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Abstract

We extend and solve the classical Kolmogorov problem of finding general classes of Kolmogorov
equations that can be transformed to the backward heat equation. These new classes include Kol-
mogorov equations with time-independent and time-dependent coefficients. Our main idea is to
include nonlocal transformations. We describe a step-by-step algorithm for determining such trans-
formations. We also show how all previously known results arise as particular cases in this wider
framework.
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1. Introduction

In this paper, we extend previous work on finding one-dimensional Kolmogorov equa-
tions that can be mapped into the backward heat equatiop.(Let) satisfy a Kolmogorov
equation
dp 9%p dp
E—i—a(t,x)w +b(t,x)£=0, a(t,x)>0. Q)

The Kolmogorov equation (1) is the partial differential equation (PDE) satisfied by the
Green'’s function for the Fokker—Planck equation
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82 d
o W(a(r, x)q) + a(b(t, x)q) =0.

We find new sets of coefficienfa(z, x), b(z, x)} for which (1) can be transformed to the
backward heat equation
p  9%p
ar - 9x2

The Kolmogorov equation (1) can be transformed to the backward canonical PDE

0. (2

ap 3P
—+-—+G(T,X)P=0 3
57 T axz TOTX) ®3)

through the transformation

T=t,
rod
X=X<r,x>=/ S
a(t,z)
P(T, X) = Y2/ DU2dZ p 4)
where

2

0X
D(T,X) = o —i—a(t,x)ﬁ

and, in terms ofD(T, X), the coefficienG (T, X) of (3) satisfies

X
+b(t,x)— (5)
ax

2
G 1[8D a°D 8Di|' (©)

- — D—
X 2 aTJraXZJr X

From (6), it follows that if we set

: (7)

thend(T, X) satisfies the backward equation

0
D(T,X)=2—1 o(T, X
(T, X) aXog|(, )

0 9%
— + — G(T, X rr|6=0 8
8T+8X2+[( )+ (D) (8)
for arbitrary ' (T').
Letus =u1(T, X) = P(T, X) and letG1(T, X) = G(T, X). Then Eq. (3) becomes the
canonical PDE
Juq 32141

— T,X)uy =0. 9
57 T axz T 61T Xm 9)

Consequently, the problem of mapping (1) into (2) reduces to mapping PDE (9) to the
backward heat equation (2).
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In his celebrated paper [9], Kolmogorov posed the problem of finding the most general
equation of the form (1) that can be mapped into the backward heat equation (2) by a point
transformation. Cherkasov ([8]; see also [2,11,12]) partially solved this problem by re-
stricting himself to a special class of point transformations considered by Kolmogorov [9].
The complete solution of Kolmogorov’s problem was given in [3].

The main idea of the present paper is as follows. Suppose the Kolmogorov equation (1)
can be embedded in an auxiliary system of PDEs so that the set of all solutions of the
auxiliary system yields all solutions of the Kolmogorov equation but there is not a one-
to-one correspondence between solutions of the Kolmogorov equation and those of the
related auxiliary system. Then a point transformation of the variables of the auxiliary
system, which maps a component of the auxiliary system into the backward heat equa-
tion, could yield a nonlocal transformation which maps the given Kolmogorov equation
to a backward heat equation. We exhibit such nonlocal transformations, yielding wider
classes of Kolmogorov equations transformable to the backward heat equation than those
previously obtained by point (local) transformations. This is accomplished by embedding
a Kolmogorov equation in an auxiliary “potential” system obtained through replacement
of the Kolmogorov equation by an equivalent conservation law [4].

In Section 2 we presentthe previously known results on mapping Kolmogorov equations
to the backward heat equation by point transformations.

In Section 3 we present our basic framework for obtaining mappings by nonlocal
transformations. We begin by observing that any solution of the adjoint equation of the
canonical PDE (9) yields a factor for an equivalent conservation law. In turn this conser-
vation law yields a potential system. We then find the most general canonical PDE for
which a point transformation maps a corresponding potential system to a special potential
system related to the backward heat equation. Each component of this special potential
system satisfies the backward heat equation. Such a point transformation of a potential
system is shown to yield a nonlocal transformation of a canonical PDE to the backward
heat equation.

