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Abstract
We generalize classical Yang–Mills theory by extending nonlinear constitutive
equations for Maxwell fields to non-Abelian gauge groups. Such theories may
or may not be Lagrangian. We obtain conditions on the constitutive equations
specifying the Lagrangian case, of which recently discussed non-Abelian Born–
Infeld theories are particular examples. Some models in our class possess
nontrivial Galilean (c → ∞) limits; we determine when such limits exist and
obtain them explicitly.

PACS numbers: 03.50.−z, 11.10.Lm, 11.10.Nx, 11.15.−q

1. Introduction

General equations for nonlinear, classical electromagnetic fields in media can be written
beginning with Maxwell’s equations for E, B, D and H, and replacing the usual, linear
constitutive equations by more general, nonlinear equations respecting Lorentz covariance.
A general form for such systems was described by Fushchich, Shtelen and Serov; familiar
special cases include Born–Infeld and Euler–Kockel electrodynamics [1, 2]. In earlier work,
we showed that certain nonlinear constitutive equations have well-defined Galilean-covariant
limits as the speed of light c → ∞, so that all four of Maxwell’s equations remain valid [3].
This is in sharp contrast to linear electrodynamics, where Maxwell’s equations are well-known
to be incompatible with Galilean relativity [4, 5]. Since classical Yang–Mills theory can be
understood as an extension of classical electromagnetism to non-Abelian gauge potentials, it
is natural to similarly extend Maxwell fields with nonlinear constitutive equations, and to ask
whether such extensions may also have Galilean-covariant limits when c → ∞.

Non-Abelian generalizations of the Born–Infeld Lagrangian [6] (an excellent review of
classical Born–Infeld theory is in [7]) have been known for some time, and recently have
attracted renewed interest [8–12]. In this paper, we take a different approach, deriving
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generalizations of classical Yang–Mills theory as non-Abelian extensions of Maxwell systems
together with Lorentz-covariant, in general nonlinear constitutive equations. Standard Yang–
Mills theory is a special case in this class of theories, with linear constitutive equations.
Particular nonlinear constitutive equations correspond to the non-Abelian Born–Infeld theories.
Our approach has the important advantage of being general enough to include Lagrangian and
non-Lagrangian theories. In addition, since we directly generalize nonlinear Maxwell systems,
we have the possibility of obtaining nontrivial Galilean-covariant (nonrelativistic) limits as
c → ∞.

In section 2 we review Maxwell’s equations for media, and characterize the family of
nonlinear constitutive equations that result in theories obtained from invariant Lagrangians. In
section 3 we generalize appropriately from U(1) to non-Abelian gauge theory. In section 4 we
consider the nonrelativistic c → ∞ limit. Then we show that with necessary modifications,
certain Born–Infeld (Abelian or non-Abelian) Lagrangian functions lead to nontrivial theories
having such a limit. We state our conclusions in section5.

2. Nonlinear electrodynamics

Here we use SI units, so that c does not enter the definition of E or B. We begin
with the usual metric tensor gµν = diag(1, −1, −1, −1), xµ = (ct, x), xµ = gµνx

ν = (ct, −x) and
xµxµ = c2t2 − x2. We have ∂µ ≡ ∂/∂xµ = [(1/c)∂/∂t, ∇], and we use the antisymmetric
Levi-Civita tensor εαβµν with ε0123 = 1.

The tensor fields constructed from vectors E, B, D and H are

Fαβ =




0 1
c
E1

1
c
E2

1
c
E3

− 1
c
E1 0 −B3 B2

− 1
c
E2 B3 0 −B1

− 1
c
E3 −B2 B1 0


 , Fαβ = gαµgβνFµν,

Fαβ = 1

2
εαβµνFµν =




0 −B1 −B2 −B3

B1 0 1
c
E3 − 1

c
E2

B2 − 1
c
E3 0 1

c
E1

B3
1
c
E2 − 1

c
E1 0


 , Fαβ = gαµgβνFµν, (2.1)

