
Nonlinear waves

in double-stranded DNA

Natalia L. Komarova1,2 and Avy Soffer1,2

1 Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd.,

Piscataway, NJ 08854S

2Institute for Advanced Study, Einstein Dr., Princeton, NJ 08540

We propose a nonlinear model derived from first principles, to

describe bubble dynamics of DNA. Our model equations include

a term derived from the dissipative effect of intermolecular vibra-

tional modes. Such modes are excited by the propagating bubble,

and we term it ”curvature dissipation”. The equations we derive

allow for stable pinned localized kinks which form the bubble. We

perform the stability analysis and specify the energy requirements

for the motion of the localized solutions. Our findings are consis-

tent with properties of DNA dynamics, and can be used in models

for denaturation bubbles, RNA and DNA transcription, nucleotide

excision repair and meiotic recombination.
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1 Introduction

Recent experimental breakthrough works [Altan-Bonnet et al, 2003], [Wang et al, 1998],

[Poglitsch et al, 1999], [Ashkin, 1997], [Hansma, 1996], [Koch and Wang, 2003]

on DNA strand separation in transcription, denaturation and other pro-

cesses, have made it possible to develop a detailed understanding of such

fundamental steps of life (e.g. protein production from the DNA template,

see below). There has been a parallel extensive work on theoretical mod-

els to describe the corresponding “bubble” dynamics. One line of research

concentrated on the nonlinear nature of the denaturation opening, see e.g.

[Englander et al, 1980], [Fedyanin et al, 1986], [Yakushevich, 1989], [Muto et al, 1990],

[Peyrard and Bishop, 1992], [Dauxois et al, 1992], [Bogolubskaya and Bogolubsky, 1994],

[Barbi et al, 1999A], [Bhattacharjee and Seno, 2003], [Campa, 2001]. In these

models, the denaturation bubble is described either as a breather or a kink of

nonlinear Klein-Gordon (NLKG) or of sine-Gordon type equations. Statisti-

cal models to include temperature and noise were also developed [Kafri et al, 2000],

[Theodorakopoulos et al, 2000]. A number of detailed numerical studies of

local DNA opening have been carried out, which are detailed enough to be

compared with experimental data on long chains of DNA strands. These in-

clude, among others, studies of Lavery and colleagues, by methods of molecu-

lar mechanics [Ramstein and Lavery, 1988], [Bernet et al, 1997], and molec-

ular/Brownian dynamics [Briki et al, 1991], [Giudice, 2003]; molecular dy-

namics simulations of DNA by the group of Beveridge [Beveridge et al, 2004],

[McConnell and Beveridge, 2000], [McConnell and Beveridge, 2001] and Lan-

gowski [Bussiek et al, 2002], [Lankas et al, 2004]. In a series of works, Schlick

and her group developed comprehensive models of DNA dynamics. This ap-
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proach uses a bead model of DNA chains, where the energy of the chain de-

pends on twist, stretch, bend and hydrodynamic-mediated inter-base interac-

tions. This system is then assumed to obey the Langevin equation, and both

inertial and overdamped cases are studied in detail, [Beard and Schlick, 2002],

[Yang et al, 2002], [Ramachandran and Schlick, 1995], [Schlick, 1995].

The simulation of dynamics of DNA on relevant time scales of transcrip-

tion and folding is extremely computationally extensive. One of the im-

portant features is that the relaxation times are at the picosecond level,

while we need to follow the dynamics in the millisecond and second level,

[Schlick, 2001]. Therefore it is desirable to find a nonlinear equation that

governs the bubble dynamics, while taking into account all the physics, in-

cluding the double stand nature of DNA and sequence dependence, curvature,

solvent effects etc.

Our model attempts to understand the bubble in the double stranded

DNA using a classical mechanical model, which is in many ways similar to

models discussed above. We start by looking at a chain of connected masses,

and take the by-layer structure into account. Dissipation of the molecular

dynamics in fluid is usually derived from the interactions between the DNA

and the polarization and kinematic properties of the water molecules sur-

rounding it. The result is a friction force proportional to the velocity and

stochastic term to describe the effect of thermal motion. However, this as-

sumes that the DNA is a point particle, with no shape and internal degrees

of freedom. The effect of internal degrees of freedom may also be relevant.

It can be shown that coupling of a system to a conservative big system leads

to a form of dissipation for the small system. In fact, a simple motivating
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example was solved exactly by Lamb in 1900, where he showed that coupling

an oscillator to an infinite string leads to dissipation. For a review of recent

works in this direction see [Soffer, 2001]. We then ask what will be the effect

of the internal vibrational and other modes of each base in the DNA. By

modeling each such base as a string we derive the leading order effect, and

show it is dissipative, yet can not be incorporated in the usual friction terms

as it is curvature dependent. Hence we refer to this contribution as curvature

dissipation. Just like the usual friction it depends only on the first derivative

in time. On the other hand it also contains the derivatives of the amplitude

with respect to x, the position along the chain.