Using the basic framework, in Section 4 we give a step-by-step procedure to obtain new
classes of Kolmogorov equations that are transformable to the backward heat equation.
Atheorem is proved which characterizes the richness of our extension of the known (local)
results. We show that our new classes arise faogsolution of the backward heat equation
other than its fundamental solution (modulo translations) or its traveling wave solution.

In Section 5 we describe further generalizations emanating from our basic framework
through a recycling procedure which yields chains of Kolmogorov equations transformable
to the backward heat equation. In Section 6 this recycling procedure is shown to be of
particular value when the coefficients of a Kolmogorov equation are time-independent. In
Section 7, as examples we exhisiBessel processes [10] which are only transformable to
the backward heat equation by nonlocal transformations. As a consequence, a spherically
symmetric(2k + 1)-dimensional heat equation can be mapped into the one-dimensional
heat equation only by a nonlocal transformationifet 2, 3, . . ..

In Section 8 we discuss connections with symmetry analysis.

The approach presented in this paper can be used in other mapping problems. For ex-
ample, new classes of Schrédinger equations transformable to the free particle equation by
nonlocal transformations were found in [7].
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2. Mappings by point transformations

One can show that a point transformation

t=1(T,X,u1), y=yT,X,u1), ur=u1(T,X,uy), (10)

maps any PDE (9) into a homologous PDE, namely

A 0%
dur 97

Gi(t, y)ii1 =0 11
e T T 1(t, y)ia (11)

for someG1(t, y) if and only if (10) is of the form

T
y=o(MX+p(T), =t =/02(M) dp,

- o2, P
=exp —X°+ X 12
i1 exp[40 + 5 +A}ul, (12)
with
ity 1 G(TX%+%2—G&X2 25p—0p
T = —
neyw= s s 402 202
.2 .
0 6 .
LA A ) 13
+<4O’2 20 >j| (13)

whereo (T), p(T), A(T) are arbitrary functions of andé = do/dT, etc.

Consequently, with respect to a point transformation, PDE (9) can be mapped into the

backward heat equation if and onlyGfi (T, X) is of the form

G1(T, X) :a(T)XZ—i—,B(T)X—i—y(T) (14)

for arbitrarya(T), B(T), y(T) (see [3]). The corresponding coefficiefdsz, x), b(t, x)}
were given in [3] and will be exhibited in Section 4.

From Eq. (13), we see that &1(7, X) is of the form (14), the mapping (12) which

transforms the corresponding PDE (9) to the backward heat equation(ffas p(T),
A(T) satisfying the system of ODEs

06 — 262
= =a(T),
oF—26p
Tzﬁ(T),
. P2 6

The solution of system (15) is given in Appendix A.
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3. Thebasic framework for nonlocal transfor mations

In R", for any given linear operatdt, its adjoint operatoL.* is defined by

¢Lu—uL*¢p=> " Dif, (16)

i=1

wherex = (x1, ..., x,,), the total derivative operatdd; = d/dx;, f' is a bilinear expres-
sion inu, ¢ and their derivatives,= 1, 2, ..., n. Consequently, if

L*¢ =0, a7)
thenLu = 0ifand only if }"*_, D; f' =0, i.e.,a given linear PDE
Lu=0 (18)

is equivalent to a conservation law
n )
> Diff =0 (19)

for any ¢ satisfying its adjoint equatio(iL7). Using (19), one can introduce an auxiliary
potential system whose compatibility conditions yield (18). The set of all solutions of such
a potential system yields the set of all solutions of (18) but the connection between these
solution sets is not one-to-one (see [4]). When 3, one is confronted with the problem of
a natural gauge arbitrariness. In this case, as shown in [1], the associated potential system
must be augmented by gauge constraints.

Now we specialize to the situation when PDE (18) is the canonical PDE (9). Here the
linear operatod. is given by

2

ad
L=— G1(T, X 20
o7 T axz T OHT X, (20)
its adjointL* is given by
el P e, (21)
~or Tax2 T
and the conservation law (19) is given by
d ([ duyr ¢
— — = - — 22
(¢u1)+ <¢8X axul) 0. (22)

The potent|al system corresponding to (22), with auxiliary dependent vatigifle X ), is
given by