Gαβ =




0 −cD1 −cD2 −cD3

cD1 0 −H3 H2

cD2 H3 0 −H1

cD3 −H2 H1 0


 , Gαβ = gαµgβνG

µν. (2.2)

Maxwell’s equations for media in SI units take the form [2]

∇ × E = −∂B
∂t

, ∇· B = 0, ∇ × H = ∂D
∂t

+ j, ∇· D = ρ, (2.3)
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or in covariant form

∂αFαβ = 0; ∂αG
αβ = jβ, jβ = (cρ, j). (2.4)

The first equation in (2.4) allows us to introduce Aµ = (φ, −A) so that

Fαβ = εαβµν∂µAν, Fµν = ∂µAν − ∂νAµ. (2.5)

This system is invariant under the Lorentz group as well as the Galilei group; the choice
between these symmetries rests in the constitutive equations [1, 3, 4]. The Lorentz invariant
constitutive equations are

D = MB + 1

c2
NE, H = NB − ME, (2.6)

or in covariant form

Gµν = NFµν + cMFµν ≡ M1
∂I1

∂Fµν

+ M2
∂I2

∂Fµν

, (2.7)

where M and N, or equivalently M1 and M2, are functions of the two Lorentz invariants

I1 = B2 − 1

c2
E2 = 1

2
FµνF

µν, I2 = B· E = − c

4
FµνFµν. (2.8)

The standard Maxwell equations for the vacuum correspond to M = 0, N = constant = (µ0)
−1,

with c2 = (µ0ε0)
−1. A general form of an invariant Lagrangian for a nonlinear theory given

by equations (2.4) and (2.7) may be written L = L(I1, I2), where I1, I2 are given by (2.8). In
such a theory, the tensor Gµν becomes

Gµν = − ∂L
∂Fµν

= −
(

∂L
∂I1

)
2Fµν + c

(
∂L
∂I2

)
Fµν. (2.9)

In the above, following e.g. [7], the derivatives in (2.7) are evaluated by first imposing in
equations (2.8) the constraints Fµν = −Fνµ, Fαβ = gαµgβνFµν and Fαβ = 1

2εαβµνFµν, and
then taking the partial derivatives of I1 and I2; thus

∂I1

∂Fµν

= 2Fµν,
∂I2

∂Fµν

= −cFµν.

Comparison of equation (2.9) with (2.7) yields the conditions

−2
∂L
∂I1

= N,
∂L
∂I2

= M, (2.10)

from which the compatibility condition for a Lagrangian theory reads

2
∂M

∂I1
+ ∂N

∂I2
= 0. (2.11)

The well-known Born–Infeld Lagrangian is usually written as

LBI = b2

µ0c2
(1 − R), R =

√
1 + c2

b2
I1 − c2

b4
I2

2 , (2.12)

where b is a maximum electric field strength (in the absence of magnetic field). If b2 is very
much larger than E2 and c2B2, then LBI ≈ −(1/2µ0)I1 and we recover linear Maxwell theory.
But anticipating the discussion in section 4, we remark here that in the limit as c → ∞, LBI

tends to zero, while cLBI approaches a well-defined, non-zero limit.
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Another example is Euler–Kockel electrodynamics [2]. Here, in the first approximation,
one has M = 7λ(µ0)

−1I2 and N = (µ0)
−1(1 − 2λI1), where λ is a small parameter. The

corresponding Lagrangian takes the form

L = − 1

2µ0
I1 + 2λI2

1 + 7λ

2µ0
I2

2 , (2.13)

which, we remark, coincides with the ‘toy model’ generalization of the Maxwell Lagrangian
discussed by DeLorenci et al [13].