It is interesting to note that curvature effects are sometimes relevant to

friction, see e.g. [Lighthill, 1975], [Wiggins and Goldstein, 1998], [Goldstein et al, 2000].

However, the kind of dissipation considered in these and other works comes

from the interaction of a curved object with the surrounding fluid. The cur-

vature dissipation introduced in this paper comes from the internal motions

of the molecule and would enter the equation of motion even if the motion

took place in vacuum.

Our main result is an equation of motion for a double-stranded DNA

which allows for stable, pinned, localized solutions. These solutions (a kink

and an anti-kink) can be used to model denaturation bubbles in many biolog-

ical systems. At this first stage of developing a new theory, we addressed the

following questions: What are the static parameters of denaturation bubbles

(their steepness and their longitudinal size)? How much energy does a bub-

ble require to be moved along the DNA chain (or, alternatively, how difficult

is it to keep it in place?) What defines the direction of motion of a bubble?
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How can a bubble collapse?

This paper is organized as follows. We start by presenting several biolog-

ical systems where denaturation bubbles play an important role (Section 2).

In Section 3 we outline the derivation of the new equation of motion for a

double-stranded DNA. In Section 4 we find relevant solutions of this equation

and study their stability; we prove that our model supports stable, pinned

localized solutions. We also present numerical stability results for a more

complicated, spatially inhomogeneous system. In Section 5 we discuss prop-

erties of our model in the context of several biological scenarios. We present

model predictions on the size and shape of the bubble, energetic requirements

for bubble motion, directionality of bubble motion, and bubble collapse. We

identify the parameters that have to be measured to validate the model.

We also define the relative importance of curvature dissipation. Section 6 is

reserved for conclusions.

2 Denaturation bubbles in biological systems

Here we list several examples of biological phenomena where denaturation

bubbles are essential. It is remarkable that bubbles are found at the very

basis of life: reproduction (both mitosis and meiosis) and protein synthesis.

RNA transcription. A denaturation bubble plays the central role in RNA

transcription, the first step in protein synthesis [Alberts et al, 2002], see

figure 1. The process begins when an RNA polymerase (RNAP) enzyme

molecule binds to the promoter sequence of the DNA. It starts the transcrip-

tion by opening up a local region of about 20 base-pairs on the double helix
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to expose the nucleotides. One of the two strands serves as a template for

complimentary base-pairing with incoming monomers, which begin an RNA

chain. The RNAP molecule then moves stepwise along the DNA, unwind-

ing the DNA helix just ahead to expose a new region for base-pairing, and

rewinding the region just behind. In this process, a short region (about 8-9

base-pairs) of DNA-RNA helix is formed briefly, after which the newly-built

region of the single-stranded DNA molecule is released to allow the rewind-

ing of the DNA-DNA helix. The rate of transcription at 37 C is about 30

nucleotides per second. A typical size of a completed RNA chain is between

70 and 10, 000 nucleotides.

Nucleotide excision repair. A denaturation bubble plays central role in

a repair process called nucleotide excision repair. There, a damaged site of

the DNA is recognized, and then a bubble is formed around it, which is about

25 [Evans et al, 1997] or 20 [Mu et al, 1997] base pairs long for humans, and

is shorter (∼ 6 base pairs) in E. coli [Zou and Houten, 1990]. The bubble

is created by a helicase which plays a similar part at the initiation of RNA

transcription. The repair then proceeds by single strand incision at both

sides of the lesion, a removal of the damaged part from the bubble area,

DNA repair synthesis to replace the gap and ligation of the remaining single

stranded nick.

Other biological systems. A DNA bubble occurs in a variety of situ-

ations besides transcription and nucleotide excision repair. An expanding

bubble is formed at DNA replication. Also, we will mention the process of

meiotic recombination, where a type of a helicase (RecBCD) propels itself
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along the DNA [Bianco and Kowalczykowski, 2000] creating a bubble, until

a recognition site is encountered, where the traveling loop of DNA is cut,

which initiates the genetic recombination event.

3 The new equation:

motivation and derivation outline

The motion of the double strand is usually modeled by means of some non-

linear equation of the form,

ż = bzxx − ∂V/∂z + random forcing + higher order friction terms,

where z, the transversal displacement of the nucleotides, is a function of

space, x, and time, t, and the dot stand for its time-derivative. The coefficient

b is the “spring constant” of the longitudinal interactions modeled as (non)-

linear springs, and V is the potential. Different authors proposed various

shapes of the nonlinearity corresponding to the hydrogen-bond potential, V ,

introduced nonlinearity in the “elasticity properties” of the sugar-phosphate

backbone, and included extra degrees of freedom coming from the secondary

structure of the DNA, as well as chiral forces and torques. The energy terms

could be very sophisticated, and often include twist, stretch and bend of the

molecule.

