(T ), γ (T ), letσ = σ1(T ), ρ = ρ1(T ), λ= λ1(T ) beanysolution

of the system of ODEs (15), solved in Appendix A. Let

y1 = σ1(T )X + ρ1(T ), τ1 =
T∫
σ 2

1 (µ) dµ. (42)

Let ψ̂(τ1, y1) beanysolution of the backward heat equation

∂ψ̂

∂τ1
+ ∂2ψ̂

∂y2
1

= 0 (43)

and let

g1(T ,X)= σ̇1

4σ1
X2 + ρ̇1

2σ1
X + λ1.

Then

ψ(T ,X) = e−g1(T ,X)ψ̂(τ1, y1) (44)

yields a solution of (34).
(2) Usinganyψ(T ,X) given by (44), determineG1(T ,X) from (33), i.e.,

G1(T ,X)= 2
∂2

∂X2
log

∣∣ψ(T ,X)∣∣ + α(T )X2 + β(T )X + γ (T ).

(3) For anyψ(T ,X) given by (44), and correspondingG1(T ,X) given by (33), use (7
and (8), withG(T ,X)=G1(T ,X), to determineD(T ,X), i.e.,

D(T ,X) = 2
∂

log
∣∣θ(T ,X)∣∣,
∂X
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whereθ(T ,X) is anysolution of

∂θ

∂T
+ ∂2θ

∂X2 + [
G1(T ,X)+ Γ (T )

]
θ = 0 (45)

for arbitraryΓ (T ). The procedure to solve PDE (45) now follows from the results
Theorem 1 as applied to Eq. (45).

Let σ = σ2(T ), ρ = ρ2(T ) beanysolution of (15) and letλ= λ2(T ) beanysolution of

λ̇= ρ̇2
2 − 2σ2σ̇2

4σ 2
2

+ γ (T )+ Γ (T ).

Let

y2 = σ2(T )X + ρ2(T ), τ2 =
T∫
σ 2

2 (µ) dµ. (46)

Let θ̂ (τ2, y2) beanysolution of the backward heat equation∂θ̂/∂τ2 + ∂2θ̂/∂y2
2 = 0, and

let

g2(T ,X)= σ̇2

4σ2
X2 + ρ̇2

2σ2
X + λ2.

Then

θ(T ,X)= e−g2(T ,X)

[
σ2

∂θ̂

∂y2
−

(
σ̇2X + ρ̇2

2σ2
+ ψX

ψ

)
θ̂

]
(47)

yields a solution of (45) and hence leads toD(T ,X) = 2(∂/∂X) log|θ(T ,X)|.
(4) ForanyD(T ,X) = 2(∂/∂X) log|θ(T ,X)|, the corresponding coefficients{a(t, x),

b(t, x)} of the Kolmogorov equation (1) can be found as follows.
Let D(T ,X) =D(t,X(t, x)), whereX(t, x) is given by (4b). Then from (5), the coe

ficients{a(t, x), b(t, x)} areanysolutions of

∂X

∂t
+ a(t, x)

∂2X

∂x2 + b(t, x)
∂X

∂x
=D

(
t,X(t, x)

)
.

In particular, foranysolutionθ(T ,X) of (4.7), andarbitrary a(t, x), the coefficient

b(t, x)= 2a(t, x)
∂

∂x
log

∣∣θ(t,X(t, x))∣∣ − √
a(t, x)Xt + 1

2
ax(t, x) (48)

with X(t, x)= ∫ x
(1/

√
a(t, z) ) dz.

(5) The procedure outlined in Theorem 1 relates the solution of the correspo
canonical backward equation (3) (or (9)) toanysolution of the backward heat equation.

(6) In terms ofD(T ,X), the corresponding solutions of the Kolmogorov equation
are found through transformation (4).

