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Recently, it has been shown that the wave equation for a scalar field on the exterior part of the
Schwarzschild manifold satisfies local decay estimates useful for scattering theory and global existence [2].
The extension for the linearized Einstein equation is considered here. In 1957, Regge and Wheeler investi-
gated spin 2 tensor fields on the Schwarzschild manifold [4]. They classified such fields into two types, which
they called even and odd. For the odd fields, they were able to reduce the problem to an equation for a
scalar field very similar to the wave equation for scalar fields on the Schwarzschild manifold. In 1970, Zerilli
extended their results to include the even case; although, the equation for the even case is significantly more
complicated and bears less resemblance to the wave equation for a scalar field [8]. Teukolsky has done a
related reduction for the rotating Kerr black hole [6] which has been used to investigate the stability of the
black holes [7].

This paper extends the local decay estimate for the scalar wave equation of [2] to the Regge-Wheeler
equation. Many of the proofs used here follow [2]. We obtain the following for r. the standard Regge-Wheeler
co-ordinate and 8 > %, there is a constant C, depending on the initial condition through the energy norm,
so that
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1 Co-ordinates and equations

The Schwarzschild manifold describes a static black hole solution to the Einstein equation. The exterior of
the black hole is most easily described by (t,7,0,¢) € R x (2M, ) x S? with the metric

2M 2M .
ds? = (1 — T)dt2 —(1- T)*ldr2 —r?ds%, (1.1)

To simplify the problem, Regge and Wheeler ([4]) introduced a new radial co-ordinate, r, satisfying

or 2M
o, =m0

) (1.2)

This allows the definition of a space like manifold
M=RxS? (1.3)

The old co-ordinate r is now treated as a function of r,.
In these new co-ordinates, the Regge-Wheeler equation for a scalar field v : R x 91 — R which determines
the behavior of the odd-type tensor fields is

i+ Hu=0 (1.4)



where

3
H=> H, (L.5)
m=-7 (16)
Hy=(1-8*)V (1.7)
y =2 %) (1.8)
Hs =V (—Ag2) ZVLil(l-f-l)H (1.9
=0
V. =Ti2(1 _ ¥) (1.10)

and where s = 2 for the case of the tensor field and P, is projection onto spherical harmonics with total
angular momentum [. The case s = 0 is the scalar field previously considered and s = 1 is for the odd-type
vector (Maxwell) fields.

Because of the way the scalar field  is defined it is not possible for it to have any component with spherical
harmonic component ! = 0. It has also been shown that the [ = 1 component corresponds to changing the
non-rotating Schwarzschild background to a rotating Kerr solution and to gauge transformations [5]. For
this reason, it is assumed that u has no ! = 0 or [ = 1 spherical harmonic component. This provides a lower
bound on the spherical Laplace-Beltrami operator.

—Ag2>2(2+1)=6 (1.11)

For the scalar wave equation, Bahelot and Nicolas have proven global existence [1] in both an energy space
and in C*°. The assumption of global existence in C*° greatly simplifies all the following arguments and
will be assumed although we are not yet aware of a published proof. However, the method of Bachelot and
Nicolas should extend to the Regge-Wheeler equation without difficulty. The assumption of global existence
in C> means that all solutions are assumed to be C>(9) N H'(M, dr.d?wg=), are infinitely differentiable
in ¢ and have time derivative in C°(9) N L2(IM, dr.d?wg=). The notation u(t) denotes the function from
M — R corresponding to u evaluated at time ¢. The measure dr,d?wg> is used for all norms and inner
products unless otherwise specified.

2 The Heisenberg-type relation and preliminary estimates

For the Schrédinger equation, the Heisenberg relation describes the time evolution of expectation values for
an operator and gives conserved quantities from symmetries of the Hamiltonian. A similar relation exists
for the wave equation [2].

Theorem 2.1 (Heisenberg-like relation). For a time independent operator A and a solution to the linear
wave equation 4 + Hu = 0 such that u and Hu are in the domain of A, and u and Au are in the domain of
H,

d . .
%((U,Au) — (4, Au)) = (u, [H, Alu) (2.12)

Proof: in Theorem 1 of [2]
The first and most important application of theorem 2.1 is conservation of energy. As usual it is generated
by time translation symmetry.

Theorem 2.2 (Energy Conservation). The Regge- Wheeler equation, equation 1.4, has a conserved quan-
tity ||ul|3, which we call the energy.

o

lulld = (i, @) + (o', u') + (u, =3Vu) + Y (Pu, 11 + 1)V Pu) (2.13)
=2



This acts as a metric on the space H = {u € L? : |||y < oo}.

Proof: The conservation of energy follows from the Heisenberg-like relation with the multiplier A = %.

