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Abstract
We construct an algorithm, the Time Dependent Phase Space Filter

(TDPSF), for solving nonlinear time dependent Schrédinger equations on
RY. The algorithm consists of solving the NLS on a box with periodic
boundary conditions. After certain intervals, we apply a filter in phase
space to remove outgoing waves. Incoming waves are affected minimally.
Rigorous error estimates are provided and numerical tests are discussed.
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1 Introduction and Definitions

Consider a semilinear Schrédinger equation on RV+!

i0pp(x,t) = —(1/2)Ad(2, t) + g(t, T, ¢ (T, 1)) b(F, 1) (1.1)

where ¢(¢,%,-) is some semilinear, Lipschitz (in some Sobolev space) nonlin-
earity. For instance, g(t,Z,-) could be V(&,t) + f(|1(Z,t)|*) for some smooth
function f and (spatially) localized potential V (Z,t).

We assume the initial condition and nonlinearity are such that the nonlin-
earity remains localized inside some box [—LNhLNL]N. Outside this region
the solution is assumed to behave like a free wave (a solution to (1.1) with
g(t, Z,-) = 0), which is well understood.

One very common method of solving such a problem is domain truncation.
That is, one solves the PDE (1.1) numerically on a region [—L, L]N. On the
finite domain, of course, boundary conditions must be specified. Dirichlet and
Neumann boundaries introduce spurious reflections, while periodic boundaries
(which are desirable in order to use fast spectral methods) allow outgoing waves
to wrap around the computational domain. In either case, a serious mistake
has been made. This causes the numerical solution to become incorrect after a
time T' & L/kmax, where knax is the “maximal velocity” of the solution!.

It is an interesting and well known problem to find a way to minimize these
errors. The simplest way is simply to expand the domain as the support of
(Z,t) grows, but this is computationally very expensive.

For the wave equation and other strictly hyperbolic wave equations this
problem has a beautiful exact solution (c.f. [18, 16]), namely the Dirichlet-to-
Neumann map. The equation (1.1) is solved in a region [—Ling, Ling]", and the
boundary conditions are given by ¥ (%,t) (where ¢ (Z,t) is the solution to (1.1)
on RY) on the boundary. Of course, since 1 (&, ¢) is not known, it must be ap-
proximated. The usual method (used with great success for the wave equatin) is
to approximate the exact solution by rational functions in the frequency domain.

IThere is, in general, no maximal velocity of the solution. However, we will define kmax
more precisely later on. kmax will be the frequency such that the energy of ¢(k, t) for k > kmax
is small.



These correspond to boundary conditions given by a high order differential op-
erator. This result depends strongly on the fact that in the frequency domain,
the Dirichlet-to-Neumann map behaves like a polynomial at oc.

For the Schrédigner equation and other dispersive wave equations, the situ-
ation is not so simple. Even in the free case (g(¢, Z,¥(Z,t)) = 0), it is impossible
to construct local (in time and space) approximations to the Dirichlet-Neumann
operator. In addition, constructing the Dirichlet-Neumann map in the case
—(1/2)A+V(z) is not an easy matter. In the nonlinear case we know of results
only in 1 space dimension, and with no rigorous error estimates [41, 42, 43].

Another drawback of the Dirichlet-to-Neumann approach is that it precludes
the use of spectral methods to solve the interior problem. Spectral methods
(described on page 17) use the FFT (Fast Fourier Transform) to diagonalize
the operator e(1/2)At " Thig approach naturally imposes periodic boundaries.
Spectral methods are desirable, since they are believed to be more accurate than
most other methods on periodic domains (for a finite set of spatial frequencies).
The error due to boundary conditions, however, makes them unfeasible. Thus,
one usually reverts to using FDTD (Finite Difference Time Domain) in their
place, but the accuracy of these methods is limited and decreases rapidly with
high spatial frequencies.

An ad-hoc approach (described in, e.g. [29]) which is commonly used is to
add an absorbing potential, —iV (2)¢(#,t) to the right hand side of (1.1), with
V(z) = 0 away from the boundary. This potential has the effect of partially
dissipating waves as they pass over it. Thus, as waves reach the boundary, they
are partially dissipated by the complex potential, reducing the reflection. This
approach is far from optimal, but is still the industry standard due to the ease
of implementation, compatibility with spectral methods and simplicity.

A variant on this approach is the PML (Perfectly Matched Layer). Proposed
originally for Maxwell’s equations in [3] and for the Schridinger equation in
[24], it is a variant on the absorbing potential method in which A is replaced
by (1 —ia(z))A (with a(x) nonzero only in a boundary layer) in such a way so
that when a(z) “switches on”, there is no reflection at the interface.

1.0.1 Owur Approach

We propose an alternative approach to absorbing boundaries. We make the
assumption that near the boundary of the box, the solution behaves like a free
wave. We make no assumptions on the nonlinearity, beyond the fact that it
is localized on the inside of the box and locally Lipschitz. In particular, the
nonlinearity could take the form of a complicated time dependent short range
potential V (&,t)4(, t), a polynomial nonlinearity f (|4 (Z,¢)°7 )¢ (Z, t) (for f(2)
a Lipschitz function) or others.

We also assume that the solution remains localized in frequency, that is
1[3(% t) is small off the box [~kmax, kmax]”¥ for some large number k., (the
maximal momentum of the problem, which we assume exists).

Our algorithm is as follows. We assume the initial data is localized on a
region [—Ling, Lint)¥ . We solve (1.1) on the box [—(Lint +w), Ling +w]™ on the



time interval [0, Tsgep)-

By making Tytep small enough (smaller than w/kmax), we can ensure that
Y(#,t) is mostly localized inside box [—(Lint + w), (Lint + w)]Y. Thus, since
very little mass has actually hit the boundaries, very little has reflected and we
have made few errors.

We now decompose the solution #(Z,t) into a sum of gaussians (indexed by
a, be 7N, with g, ko, o all positive constants satisfying certain constraints to
be made precise later):

(@, Taep) = Y ¢(a,5)7r’N/“U*N/?eiko’;'fe*‘f*a“‘3/2"2
(@,6)€ZN xZN
Because 1/3(12 t) is localized on [—kmax, kmax]" 1/)(nTstep)(a75) ~ 0is for |gk0\oo >
Emax. Also, because ¢(&, 1) is localized on [—(Lins + w), (Lint + w)]V, dj(ri,F) ~0
for |@xo|oc > Lint + w.
Thus, we find that:

- —N/4 _—N/2 ikob-& —|F—dwo|3/20>
Y(, Tytep) A E 1/}(575)” /45— N/2 gikob-Z ,—| olz/
|@20|oo <Lint+w

|bko] co <Emax

We then examine the gaussians near the boundary (with |@zg|e > L) and
determine whether they are leaving the box or not (after propagation under the
free flow). This is simple enough to do, since elementary quantum mechanics
tells us that:

. e S o125 2
ez(]/Q)At,]_rfN/40_7N/262k0b-zef\zfawg\z/ZJ

exp (ibko (& — bkot — fiﬂ?o)) . (q’* bkot — ('1'.77(]3)
= XPp

aN/AgN/2(1 + it /a?)N/? 202%(1 +it/o?)

. T = - = 2 2 .
1/2)At g =N/4 5= N/2 pikob- o—|7—dz0l2/20" 1 oyes along the trajectory

Essentially, e’
azxg + 5k0t7 while spreading about it’s center at the rate o~ !.

Then, if a given gaussian is leaving the box, we delete it. If it is not, we keep
it. Some gaussians spread more quickly than their center of mass moves, and
we do not present here an algorithm to deal with these gaussians. We simply
assume that there are not many of these, and so they pose little problem.

Thus, after this filtering operation, the only gaussians remaining are either
inside the box [—Ling, Lint]"V, or inside the box [—(Ling + w), (Ling + w)]¥ but
moving towards [— Ling, Lint)¥ . We then repeat the process, and propagate with
periodic boundaries until 27y, and filter again at this time.

This description is vague, and we will make it more precise later. In particu-
lar, we explain what we mean by “~”, and also provide theoretical justification
of the method.

In particular, we prove rigorous error bounds, subject to some relatively
general assumptions (most of which can be estimated apriori or verified apos-
teriori). That is, for ¢ € [0, Tmax] (Where Thax is some maximal time interval of



interest) we show that:

sup ||X[7Lim,lzim]N(w) (7/’(57 t) - \Il(f, t))”H«; S T
t€[0, Tmax]

where U(Z,t) is our approximate solution, 7 is some prescribed error, and H} =
H*([—Ling, Lint)V) a Sobolev space, with s = 0, 1. We believe that similar results
can be proved for s > 1 without much difficulty, although certain calculations
will be different (most notably remark 4.6 and the exact calculations in section
4.2, see also remark 4.8 for a more precise explanation of the modifications
necessary for higher Sobolev spaces).