In the above step-by-step procedure we now show which solutions of the bac
heat equation (43) yield Kolmogorov equations, i.e., coefficientsa(t, x), b(t, x), which are
transformable to the backward heat equationonlyby nonlocal transformations.
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Theorem 2. Let ψ̂(τ1, y1) be a solution of the backward heat equation(43). By following
the step-by-step procedure(1)–(5), such a solution yields the Kolmogorov equation(1) that
is transformable to the backward heat equationonly through a nonlocal transformation
and only ifψ̂(τ1, y1) is notone of the forms

(I) ψ̂(τ1, y1)= e(Py1−P 2τ1),

(II) ψ̂(τ1, ŷ1)= 1√
τ1 − τ̂1

exp

{
(y1 − ŷ1)

2

4(τ1 − τ̂1)

}
, (49)

whereP,y1, τ̂1 are arbitrary constants.

Proof. From condition (37), it follows that̂ψ(τ1, y1) yields a Kolmogorov equation that
transformable to the backward heat equation only by a nonlocal transformation if an
if ψ(T ,X) given by (44) satisfies(∂5/∂X5) log|ψ(T ,X)| �≡ 0. Now suppose

∂5

∂X5 log
∣∣ψ(T ,X)∣∣ ≡ 0.

Consequently,(∂5/∂X5) log|ψ̂(τ1, y1)| ≡ 0, which, as it follows from (42)(σ �= 0), is
equivalent to

∂5

∂y5
1

log
∣∣ψ̂(τ1, y1)

∣∣ ≡ 0.

Henceψ̂(τ1, y1) is of the form

ψ̂(τ1, y1)= exp
{
A(τ1)y

4
1 +B(τ1)y

3
1 +C(τ1)y

2
1 +D(τ1)y1 +E(τ1)

}
(50)

for arbitraryA(τ1), B(τ1), C(τ1), D(τ1), E(τ1). Substituting (50) into the backward he
equation (42), we see that

A(τ1)= B(τ1)≡ 0,
dC

dτ1
+ 4C2 = 0,

dD

dτ1
+ 4CD = 0,

dE

dτ1
+ 2C +D2 = 0. (51)

It is now straightforward to show that the solutions of (51) yield (48).✷
For an arbitrary coefficienta(t, x) in the Kolmogorov equation (1), we next show ho

the work presented in this paper generalizes previous works [3,8] on the types of
cientsb(t, x) for which (1) can be transformed to the backward heat equation. Makin
appropriate substitutions in (47), we obtain

b(t, x)= −2
√
a

(
σ̇2

2σ2
X + ρ̇2

2σ2

)
− √

aXt + 1

2
ax + 2a

∂

∂x
log

∣∣θ̂ (τ2, y2)
∣∣

+ 2a
∂

∂x
log

∣∣∣∣σ2
∂

∂y2
log

∣∣θ̂ (τ2, y2)
∣∣ − σ1

∂

∂y1
log

∣∣ψ̂(τ1, y1)
∣∣

+
(
σ̇1 − σ̇2

)
X +

(
ρ̇1 − ρ̇2

)∣∣∣∣, (52)

2σ1 2σ2 2σ1 2σ2
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), but,
eat

a recy-
rmable
uation

ith a
with X(t, x), σi(t), ρi(t), τi(t), yi(t,X(t, x)), i = 1,2, defined by Eqs. (4), (42) and (46
ψ̂(τ1, y1), θ̂ (τ2, y2) areanysolutions of backward heat equations in terms of their res
tive arguments. Note that ifσ1 = σ2 = σ , ρ1 = ρ2 = ρ, thenτ1 = τ2 = τ , y1 = y2 = y. One
can show the following:

(I) Cherkasov’s results [8] correspond toσ1 = σ2 = σ , ρ1 = ρ2 = ρ, θ̂ (τ, y) = const,
ψ̂(τ, y) is a solution of the backward heat equation which is one of the special forms

(II) The results presented in [3] also correspond toσ1 = σ2 = σ , ρ1 = ρ2 = ρ, ψ̂(τ, y)
is a solution of the backward heat equation which is one of the special forms (49
unlike in Cherkasov’s results,̂θ(τ, y) is allowed to be any solution of the backward h
equation.