One common feature of nonlinear models of DNA dynamics can be identi-

fied as follows: they rely on a somewhat ad hoc assumption that the coupling

between neighboring nodes of the lattice occurs by means of non-material

springs. The main point of this paper is to argue that the interaction be-
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tween oscillators has a different form and is better described as coupling by

“strings”, rather than “springs”. Roughly speaking, we can say that some of

the energy of transversal oscillations of the double strand gets absorbed in

the motion of the material connecting the neighboring nodes. The relevant

forces are proportional to the momentum, that is, to the time-derivative of

the displacement, z. To leading order, this leads to a mixed-derivative term

in the master equation,

a(żm−1 − 2żm + żm+1).

The continuous version of the equation, in its simplest form, will read,

ż = bzxx + ażxx − ∂V/∂z + random forcing. (1)

In equation (1) we assume that the constants, a, b > 0. Here we outline

the main ideas behind the derivation of equation (1). This is an equation of

motion for the node zm in the direction perpendicular to the molecule, in the

overdamped limit, where the influence of the second time-derivative term can

be neglected (see the end of Section 5 for the inertial limit). The expression

that multiplies the constant b comes from the forces acting on each node from

its neighbors due to stretching (the vibrations are not taken into account).

The term −∂V/∂z comes from the potential forces of interaction of the two

units across the double strand. The term ż represents the usual friction,

since the motion takes place in a viscous medium. The third derivative term

multiplying the constant a, the curvature dissipation term, reflects the loss

of energy due to vibrational modes of the longitudinal connections among

the nodes. In what follows, we will outline the derivation of this new term.

8



In modeling double stranded molecules, one should consider the fact that

each longitudinal link is in fact a many-particle molecule, and therefore has a

large number of degrees of freedom. Such a molecule should then be described

by a dispersive system with many degrees of freedom. In the simplest classical

approximation we treat it as a string (rather than a massless spring) of some

fixed length. Note that a more general dispersion relation than the usual

string will not change qualitatively our analysis.

The critical difference between a “spring” and a “string” is that a string

will effectively act as a reservoir which absorbs some of the oscillatory energy.

Therefore, we expect the motion of the ends of the links to obey an equation

that contains a dissipative correction. Such a correction can, to the leading

order, be approximated by the terms with ż. To see the origin of the ż terms,

let us consider the node zm and solve the wave equation to the left and to

the right from it, see Fig. 2. Let u(x, t) denote the position of the string at

point x at time t. We have, to the left of the node zm,

utt − g2uxx = 0, u(0, t) = zm−1(t), u(L, t) = zm(t),

where L is the length of the connection and g is the speed of sound in the

string. Similarly, to the right from the node zm we have,

ũtt − g̃2ũxx = 0, ũ(0, t) = zm(t), ũ(L̃, t) = zm+1(t),

where the constants do not have to be the same.

The force exerted on the node from the right in the direction perpendic-

ular to the string is proportional to ũx|x=0, and the force from the left is

proportional to ux|x=L. By examining the solution of the wave equation, we

can show that the spatial and temporal derivatives are linearly dependent;
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therefore, the force can be defined in terms of ũt|x=0 and ut|x=L. In turn,

the solution ũ(x, t) is a linear functional of the boundary conditions, zm(t)

and zm+1(t), thus ũt|x=0 is a linear functional of żm(t) and żm+1(t), which we

denote G(żm(t), żm+1(t)). Similarly, ut|x=L is a linear functional of żm−1(t)

and żm(t). Therefore, the force from the moving springs can be expressed as

G̃(żm(t), żm+1(t)) − G(żm1
(t), żm(t)).

In equation (1) we used a very simple model for G and G̃, where they were

just linear functions of their variables. This gave rise to the term a(żm−1 +

żm+1) − 2a′żm. Setting a′ = a and taking the continuous limit, leads to

equation (1), which corresponds simply to G(y1, y2) = G̃(y1, y2) = a(y2−y1).

A complete derivation of the functionals G, G̃ will be presented elsewhere.

4 Localized solutions and their stability

In the literature, the DNA denaturation bubble is often modeled in terms of

kinks or breathers. However, both types of localized solutions have several

problems [Campa, 2001]. Breathers generically lose stability as the level of

discretization of the lattice becomes lower [Aubry, 1997]. Kinks, on the other

hand, are very difficult to pin, even on a lattice. As the degree of discretiza-

tion decreases, the Peierls-Nabarro barrier that keeps a kink from moving de-

creases exponentially [Willis et al, 1986], [Joos and Duesbery, 1997]. There-

fore, a very small amount of energy can set a kink in motion.

In this section, we will describe solutions of equations of type (1) which

have properties relevant to many biological systems. Namely, we will study
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equation

ż = bzxx + ażxx − ∂V/∂z, (2)

and prove that it supports stable pinned localized solutions. The effects of

random forcing (equation (1)), which is an integral feature of dynamics on

the relevant scales, has to be analyzed separately. Stability of localized solu-

tions in the system without random forcing is a necessary condition for their

stability once the temperature effects have been added.