1.0.2 Error Bounds

We calculate the error made at each step in the above analysis and then add it
all up to get the global error bound.

For a general time-stepping algorithm (with periodic boundaries and no
filtering), the error bound would take the following form:

sup ||U(t)o(z) — ¥(z,t)|| . < BoundaryError(Tiax)
t€[0,Timax] b

+ HighFrequency(Timax) + LowFrequency (Timax)
+ NonlocalNonlinearity (Tiax) + Instability (Tinax) (1.2)

The term BoundaryError(T,.x) encompasses errors due to waves wrap-
ping/reflecting from the boundaries of the box. For many problems, this is the
dominant error term. It is directly proportional to the mass which would have
(if we were solving the problem on R") radiated outside the box [~ Lin¢, Ling]" -

The HighFrequency(Tmax) part stems from waves with momenta too high to
be resolved by the discretization. The term LowFrequency(Timax) encompasses
errors due to waves with wavelength that is long in comparison to the box. The
term NonlocalNonlinearity (T nax) stems from that fraction of the nonlinearity
itself which is located outside the box. The Instability(Tmax) stems from the
possibility that the dynamics of the solution itself might amplify the other errors
dramatically (e.g. in strongly nonlinear problems).

Our algorithm reduces the term BoundaryError(Ty,.x) only. We show, by a
discrete variant of the gaussian beam method, that if we filter off the outgoing
waves in the manner described previously, the boundary error term can be made
arbitrarily small. The cost is increasing the width of the region in which filtering
takes place.

The main drawback of our algorithm is that it does not provide us the
ability to filter low frequency outgoing waves, that is to say waves for which the
wavelength is longer than the buffer region. This is precisely what we would
expect from the Heisenberg uncertainty principle.

Since the goal of this work is to reduce the error due to boundary reflection,
all the error terms besides the boundary error term are made small by assump-



tion. We provide no bounds on them, since these bound would depend very
strongly on the specific form of g(t, &, ¥ (Z, 1))y (F, t).

Remark 1.1 At first glance, it would appear that an absorbing boundary layer
(either complex potential or PML) would reduce the boundary error nearly to
zero, with the error being nothing more than those waves which it fails to absorb.
This intuition is false, and a counterexample is provided in section 9.2.

The reason is as follows. Suppose we add an absorbing boundary layer
(denoted by A) term to (1.1). Let ¢4 (x,t) solve:

iatd’a(mat) = (7(1/2)A + A)UJIL(T/ t) + g(t= :1_7', d’a,b(f: t))wa,b(fa t)

Let 14.5(z, t) solve the corresponding periodic problem:

iat’l/}mb(x: t) = (_(1/2)Ab + A)¢a,b($= t) + g(t= f: '(/)a,b(fz t))¢a,b(f= t)

It is true that [|¢4(z,2) — Yap(z,1)|| . is small (that is, the box problem with
b

an absorber approximates the RV problem with an absorber). However, it is not
necessarily true that [|¢(z,t) — dJa(m,t)HH; is small, because the RY problem

with an absorber may not accurately approximate the RN problem with no
absorber.

The TDPSF algorithm sidesteps this issue by directly approximating the
solution on RV, and only using the box propagator on regions of phase space
where it is guaranteed to be accurate.

1.0.3 Strong Points

Our method is versatile and general, in the sense that it is merely a numerical
application of the gaussian beam method. Extensions and modifications to other
sorts of equations are likely to be straightforward, although one might prefer to
decompose 1) (&, t) into some other functions different than gaussians?.

In particular, we believe this can be extended without much difficulty to the
free wave equation, replacing gaussians by curvelets [7, 6].

In addition, if the dynamics on the boundary are non-free, we believe our
method can be modified to treat these dynamics effictively. Suppose that instead
of propagating along the trajectory dzg + I;kgt, a typical gaussian propagated
along the trajectory (@, 57 t) instead. We could still apply our method, except
now we would attempt to determine whether (@, vb, t) is leaving the box rather
than @zo +bkot when determining which gaussians to filter. We have no rigorous
error bounds on this method at this time, however we believe they could be
constructed by methods similar to what we do in this work.

Another advantage to our method is that when it does fail, it fails gracefully.
The main mode of failure is for too many gaussian’s to fall into the region where

2More precisely, for a given equation, one should use a family of coherent states which is
also a frame. In addition, the family of coherent states should not make computations too
complex.



we cannot determine whether they are incoming or outgoing®. However, if this
occurs, the algorithm is aware of it and an exception is raised. In addition, if
one can determine what to do with these gaussians, one can catch the exception
and do that. We are currently developing a novel multiscale algorithm that can
be used [37].

We expect proofs of the error bound in cases like this to be simple (albeit
long) variations on the proof we give here.

1.0.4 Our Weak Spots

Our method is based strongly on two main assumptions, which will not hold for
every equation or every initial condition.

The most important assumption is that the solution behaves like a free wave
outside of a certain box [—Lp, LF]N, and we demand that the computational
region encompass this box. If this does not hold, the error bound we provide is
no longer valid. An example of this is the case of a moving soliton which leaves
the box*. The dynamics near the boundary are no longer free, since the free
equation has no soliton solutions.

We also assume the existence of some frequency kmin, which has the following
property. Outside a certain box [~ Lmin, Lmin]”, the majority of the solution is
comprised of gaussians with the property that if @;z¢o > Lmin, then l;;ko > Kmin

(respectively if @;jzo < —Lmin, then I;jkg < —kmin). This implies that any
part of the solution which has moved outside the box [~ Luin, Lmin]” is moving
outward.

Roughly, what this means is that anything which has already reached the
boundary must be moving in the direction of the boundary.

Another difficulty of our method is that it requires a buffer region in which
we filter outgoing waves. This buffer region needs to have width O(k_! ), and
should encompass many data points (in our examples we typically use approxi-
mately 128-512 data points). For comparison, most Dirichlet-to-Neumann based
approaches will use far fewer (just enough to numerically calculate a few deriva-
tives). However, those approaches are typically nonlocal in time, and instead
need to use many data points in ¢t rather than in x.

Regardless, in both cases, the computational cost on the boundary is orders
of magnitude smaller than the computational cost simply to solve the problem
on the interior region. See also [37].

3The other mode of failure is spectral blocking in the frequency domain, a common mode
of failure for spectral methods. This problem occurs when the lattice spacing dz is too large
to resolve the high frequencies generated by the problem.

4Numerical experiments suggest that our method can also filter outgoing solitons in certain
cases, with reasonable accuracy. This is, however, more a coincidence than anything else. It
would not occur if one applied this scheme to, e.g. the KdV equation.



1.1 Definitions and Notations

For the sake of precision, we give definitions of certain well known objects
(Sobolev spaces, Fourier transforms, etc). We do this because most constants in
this paper are calculated explicitly, and the constants will vary depending on,
e.g., how the Sobolev space is defined.

Variables written in bold, e.g. J; (defined below), denote constants which
vary only with the parameters indicated. For the convenience of the reader, an
index of symbols is provided on page 103.

We will solve (1.1) on the region [~ Leomp, Leomp]” ; which is a larger domain
than [—Ling, Ling)N. The extra region [—Lcomp,Lcomp]N \ [~ Lint, Ling)V is a
buffer region in which we will filter the outgoing waves.

Definition 1.2 We define Ay to be the Laplacian on the box [— Leomp, Leomp)™
with periodic boundary conditions.

Definition 1.3 We define U(t) to be the propagator of (1.1) on RN . That is,
U(t) is the map taking o(x) — Y(F,t) where (T, t) solves (1.1) with initial
condition (F,t) = po(x).