Since only functions orthogonal to the spherical harmonics with = 0 and [ = 1 are considered

(u, —3Vu) + i(Plu, {1+ 1)ViPu) >(u, —3Vu) + (u,6Vju)
>(u, (Top + )1 = 2 )

r r

6 M 2M

>(u, T—Q(l - 7)(1 - T)U)

Since &(1 — %)(1 - %) is always positive (u, (Hs + Hs)u) is positive definite. Since (u,4), {(u',u'), and
(u, (Hy + H3)u) are all positive each is defined if |||y is finite, and ||u||y is a metric.

O

As stated in the proof of energy conservation, the energy controls certain derivative norms and this can
be used to control the growth of the L? norm.

Theorem 2.3. If u is a real valued solution of the Regge- Wheeler equation (equation 1.4) and ||u(t)||zz is
the norm of u at time t, then fort >0

llallLe <[lulls

llu@Il <tllull + lu(0)]] L2

Proof: Since {(u',u') and {(u, (Hs + H3)u) are strictly positive ||a(t)|| is controlled by the energy. This is

used to control the growth rate of ||u(t)||z2

d d .
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3 Local Decay

For the scalar wave equation, a radial differential operator v was introduced to prove the local decay estimate
[2]. It is used here for the same purpose. This multiplier is centered at the peak of the angular potential
V. To simplify calculations the standard r, co-ordinate is translated to a new one, p, = r, — a, so that
p« = 0 at the peak of V. This centrifugal tortoise co-ordinate satisfies the same differential definition as r,
equation 1.2.

Definition 3.1. The centrifugal origin o, centrifugal tortoise origin a., and centrifugal tortoise radius ps«
are defined by

a =3M (3.14)
Oy Er*|r:a:3M (315)
Pr =Tx — Qe (3.16)

Definition 3.2. Given o € (3,1], the Morawetz type multiplier v, is defined by

ga(r*)z/o ) dr (3.17)

0
— + 6—7_*90-) (318)



As before, C™ solutions are assumed so that there are no domain issues. In all cases. the value of o will be
fized and the notation g = g, and v = v, will be used.

Theorem 3.3. If u € H'(9M) and o € (3,1], then
(u,ysu) =0 (3.19)
and there is a constant Cy = lim,, o g(r«) such that

O\ g
Sar )

llvull < Collully + —||(1 +( “7ullre (3.20)

Proof: Equation 3.3 is proven in theorem 16 of [2] (the statement of which includes the additional, but
unnecessary, assumption that u satisfy the scalar wave equation). For equation 3.20, theorem 17 of [2] does
not directly apply since the space H defined there involves different potentials. However, the same argument
applies. It is first noted that since o > % and the integrand in the definition of g is positive and even, |g| is
bounded by C, = lim,, , g(r+). Now, by direct computation,

1
[lyull =llg’ + 5 9"ull

1
<llge'| + 5 lg'u

1 Ty — Q
< _ * *\2\—0o
<Collullye + 5101+ (520l

O
The Heisenberg-like relation will be applied to the multiplier . To do this it is necessary to estimate the
commutator [2321 Hj, 7).

Lemma 3.4. For o € (1,1]

0= 2080, = g2 ~ 120 - 2 )as > 0 (3.21)

Proof: in Lemma 18 of [2]

Lemma 3.5. Foro € (%, 1] and u in the domain of v and H

(u,i[—%,’y]u) > (u, qT (,,*i’a*) 5 ;4)3[5+ (3—20)(”*2;;*)2]u> (3.22)

Proof: in Lemma 20 of [2]

Lemma 3.6. For o € (%, 1] and u in the domain of H and v, there is a constant ¢, so that

c
Hj,~])y >{ z 3.23
Uz[z; _]77 - (1+(T* a*) )0_+1U> ( )
Proof: Since 0 <1
o 1 P — Oy o o
54+ (3—-2 < 7
(1+(p* a*) )04_2 (2M)3[ +( U)( IM )] (1_‘_(2*)2)04.1
In the proof of lemma 21 of [2] it is shown that
8M 2M 2M

i[V,7] = g(3 — - )—r4 (1- e ) (3.24)

Since g <0forr <3M and g > 0 for r > 3M, i[HQ, ] = —3i[V,] is negative for r < 8 positive for
8M  r < 3M, and negative for 3M < r. In the region 84 < r < 3M, all the terms of the form i[Hj,v] are
p051t1ve so an estimate of the form 3.23 holds. The other r values are now treated.