Kinks, solitons and the energy functional. The exact shape of a sta-

tionary localized solution, z̄(x), is found from the equation

bz̄xx − ∂V (z)/∂z|z=z̄ = 0. (3)

Note that the nature of the solution z̄(x), will depend on the form of the

potential, V, as a function of z. Let us suppose that V (z) is a smooth function.

Integrating equation (3) in x, we can see that the quantity C = bz̄2
x
/2−V (z̄)

is a constant along the solution for −∞ < x < ∞. Using this property,

we can see that a topological kink (or antikink) solution exists only if the

potential, V (z), as a function of z, has at least two minima, say, at points

z1 and z2, such that V (z1) = V (z2), see figure 3; here z1 < z2 are some real

numbers. The kink will satisfy the conditions at infinity,

lim
x→−∞

z̄(x) = z1, lim
x→+∞

z̄(x) = z2.

For the antikink, we have

lim
x→−∞

z̄(x) = z2, lim
x→+∞

z̄(x) = z1.
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A different type of localized solutions is a soliton. A soliton solution is

possible whenever the function V (z) has a local minimum, say, at a point

z = z0. There will be another point, z′0, with V (z0) = V (z′0). The soliton

solution will have a maximum (or minimum) value of z′0, and the following

condition at infinity:

lim
x→−∞

z̄(x) = lim
x→+∞

z̄(x) = z0.

Let us define distance between functions, z(x) and v(x), as

d(z, v) =
∫ ∞

−∞
[(z − v)2 + (zx − vx)

2] dx.

The energy functional of equation (2), is given by

E{z} =
∫ ∞

−∞

[

bz2

x
/2 + V (z) − V∞

]

dx. (4)

Here, V∞ is some constant; we subtract this constant in order to make sure

that a localized solution has finite energy. For solitons we take V∞ = V (z0).

For kinks, we have V∞ = V (z1), see figure 3. With this choice of the constant,

in each case, the function E{z} is defined for solutions z(x, t), such that

d(z, z̄) < ∞, where z̄(x) is the localized solution. Using equation (2), it is

easy to show that

dE{z}

dt
= −a

∫ ∞

−∞
z2

xt
dx −

∫ ∞

−∞
z2

t
dx ≤ 0, (5)

which means that starting from any initial conditions (for which E{z} is

defined), the solution will always decrease the energy functional.

Stability of kinks. Here we will show that kinks are stable. The analysis

for antikinks is similar. Let us prove that the energy functional, E{z}, has

12



a local minimum at the point z = z̄, where z̄ is a kink satisfying stationary

equation (3). Let us calculate the gradient and the curvature of E{z} at z̄.

We have,

(

δE{z}

δz
, ψ

)

z=z̄

=
∫ ∞

−∞

(

bz̄xψx +
∂V (z̄)

∂z̄
ψ

)

dx = 0

for all test functions, ψ(x), in the appropriate space. Here and below we

use the short-hand notation, ∂Q(z̄)/∂z̄ ≡ ∂Q(z)/∂z|z=z̄, where Q(z) is a

function of z. Next, we evaluate

(

ψ,
δ2E{z}

δz2
ψ

)

z=z̄

=
∫ ∞

−∞

(

bψ2

x
+

∂2v(z̄)

∂z̄2
ψ2

)

dx =
∫ ∞

−∞
(ψ,Hψ) dx,

where the self-adjoint operator H is given by

H = −b
∂2

∂x2
+

∂2V (z̄)

∂z̄2
.

Using Weyl’s theorem,see e.g [Reed and Simon,1978], it is easy to show that

this operator has a positive continuous spectrum. Indeed, we have

lim
x→∞

∂2V (z̄)

∂z̄2
= V ′′(z1) > 0, lim

x→−∞

∂2V (z̄)

∂z̄2
= V ′′(z2) > 0,

that is, for large values of x, the potential V ′′ approaches the value of the cur-

vature at its minima, see figure 3. The continuous spectrum must therefore be

positive. The only negative contribution could come from the discrete spec-

trum. In order to exclude this possibility, let us consider the eigenfunction

z̄x, corresponding to the horizontal translation of the kink. This eigenvector

corresponds to the eigenvalue zero. Indeed, differentiating equation (3) in

x, we obtain Hz̄x = 0. On the other hand, this eigenfunction is positive

for monotonically increasing kinks. Using Sturm’s oscillation theorem (or,
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more generally, the Perron Frobenius theory, see e.g. [Sigal,2000]) we con-

clude that this eigenfunction is the ground state of the operator, which means

that all other localized solutions, if they exist, have nonnegative eigenvalues.

Therefore, (ψ,Hψ) ≥ 0.

We have proved that the function z̄ is a local minimum of the energy

functional E{z}. Therefore, starting from any solution in a vicinity of the

kink, the system will return to the kink. This concludes the stability analysis.