For an initial condition 1g, we define U(t|1Yo(x)) to be the mapping 11 (z) —
1 (2, 1) where ¢y (Z,1) solves (1.3) with initial condition ¢ (2,0) = ¢ (z):

1 (7,1) = —(1/2) Ay (Z,1) + g(t, 7, U (1) o)1 (7, 1) (1.3)
Similarly, Uy(t) is the propagator associated to (1.1), but with (1/2)A, replacing
(1/2)A and [~ Leomp; Leomp)™ replacing RY.
Definition 1.4 We make the following conventions regarding notation.
1/p

N
#o= (Y151 forzeRY
7=1

We let d(Z, ) denote the Euclidean metric on RY | i.e. d(Z,7) = |Z — 2. Also,
if A,B CRY, then:

d(Z, A) = inf d(Z,7)
JEA

d(A,B) = inf d(Z,7

(A,B) et (Z,7)

Definition 1.5 We use the notation:
(2) = (1+ [2[2)/2

We define certain constants related to this notation:

Js = sup (x)*/(1+|7]7)
FeRN

J; = sup |v<_,T>|
z (@)



Thus:

Definition 1.6 We define the Fourier transform by:

F(B) = (2m)~N/2 / etk 24z

RN

The inverse Fourier transform is defined by:
F(&) = (27r)7N/2/ efil_c'.i‘d]z
RN

Thus, the operator f(Z) — f(k) is an isometry from L2(RN ,dZ) — L2(RY, dk),

and || (@)l 2 g gz = |1

\?_T/l k>

L2(RN,dk)

Definition 1.7 We define the Sobolev spaces H* = H*(RN) by the norms:

2

(1.4)

o2, |

L2(RN)

N
2 2
1703 = 1 my + 3 |
j=1

We make this particular choice of definition when we compute the constants.
Similarly, we define the Sobolev spaces Hi by the norms:

o2, |

171, = 141 £ s g
. H; ,‘2([7[100"”1’,1(‘0"”)]]\{) j=1 Lz([iLcomvacomp]N)

We define the constant

S

hi =

+1
L2) = sup ((l-l—

keHs $

oA o NES
(R £(F) )/(R)*)

{Erm

sup
feH?
This allows us to relate the Sobolev space we use to Sobolev spaces defined by

using (k).

No matter which Sobolev space we work in, we always let (-|-) denote the
inner product in L2.

Definition 1.8 We make use of smoothed out characteristic functions. Let A
be a closed set and let w be a positive number. Toward that end, we demand
that the function Pj;w(f) have the following properties:

1. P3., (%) =1for i€ A, and P}, (¥) = 0 if the euclidean distance between
T and A is greater than w.

2. 8£ij‘;w(f) exists and is continuous for j = 1..N, k = 1..s.

8. P3.,(%) has minimal norm as an operator from H® — H®.

10



We adopt the convention that Py, (T) = 14(Z), that is, P, (%) = 0 for £ ¢ A
regardless of w.

Definition 1.9 We define m. 4(o, N), m, 5(o, N) and m; (o, N),m; (o, N)
so that

(&) e 1721/ g < m, ,(o, N) + m, ,(o, N)|Z|3
RN

1.2 A Brief Discussion of Frames

Ve 177/ 4 < ml, (0, N) + m), (o, N)|7]3

We first discuss briefly the concept of a frame, which will be crucial to our
analysis. A frame is basically an overcomplete basis for a Hilbert space, in our
case, L2(RY). A framelet decomposition is the tool we use to break up the
solution ¢ (Z, t) into incoming and outgoing components.

Definition 1.10 A frame is a countable set of functions (in some Hilbert space,
e.g. L?) {¢j(@)};c; (for some index set J) such that 3Ap, By such that for

any f € L*(RV):
Ar Ifll 2 < 1K @)1 @)l g) < Br lIfll 12

The framelet analysis operator F is the map f(z) — f € 12(J), where f; =
(fl;(x)).

The individual vectors ¢;(x) are referred to as framelets, and j € J are
referred to as framelet indices.

Definition 1.11 For a frame {gzﬁj(:n)}jel, the dual frame {gz~57(:n)} is the
’ . ’ Jjed
unique frame such that:

$(x) = (F*F)'¢;(x)

where F* : 12(J) — L*(RN) is the adjoint of F. It is the “best” (see below for
an ezplanation) set of vectors such that for all f(x) € L*:

1@ =" (8)11(@)) 85(x)

jed
The dual frame is also a frame, with frame bounds Bgl and A;l.

The framelet coefficients of a function f(z), are the “best” set of coefficients

such that:
fle) =" fidi(x)

jeJ

11



The framelet coefficients are not unique. By “best”, we mean that f; is the
collection of framelet indices minimizing

M7

jeJ

They can be calculated by the formula:

fas) = (6i(@) (@) (1.5)

For a function f(z,t) depending on time, we denote by f;(t) the framelet coef-
ficients of f(Z,t) at time ¢.

1.2.1 Windowed Fourier Transform

As an example, we can let J = Z~ xZ" and let the individual framelets ¢(a B (%)
be given by:

—

‘f)(aj) (Z)=m

For 0 € Rt and xg, kg € RT such that zgky < 27, then the set

{tﬁ(mg) (@) } (@) EZNXTN

is a frame in L2(R"). This is known as the windowed Fourier transform frame
(with Gaussian window), abbreviated WFT frame. We will return to this spe-
cific example later, in section 3. This is the frame we use to build the outgoing
wave filter.

Subject to additional conditions on xg, ky and o, the WFT can also form a
frame in various Sobolev spaces (see Theorem 3.5, proved in [11], and corollary
3.6).

—N/4 ;—N/2 gikob-& ,—|F—dzo 12/202

1.2.2 Phase Space Localization

For the WFT filter, we consider the index set Z~ x Z to be a discrete repre-
sentation of phase space. That is, we consider the point (a, I;) to represent the
point (dzo, gk(]) in phase space.

For a frame that is well localized in phase space, it is simple to characterize
the flow with respect to e'(!/2)2t. Under the free flow, individual framelets

behave like classical particles. For instance, the Gaussian framelet gzﬁ(a ) (%)

travels along the trajectory @zo + tbke when propagated by ei('/2At Duye to
the heisenberg uncertainty principle, the framelet also spreads out at the rate
t/o. When gko > o, it is simple to determine whether the framelet is moving
inward or outward, and delete it as is necessary. Of course, of gk() is very close
to zero, then the spreading will be the dominant mode of transport. This is the
largest source of error in our method.

12



Some other frames also provide good localization in phase space, although
in different ways. For instance, frames of wavelets travel consistently along
classical trajectories, but with the added cost that more slowly moving framelets
are spread out more in space (as opposed to the Gaussian WFT, for which all
framelets have the same width).

It appears very likely that one could replace the WFT frame that we use by
a frame of wavelets, or other frames, provided they have the appropriate phase
space localization properties.

In addition, we remark on one extremely promising possibility for extending
our analysis to hyperbolic systems. It was proved recently by Demanet and
Candes (c.f. [7]) that a curvelet frame allows for a sparse representation of wave
propagators in the high frequency regime. We intend to investigate the possi-
bility of using curvelets to construct a boundary filter for dispersive hyperbolic
systems, e.g. Maxwell’s equations.

1.2.3 Distinguished Sets of Framelets, Framelet Functionals

We now define certain distinguished sets of framelets, and also two relevant
framelet functionals. Namely, we define the per-framelet error, and per-framelet
relevance functions. The per framelet error functional is a measure of the differ-
ence between the propagators e'(!/22* and 7/(t) when applied to that particular
framelet. Similarly, the per-framelet relevance functional is a measure of how
important a particular framelet is to the solution inside the box.

Definition 1.12 For a frame {¢;}, a Sobolev space H® and a distance Lin; (to
be specified later), we define a family of functions, the relevance functions to be:

We now define the set of bad framelets, that is, those framelets which cause
most of the short time error. Ideally, these are the ones we would like to filter
(although this will not be possible).

et — R3 (1) (1.6)

([~ Lint, Lint] V)

Definition 1.13 For a frame {¢;} and a Sobolev space H}, we define a family
of functions, the per-framelet error functions to be a set of functions S;(f) such
that:

ei(1/2)At _ i(1/2) Ayt ¢H - .
( ) ! [~ (Lint+w),(Line+w)] ™Y ]( ) (1.7)

These will be computed for the WFT frame later on.

Definition 1.14 For a frame {¢;}, a Sobolev space H] an error tolerance
e, and a time T (possibly oo), we define the set of error causing framelets

BAD(e,s,T) to be:

BAD(e, s, T) = {j € J|3t < T'suchthat £} (t) > e} (1.8)
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Definition 1.15 The Big Box is defined by:

B(dgB)
= ([~ (Lint +w+Xg (€, kmax; Lint+w)), (Lint +w+X5 (€, kmax, Lim-i—w))]NﬁngN)
X ([_kmax: kmax]N N kOZN)

We define the computational width, Leomp, by:

Leomp = Lint + w + X(€, kmax, Lint + w)

The number Xg (€, kmax, Lint + w) is an extra buffer region needed due to
the widthe of the framelets. We define it precisely.