Jvg 31)1 d¢ Juq
27 , — Uy — p—, 23
ox P G Tax" T 9% (23)
where¢ (T, X) is anysolution of the adjoint PDE
9 2
L ¢ =— ¢ _99 + G1(T,X)p =0. (24)

aT  9Xx2
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Note that if (u1(T, X), v1(T, X), ¢(T, X)) solves the potential/adjoint system (23), (24),
thenu (T, X) solves the canonical PDE (9) ang(T, X) solves the backward equation

v Bty 20¢ du_ (25)

AT  3X?2 ¢aX X
Moreover, if uy = U1(T, X) solves the canonical PDE (9) anl= & (T, X) solves
(24), then from the integrability conditions of (23) it follows that there exist solutions
(u(T, X),v1(T, X)) = (Ur(T, X), Vo(T, X)) of potential system (23) with/1(T, X)
unigue to within an arbitrary constant. Hence for any gigeg @ (T, X) which solves
(24), the relationship between the solution sets of PDE (9) and system (23) is not one-to-
one.

For any¢ (T, X) that satisfies (24), the point transformation

v1

w=—= (26)
¢
maps (25) to the canonical PDE
w 9w
— + — +G2(T, X)w=0, 27
o1 T axz T O Hw (27)

with G2(T, X) given by
52
GoT, X)=G(T, X) + ZW log|¢|. (28)
From Egs. (23) and (26), it immediately follows thatif(7, X) solves the canonical PDE
(9) then
X

w=ux(T,X)= ST X) L/ul(T,é)qﬁ(T,é)dé + Bz(T)}, (29)
with B2(T') satisfying the condition
dB, 0¢ dug

for any constant, solves the homologous equation (27) with(7', X) given by (28). Con-
versely, ifw(T, X) solves the canonical PDE (27) apdT, X) is any particular solution
of
ap 3% 92
T 42—
aT  axZ ¢ax2
then solving the forward PDE (24) in terms@f.(T, X), i.e., setting

_1[a¢p %9

log|¢| — G2(T, X)¢ =0,

it follows that

solves the homologous canonical equation (9) Wit 7, X) given by (31).
By direct calculation one can prove the following theorem.
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Theorem 1. Consider the canonical PDE9). A point transformation maps the corre-

sponding potential systef@3) into the special backward heat equation potential system
v v ou
Toa, 2= (32)
dy aT ay

for which each component satisfies the backward heat equation/i/@s +920/9y2 =0,
919t + 0%0/9y? =0, if and on ifG1(T, X) is of the form

52
GU(T, X) =2 log|y/| + a(T)X? + BT)X +y (T), (33)
wherey (T, X) is any solution of

W 9%y 5 B

o7 T axz + [e(T)X+ B(TX +y ()] =0 (34)
for arbitrary «(T), B(T), y (T). (Note thaty (T, X) satisfies34) if (T, X) = 1/y/(T, X)
satisfies the adjoint equatiq4) with G1(T, X) given by(33).) The corresponding map-
ping of (23) into (32) is given by

y=0o(T)X+p(T),

b =ef Ty, (35)

6 o P
T,X)=—X —
g(T, X) o + >
and (o (T), p(T), M(T)) are related to(a(T), B(T), y(T)) through the system of ODEs
(15) which is solved in AppendiX. The mappind35) defines a point transformation on
(X, T, u1, v1)-space that projects into a nonlocal transformation(@h 7', u1)-space if the
coefficient ofv; is nonzero in Eq(35c).

X+,

The previously known result [3] about the equivalence of the canonical PDE (9) and the
backward heat equation under a point transformation when the coefiici€ént X) of (9)
is quadratic inX (Eq. (14)) immediately follows as a special case of Theorem 1. Indeed, if
¥ (T, X) satisfies
10y n oX+p
v oX 20
then Eq. (33) yields

O,

G1(T, X) =a(T)X*+ B(T)X + y(T) — g.
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It is easy to check that the mapping (35) yields a nonlocal transformation of (9) to the
backward heat equation if and onlwff(T, X) is a solution of (34) satisfying the condition
33
Ve log|y| # 0. (36)
Moreover, the resulting expression (33) 6L (7T, X) is not of the quadratic form (14) if
and only if¥ (T, X) satisfies the condition
35
—— 1o 0. 37
55 1091V # (37)
Let ¥ (<, y) beanysolution of the backward heat equatidtr /a1 + 92 /dy%2 = 0. Then
from (12) it follows that

e | P x2, P
w(T,X)_exp[ {40X +20

is a solution of (34), and hence (33) becomes

X+AH&(1, ¥)

N A .