(III) The results presented in this paper yield further new classes ofb(t, x), a(t, x) if
σ1 �= σ2, ρ1 �= ρ2. If σ1 = σ2 = σ , ρ1 = ρ2 = ρ, then further new classes ofb(t, x), a(t, x)
beyond those found in [3], are obtained for any pair of solutions(θ̂(τ, y), ψ̂(τ, y)) of the
backward heat equation except when

(1) ψ̂(τ, y) is one of the special forms (49) or
(2) ψ̂(τ, y)= Cθ̂(τ, y) for some constantC.

5. A recycling procedure further extending classes of Kolmogorov equations
transformable to the backward heat equation

In this section we enhance the results presented in Sections 3 and 4 by describing
cling procedure which generates sequential chains of Kolmogorov equations transfo
to the backward heat equation. Such chains will emanate from any Kolmogorov eq
with G1(T ,X)= Γ1(T ,X) of the form

Γ1(T ,X)= 2
∂2

∂X2 log
∣∣ψ(T ,X)∣∣ + α(T )X2 + β(T )X+ γ (T ), (53)

whereψ(T ,X) is any solution of

∂ψ

∂T
+ ∂2ψ

∂X2 + [
α(T )X2 + β(T )X + γ (T )

]
ψ = 0. (54)

This recycling procedure generalizes previous work presented in [6] which dealt w
T -independentΓ1(T ,X). To establish such chains we proceed as follows.

Supposeu1(T ,X) is any solution of (9) andφ(T ,X) = φ1(T ,X) �= 1/ψ(T ,X) is a
particular solution of (24) withG1(T ,X) = Γ1(T ,X) given by (53) and (54). Then from
Eq. (29) it follows that

u2(T ,X)= 1

φ1(T ,X)

[ X∫
k

u1(T , ξ)φ1(T , ξ) dξ +B2(T )

]
,

with B2(T ) satisfying condition (30), solves

∂u2 + ∂2u2 + Γ2(T ,X)u2 = 0, (55)

∂T ∂X2
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uation.
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when

anon-

ble to
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4. In
where

Γ2(T ,X)= Γ1(T ,X)+ 2
∂2

∂X2 log
∣∣φ1(T ,X)

∣∣.
Consequently, the canonical equation (55) is transformable to the backward heat eq
(Since (9), withG1(T ,X) = Γ1(T ,X), can be mapped into the backward heat equa
in this manner one may obtain all solutionsu1(T ,X) by using step (3) of the step-by-ste
procedure outlined in Section 4 withΓ1(T ) ≡ 0 (see formula (47)). However, there is
general procedure to obtain particular solutions of the adjoint equation (24) whenΓ1(T ,X)

is T -dependent. In Section 6 we will show how to obtain the general solution of (24)
Γ1(T ,X) andφ(T ,X) areT -independent.)

In general, supposeun(T ,X) is any solution of

∂un

∂T
+ ∂2un

∂X2
+ Γn(T ,X)un = 0, (56)

andφn(T ,X) is a particular solution of

−∂φn

∂T
+ ∂2φn

∂X2 + Γn(T ,X)φn = 0.

Then the system

∂

∂X
(φnun+1)= φnun,

∂

∂T
(φnun+1)= ∂φn

∂X
un − φn

∂un

∂X

yields a nonlocal transformation relating the canonical PDE (56) to the homologous c
ical PDE

∂un+1

∂T
+ ∂2un+1

∂X2 + Γn+1(T ,X)un+1 = 0, (57)

where

Γn+1(T ,X)= Γn(T ,X)+ 2
∂2

∂X2 log
∣∣φn(T ,X)∣∣.