Definition 1.16 Let Bx = [~ X, X]V, Bx = [-K,K]N for X,K < co. Then
X2 (e, K, X) and K& (e, K)X are the smallest numbers for which the following

estimate holds.
Let X' = X — X% (e, K, X), K' = K — K (e, K). Then:

[£(@) = P (@) < HL@G@)H (/)
% (100 = Py @@ . + | (1 = Py (B ()

rellfll) (o)

We provide a proof that this definition is not vacuous in Theorem 3.19.

We note that when we solve (1.1) with periodic boundary conditions, we will
do so on the box [~ Leomp; Leomp) ™

The set NECC(e, s, t) is the set of framelets which have a nontrivial incoming
component. That is, these are the framelets which will return to the region of
interest, at least partially,. NECC(e, s, T) should be thought of as “incoming
waves”, and cannot be filtered without causing error.

Definition 1.17 For a frame {¢;}, a Sobolev space H; an error tolerance e,
and a time T (possibly o), we define the set NECC(e, s, T) to be:

NECC(e,s,T) = {j € J|3t < T'suchthat Rj(t) > ¢} (1.10)

2 Time Dependent Phase Space Filters

We now describe the TDPSF (Time Dependent Phase Space Filter) in more
detail. We first begin with a motivating example, namely the case where we
consider the semiclassical limit of (1.1).
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2.1 The Motivating Example: Phase Space Filters for
Classical Transport

Consider the following simple Schrédinger equation, with V' (z) a smooth, rapidly
decaying potential.

Oup(a,) = (=h*(1/2)A + V (2)) (7, t) (2.1)

In the limit when A — 0, one can derive the following kinetic equation for
S S o2
p(Z,t) = [(Z,1)["

-

O p(, k,t) = (k- V,)p(E, k1) + (VV(E) - Vi), k. t) (2.2a)

-

p(Z,1) = / p(Z, k. t)dk (2.2b)

This equation is simple because it can be solved by the method of character-
istics. The characteristic curve of (2.2) passing through the point (Z, k) is the
classical trajectory of a particle at the point £ with initial velocity k. Now, sup-
pose that we are considering (2.2) on a box sufficiently large so that V(z) ~ 0
near the edge of the box.

In that case, near the boundary, the characteristic curve at (&, ﬁ) is param-
eterized locally by (7 + Et, I?) Thus, it is easy to determine whether the flow is
incoming or outgoing near the boundary. We merely check whether (# + kt, I?)
is moving in or out of the box. The algorithm is, therefore, as follows.

Surround the box [—Ling, Ling)¥ with an extra region (in the & direction)
of width w. We let Lyug = Lint + w. We assume that the problem is such
that the velocity is bounded above by kmax. Then, inside the region [—(Lin¢ +
w), (Lint + w)]™Y \ [~ Lins, Lint]V, we filter the outgoing trajectories every time
Tstep = W/kmax. That is, letting p(Z, IZ, t) be the density, we set p(Z, IZ, t)=0
at the points (%, k) (with # € [—(Lint + w), (Lint + w)]~ \ [~ Ling, Lint]Y) where
(Z + tE, ﬁ) is a trajectory which is leaving the box in the time interval [0, Tstep)-

Thus, classical trajectories which are leaving the box are deleted before they
reach the boundary, while trajectories which are not leaving the box are retained,
and perfectly accurate propagation is achieved.

2.2 The TDPSF

The TDPSF algorithm is an attempt to perform this procedure for (1.1). The
primary sticking point is the Heisenberg uncertainty principle. We can no longer
localize the solution precisely on outgoing positions and momenta. We can,
however, come close. By expanding the solution ¢ (%, t) in a frame having good
phase space localization properties, we can come reasonably close to

Thus, by using a filter with good phase space localization, we can come close
to extending this procedure to Schrédinger type equations. The only region of
phase space where this works poorly is the region near k= 0, due to the inability
to localize a function only on outgoing trajectories.
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Therefore, the algorithm we propose is as follows.
Suppose we have an initial condition tg(x). The initial condition must be
well localized in [~ (Lint + w), (Lint + w)]™Y, measured in H*.

We decompose g (,0) = ZjeJ Yo ;6;(x). We then split ¢y up into framelets

coming from the regions NECC N BB, NECC® and NECC NBB®.

We remove all framelets outside the set NECC N BB.

It turns out that for a frame with good phase space localization, NECC
and BAD are nearly mutually exclusive. This occurs because framelets, when
propagated under the free flow, almost completely retain their coherence, and
move either into the box or out of the box (but not both). Thus, by removing
framelets outside NECC N BB, we have removed nearly all of the outgoing waves.

Because of this, it is now most likely safe to propagate the remainder under
the periodic flow, since the remainder consists of an initial condition that will
not leave the box in the near future (with “near future” defined to be [0, Tytep])-

The only time this is not true for the WFT is if a significant number of
slow waves have reached the boundary. Every time Ty, we check if this has
occurred. If so, we raise an exception.

When we reach time Tyep,, we go back to step one. That is, taking
Uy (Tstep)Y0,modified as the new initial condition, we again filter off the outgoing
waves. We repeat for as long as necessary.

We now write out the algorithm in the form of pseudocode.

The variable grid is some numerical representation of ¢ (%, t) restricted to
the region [ Leomp; Leomp]” Wwith periodic boundaries. In our implementation,
we store evenly spaced samples of ¢(%,t), but other representations (e.g. finite
element) can be used.

The function box_propagator(grid,timestep) }is some numerical approx-
imation to the propagator U (t), which acts on grid. The exact method of
implementation is unimportant for our purposes, provided it is sufficiently ac-
curate. We use the FFT/Split Step propagation algorithm, but other methods
(e.g. some high order FDTD or finite element scheme for rough problems) can
be substituted.

The function bad_necc_framelet_coefficients(grid) is a function which
computes whether or not there are too many framelets in the region
BADNNECC.

The number Tstep is the time between filterings. The parameters
frm_params are some parameters which characterize the frame. For instance,
with the WFT, frm_params is a tuple (sdev,xs,ks,wb) containing the stan-
dard deviation of the Gaussian, the lattice spacings zq, kp in position and mo-
mentum, and the width of the boundary w.

Finally, the procedure plotter(grid,t) is some procedure which reads the
data in grid and processes it in some useful way (i.e. storing it to a file, plotting
a graph based on it, etc). This must be determined by the application.

Algorithm 2.1 Propagation algorithm

exception CannotFilterException(grid current_grid,
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number current_time)
Tstep, frm_params, tolerance

def propagate(psiO, Tmax, plotter)

grid <- psi0

for j = 0 ... Tmax / Tstep:
fcoeffs <- compute_framelet_coefficients(grid,frm_params)
if norm(bad_necc_framelet_coefficients(grid)) > tolerange:

raise CannotFilterException

grid <- (grid - bad_framelets_projection(fcoeffs))
grid <- box_propagator(grid,Tstep)
plotter(grid, j*Tstep)

return ()

Because all framelets inside the box [—Liyt, L;nt]N are not bad framelets, we
actually do not need to compute them when we apply the function
compute_framelet_coefficients(grid). Rather, we need only compute the
framelet coefficients inside the buffer region, [~ Leomp; Leomp)™ \ [~ Lints Lint]” -

2.2.1 Implementation: FFT/Split Step Propagation Algorithm

The algorithm we have described is, to a great extend, independent of the
particular method of implementation. However, we sketch out one possible
method of implementing it here, namely the FFT/Split Step algorithm.

We fix a grid spacing dz, and timestep DT. The object grid will be an N
dimensional array of size [2Lcomp/dz]”Y. This corresponds to a lattice spacing in
momentum of 27/ Leomp, with maximal momentum 27 /dz. A common rule of
thumb is that if the problem has a maximal momentum k,ax, then dz = 47 /dz
(the extra factor of 2 being put there for the sake of safety).

Let FFT be the Fast Fourier Transform algorithm, and iFFT be the inverse
FFT. Let NLIN(grid) be the numerical implementation of the nonlinearity.

This is the standard split step/Trotter-Kato formula spectral propagator.