G1(T, X) = a(T)X2 +B(M)X+y(T)— 202[& + (1//—3) i| — z, (38)

14 v o

wherey =0X 4+ p, T = fTO’Z(/,L) du, with o (T), po(T) related tox(T), 8(T) through
(15a,b). Hence through (3&)yerysolution of the backward heat equation yields a coef-
ficient G1(T, X) for which the corresponding backward equation (9) can be mapped into
the backward heat equation. This relationship will be considered in more detail in the next
section.

4. New classes of Kolmogorov equationstransfor mableto the backward
heat equation

Now we apply the results of Section 3 to the Kolmogorov equation (1Y@ X) be
any solution of (34) and leG1(7, X) be given by (33) foarbitrary «(T), B(T), y(T).
Then
3%G1 3°
=2—~| .
3X3 5x5 °9 1Vl
Consequently, after using (6) with = G1, the work of the previous section can be restated
as follows.
Through one of our potential systems, the Kolmogorov equation (1) can be mapped into
the backward heat equation if and onlyZif X, D(T, X) defined by (4) and (5) satisfy

82 (9D aD 32D 9%
—(=+D—=+—=)=-4—1o 39
8X2<8T+ ax+ax2) glv (39)

ax>
for any solutiony (T, X) of (34).
Now we show how the above result generalizes previous work presented in [3,8].
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In [3] it was shown that the Kolmogorov equation (1) can be mapped into the backward
heat equation through a point transformation if and onlp (", X) satisfies

8% (9D aD  9°D
W(a_T-’_Da_X_FW):O’ (40)
and it was further shown that Cherkasov’s special class of point transformations restricted
D(T, X) to the solutions of (40) that satisfy

32D

W == .
In terms of the original independent variablesr), note that

-1
= (5) Vet

(41)

ﬁ: ax 0x ax

a9 ax/ax\ ta 8 9
- = — - — | — —:——\/a(t,x)X[_~
aT ot ot \ax /) oax ot ax

The previous discussion leads to the following step-by-step procedure to find new classes
of Kolmogorov equations (1) that are transformable to the backward heat equation.
Leta(T), B(T), y(T) be arbitrary functions of .
(1) Lety (T, X) be a solution of (34), found as follows.
For any giverw(T), B(T), y(T), letoc = 01(T), p = p1(T), » = A1(T) beanysolution
of the system of ODEs (15), solved in Appendix A. Let

T
yi=o1(D)X +p1(T), 1= / of(wdp. (42)
Let ¥/ (1, y1) beanysolution of the backward heat equation

3 0%y

W L0V g (43)

Ty 8yf
and let

C'71 2 /él
T,X)=—X —X + A1,

g1(T, X) 4o, + 201 + A1
Then

Y(T, X) = e 81209 (rq, y1) (44)

yields a solution of (34).
(2) Usingany ¢ (T, X) given by (44), determin& (7T, X) from (33), i.e.,

2
G1(T, X) = 2% log|y (T, X)| + a(T) X2+ B(T)X + y(T).

(3) For anyy (T, X) given by (44), and correspondittgy (7, X) given by (33), use (7)
and (8), withG (T, X) = G1(T, X), to determineD(T, X), i.e.,

3

9
D(T,X) = 28_X log|6(T, X)
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whered (T, X) is anysolution of

30 %0

— +— Gi(T, X rmile=0 45

a7 T axe TLOUT X0+ (D] (45)
for arbitrary I'(T'). The procedure to solve PDE (45) now follows from the results of
Theorem 1 as applied to Eq. (45).

Leto = 02(T), p = p2(T) beanysolution of (15) and let = A2(T") beanysolution of

) .
f= "ZfTng () + I(T).
Let
T
y2=02(T)X + p2(T), rzzfazz(u) dpu. (46)

Let 8(z2, y2) be any solution of the backward heat equatiof/dt, + 329/9y3 = 0, and
let

o2 2 /32
T.X)=—X —X + Ao.
82( ) 40, + 207 + A2
Then
30 79X + .
O(T, X) = e 821X [62— - <L rre, —'ﬁx)e} (47)
ay2 202 U

yields a solution of (45) and hence leads¢T’, X) = 2(3/3X) log|6(T, X)|.
(4) Forany D(T, X) =2(3/3X) log|6(T, X)|, the corresponding coefficien{s(z, x),
b(t, x)} of the Kolmogorov equation (1) can be found as follows.
Let D(T, X) = D(t, X (¢, x)), whereX (¢, x) is given by (4b). Then from (5), the coef-
ficients{a(z, x), b(t, x)} areanysolutions of
2
% +a(r,x)% —i—b(t,x)% =D(r,X(t,x)).