3. Generalization of Yang–Mills theory

To generalize the nonlinear electrodynamics described in section 2 to non-Abelian gauge
theory, we replace as usual the partial derivative ∂µ by the commutator with the covariant
derivative Dµ, i.e. ∂µ → [Dµ, ·], where

Dµ = ∂µ + igT 
W

µ, (3.1)

g is the YM coupling constant, T 
 are the N2 − 1 generators of SU(N) and summation over 


is assumed. Then

[Dµ, Dν] = igFµν, Fµν = T 
F

µν. (3.2)

The field equations of the non-Abelian theory generalizing the nonlinear Maxwell
equations (2.4) and (2.7) take the form

[Dµ, Fµν] = 0, [Dµ, Gµν] = Jν, (3.3)

where Jν is an external current, and the constitutive equations are to be written in a new way.
Letting us (s = 1, 2, 3, . . . , m) be a set of independent invariant functions of the Yang–Mills
fields, we write

G
µν =
m∑

s=1

Ms(u1, u2, . . . , um)
∂us

∂F

µν

, (3.4)

where Ms are functions of the invariants. For the gauge group SU(N) we have no fewer than
m = 5N2 −11 independent invariants, using the following simple argument of Roskies: since
the gauge group SU(N) has N2 − 1 parameters, and the Lorentz group has six parameters,
the number of components of F


µν is 6(N2 − 1). One can choose a Lorentz frame and an
O(N) frame in which 6 + (N2 − 1) = 5 + N2 components vanish. There will then be
6(N2 − 1) − (5 + N2) = 5N2 − 11 remaining components. Any invariant could be evaluated
in this special frame, and therefore could be a function of these 5N2 − 11 components. In
particular, there are nine independent invariants for SU(2) [14]:

u1 = tr(K), u2 = − 1
2 tr(J ), u3 = 1

4 tr(J2),

u4 = − det(J ), u5 = tr(K2), u6 = det(K),

u7 = tr(JK), u8 = 1
6εijkF

iν
µ Fjρ

ν Fkµ
ρ , u9 = − 1

6cεijkF iν
µ F jρ

ν Fkµ
ρ , (3.5)

where

Kij = 1

2
Fi

µνF
jµν = Bi· Bj − 1

c2
Ei· Ej ,

Jij = c

2
Fi

µνF jµν = −[Bi· Ej + Bj· Ei], (3.6)
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with i, j, k = 1, 2, 3 being the SU(2) algebra indices. The factors of c in equations (3.5) and
(3.6) have been introduced so that in all cases, the limit c → ∞ results in survival of the
leading terms.

With a little help from Maple, we calculated the explicit form of the invariants u1, . . . , u9 in
equations (3.5). In the notation that follows, the B
 (gauge components 
 = 1, 2, 3) are vectors
with spatial components B


1, B

2 and B


3. The Lorentz YM gauge invariants are as follows:

u1 =
3∑


=1

(
B
· B
 − 1

c2
E
· E


)
,

u2 =
3∑


=1

B
· E
,

u3 = (B1· E1)2 + (B2· E2)2 + (B3· E3)2

+ 1

2
[(B1· E2 + B2· E1)2 + (B2· E3 + B3· E2)2 + (B3· E1 + B1· E3)2],

u4 = det(J ), Jij = −[Bi· Ej + Bj· Ei],

u5 =
(

B1· B1 − 1

c2
E1· E1

)2

+
(

B2· B2 − 1

c2
E2· E2

)2

+
(

B3· B3 − 1

c2
E3· E3

)2

+ 2

[(
B1· B2 − 1

c2
E1· E2

)2

+
(

B1· B3 − 1

c2
E1· E3

)2

+
(

B2· B3 − 1

c2
E2· E3

)2
]

,

u6 = det(K), Kij = Bi· Bj − 1

c2
Ei· Ej ,

u7 =
(

B1· B2 − 1

c2
E1· E2

)
(E1· B2 + B1· E2) +

(
B1· B3 − 1

c2
E1· E3

)

× (E1· B3 + B1· E3) +
(

B2· B3 − 1

c2
E2· E3

)
(E2· B3 + B2· E3),

u8 = (B1 × B2) · B3 − 1

c2
[(E1 × E2) · B3 + (E2 × E3) · B1 + (E3 × E1) · B2],

u9 = −1

2
εijk(Bi × Bj) · Ek + 1

c2
(E1 × E2) · E3. (3.7)

Note that u2, u3 and u4 are independent of c and, therefore, they will be the same in the Galilean
limit (c → ∞).