Algorithm 2.2 Split Step Propagation Algorithm

def box_propagator(grid,timestep):

for j in O ... timestep / DT:
grid <- grid * exp(i * NLIN(grid) * DT/2)
grid <- FFT(grid)
grid <- grid * exp(i * (1/2)k"2 * DT)
grid <- iFFT(grid)
grid <- grid * exp(i * NLIN(grid) * DT/2)

return grid

Algorithm 2.2 is “spectrally accurate” in z, of order O(6¢%) in time (for
nonlinear problems, for linear problems it increases to O(dt?)), and has cost
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O(MN In M) per timestep (where M is the number of data points in the grid,
per dimension). For this reason it is a popular method of propagating dispersive
waves.

We will defer a discussion on the implementation of the functions
compute_framelet_coefficients(grid) and
bad_framelets_projection(fcoeffs) until after we explain the WEFT. One
possible implementation of compute_framelet_coefficients(grid) is
described in section 3.3.

2.3 Why This Works: A Heuristic Argument

The framelets in in NECC® consist of framelets which are moving out of the
box under the free flow e/(1/2)8% Thus, there is little error caused by removing
them.

For the WFT frame, the framelets in NECC N BB consist of framelets which
are outside the box, but are moving inward under the free flow. If the initial
condition 1 (z,0) is well localized, the only way such framelets can exist is if
waves moved out of the box, turned around and came back. This is extremely
unlikely. Thus, there is little error caused by removing these framelets.

The remainder consist of framelets in NECCNBBNBAD. In general, little
can be said about these framelets. But for the WFT, these consist of framelets
which are moving slowly, more slowly than a certain velocity knin. We make
this term small merely by assuming it to be true. In practice, it may not be,
although we outline (non-rigorously) methods of dealing with this.

We now consider the remaining framelets. Apart from the slowly moving
ones, the framelets in NECC N BB are not coming close to the boundaries of
[~ Leomp, Leomp) Y. Thus, the boundary conditions we have chosen (periodic, in
this case) are irrelevant. This is true for a short time, say a time Tytep.

In the event that the slowly moving framelets in BAD NNECC do reach the
boundary, then an exception is raised.

2.4 Possible Improvements

One obvious improvement to our algorithm is useful for dealing with Hamil-
tonians of the form H = —(1/2)A + V(z) + f(|¢(&,t)]) with V(z) a localized
potential (possibly of long range type). Instead of trying to determine whether
the free trajectory of a given framelet, namely dz +bkot is leaving the box suffi-
ciently fast, we try to determine whether the interacting trajectory v(@zo, I;kg, t)
is leaving the box. The interacting trajectory is the trajectory obeyed by a clas-
sical particle with velocity gk(), moving in the potential V(z). Intuitively, this
is the right thing to do, although we cannot prove this at the moment.

One potential unknown factor in our algorithm is ki, the smallest relevant
momentum. If the problem we are given has an unknown kp;,, all is not lost.
We propose two methods, one simpler than the other, to deal with this case.

The problem will appear as follows. Suppose that at some time NTgep, we
find that the mass sitting on the framelets in BAD NNECC is not small. We

18



can reduce kmin by increasing o, the standard deviation of the Gaussian. The
only cost to doing this is that it becomes necessary to increase the width of the
buffer region w.

We also are investigating a multiscale algorithm, utilizing multiple compu-
tational grids which accurately deal with the slower frequencies. More precisely,
we use a tower of grids, having width Ling, 2Ling, etc, with each grid having
lattice spacing Az, 2Az, etc (so that the computational complexity is linear
in the number of grids). Then, if slow waves reach the boundary of the first
box, they are filtered, and placed on the interior of the 2°'nd box. They are now
at the physical position L, and can propagate an additional distance L before
leaving the second box. If the reach the edge of the second box, they can be
placed in the third, and so on.

Numerical experiments suggest that this result can dramatically decrease the
error due to slow waves (by a factor of 50 or more), and we plan to investigate
this further.

2.5 A word on Exceptions

We explain exceptions briefly for readers unfamiliar with them.

An exception is merely a signal to the program to break out of the current
scope, and move upwards through enclosing scopes until it finds itself inside a
try block. At this point, control is given over to the corresponding catch block.
A simple example:

Exception DivByZeroException (num)

def f(x,y):
if x ==
raise DivByZeroException(y)
return y/x
try:
print £(3,z)
catch DivByZeroException e:
print ¢‘Cannot divide by zero’’

In this code, if z!=0, the output would be merely be 3/z. If z = 0, the
program will merely print “Cannot divide by zero” and then continue.
Consider now this code.

print £(3,z)

This program will terminate if z=0, and any commands after printf (3,z) will
not be executed.
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The purpose to using an exception is to allow control to move upward
through enough enclosing scopes until a scope is found which is capable of deal-
ing with the exception. If none is found, the program terminates. This avoids
cluttering the code with many if then statements to handle error checking.

3 Windowed Fourier Transforms and all that...

In this section, we review some basic results on frames and the windowed Fourier
transform. More detailed information can be found in [11, 12, 14], for example.

3.1 Basic Definitions and Theorems

The discrete windowed Fourier transform frame is the standard frame of canon-
ical coherent states. We use it because of it’s excellent time and frequency
localization properties if a Gaussian window is used.

Definition 3.1 The Gaussian WFT frame is the set of functions

o _ _ U S Do 2 2
{15( *(’I‘) T N/40_ N/2€1kgbme |E—dzol5/20 }
(@,b)eZNx7ZN

ab)

for some xg, ko, 0. To be a frame, zoky < 2w, otherwise there exist vectors
orthogonal to the span of the WFT frame. The dual frame to the Gaussian
WFET frame is also a WFT frame, given by

{eikog-a?g(ff ('z‘mg)} .

(@,B)eZNxZN
for a certain § € L>(RYN) (clarified later).

We will refer to ¢(575) (Z) as a framelet localized at (@xg, gko) in phase space.
When we refer to the position or velocity of a framelet, we are referring to dzg
and I;kg, respectively.

The following theorem establishes that the WFT is a frame, in the special
case when zoky = 27/M, for some M € N. The number M is called the
oversampling rate. It also explicitly provides the frame bounds.

We remark here that throughout this paper, we will always take zoky =
27 /M, with M an even integer. We do this in order to use both theorem 3.4
and also theorem 3.11 (which is stated later).

We conjecture that a similar result holds for M € (1, 0c). The assumption
M € 27 is made for algebraic simplicity, and very likely is unnecessary.

Definition 3.2 The Zak transform is the isometry Z : L>(RV) — L2([0, 1]V x
[0, 1]N) defined by:

(ENED =207 3 2™ ED (g (3 1) (3.1)

lenmN
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and for ¢(t,8) € L*([0, 1]V x [0,1]V):
2@ = 2 / ¢~ 2miE17/w0]) g (F, /o) dt (3.2)
0,1]

Note that (Zf)(f,5) is 1-periodic .

The Zak transform will be used to diagonalize the operator F*F' in theorem
3.4. We first state some results concerning the 65(z|7), which are necessary to
proceed.

Definition 3.3 The elliptic function 05(z|7) is defined by:
O3(z|7) =1+2 Z (303(271'l2)ei’"l2 (3.3)
I=1

It has the equivalent definition:
H - z27rnr 1+€(2n71)iﬂ7627riz)(1 +€(2n71)iﬁ7672ﬂiz) (34)

It can be analytically continued in z by the recurrence relation:

05(z + 7,7) = e "7, (2, 7) (3.5)

Using the Zak transform, we can now diagonalize the operator F*F. By com-
puting the inf and sup of the diagonalized operator, we can obtain the frame
bounds.

Theorem 3.4 (Daubechies and Grossman) Let F' be the framelet analysis
operator for a windowed Fourier transform. Suppose that for some integer M >
2, zoko = 2w /M. Define:

2 2
S(’I‘()IMIF:;) = ‘[Ze*m /2]({7{)‘

- (%)N > |3 e (2wl (- M) ) exp <—T%(g_52>

7€{0,..M—1}N |jcy7N

2.2
z e lsl70 7 7 T3
- N2 E: ”93 _+Z_-
™ 2m

7€{0,.. . M—1}N j=1
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Then:

[ZF*FZ ! f|(E,5) = S(x0, M, 1,5) f (£, 5) (3.7)
This implies that:
Ap = inf S (20, M, £, 5)| (3.8a)
(580N +N
BF = sup |S($0,M,t_t§')| (38b)

(5. €0,V +N

Proof. This is proved in [13] for the one dimensional case, where 0 = 1. The
multidimensional follows by noting that:

N
S(;UO:M:{:E') = H S]d(QZO:M:{hgj)
Jj=1
The case when o # 1 is recovered by scaling. O

The next theorem is taken from [11]. It shows that for a sufficiently over-
sampled frame, the WFT is a frame in Sobolev spaces as well.