In particular, foranysolutiond (7, X) of (4.7), andarbitrary a(z, x), the coefficient

b(t, x) = 2al(t, x)% log|6(r, X (t,x))| — Va(r,x) X, + %ax(t, x) (48)

with X (1, x) = [*(1//a(t,2)) dz.

(5) The procedure outlined in Theorem 1 relates the solution of the corresponding
canonical backward equation (3) (or (9))anysolution of the backward heat equation.

(6) In terms of D(T, X), the corresponding solutions of the Kolmogorov equation (1)
are found through transformation (4).

In the above step-by-step procedure we now show which solutions of the backward
heat equation (43) yield Kolmogorov equations, i.e., coefficieftsy), b(t, x), which are
transformable to the backward heat equabtaty by nonlocal transformations.
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Theorem 2. Let/(r1, y1) be a solution of the backward heat equati@s). By following
the step-by-step procedui®)—(5), such a solution yields the Kolmogorov equatjththat
is transformable to the backward heat equatanly through a nonlocal transformation if
and only ify (t1, y1) is notone of the forms

) P(re, y1) = e PP,

~

N P(r,y) =

Y
1 exp{ (y1 y{) }
JT1i—11 4(t1 —11)

whereP, y1, 71 are arbitrary constants.

(49)

Proof. From condition (37), it follows thaf (z1, y1) yields a Kolmogorov equation that is
transformable to the backward heat equation only by a nonlocal transformation if and only
if ¥ (T, X) given by (44) satisfied®/d X°) log|y (T, X)| # 0. Now suppose

35
x5 log|y (T, X)| =0.

Consequently(3°/3X%) log|y (1, y1)| = 0, which, as it follows from (42)Yc # 0), is
equivalent to

a° -
PR log| v (r1, y1)| =0.

Hencey (z1, y1) is of the form

¥ (t1, y1) = exp| A(z)y? + B(r1)y3 + C(t) v + D(z)y1 + E(t1) ) (50)

for arbitrary A(t1), B(t1), C(t1), D(11), E(t1). Substituting (50) into the backward heat
equation (42), we see that

dC
A(t1) = B(11) =0, — +4c?=0,
dn,

dD dE
—— +4CD =0, — +2C+D?*=0. (51)
dty dry

It is now straightforward to show that the solutions of (51) yield (4&n

For an arbitrary coefficieni(z, x) in the Kolmogorov equation (1), we next show how
the work presented in this paper generalizes previous works [3,8] on the types of coeffi-
cientsb(t, x) for which (1) can be transformed to the backward heat equation. Making the
appropriate substitutions in (47), we obtain

0 ) 1 0 A
b(t,x) = —2¢5<—x + ﬁ) — Va X+ Sax + 20— log|f (2. 2|
2

a
+ 2a—log
ox

9 R 9 R
02— 10g|0(12, y2)| — 01— log|y (1, y1)|
dy2 ay1

61 02 o P2
— - )X — — ]|, 52
+ (201 202) + <2c71 20’2)‘ (52)
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with X (z, x), 0; (¢), pi (1), ;i (¢), yi (¢, X (¢, x)),i =1, 2, defined by Eqgs. (4), (42) and (46);
1/}(r1, 1), é(rz, y2) areanysolutions of backward heat equations in terms of their respec-
tive arguments. Note thatiff =02 =0, p1 =p2=p,thenty=12=1, y1 =y2 = y. One
can show the following:
(I) Cherkasov's results [8] correspondde = o2 = o, p1 = p2 = p, H(t, y) = const,
¥ (7, y) is a solution of the backward heat equation which is one of the special forms (49).
(I1) The results presented in [3] also correspondic= 02 = o, p1 = p2 = p, U(z,y)
is a solution of the backward heat equation which is one of the special forms (49), but,
unlike in Cherkasov’s resulté,(z, y) is allowed to be any solution of the backward heat
equation.
(111 The results presented in this paper yield further new classésgtok), a(z, x) if
01 # 02, p1# p2. If 01 =02 =0, p1 = p2 = p, then further new classes bft, x), a(z, x)
beyond those found in [3], are obtained for any pair of soluti@s, y), ¥/ (z, y)) of the
backward heat equation except when

D 1/:/(r, y)is one of the special forms (49) or
(2) ¥ (zr,y)=CO(z,y) for some constant.