The corresponding nonlocal transformations connecting solutions are given by

un+1(T ,X)= 1

φn(T ,X)

[ X∫
k

un(T , ξ)φn(T , ξ) dξ +Bn+1(T )

]
,

with Bn+1(T ) satisfying the condition

dBn+1

dT
= ∂φn

∂X
(T , k)un(T , k)− φn(T , k)

∂un

∂X
(T , k),

n= 1,2, . . . . Consequently, sequential chains of canonical PDEs (57) are transforma
the backward heat equation.

The coefficientsa = an(t, x), b = bn(t, x) of the corresponding chains of Kolmogor
equations follow from step (4) of the step-by-step procedure presented in Section
particular, let

Dn(T ,X)= 2
∂

log
∣∣un(T ,X)∣∣
∂X
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ce-
for any solutionun(T ,X) of (55). Without loss of generality,a(t, x) is arbitrary. Then

bn(t, x)= 2
√
a(t, x)

∂

∂X
log

∣∣un(t,X)∣∣ − √
a(t, x)Xt + 1

2
ax(t, x),

with X =X(t, x) given by (4b).

6. The recycling procedure for Kolmogorov equations
with time-independent coefficients

In the important special case when the coefficientsa(t, x), b(t, x) of the Kolmogorov
equation (1) are time-independent, i.e,a(t, x)≡ a(x), b(t, x)≡ b(x), all of the equations
are completely solvable in the recycling procedure outlined in Section 5.

HereX(t, x)≡X(x), D(t, x)≡D(x), G(t, x)≡G(x). From (4)–(6), one obtains

X(x)=
x∫

dz√
a(z)

, (58)

D(X) = a(x)
d2X

dx2 + b(x)
dX

dx
= 1√

a(x)

[
b(x)− 1

2
a′(x)

]
, (59)

G(X)= −1

2

[
D′(X)+ 1

2
D2(X)

]
. (60)

In the recycling procedure, the equations are solved as follows.
Letψ(X) be any solution of the ODE

d2ψ

dX2 + [αX2 + βX + γ ]ψ = 0 (61)

for some constantsα,β, γ , and let

Γ1(X)= 2
d2

dX2
log|ψ| + αX2 + βX+ γ. (62)

Supposeu1(T ,X) is any solution of

∂u1

∂T
+ ∂2u1

∂X2 + Γ1(X)u1 = 0.

All such solutionsu1(T ,X) are given by following step (3) of the step-by-step pro
dure of Section 4 withΓ (T )≡ 0 (see formula (47)). Now letφ(X)= φ1(X) �= 1/ψ(X) be
a particular solution of the ODE

d2φ

dX2
+ Γ1(X)φ = 0. (63)

Unlike the situation in the time-dependent case, one is able to find thegeneral solutionof
(63) sinceφ(X)= 1/ψ(X) is a particular solution of (63). Specifically,

φ(X)= φ1(X;K1)= 1

ψ(X)

[
K1 +

X∫
ψ2(z) dz

]
(64)
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has the
for arbitrary constantK1. Then

u2(T ,X)= 1

φ1(X;K1)

[ X∫
k

u1(T , ξ)φ1(ξ;K1) dξ +B2(T )

]
,

with B2(T ) satisfying the condition

dB2

dT
= ∂2φ1

∂X
(k;K1)u1(T , k)− φ1(k;K1)

∂u1

∂X
(T , k)

for arbitrary constantk, solves

∂u2

∂T
+ ∂2u2

∂X2 + Γ2(X;K1)u2 = 0,

where

Γ2(X;K1)= Γ1(X)+ 2
d2

dX2 log
∣∣φ1(X;K1)

∣∣.
In general, supposeun(T ,X) is any solution of

∂un

∂T
+ ∂2un

∂X2 + Γn(X;K1, . . . ,Kn−1)un = 0.