Theorem 3.5 (Daubechies,[11]) Recall the operator:
F*Ff(z) = Z e g(x — axg) (e g(x — azo)|f(z))
(@,b)EZXZ

where g(x) is either e~ /2 or the 1 dimensional dual window §(x). The operator
F*F is bounded above and below, in H® and H™*%, provided the constants As(g)
and Bs(g) (defined below) are strictly positive. This implies that if As(g) and
Bs(g) are strictly positive, then the GWFT is a frame in H*(R) and H*(R).

As(9) [[(0) = F (@) 1o < [[(Ba) *F*Ff(2)]| 2 < Bs(g) [(0a)** f ()],

We must first construct some auziliary functions. Define:
m(g; ko) = inf > |9(k + bko)|’ (3.9a)
beZ
M (g; ko) = sup Y _ [g(k + bko) [ (3.9b)
2€R ez,

Define, for s > 0:

By (k') = sup [(R)F(k + k) ** Y " [§(k + bko)| |g(k + bko + K|
k

bezZ
As(g) = i—z m(gika) — Y (85 (2ma/20)B; (~2ma/z0))"? (3.10a)
I a0 |
B,(g) = i—: m(giko) + Y (85 (2ma/20)B; (~27a/z0)) ' (3.10b)
I a0 |
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Corollary 3.6 In N dimensions, we find that

H2 (9) |f (@Dl gee < NFFF(@)] oo < HL(9) 1F (@] s

where
H’ (9) = NBo(9)" ' Bsl(g) (3.11a)

H’ (9) = NAo(9)" " As(9) (3.11b)

Thus, in H*(RN) and H *(RN), the WFT is a frame with frame bounds
H® (g) and HY (g), provided they are both positive.

Proof. We want to compute upper and lower bounds on:

N
IF*Eg@)| e =D [[(1+ (i02,)) F* Fg(#)]) .2

j=1

To the j’th term of the sum, we apply theorem 3.5 in the j'th direction. This
pulls out a factor of As(g). In the directions 1...5 —1 and j+1...N, we do
the same thing, which pulls out a factor of Ag(g) (since there are no derivatives
in that direction). We then add up over j = 1...N. Thus we obtain the lower
bound. The upper bound is done identically. O

Remark 3.7 Asone can see from table 1, even for a frame which is oversampled
only by M = 4, the WFT is a reasonably tight frame even in H?, where it differs
from being tight by less than 10 percent. In practice, for filtering outgoing waves,
we will often want a higher oversampling rate to ensure good decay of the dual
window, so we expect this will not usually pose a problem.

In fact, we believe this bound is suboptimal, and conjecture that the WFT
is a frame in any Sobolev space. But we do not know how to prove it, although
the result can probably be tightened using the Zak transform.

As Bs Bs/As
3.853 | 4.147 | 1.076
3.852 | 4.148 | 1.077
3.849 | 4.151 | 1.079
3.836 | 4.164 | 1.086
3.787 | 4.213 | 1.112
3.600 | 4.400 | 1.222
2.865 | 5.135 | 1.793

O UL W N = Of®

Table 1: Frame Bounds, as a function of s, for a particular GWFT frame. The
parameters are 0 = 1, g = 1, kg = n/2. For s = 7, the estimates break down.
This table is taken from [11], where it is table VI-A.

We make another observation, about the Sobolev norms of framelets.
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Definition 3.8 We denote the per-framelet energy by:

N 2
s 2 _ s (7
(Mizz) —;‘%‘f’(a,b)(m) L) (3.12)
0 —
Also, M(aj) =1. 2
Note that M(()a,g) = 1. We have the relation H¢(675) (%) b (M(()E,E))Z +

(M¢

)2 =1 5 )2,
@) =1 Mig)

Proposition 3.9 The framelet energy is bounded by:

N 1/2
i S 6 (Z(QU)S(exps(\/ﬂz}’kko))2> (3.13)

k=1
1/2

S' 27
f, = e—2c0s(7)q ) 3.14
- ( / . (3.14)

The function exp,(z) is defined by:

s i
expy(z) = » = (3.15)
— ]
Jj=0
- s - s—1 N
Thus, (M, ;)* < (£/5) ‘bko +0 <bk0 ) as bko‘ = oo,

Proof. We begin by computing in 1 dimension. We neglect the space transla-
tions, which will not effect the mass.

Eﬁeib’“”e*wz/m72 = Z <S> ('bko)je“”““w&f*je*wz/m’2
j=0
= efMhory " <S> (ibko)I (=20) D2 H,_i(x/V20)e = /27" (3.16)
J

J=0
We use the contour integral representation of H,(z) to write:
S

(3.16) = ehor y (;) (ibko)? (—20)~=/2 (5 — 4)!

j=0
x/ o (@/V2g—2) ~(s—)-1 B
|z]=1 2miz
. 2 d
:e’bk““s!(fQU)*s/Q/ eXps(f\/20’6]{702)67('1/\/5”72) 27(371)2—2: (3.17)
JIz=1 iz
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We multiply this by it’s complex conjugate, and integrate with respect to x:

/[(s!)Q(gg)S/z_] /H exp,(—V20bkoz) exp, (—V20bkot)

o (@/V20-2)? o (o) VIo-)? —(s-1) B2 (oom) |
2miz 2mit

:/ [(s!)Q(QU)S/Z_] /H exp, (— V3o bkoz) exp,(—v/2obkot)

o (2/o—(t42)) ~2tz ,—(s-1) d? (51 dt. o
2miz 2mit

:/ / </e(z/a(t+z>)2dw>
[z|=1 J]t]=1

d dt
(s1)2(20) " exp, (—V20bkoz) exp, (—V20bkgt)e 22z~ (571 F 4=y O
2miz 2(7rzt )
3.18

The integral in z is independent of the values of ¢ and z. Thus:

(3.18) = (/e“?‘/”Qdm> (s!)2(2a>s'/z_] ./t_l
dz (s 1y dt

exp, (—V20bkoz) exp, (—V20bkot)e 22z~ (571) ¢ — (3.19)
2miz 2mit

We bound the integral by the L' — L duality, to obtain:
‘(319” — /(6;€ibkgzefz2/202)(a;efibkgzefwz/Qaz)dm

< Hexps(f\/ 20bkqz) exp,(—V20bkot) H

L~ (ds/2mis,dt/2mit)

N Hethzzf(sfl)tfsfl

L' (ds/2mis,dt/2mit)
27

< (s1)%(20)* (exp, (V20bky))? <(27r)] / 62005(9)d9> (3.20)
0

We moved from the second line to the third by computing:

/ / |€72t227s71t7371 iﬁ
J|z|=1 J|t|=1 27t 27t

2 2m 2m 2
= (2m)? / / e 209 agdg = (2m) > / / e 2 drdp
Jo Jo J0 Jo

2m
— (27()71/ 672 COS(T)dT
0
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To finish, we compute:

- 2
9° 7T7N/40_7N/2Pik0 -ief\a?fﬁmg\g/%ﬁ dz
- > > T

This is what we wanted to prove. O

In this subsection, we describe some properties of the WFT frame that we
use at various points.

3.2 Dwual Window

We now characterize the dual window. Recall that the dual window is the
unique function such that

i@= Y (@ TGE  ding) ) a N NIkl 7|l

(@,b)eZNxZN

for f(z) € L2(RY).

We show that the dual window is exponentially localized in position and
momentum, and calculate the constants explicitly (this is theorem 3.11). Our
results only apply when M € 2N, but this is merely because the algebra becomes
simple in this case. It appears highly likely that similar results will hold for M
not an even integer.

Our result implies that as M — oo, the exponential decay rate of g(z) grows
without bound. This is to be expected, since the dual window is converging to
a Gaussian in this case.

The fact that §(z) decays exponentially is also argued in [12] but the precise
dependence of the constants on xg, kg,o is not pinned down there (and the
argument there does not use the Zak transform).

We state first a technical lemma.