5. A recycling procedure further extending classes of Kolmogorov equations
transfor mableto the backward heat equation

In this section we enhance the results presented in Sections 3 and 4 by describing a recy-
cling procedure which generates sequential chains of Kolmogorov equations transformable
to the backward heat equation. Such chains will emanate from any Kolmogorov equation
with G1(T, X) = I'\ (T, X) of the form

82
FUT. X) =2 log| (T, X)| +a(T)X? + B(T)X + y(T), (53)
wherey (T, X) is any solution of
%y 5 B
o7+ o3z F X2+ BIX +y(D)]y =0. (54)

This recycling procedure generalizes previous work presented in [6] which dealt with a
T-independent (T, X). To establish such chains we proceed as follows.

Suppose:1(T, X) is any solution of (9) an@d (T, X) = ¢1(T, X) # 1/ (T, X) is a
particular solution of (24) withG1(T, X) = I'i(T, X) given by (53) and (54). Then from
Eq. (29) it follows that

X

1
o, X) = [ k/ ui(T, £)go(T, &) dE + Bz(T):|,

with B>(T') satisfying condition (30), solves

duo 32u2
— 4+ ——= 4+ 12(T, X)up =0 55
o7 T axz T 12T Xuz=0, (55)
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where
(T, X) =I1(T, X)+2 Iog|¢1(T X)\

Consequently, the canonical equatlon (55) is transformable to the backward heat equation.
(Since (9), withG1(T, X) = I''(T, X), can be mapped into the backward heat equation,
in this manner one may obtain all solutiomg T, X) by using step (3) of the step-by-step
procedure outlined in Section 4 witfy (7)) = 0 (see formula (47)). However, there is no
general procedure to obtain particular solutions of the adjoint equation (24) iGEnX)
is T-dependent. In Section 6 we will show how to obtain the general solution of (24) when
I'(T, X) and¢(T, X) areT-independent.)
In general, suppose, (T, X) is any solution of

duy, 92 Up

or T ax?

and¢, (T, X) is a particular solution of
Ay 9%y
T toaxz X2

Then the system

+ (T, X)u, =0, (56)

+ I,(T, X)¢ = 0.

Y Gutinrn) = it 1) = oy — g
39X nUn+1) = Pnlin, nUn+1 Pn 39X

yields a nonlocal transformation relatmg the canonlcal PDE (56) to the homologous canon-
ical PDE

dunt1 . 9upi1
oT X2
where

+ Fn—i—l(T’ X)”n-i—l = 07 (57)

(T, X) = [(T, X>+2 Iog|¢n(T X)|.

The corresponding nonlocal transformatlons connecting solutions are given by
X

1
unt21(T, X) = o (T X) |:k/ un(T,8)¢n(T, &) d§ + Bn+1(T)},

with B, 1(T) satisfying the condition

dBn+1 aqsn
dT
n=12.... Consequently, sequential chams of canonical PDEs (57) are transformable to
the backward heat equation.
The coefficients: = a, (¢, x), b = b, (¢, x) of the corresponding chains of Kolmogorov
equations follow from step (4) of the step-by-step procedure presented in Section 4. In
particular, let

+ T Run(T. k) =

9
Du(T, X) = 25> log|un (T, X)|
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for any solutioru, (T, X) of (55). Without loss of generality,(z, x) is arbitrary. Then

0 1
ba(t, %) =2/a(t, x) = log|un(t, X)| — v/a(t, x) X; + Sax(t, %),
with X = X (¢, x) given by (4b).

6. Therecycling procedurefor Kolmogorov equations
with time-independent coefficients

In the important special case when the coefficienitsx), b(z, x) of the Kolmogorov
equation (1) are time-independent, k€t, x) = a(x), b(t, x) = b(x), all of the equations
are completely solvable in the recycling procedure outlined in Section 5.