It is useful to note that a term relating Hy to H3 is decreasing since

d3-8L M
dr1—3M —  (r—3M)2

T

Atr=2M,3 -84 = _1 =2(1 — 3 Therefore in 2M < r < £ and for [ > 2

M M
3= 3y o 3Y
r r
1 2M 2M 8M 1 2M 3IM
rLa o 2 M 8My T 2M 0 3

r3 r r r r3 r r
) 1.
[i[H2, ]| <gilHs,]

The % factor is present due to the restriction that [ > 2 and hence —Ag2 > 6.
At r=33M

205961 1y 12 2M
-33-84) 1% 197 33M
Therefore for r > 3.3M and [ > 2
8M ., 2M 3M
— — 2(1 —
=36 r )3.3M < r )6
g 2M 8M 2M, g 2M 3M
(1= (=3)3- ) <21 -0)1 - ) (-A
1Z0- 2536 - 2020 <L - 251 - ) (-as)

[i[H2,7]| <i[Hs,"]

Finally for 3M < r < 3.3M, since i[Hs,~y] vanishes quadratically in (r — 3M) where as i[H>, ] vanishes
only linearly it is necessary to bound i[Hz, ] by i[H1,7]. On this interval F~! < 3, p. < .9M, and g < .9M.
Again, assuming [ > 2

i, =30 - =) G — )
<O G G <2 G

50 1 S 50 1 S 1.43 1
1+ (2"—11‘,1)2)‘7"‘2 (2M)3 (1.2025)7+2 (2M)3 T (2M)3

Z[H37’Y] >

In summary, for r < 3M and r > 3.3M, i[H2+ Hs,] > 0 and for 3M < r < 3.3M, i[H, + H», 7] is strictly
positive. Since for r < 3M and r > 3.3M, i[H,~] > i[H1,7] > C(1 + (£5)?) 7! and for 3M < r < 3.3M,
i[H,~] is strictly positive, there is a constant C' so that

c
T+ ()

(u, i[H, y]u) > (u, u)

O
It is now possible to apply the Heisenberg type relation to v and integrate the result to prove local decay.

Theorem 3.7 (Local Decay). If u is a solution to the Regge- Wheeler equation (equation 1.4), ||u||ly = E,
u(0) = f, and B > 3, then there is a constant D, such that

o Tx _8 1,1
|1+ (Gapt)RulPde < D, EHE + 111) (3.25)

Proof: Initially the result will be proven with 8 = ¢ + 1 and ¢ € (%,1] and p. in place of r.. By
integrating lemma 3.6 and applying the Heisenberg like relation, Theorem 2.1, it is possible to bound the



time integral of the local decay term by an inner product evaluated at time T'. Despite the explicit factors
of ¢ appearing in the following, all terms are real valued.

[0 e e

T

[
d—<<u,mu> ~ (i)
(u, yu) — 2(4, yu))dt

i[H,
dt dt
2
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Since o > 2, q can be chosen so that 20 + <g< 3 . If p is the conjugate exponent to ¢ and k = 2 , then

<
< B2 (4C,E% + |1+ ( )?) ™ u(T)| (3.26)

1 2 12—k o+1

Holder’s inequality can now be applied to the last norm in line 3.26.
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For sufficiently large T, there is a constant F' so that

— Qx _ 1 u 1_,
I+ (& )?)"7ull < FT7 |||
2M (1+ (£ F

|
IR
1+ (537)*) =
This establishes an integral relation between the local decay norm and its square integral. The local
decay norm has bounded derivative since

d u 9
s e s s S (S D E
These two conditions are sufficient to apply lemma 25 of [2]. That lemma states that for § : R — R*
with uniformly bounded derivative, € € (0, &), if fo 7)2dr < Cy + Cot¢6 ¢ then t¢9(t)1 ¢ goes to zero
sequentially and hence fo 7)%dr < C;. The lemma can be applied with 8 as the local decay norm, % =€,
and C; and Cy as in 3.27.
This proves the result for 8 € (2,2] and for p, instead of r.. Since (1 + (£;)?) 77 is a decreasing

function of 3, the result holds for all 8 > % Finally since for any 3 there is a constant so that for all r,,
(14 (Z72=)2)7F < C(1 + (325)?) 7 the statement of the theorem holds.

T
|+ (Gt # e < BYac,BY + 1) + FT3| (3.27)
0
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|E: (3.28)
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Figure 1: Plot of a lower bound for i[H,~] as a function of r.

A Numerical verification of the positivity of the commutator

The key step in proving the local decay estimate is the lower bound for the commutator i[H,~] proven
in lemma 3.6. From the asymptotics of i[Hs,7] &~ r~* and i[H3,7] ~ 72 it is clear that the negative
contributions from i[Hz, ] will be dominated eventually and it is sufficient to show i[H, 7] is positive in some
finite domain. To verify positivity of the commutator, the sum of the exact form for i[Hs,~] from equation
3.24, the lower bounds for i[H;,] from equation 3.22, and the lower bound for i[H3, ] from equation 3.21

and [ > 2 is plotted for M =1 and ¢ = 1. From the graph it is clear that the total commutator is positive.
The graph decays because all the terms involved decay.
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