Instability of solitons. The above argument breaks down in the case of

solitons. It will remain the same up to the point where we look at the second

derivative of E{z} at the point z = z̄(x), the soliton solution. The operator

H satisfies,

lim
|x|→∞

∂2V (z̄)

∂z̄2
= V ′′(z0) > 0,

so the continuous spectrum is positive. The minimum of H(x) is negative,

because between the points z0 and z′0 there must be a point, z∗ such that

V ′′(z∗) < 0, see figure 3. The discrete spectrum must have a negative eigen-

value, because the translational mode with a zero eigenvalue, z̄x, is not a

positive function in the case of a soliton. Therefore, by Sturm’s oscilla-

tion theorem, there will be another eigenfunction (the ground state) with

an eigenvalue between V ′′(z∗) < 0 and zero. This suggests that the soliton

solution is a saddle point for the energy functional. An infinitesimal per-

turbation in the “right” direction will destabilize the solution and bring the

system to a different stationary state, with a lower energy, e.g. the solution

z(x) = z0 = const.
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Nonhomogeneous chains: numerical stability results. In the model

discussed so far, we treated all base-pairs as if they were identical. A more ac-

curate model for a double-stranded DNA will distinguish between two types

of hydrogen bonds, A–T and G–C. The two bonds are characterized by dif-

ferent potentials, namely, DA−T = 0.05 eV and DG−C = 0.075 eV . In order

to model a non-homogeneous DNA sequence, we can use a version of a dis-

cretized equation,

żm = b(zm−1 − 2zm + zm+1) + a(żm−1 − 2żm + żm+1) −
∂Vm(z)

∂z

∣

∣

∣

∣

z=zm

, (6)

where zm(t) is the vertical displacement of each nucleotide, and instead of one

potential V (z), we have functions Vm(z) which represent interaction between

two nucleotides in each base pair. The interaction potentials are allowed to

differ from site to site.

We have performed numerical experiments where the functions Vm ∈

{VA−T , VG−C} were taken from some distribution. It appears that the stabil-

ity properties of the kink are not affected by this type of randomness as long

as the values VA−T and DG−C are not too far apart.

Inertial systems. Finally, we consider systems where the motion is not

overdamped, such as DNA molecules in non-soluble media. In this situation

we need to include the kinematic terms corresponding to elastic modes, z̈.

Such cases arise in many applications [Porath et al, 2004], including nanowires

made of DNA strands, DNA on dry surfaces, DNA held by electric fields and

other nanodevices. In these cases, the propagation of bubbles is governed by

the following equation:

κz̈ = ażxx + bzxx − ż − ∂Ṽ /∂z + f(x, t), (7)
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where f(t) is the external force corresponding to the tweezers, electric/magnetic

fields etc. Our stability analysis holds almost exactly as before. In the ab-

sence of f(x, t), we need to introduce the energy functional,

Ẽ{z} =
∫ ∞

−∞

[

1

2

(

κz2

t
+ bz2

x

)

+ V (z) − V∞

]

dx.

Let z̄ be the stationary localized solution, as before. It is clear that if z̄ is

a local minimum of E{z}, then it is also a local minimum of Ẽ{z}, since

z2
t
≥ 0 and z̄t = 0. Therefore, the stability results for the kink hold in this

case.

The potential term in the absence of RNA polymerase is different, and a

bubble life-time analysis can be performed using equation (7). In this case,

the lifetime may be non-small, due to the absence of stochastic noise.

5 Biological applications

The equation of motion derived here, with a curvature dissipation term,

can serve as a starting point to design detailed models of many biological

systems where a denaturation bubble plays a role, see Section 2. However,

this is not the goal of the present paper. In fact, at this stage we are still

quite far from grasping all the features of such complex biological phenomena

as RNA transcription, or nucleotide excision repair. For example, in order

to describe RNA transcription, a model must contain information on the

RNA polymerase molecule. In the present work we are mostly concerned

with properties of the double-stranded DNA molecule. A natural question

is, what is the value of this modeling for studies of real biological systems?
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We will answer this question by using the following analogy. Let us

suppose that we need to model a cruise ship. In order to accomplish this

task, we need to include all the details of the ship’s design. However, no

such model would be any good unless we understand the basic properties

of water! So a reasonable start for modeling a cruise ship is good old fluid

mechanics. Would water be able to hold a massive object without sinking it?

Can a (generic heavy) object move along in water? How much energy does

such motion take? And so on. In the case of modeling RNA transcription,

we first need to understand how double-stranded DNA moves, and how a

denaturation bubble forms, before we can begin talking about details of the

transcription process itself. The model developed here addresses the following

questions: What is the generic shape of a denaturation bubble? What is its

size? Can a denaturation bubble be stable? How much energy does it take

to move it along the DNA molecule? How can a bubble collapse?