HereX (z,x) = X (x), D(t,x) = D(x), G(t,x) = G(x). From (4)—(6), one obtains

X

X(x)= dz

Va@)’
DXy — d?x ) )dX_
( )—a(x)ﬁ—i- (x & Jam

G(X)= 1 |:D’(X) + %DZ(X)] (60)

(58)

[b(x) - %a/(x)} (59)

2

In the recycling procedure, the equations are solved as follows.
Let v (X) be any solution of the ODE
2
%+[axz+/3x+y]w=o (61)
for some constants, 8, y, and let
42
I1(X) =2 log | +aX?4+BX +y. (62)

Supposer1(T, X) is any solution of

2

%+%+F1(X)M1=O-

All such solutions«1 (T, X) are given by following step (3) of the step-by-step proce-
dure of Section 4 with" (T') = 0 (see formula (47)). Now let (X) = ¢1(X) ## 1/¢(X) be
a particular solution of the ODE
2

e+ [0$ =0 (63)
Unlike the situation in the time-dependent case, one is able to fingetheral solutiorof
(63) sincep (X) = 1/v¥(X) is a particular solution of (63). Specifically,

X
(X K1) = 2
P =d1(X: K= |:K1+ / v (z)dz] (64)
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for arbitrary constank’;. Then
X

f ui(T, £)p1(&: K1) dE + Bz(T):|,

k

r.X)=——
w2 =5 Kl)[

with B2(T') satisfying the condition

982 _ 00 4 pua(T, Ky - uths K 221 k)
ar T ax o v vE RV
for arbitrary constan, solves

duo 82u2
— 4+ —+12(X; K =0,
a7 T axz T2 Duz
where
d2
I2(X; K1) = I'1(X) + 2 109|¢1.(X; K1)].
In general, supposeg, (T, X) is any solution of

duy, 8214,,
9T + X2 + (X Ky, ..., Kp—1u, =0.
The general solution of the ODE
*¢n
X2
can be obtained in the same manner as that used to obtain expression (64) and it has the
form

+ I'(X; Kla-~-aKn—l)¢n=O

1
n G K, ) = On-1(X; K1, ..., Kp-1)
X
x [Kn+ f [fn-1(z; Kl,-~-,Kn—l)]2dZ:|- (65)
Then the function
1
X = e K K

X
X [fun(T,é)tﬁn(E; Kl,-~-aKn)d§+Bn+1(T)j|,
k
with B, +1(T) satisfying the condition
dBnia 0n dup
= K, ..., K T — K1, ... K T

dT BX (k, 1, k] n)un( 7k) ¢n(kv 1, ’ n) BX ( 7k)7

solves
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Oupy1 4 82Mn+l
aT X2

where

+F/1+1(X§ Kla cey Kn)un-l—l:Oa (66)

42
E1+1(X; K17 MERR] Kl‘l) - Fn(X; K17 MR Kﬂ—l) + ZW |Og|¢ﬂ(X; Kla L] Kn)

n=1,2,..., and¢o(X) = ¥(X) is any solution of (61). Consequently, sequential chains

of canonical equations (66) are transformable to the backward heat equation. For each

member of such a sequential chain,

’

d
Du(X; K1, Kn) =2 log|en (X: K1, ..., K»)|.

Hence, withu (x) = a, (x) arbitrary, the coefficients(x) of the corresponding Kolmogorov
equations (1), which are transformable to the backward heat equation, are given by

d 1
b(x)=b,(x; K1, ..., Ky) =2\/a(x) i log|¢n (X; K1, ..., Kn)| + 5a’(x), (67)

n=0,12,..., with ¢o(X) = ¥(X). In particular, wherm (x) = const= «a, formula (67)
becomes

d
b(x)=b,(x;K1,...,K,) = 2\/5ﬁ log|¢n (X; K1, ..., Kn)| (68)

with X = x/./a.

The termn = 0 of a sequential chain corresponds to the local case which was com-
pletely considered in [3], the term= 1 corresponds to the nonlocal extension which was
completely considered in Section 4 of this paper, and further nonlocal extensions resulting
from recycling correspond to termes= 2, 3, . ... In effect there are 4- n arbitrary fitting
constants in term.