There are now Lagrangian and non-Lagrangian theories determined by equations (3.3)
and (3.4). In a Lagrangian theory, the constitutive equations are

G
 µν = − ∂L
∂F


µν

= −
m∑

s=1

∂L
∂us

∂us

∂F

µν

. (3.8)

Thus equations (3.3) and (3.4) determine a Lagrangian theory if and only if the coefficientsMs in
(3.4) can be written as Ms = −∂L/∂us for some scalar-valued function L = L(u1, u2, . . . , um).
The corresponding restrictions on the Ms are the compatibility conditions resulting from the
equalities of the mixed derivatives of L with respect to ur and us, i.e., ∂Ms/∂ur = ∂Mr/∂us

(∀r, s = 1, 2, . . . , m).
In particular, one obtains non-Abelian versions of Born–Infeld or Euler–Kockel theory

by taking various generalizations of the respective Lagrangians discussed in section 2. For
example, a Born–Infeld Lagrangian proposed in [8] for non-Abelian chromodynamics (CD)
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is given by

LBICD = b2

µ0c2
(1 − RCD), RCD =

√
1 + c2

b2
u1 − c2

3b4
(u2

2 + 2u3). (3.9)

In the Abelian case, u1 is I1, u2 is I2 and u3 reduces to u2
2 = I2

2 ; so that equation (3.9) becomes
the same as equation (2.12).

4. A framework for non-Abelian Galilean theories

Let us consider the nonrelativistic limit of the equations derived in section 2. Galilean symmetry
transformations (the c →∞ limit of Lorentz transformations) have the form

t′ = t, x′ = x − vt, (E
)′ = E
 + v × B
, (B
)′ = B
. (4.1)

As is well known, there is no nonrelativistic limit of the standard Yang–Mills equations. This
is because the linear constitutive equations G
 µν = (1/µ0)F


 µν break the Galilean symmetry.
But our equations (3.3) and (3.4) can have a c →∞ limit, provided the constitutive equations
are also nonlinear. One obtains such a Galilean non-Abelian gauge theory from equations (3.3)
and (3.4) by writing these equations explicitly in terms of E
, B
, D
 and H
, and then taking
the limit as c →∞. The equations of motion (3.3) will always be the same as in the relativistic
theory, as the factors of c cancel; only the constitutive equations (3.4) will be different.

The Galilean YM gauge invariants û1, . . . , û9 are as follows

û1 =
3∑


 =1

B
· B
,

û2 = u2 =
3∑


 =1

B
· E
,

û3 = u3 = (B1· E1)2 + (B2· E2)2 + (B3· E3)2

+ 1
2 [(B1· E2 + B2· E1)2 + (B2· E3 + B3· E2)2 + (B3· E1 + B1· E3)2],

û4 = u4 = det(Bi· Ej + Bj· Ei),

û5 = (B1· B1)2 + (B2· B2)2 + (B3· B3)2 + 2[(B1· B2)2 + (B1· B3)2 + (B2· B3)2],

û6 = det(Bi· Bj),

û7 = (B1· B2)(E1· B2 + B1· E2) + (B1· B3)(E1· B3 + B1· E3)(B2· B3)(E2· B3 + B2· E3),

û8 = 1
6εijk(Bi × Bj) · Bk = (B1 × B2)· B3,

û9 = − 1
2εijk(Bi × Bj) · Ek. (4.2)

Using (4.1) one can check directly (Maple helps) that, indeed, û1, . . . , û9 are Galilean invariants.
Let us look at some Born–Infeld theories in the Galilean limit. In the Abelian case, we

obtain constitutive equations of the form of equation (2.6), with

M = I2

µ0b2R
, N = 1

µ0R
. (4.3)
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In the limit as c → ∞, we have I1 → Î1 = B2 and I2 = Î2 = B · E. But in this limit,
R ≈ (c/b)[Î1 − Î2