Shape and size of the bubble. A denaturation bubble can be modeled

as a solution of (1) which consists of a kink and an antikink, see Fig. 4. If

the kink and the antikink are sufficiently far apart, we can say that they do

not interact and can coexist for a long time. The width of a kink is roughly

given by

w =
√

b/∆V , (8)

where ∆V is the potential barrier of the interaction energy of nucleotides

across the double strand, given by the difference between V (z) at its maxi-

mum, and at its minimum.

The longitudinal size of the bubble, n, is given by the distance between
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the kink and the antikink. We must require that

n ≫
√

b/∆V (9)

in order for the bubble to be stable, see Fig. 4. Note that the size of

the bubble in this model is not defined by intrinsic properties of the DNA

molecule (except for the constraint that a bubble cannot be too small, to

satisfy condition (9) above). This means that the bubble size can be different

under different circumstances. For instance, in RNA transcription process it

is defined by the RNA polymerase molecule. The size of the bubble created

in the process of nucleotide excision repair is defined by the appropriate

helicase. Finally, the denaturation region formed during DNA replication or

meiotic recombination does not have a fixed size, as it is created by a moving

helicase which opens up the DNA double helix on one side of the bubble. This

suggests that modeling denaturation bubbles as a pair of two independent

localized solutions (the kink and the antikink of Fig. 4) is consistent with

biological reality, more so than using one localized solution like a breather or

a soliton.

In order to relate the model’s prediction, equation (8), to biological sys-

tems, we need to know numerical values for b and ∆V .

Measurements of “static” parameters of the bubble. The quantities

relevant for the shape of the bubble (formula (8)) are given by

b =
Kh2

D
, ∆V = α2h2,

where D is the depth of the hydrogen bond potential, h is the longitudinal

distance between nucleotide pairs, α is the width of the potential well and
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K is the “spring constant” of the DNA sugar-phosphate backbone. The first

three parameters can be measured relatively accurately, whereas K presents

a problem.

The depth of the hydrogen bond potential, D, has been estimated to be

DA−T = 0.05 eV and DG−C = 0.075 eV for the two types of pairing. The

parameter α that defines the width of the potential well is taken to be α =

2.55 A in [Peyrard and Bishop, 1992], α = 4.45 A−1 in [Barbi et al, 1999A],

α = 4 A−1 in [Campa, 2001]. The distance between pairs is h = 3.4 A

([Campa, 2001] and [Barbi et al, 1999A]).

A more difficult quantity to measure is the “spring constant” K, of

the DNA sugar-phosphate backbone.1 In [Peyrard and Bishop, 1992] it was

merely estimated from the model to give a realistic denaturation temper-

ature; the corresponding value is 3.0 × 10−3 eV/A2. However, the paper

by [Kamien et al, 1997] suggests that this value is much larger, the mea-

sured parameter is K = 0.22 eV/A2. An even larger value, K = 1.0eV/A2,

is quoted in [Barbi et al, 1999A]. The paper by [Gerland et al, 2001] uses

the value K = 0.026 eV/A2 (however, this value has been estimated for

RNA and includes effects of the secondary structure). Note that other ex-

perimental measurements give very different values, see [Smith et al, 1996],

[Bensimon et al, 1995], where the spring constant is found to be very small,

of the order of 10−6 eV/A2. However, it must be noted that in those experi-

1Large discrepancies in the values of the spring constant are not surprising. Our models

suggests that the “spring” properties of the DNA, that is, the coefficient b in equation (1),

is not the entire story. Energy losses due to vibrational modes of the nucleotides have

to be taken into account, which can in principle be done by measuring the spectrum of

vibrational modes.
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ments the spring constant of the DNA molecule as a whole was measured as

opposed to local elasticity properties of the sugar-phosphate backbone, and

it is the latter quantity which is of interest to us.

With the information that we have so far, we can obtain the value of

w between 0.18 (for K = 0.2 eV , α = 4.45 A and D = 0.33 eV ) and 1.96

(for K = 1 eV , α = 2.55 and D = 0.4 eV ). This means that the number of

nodes in the “knee” of the kink is of the order one. This estimate is consistent

with the picture of RNA transcription (Section 2) where an RNA polymerase

enzyme molecule opens up only a few base-pairs to complete the transcription

of a small portion of the DNA template, with 3 or fewer nucleotides forming

the “sides” of the bubble.

Energy needed to move the bubble. In potential systems, such as

nonlinear Klein-Gordon equation, a whole family of moving kinks, z̄(x− vt),

exists for any velocity v. Therefore, moving a kink along a lattice does not

take any energy. In the new equation, this is not the case. In order to move

the bubble along the DNA molecule, an external force must be applied.