7. An example: a d-Bessel process

For ad-Bessel process (see, for example, [10]) the Kolmogorov equation (1) has coef-
ficients

a(x)= }, b(x) =", (69)
2 X
with ¢ = (d — 1)/2. Using (58)—(60), one finds that
_ _ Bl -9
X =+/2x, D(X)_fzx =5 G0=—"5—" (70)

If e=0(d=1) ore=1(d=3), then the coefficienG(X) =0; if e =2 (d = 5), then
the coefficieniG (X) from (70) coincides with™ (X) given by (62) withy = X, a0 =8 =

y = 0. Hence the Kolmogorov equation (1), with its coefficients given by (69)s fer2
can be mapped byronlocaltransformation (but not by any local one) into the backward
heat equation.
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Further application of the recycling procedure of Section 6 leads to the following result.
Any Kolmogorov equation (1) with coefficients
1 1
an =3, b(x) =ba(x) = 22 n=0,1,2,... (71)
X
(which corresponds td = 3,5,7,...), can be mapped into the backward heat equa-
tion. This follows immediately from (65) and (68) witt,_1(X) = X" and K,, = 0,
n=2,3,....
A d-Bessel process corresponds to the spherically symmetric heat equa®itniie.,
du  3%u  (d—1) ou

— = =0. 72
3t  OR? R OR (72)

From the above results it follows that (72) can be mapped into the heat equation
du 92
du_0%u_
at  9x2

() by a point transformation if and only if = 3 (a well-known result);

(I) by a nonlocal transformation if and onlydf=2k+ 1,k =2,3,....

8. Remarks on connectionswith symmetry analysis

It is well known that the scalar Kolmogorov equation (1) can be mapped into the back-
ward heat equation by a point transformation if and only if (1) admits a six-parameter Lie
group of point transformations (see [3,5]). One can show that the backward heat equation
potential system (32) admits a six-parameter Lie group of point transformations. Hence itis
necessary that the potential system (23) admit a six-parameter Lie group of point transfor-
mations in order that (23) can be mapped into (32) by a point transformation. Consequently,
when such a mapping (35) defines a nonlocal transformation actiog,dh, «1)-space, it
follows that (23) must admit a six-parameter Lie group of point transformations whereas
the corresponding canonical equation (9) may not admit a six-parameter Lie group of point
transformations.

As an example, consider theBessel process fat = 5. Here the canonical equation (9)
becomes

duy 32141 2

BT ax2  x2'tT
and only admits a four-parameter Lie group of point transformations with its infinitesimal
generators given by

O,

3 3 3
Xi=—.  Xo=2T-L 4+ x-—,
Y=oaT 2 oT T ax
Xy =720 +TX 9 +1(X2 2T) 9 X 9
= _— — by - M _1 :M P
3 aT X 2 Yous A P

Since¢ = X1 (see Section 7), the corresponding potential system (23) takes the form
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8U1 1 vy 1 1 dug

s et 3 73
ax _x'b aT — x2"'7T X ox (73)

System (73) admits a six-parameter Lie group of point transformations with its infinitesi-
mal generators given by

X]_:aiT, X2—2TaiT+Xai(
x3—T2i+ Xi+[<1X2—§T>u1+1X2v1j| 0
aT X 4 2 2 duy
+(1X2—§T)u1i
4 2 v
3 3 3 1 a8 1 9
e R T S TR G

X T 9 + 1X + 1X + d 0 + 1X d 9
= ox T 127N 2T T X ) M T\ 27 T x ) Mo
From the mapping (35), it follows that the point transformation

X:y7 T=Ta V1= —, M:I.:ﬁ_

= | <>
~ | <

transforms (73) into the backward heat equation potential system (32).
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Appendix A. Solution of system (15)

In system (15), supposaT), B(T), y(T) are given functions of' . Theno (T), p(T),
A(T) are found as follows.
To findo (T), first let

o(T)=
s(T)’
Then Eqg. (15a) becomes a linear ODE in terms(@f), namely
d?s
dT?

Lets = S(T) be any solution of (A.1). Then the general solution of Egs. (15b,c) is given
by

+ 40(T)s = (A.1)

T
,O(T)=2/ 20 )dtzfﬂ(tl)S(tl)dtl,
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1

2 2
% /,B(tl)s(tl)dtl +]/(t2) dtz.

1 T
MT) = E|og|S(T)| +/
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