The general solution of the ODE

∂2φn

∂X2 + Γ (X;K1, . . . ,Kn−1)φn = 0

can be obtained in the same manner as that used to obtain expression (64) and it
form

φn(X;K1, . . . ,Kn)= 1

φn−1(X;K1, . . . ,Kn−1)

×
[
Kn +

X∫ [
φn−1(z;K1, . . . ,Kn−1)

]2
dz

]
. (65)

Then the function

un+1(T ,X)= 1

φn(X;K1, . . . ,Kn)

×
[ X∫
k

un(T , ξ)φn(ξ;K1, . . . ,Kn) dξ +Bn+1(T )

]
,

with Bn+1(T ) satisfying the condition

dBn+1

dT
= ∂φn

∂X
(k;K1, . . . ,Kn)un(T , k)− φn(k;K1, . . . ,Kn)

∂un

∂X
(T , k),

solves
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ins
r each
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ard
∂un+1

∂T
+ ∂2un+1

∂X2
+ Γn+1(X;K1, . . . ,Kn)un+1 = 0, (66)

where

Γn+1(X;K1, . . . ,Kn)= Γn(X;K1, . . . ,Kn−1)+ 2
d2

dX2 log
∣∣φn(X;K1, . . . ,Kn)

∣∣,
n = 1,2, . . . , andφ0(X) = ψ(X) is any solution of (61). Consequently, sequential cha
of canonical equations (66) are transformable to the backward heat equation. Fo
member of such a sequential chain,

Dn(X;K1, . . . ,Kn)= 2
d

dX
log

∣∣φn(X;K1, . . . ,Kn)
∣∣.

Hence, witha(x)= an(x) arbitrary, the coefficientsb(x) of the corresponding Kolmogoro
equations (1), which are transformable to the backward heat equation, are given by

b(x)= bn(x;K1, . . . ,Kn)= 2
√
a(x)

d

dX
log

∣∣φn(X;K1, . . . ,Kn)
∣∣ + 1

2
a′(x), (67)

n = 0,1,2, . . . , with φ0(X) = ψ(X). In particular, whena(x)≡ const= a, formula (67)
becomes

b(x)= bn(x;K1, . . . ,Kn)= 2
√
a

d

dX
log

∣∣φn(X;K1, . . . ,Kn)
∣∣ (68)

with X = x/
√
a.

The termn = 0 of a sequential chain corresponds to the local case which was
pletely considered in [3], the termn= 1 corresponds to the nonlocal extension which w
completely considered in Section 4 of this paper, and further nonlocal extensions re
from recycling correspond to termsn= 2,3, . . . . In effect there are 4+ n arbitrary fitting
constants in termn.

7. An example: a d-Bessel process

For ad-Bessel process (see, for example, [10]) the Kolmogorov equation (1) has
ficients

a(x)= 1

2
, b(x)= ε

x
, (69)

with ε = (d − 1)/2. Using (58)–(60), one finds that

X = √
2x, D(X)= √

2
ε

x
= 2ε

X
, G(X)= ε(1− ε)

X2 . (70)

If ε = 0 (d = 1) or ε = 1 (d = 3), then the coefficientG(X) ≡ 0; if ε = 2 (d = 5), then
the coefficientG(X) from (70) coincides withΓ1(X) given by (62) withψ =X, α = β =
γ = 0. Hence the Kolmogorov equation (1), with its coefficients given by (69), forε = 2
can be mapped by anonlocaltransformation (but not by any local one) into the backw
heat equation.
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Further application of the recycling procedure of Section 6 leads to the following r
Any Kolmogorov equation (1) with coefficients

a(x)= 1

2
, b(x)= bn(x)= n+ 1

x
, n= 0,1,2, . . . (71)

(which corresponds tod = 3,5,7, . . .), can be mapped into the backward heat eq
tion. This follows immediately from (65) and (68) withφn−1(X) = Xn and Kn = 0,
n= 2,3, . . . .