This has relevance for many biological systems involving denaturation

bubbles. In the context of RNA polymerase, we can ask: how strong a

push does a transcription bubble need to travel along the DNA? The RNAP

molecule is thought to be a molecular motor, which uses the energy of ribonu-

cleoside triphosphades to propel itself in the 3’-5’ direction along the coding

strand of the DNA molecule [Gelles and Landick, 1998]. Our model implies

that the RNAP “drags” the transcription bubble (consisting of a kink and

and antikink) along, using the appropriate fraction of its total energy. The
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same holds for expanding denaturation regions during the process of DNA

replication and meiotic recombination. How much energy does a helicase

need to propel a traveling loop of DNA?

In the context of nucleotide excision repair, one can ask the opposite

question: how stable is the bubble? How easy is it to keep it in place for as

long as it takes to perform the repair?

Theoretically we can address these questions in the framework of our

model. Using equation (5), we can calculate how much energy it takes to

move a kink with velocity v for time ∆t:

∆E = v2∆t
∫ ∞

−∞

(

z̄2

x
+ az̄2

xx

)

dx. (10)

We can see that energy losses come from two sources: the first term under the

integral is the usual dissipation. The second term is the curvature dissipation,

that is, the loss due to internal vibrational modes of the DNA molecule. This

is the novel contribution of the present model.

In order to obtain a quantitative prediction, several detailed measure-

ments must be performed. First of all, the shape of the bubble has to be

identified, to find the slope, zx and the curvature, zxx along the bubble.

Then, the velocity of motion, v, has to be estimated during a time-interval,

∆t. Finally, the contribution of dissipation and curvature dissipation must

be identified. This is the most difficult task. Measuring the spectrum of vi-

brational modes will eventually lead to the information necessary to estimate

the coefficient a in equations (1) and (10). This is discussed next.

Direction of the bubble motion. According to our model, the bubble

motion direction is defined externally, by the “motor” which propels the
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kink along the DNA chain. In biological systems, bubble motion happens in a

fixed direction. For example, in RNA transcription, the process of elongation

always proceeds in the 5’–3’ direction (i.e. the RNA polymerase moves along

the template strand of DNA in the 3’–5’ direction). Therefore, the “polarity”

of the coding strand defines the arrow of motion. Our suggestion is that it is

the molecular motor (RNAP) that recognizes the directionality of the DNA

strand, and the bubble itself can be moved in either direction.

Relative importance of curvature dissipation. Recent measurements

of both intermolecular and intramolecular vibrational modes of nucleotides

show their significance for DNA dynamics. In the works of [Lee et al, 2000],

[Lee et al, 2001], the Raman spectrum of nucleotides is measured in the range

from 200 to 4000 cm−1. These modes correspond to the internal vibra-

tions within the molecule, and they are in the same energy range as the

hydrogen bonds between the strands. Moreover, when the measurements

are done at low temperature (10–20K) one observes that broad absorption

lines are in fact many resonances, fused together due to thermal fluctuations.

Other modes correspond to vibrations of two coupled nucleotides; they have

a lower energy and therefore are easier to excite. These modes have also

been measured and are typically in the range from 30 to 150cm−1. Some of

them are measured by [Fisher et al, 2002] in experiments on crystals, and by

[Boland and Ratner, 1995] on the molecular level; see also [Olson, 2004]. It

is clear from this abundance of the modes at the relevant energy scales, that

a realistic temporal description, as required for example for bubble motion in

transcription, must adequately incorporate the corresponding contributions.
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We can use simple energetic considerations to estimate the effect of cur-

vature dissipation on the DNA dynamics. As the bubble propagates through

the DNA, it excites many internal modes. Therefore, we need to com-

pare the energies of the motion of the bubble with the vibrational modes.

The number of relevant modes of one nucleotide is multiplied by the num-

ber of points where the curvature is not zero, about 6 (that is, 12 nu-

cleotides). Using the fact that each vibrational mode of nucleotides, as well as

nucleotide-nucleotide couplings, is of the order of 10−3 eV [Olson, 2004], we

can see that each vibrational mode of the 6 involved base-pairs contributes an

amount which is about 10-20% of the difference of the base-coupling energies

(0.25 eV ).

It is now possible to estimate the value of the coefficient a in equation (1).

Let us suppose that the bubble moves with a constant speed, v. Then, we

assume that it excites 12 nucleotides in each strand, with the total excitation

energy e. Then the energy change per unit time is given by 4ev/d, where d

is the size of the kink (say, d = 3 base pairs)The factor 4 appears since there

are 4 kinks, on two strands per bubble. Our formula for the rate of energy

change related to internal modes is given by av2
∫

z̄2
xx

dx. Therefore

a ∼
4e

vd
∫

z̄2
xx

dx
,

where the integral is completely determined by the shape of the kink and has

support (∼ d) of a few base points. Now, notice that we can eliminate the

dependence on v using the fact that E, the total energy is proportional to

v2. Therefore ∆E/E = 4ev/dE ∼ a
∫

z̄2
xx

dx where ∆E stands for the energy

loss per unit time.
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Bubble collapse. Our approach can find applications in modeling tran-

scription termination. There are two ways in which transcription is termi-

nated. ρ-independent termination involves a specific sequence prone to form-

ing a hairpin. ρ-dependent termination requires a subunit of RNAP which

utilizes the energy of ATP to stop the transcription. In order to model this,

we can use equation (6), a discrete version of the equation of motion where

the two different types of hydrogen bonds, A-T and G-C, are taken into

account.