2/b
2]1/2, so that M and N do not approach well-defined nonzero limits. This

suggests the introduction of a modification of the Born–Infeld Lagrangian. For example, one
possibility is to replace R in equation (2.12) by

R̃ =
√

1 + c2

b2

[
(1 + λ1c2)I1 − 1

b2
(1 + λ2c2)I2

2

]
, (4.4)

where λ1, λ2 have the dimensionality of inverse velocity squared. Then in the limit when
c → ∞, we obtain the Galilean constitutive equations

D = M̂B, H = N̂B − M̂E, (4.5)

where

M̂ = λ2Î2

µ0b

√
λ1Î1 − λ2Î

2
2/b

2
, N̂ = bλ1

µ0

√
λ1Î1 − λ2Î

2
2/b

2
. (4.6)

Similarly, in the non-Abelian case, we obtain a well-defined Galilean limit for the Yang–
Mills constitutive equations (3.8) if we modify RCD in equation (3.9) to be

R̃CD =
√

1 + c2

b2
(1 + λ1c2)u1 − c2

3b4
(1 + λ2c2)(u2

2 + 2u3). (4.7)

Then, with c → ∞,

D
 = λ2(û2 + 2B
· E
)

3µ0b

√
λ1û1 − λ2

3b2 (û
2
2 + 2û3)

B
 (4.8)

and

H
 = bλ1

µ0

√
λ1û1 − λ2

3b2 (û
2
2 + 2û3)

B
 − λ2(û2 + 2B
· E
)

3µ0b

√
λ1û1 − λ2

3b2 (û
2
2 + 2û3)

E
 . (4.9)

Note that in equations (4.8) and (4.9) there is no summation over 
, while û1, û2, û3 are the
Galilean invariants given by equations (4.2).

We close this section with the remark that the nonlinear gauge theory described here can
be set up usefully with a ‘Galilei friendly’ metric tensor, respecting the fact that space and time
require different units (independent of c) if the Galilean limit is to be meaningful. By setting
ĝµν = diag(1/c2, −1, −1, −1) and ĝµν = diag(c2, −1, −1, −1), so that xµ = (t, x), xµ =
ĝµνx

ν = (c2t, −x) and xµxµ = c2t2 − x2, we obtain in place of equations (2.1)–(2.2) matrix
expressions for F̂ αβ, F̂αβ and Ĝαβ in terms of the fields E and B that involve no factors of c,
while factors of 1/c2 or c2 occur in the expressions for the other field strengths. With such a
choice, taking the limit c → ∞ in the relativistic equations is straightforward. The equations
of motion (3.3) do not involve c and do not change, while the constitutive equations (3.4)
change as c → ∞.

5. Conclusion

We have seen how it is possible to generalize nonlinear Maxwell systems directly to the case
of non-Abelian gauge groups, thus obtaining generalized Yang–Mills theories associated with
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nonlinear constitutive equations for the fields. Such a theory may or may not be derivable
from a Lagrangian function. Our construction allows for either situation, and permits one to
determine directly from the constitutive equations whether or not a Lagrangian formulation is
possible.

In particular, our approach highlights the possibility of obtaining nontrivial Galilean-
covariant (nonrelativistic) limits of these theories as c → ∞. We have seen that such limits
exist in some cases, but not in all. We believe they have potential application in contexts
where Galilean theories are coupled with nonlinear electromagnetic fields or their non-Abelian
counterparts—for example, in nonlinear Schrödinger theory as described in [15] and discussed
in [3], or in non-Abelian fluid mechanics [16–18]. They are also potentially applicable, as
noted in [3], to electromagnetic fields in condensed matter where the nonlinearity is extremely
strong, and as effective, low-energy limits in string theory.
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