Lemma 3.10 Let M € 2N. Then S(z¢, M, t, 5) reduces to:

S(zo, M, t,5) =
(M%)N > exp (*m%[(-‘?f 52]) ﬁ 6;(2n M |iz2M? /47)  (3.22)
vr lezN i

26



Proof. Consider the sum in (3.6). We can compute:

3 3 exp (2m'f- (- F/M)) exp (‘Tw%(g_ 1”)2> _

7e{0,.. M—1}N |jez~

= Z [Z exp (27T7Zf- (t — F/M)) exp (TT%(C?I_Q)} X

7e{0,.. M—1}N |jezn

LEEZjN exp (~2miit - ('~ 7/M)) exp (—Tfﬂﬁ(g ﬁ)aﬂ
)

= Y T Y e (Qm:(zlﬁ)-(tl 7/M)) x

7e{0,..M—1}N jczN GenN

exp <7T’3((§ 2 + (3 - ﬁ)2)> (3.23)

For simplicity, in this calculation, 7? = Zf’:] 7. Note that we do not take

absolute values or complex conjugates anywhere, and thus our result is analytic.
By passing the sum over 7 inside the other two sums, and noting the follow-

ing:

D oo, -7 ¢ Mz)N
FE{O’%\:/IHN exp (72m(l — ) - (r/M)) = { MY (f— i) € (MZ)Y

We can then set 7 = | + Mk. We then find:
(3.23)= > Y >
jezmN RneZN 7e{0,.. M—1}N
- . —x2 . .
exp (27ri(l —) - (t— F/M)) exp (TO((E'— )+ (35— ﬁ)2)> =
MYy

iezN kemN
= — 7.7,'2 - - -
exp (2m’(Mk) (t - F/M)) exp <TO((§_ N+ (F—1- Mk)2)> =
MY 3" exp (Qm:MlZ- E) 3 exp (fmg[(s?f [~ MFE/2)? + M2122/4]) (3.24)
kemN iezN

This is true whether M is odd or even.
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Now if M is even, then M/2 is an integer. Therefore:

> exp (“ad[(3 [ ME/2)? + M2 /4]) =

lenN

exp(—z M2k2/4) Z exp (*mg[@* 52])

This follows since the latter sum is merely an integer translate (in l_j of the
former. But since the sum is taken over all Z", integer translates do not matter.
Then we can simplify (3.24) even further to:

(3.24)

=MV Z exp(—xz2[(5 — 1_32]) Z exp(?mﬁMlZ- t) exp(fmgMQE2/4)

lemN kemN
N
~MV [ 3 exp (—xg(g— 1)2) [T 6: (2xM; liz3 M2 /)
lennN Jj=1

We now multiply by (zq/+/7)" to recover S(zg,M,t,s), thus proving (3.22).
(|

Theorem 3.11 Let xoko = 2m/M for M € 2N. Let g(%) be the dual window
to the GWFT. Then §(¥) satisfies the following bounds:

N
@l < (2)" a4 T e (-200) = (2) 4 ol e

nezZN
(3.25)
Letting & = (a1, ...an) be a multi-index, we find that:
023(#)| < g(xa, ko, N, @)e " (70k0)l7hs (3.26)
When s is a scalar, we will let g(zo, ko, N, s) = g(xo, ko, N, (5,0, ..,0)).
The decay rate r(xq, ko) is given by:
I'(21307 ko) = ZEOM/S’ITO' (327)

The constant g(xo, ko, N, s) is defined below. We must first define the fol-
lowing auxiliary functions:

oE9 = 12 1E5) = (2) T e exp(-ayli - Ta/e?) (3:28)

iezN
QZS(t - 277 ﬂf/fﬂo)

Muzor /2 (3, e~ (2 1w0)?/0%) f3 (2 Mt |iz3 M? [Amo?)
(3.29)

F(:Uo,M,t72E) =
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¢(f B 777 T/TO)
Gz, M, 1, 2) = L\ _ 3.30
0 M) = (e e 1) 6y MG M fre?) )

Here, 05(z|7) is one of Jacobi’s theta functions (described in the appendiz). The
notation 03 . signifies 03 ,(z0|T) = 0.03(2|7T)| =2 -
We can now define the constant term:

N
g(zo, ko, N, &) = H <$8/201/2em31\4/8”2 ||8§jF(CUO= M, t,z) ||L°°
j=1

o1/2

i = el o Glan Mt |G

Proof. In this theorem, we mainly do calculations on the dual window. We
perform the calculations in 1 dimension, and then note that:

9(3) = Hgm(:ﬁj)

In one dimension, we find that (dropping the 1D subscript) the dual window
can be computed (recalling that ¢(t,s) = Ze = /2

§(z) = ZVZ(F*F) e /2 = 2715 (w0, M, 1, 5) ' 4(t, 5)

— [ o)
YO Jo S(mo, MLt x/20)

dt (3.32)

We also assume o = 1, for simplicity. To do the calculation when o # 1, we
merely scale the result.

Bound in L™

To bound g(z) in L, we need only bound the integral. Note that
S(xg,M,t,x/z0)"* is bounded by A;l (by theorem 3.4). Thus, we obtain the
L°° bound:

13@) 1 1 < 20" AR 180t )| 1 (0,172t

Shifting the Integration Contour

Here we work in 1 space dimension. We then observe that the §(#) =
H]’N:] 91a(7;).

To determine the decay of the dual window, we move the contour of inte-
gration in (3.32) up from [0, 1] to [0,1] &+ iy (depending on the sign of z, for
simplicity we suppose x > (). The constant is chosen to be v = izgM /872, due
to the fact that 63(z|T) obeys a recurrence relation with this period (see (3.5)).

The endpoints do not contribute to the integral, since S(zq,M,t,s) and
¢(t,s) are l-periodic in ¢. Thus, the integral in (3.32) becomes:

o—2myla/o] ,1/2 /1 e 2mtla/zol gt — iy, /o)
l 0 Jo S(zo, M, t — iy, x/xp)

dt + Residues (3.33)
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Using (3.22) in one dimension, we find that:

S(xo, M, t,s) = Maor /2 (Z em3<-”>2> 03 (2nMt|izaM? /41)  (3.34)
l€Z

We now need to find the zeros of S(zg, M,t,s) in the region 0 < Rt < 1,
0< St <.

The product formula (3.4) for the function #3(z|7) implies that f5(z|7) =0
only when (2n — 1)inT £ 2wiz = —7i + 27ni for some n € Z, and all zero’s at
these points are of first order.

Using this and (3.34), we find that the relevant zeros of S(xg, M, t, s) occur
at 2rMt = 1/2 + j — iz2M? /8, with ¢ € [0, 1]. These are

t; = (j+1/2)/20eM + izgM /167>

with j =0...|27M — 1/2].
The residue term therefore takes the form:

Residues = wé/Qe’(ng/m”) [z/z0]

[27M—1/2] e i2mtila/Tol gt a/xg)

Muzr—1/2 (3, e~ (#7120)%) 2eMb; . (2w Mt [iz3 M? [4r)
(3.35)

X
=0

Here, 03 .(20|7) = 0:03(2|T)|2=2,- ‘
We combine these two results, and note that 3 (z47|7) = e 7(722)03(z, 1)
to obtain the following expression for §(z):

2 9 .2 ! ,77‘27'-“?’/?’“ t—aiv,x/x
i) = el i [
0 o, M, t,x/x0)e

ﬁ’]/2m61/2e’(ng/]6”) le/zo) [27TM—1/2] e—i2mRt; (/o] o(

I (ype @ )

tj: T/TO)
B2 (27 ML, [122M? /47)

(3.36)

Calculation of Derivatives
Let us define the following two functions:

ot — i, /o)

F -M. =
(z0, M, t,2) S(xo, M, t,2/30)
= ot — iy, x/x0)
Mazor /2 (32)ez e (@7 10)%) O (2rMt|izgM? /4r)
G(zo, M, t,z) = Ot — iy, x/xo)

(Zlez ei(mflmo)g) 05, (2rMt; |7T(2]M2/47'r)
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Then we can rewrite (3.36) as follows:

1
§(z) = e~ @EM/Em Lo /0] 41 /2 a3 / e 2mt 1 /70] p(po MLt ) dt
0

o172 [2eMo1 /2]
Mo T2

SN2 ‘ G(zo,M,t,z) (3.37)
7=0
Calculation of the Decay Rate
Taking (3.37) as a starting point, we can now calculate the decay rate of
g(z). We use the simple fact that:

e-olr/zo) < grg—an/mo (3.38)

The decay rate can be computed simply enough, taking absolute values of (3.37)
and using (3.38):

00 g(x)| < e (moM/B)a (a:;/?eﬂ"%“/f‘ 107 F (20, M, £, 7)||

_ —1/2
x 1/2330 /

o |27 M — 1/2] (|07 G(z0, M, t, 2)|| [ )
This is what we wanted to prove. To obtain the result in NV dimensions, we take
products. To obtain the result when o # 1, we scale. O

Corollary 3.12 If we interchange T and E, xo and ko, and o with o~ every-
where in the above theorem, then the conclusion still holds.