A d-Bessel process corresponds to the spherically symmetric heat equation inRd , i.e.,

∂u

∂t
= ∂2u

∂R2 − (d − 1)

R

∂u

∂R
= 0. (72)

From the above results it follows that (72) can be mapped into the heat equation

∂u

∂t
= ∂2u

∂x2 = 0

(I) by a point transformation if and only ifd = 3 (a well-known result);
(II) by a nonlocal transformation if and only ifd = 2k + 1, k = 2,3, . . . .

8. Remarks on connections with symmetry analysis

It is well known that the scalar Kolmogorov equation (1) can be mapped into the
ward heat equation by a point transformation if and only if (1) admits a six-paramete
group of point transformations (see [3,5]). One can show that the backward heat eq
potential system (32) admits a six-parameter Lie group of point transformations. Hen
necessary that the potential system (23) admit a six-parameter Lie group of point tra
mations in order that (23) can be mapped into (32) by a point transformation. Conseq
when such a mapping (35) defines a nonlocal transformation acting on(X,T ,u1)-space, it
follows that (23) must admit a six-parameter Lie group of point transformations wh
the corresponding canonical equation (9) may not admit a six-parameter Lie group o
transformations.

As an example, consider thed-Bessel process ford = 5. Here the canonical equation (
becomes

∂u1

∂T
+ ∂2u1

∂X2
− 2

X2
u1 = 0,

and only admits a four-parameter Lie group of point transformations with its infinites
generators given by

X1 = ∂

∂T
, X2 = 2T

∂

∂T
+X

∂

∂X
,

X3 = T 2 ∂

∂T
+ TX

∂

∂X
+ 1

2
(X2 − 2T )u1

∂

∂u1
, X4 = u1

∂

∂u1
.

Sinceφ =X−1 (see Section 7), the corresponding potential system (23) takes the fo
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itesi-

iven
∂v1

∂X
= 1

X
u1,

∂v1

∂T
= − 1

X2u1 − 1

X

∂u1

∂X
. (73)

System (73) admits a six-parameter Lie group of point transformations with its infin
mal generators given by

X1 = ∂

∂T
, X2 = 2T

∂

∂T
+X

∂

∂X
,

X3 = T 2 ∂

∂T
+ TX

∂

∂X
+

[(
1

4
X2 − 3

2
T

)
u1 + 1

2
X2v1

]
∂

∂u1

+
(

1

4
X2 − 3

2
T

)
v1

∂

∂v1
,

X4 = u1
∂

∂u1
+ v1

∂

∂v1
, X5 = ∂

∂X
+ 1

X
v1

∂

∂u1
− 1

X
v1

∂

∂v1
,

X6 = T
∂

∂X
+

[
1

2
Xu1 +

(
1

2
X + T

X

)
v1

]
∂

∂u1
+

(
1

2
X− T

X

)
v1

∂

∂v1
.

From the mapping (35), it follows that the point transformation

X = y, T = τ, v1 = v̂

y
, u1 = û− v̂

y

transforms (73) into the backward heat equation potential system (32).
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Appendix A. Solution of system (15)

In system (15), supposeα(T ), β(T ), γ (T ) are given functions ofT . Thenσ(T ), ρ(T ),
λ(T ) are found as follows.

To findσ(T ), first let

σ(T )= 1

s(T )
.

Then Eq. (15a) becomes a linear ODE in terms ofs(T ), namely

d2s

dT 2
+ 4α(T )s = 0. (A.1)

Let s = S(T ) be any solution of (A.1). Then the general solution of Eqs. (15b,c) is g
by

ρ(T )= 2

T∫
1

2
dt2

t2∫
β(t1)S(t1) dt1,
S (t2)



G. Bluman, V. Shtelen / J. Math. Anal. Appl. 291 (2004) 419–437 437

tions,

–Hill,

th. 39

Appl.

ol. 81,

through

Appl. 2

. 104

pl. 54

atics,
λ(T )= 1

2
log

∣∣S(T )∣∣ +
T∫ {

1

S2(t2)

[ t2∫
β(t1)S(t1) dt1

]2

+ γ (t2)

}
dt2.
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