The process of ρ-independent termination can be modeled by introducing

a large perturbation in the sequence of Vm (hydrogen bonds). Simulations

show that a particularly small value of Vm at one site can lead to a collapse of

the kink and the antikink on each other. The ρ-dependent termination can

be modeled by adding a large perturbation somewhere between the kink and

antikink. Say, if the value of z outside the bubble is z1, and it is z2 inside,

setting several (strategically chosen) nodes inside the kink back to the value

z1 may cause a collapse of the kink-antikink pair.

The behavior of our model is in qualitative agreement with reality. At this

stage, we can only suggest that the equations of motion that we derived for

the dynamics of a double-stranded DNA molecule allow for a bubble collapse

if appropriate forcing is applied. A more detailed model, based on particular

sequences, must be devised to give quantitative predictions.
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6 Conclusions

We have introduced a nonlinear equation of motion describing the dynamics

of double-stranded DNA. Along with the usual dissipation term, it contains

a curvature dissipation term, corresponding to the loss of energy to the many

vibrational modes of the DNA molecule. This equation allows for a localized,

pinned solution which can be relevant for modeling DNA denaturation bubble

because of the following useful properties:

(i) It is not a breather, that is, its existence does not depend on the fast

transversal vibrations;

(ii) It is pinned, that is, it will not travel along the DNA when perturbed

in the longitudinal direction; in fact, it requires finite energy to move;

(iii) It is stable, and its stability can be proved rigorously.

There are many biological processes involving DNA denaturation bubbles,

such as RNA transcription, nucleotide excision repair, DNA replication and

meiotic recombination. When modeling these and other processes, the basic

equation of motion for the double-stranded molecule must allow for stable

solutions corresponding to local opening of the DNA. In this first paper we

have suggested a framework for such modeling.

The dynamical formulation we use, allows the incorporation of other im-

portant structural factors. The first thing we need to include is the effect of

chain content. This is easily done by making the strength of the coupling

between the strands change value according to whether it is GT or TC. We

can also include the effect of content by changing the ”string” constant as
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we move from type base to base along the chain; for this we can use the

information on relevant excited modes of each such molecule. We note also

that the effect of stacking, which was considered by many authors before

(see e.g. [Barbi et al, 1999B], [Barbi et al, 2003]) can be included in a simi-

lar way by adding ”spin” degrees of freedom. There is no reason to believe

that existence and stability results would change in the modified system.

Most importantly, the effect of curvature of the DNA molecule, can also

be implemented by making the coefficients of the discrete Laplacian position-

dependent. It is not easy to see how this can be done in a nonhamiltonian,

energy landscape type models. The implications of these modifications may

be very important, and will be studied in a forthcoming work. Here we only

mention that the curvature effects play a central role in the DNA dynamics,

and can have important consequences for the regulation and the dynamics

of the transcription process. For example, when the DNA region is tightly

bound, curled around a chromatin, transcription initiation is impossible. But

when the curvature is lowered, by the action of appropriate enzymes, the

process can begin. Once the process has started, the curvature will affect

the velocity of propagation of the bubble. Most importantly, we conjecture

that, in some places, it will also change the effective energy landscape, to

the point of creating, or moving of arrest points. Such points are critical to

understanding transcription regulation.

Finally, we would like to describe details of biochemical reaction which

include more players. In upcoming papers we will concentrate on the pro-

cess of RNA transcription and show how the equation of motion for the

double-stranded DNA can be coupled with an explicit equation for the RNA
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polymerase molecule. Unfortunately, complicated models like this do not

often allow for a clear and rigorous mathematical analysis. The advantage

of the present model is its transparent behavior. It will serve an a building

block for more complicated systems.
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Figure legends

Figure 1. A schematic of the RNA transcription process, showing a DNA

denaturation bubble.

Figure 2. The geometry of the DNA molecule and the variables used to

derive the equation of motion. The nodes represent the nucleotides.

Figure 3. The shape of the potential which allows for a topological kink

solution and a soliton solution. Note that in our model, the potential V (z)

defines interactions between nucleotides via the hydrogen bond. We can

assume that the first minimum, z1, corresponds to the equilibrium distance

between the strands of the double helix. The other minimum, z2, is one
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of many in a complicated potential landscape corresponding to separated

strands. In the context of RNA transcription, the complex shape of the

potential can be a consequence of the presence of the RNAP as well as the

newly-formed RNA chain. It is not unreasonable to assume that at least one

of the minima will be sufficiently close to the minimum V (z1) to guarantee

a long-lived topological kink.

Figure 4. A model of a denaturation bubble as a kink-antikink pair.
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