Proof. The Fourier transform og the WF:I; is still a WFT. The Fourier trans-
form of the window function e~ 1#°/2 ig ¢~ I¥I°/2  Therefore the same result holds
with & and k interchanged. O

3.3 Computation of the WFT Coefficients: A Practical
Algorithm

Now that we have discussed the dual window, we present here an algorithm for
computing it (taken from [12]). We also present the algorithm for computing
the framelet coefficients.

The algorithm is basically nothing more than scanning the dual window over
the function, and Fourier transforming at each point @z for @ € Z". However,
due to the spatial decay of §(Z) (c.f. theorem 3.11), we can truncate the domain
to a small box surrounding @zg.

Algorithm 3.1 Calculation of Windowed Fourier Transforms
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def wft_coefficients(grid, arange, brange):
NxN_grid wft_coefficients
for a in arange:
xbuff = multiply(exp(-(x-a*xs)~2 / (2*sigma~2)), grid)
kbuff = FFT(xbuff)
wft_coefficients[a][:] = kbuff
return wft_coefficients

3.4 Phase Space Localization

The WFT allow us to define a concrete realization of phase space. From here
onward, we w1ll consider ZN x Z" to be a discrete realization of phase space.
The vector (d, b) € ZN x ZN will represent the point at @zq in position, and bkg
in momentum.

With this in mind, we can now construct phase space localization operators
very simply.

Definition 3.13 For a set F € ZV xZN, we define the phase space localization
operator:

Pri(z Z by bai) () (3.39)
(a,

Intuitively, one expects that phase space localization based on the WFT
will correspond to the usual phase space localization based on position and
momentum projections. Of course, the correspondence is fuzzy, and we do
make small errors (which we quantify).

Also, for convenience of notation, here and later, we name the sets of high
frequency framelets and low frequency framelets.

Definition 3.14 For K € R, we define the set of high frequency and low
frequency framelets, respectively:

-

HF(K) = {(a, )€ ZN x ZN - kolbloo > K} (3.40a)

-

LF(K) = {(a, B) € ZN x ZN : kolbl oo < K} (3.40D)

First, we show a result concerning high pass filters, namely that a high pass
filter constructed from the WFT is very similar to a high pass filter constructed
from the Fourier transform.

Remark 3.15 We remark at this time that we do not believe our estimates
are optimal. We have taken a number of shortcuts in the proofs of the various
theorems in this section. We conjecture that these results can be improved
significantly by a more careful analysis.
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Theorem 3.16 Let PgK,;kO(l_s') be a projection operator onto the set [—(K —
k*(e)), K — k*(e)]N. Then:

[ Pu o) £ ()| .
< Ili(g(jg)IIIS(e,m2/”2)

(1= PR o (BD ()

o TElF @l (3.41)
The constant k*(¢) is defined by:
k’(e) = Ai4n€fN {ng : \/Eg(k(),.’li(),N, s)
(14 30)(a0/2m) ™ (m,5(0, N) + (0, ) + (2 + Ta) (0 /27) )]

N s
. d -
X Jg (1-}-]{}8 E <zl_d27,> )aM,N(z) Se}
) Z;=e—r(ko.70)ko

= O(lne]) (3.42)

with the generating function ay 5(2) defined below, in lemma 3.17.

Before proceeding with the proof, we state a technical lemma which we use.
Lemma 3.17 We have the following bound for the discrete convolution:

2

Z <a27r/$0>8670'2(62ﬂ'/$072)

aezN
< (14 3,)(w0/27) "N (4 (0, N) + (0, N))
+ (24 Ja)(zo/2m)~N)(2)” = O((2)*) (3.43a)
sup S (Bko — Ryre ko) Bho—E,

E| o <ko | ko | o> M

N d s

<Js (1 + kg Z <Z_;d_5;> > ay s (2)
i=1 zj=e—r(ko,70)ko

= O(M3e kom0l My (3 43])

The generating function ay n(Z) is defined as:

N N
1 . o
ann(2) = | [] 7 > 1+ > Y (3.44)
j=1 J 1<j<N j<i<N
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Proof of Theorem 3.16. We proceed in three steps.

Setup

We begin by decomposing f(z) into high and low frequencies, and applying
the high pass filter:

[ Pur i) f(@)]] .
= “PHF(K)PgK,;O(E)f(m)

. + HPHF(K)U - PJgK,o(E)]f(T)HH

The first term is bounded by Hi(g(i;’))Hf(e’zz/"z) ‘P]gk'?O(E)f(E)HH , thus

it remains to bound the second. Let h(xz) € H~* have norm 1. Then:

x| S GE 2 Bko)e o R | dzak (3.45)
koﬁLﬂ>K

Between lines 3 and 4 we used the change of variables, k' =k + Z We use here

the fact that: .
S = Y 5z a2 /)

aezZN aczZN

Substituting this into (3.45) allows us to do the Z integral relatively simply. We
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(3.45))" = ‘ / B S (5(k+ a2n/m — Bhg)e o

<y [[A@) |- 1f(@)]17e
2
X sup >y G(E — blo)(k — @2 Jzo) e (F-a2m/zo—bko)”
k| _<K-X*(e) GELN kolB|_>K
(3.46)

Thus it remains to bound the sup term in the last equation.

Bounds on the Sum

We consider this term, dropping the \|2 since everything underneath is
positive. We obtain:

sup Z Z gk — bko) (K — (_1'271'/.7:0)'9‘9,7”2(’;752”/”‘“75’“’)2

k| <K —k(e) A€M kolb| _>K
= sup Z g(k — bko) Z (k — c'i27r/:l?0>sef"2(Eimw/m7Ek0)2
< 5 (e) kg|5|m>K aczN
(3.47)

Thus we find, after applying theorem 3.11 in order to bound the 5( -) terms:

(347) < sup g(ko,z0, N, s) Z efr(ko’m“)‘gk“’ml
K] K-k () kolf|_>K

X Z k — a@2m/zg)’e” o (ka2 /2o —bko)* (3.48)

aeznN

We bound the sum over @ term using lemma 3.17 (stated just after this proof),
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in particular (3.43a). This yields:

(3.48) < glko, 70, N, 5)(1 + Ja)(r0/2m) " (me,s 0, V) + ml, (0, )
X sup Z o T (ko.20) [Bko K|

[l <K—¥() o5 >k
+g(ko, z0. N, 8)((2 + Ja) (w0 /21) V)
x sup Z (bko — E)Sefr(ko’m“)‘gk‘]*% (3.49)

[l <K 5] >k

We observe now that for [k|s < K — k*(¢), we find that [k — bko|s > k*(e) if
kolblo > K. Thus, we can continue:

(3.49) < g(ko,zo, N, s)(1 + Jd)(330/27r)*N(mc7s(U7 N) + m'c’s(a,N))

% sup Z efr(kg,zg)‘l;kgflzh
[F] o <K =) |5 kg oo >k ()
+ glko, 70, N, 5)((2 + Ja) (w0 /2m) ™)

X sup Z <gk0 — E)seﬂ(k“’m“)|gk°7%
[B| o <K =K (O) |7 ko | >k (o)

< glko, @0, N,5) (1 + 1) (0/2m) ™ (m (7, N) + m (0, V)
(24 Ta) (o /2m) )]

X sup Z (bko — E)Sefr(ko’”)‘bkrk‘l (3.50)

F| o <Ko ko | o >k ()
To get from the first inequality to the second, we used the fact that (gko —E)S >1
to combine the sums®. Then we used the fact that the sum is invariant under

translations on the lattice koZ™ to reduce the domain of the sup.
We bound this (applying 3.17, in particular (3.43b)) as follows:

(3:50) < glko, 70, N, 8) [(1+ 3) (w0/27) " (.o, N) + m, (V)

F 2+ Jd)(mo/Qw)*N)}

N

s - d ° -
X Jg (1 + k(] Z <Zld_27,> ) aks(F)’s(z)

i=1

(3.51)

z‘j:e*r(’fovwo)ko

We note that the bound in (3.51) is O(k® (€)?e T (koz0)k*(e)),
Conclusion

5This is a suboptimal result, but differs from the best result based on this proof strategy
only logarithmically.
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We now finish the argument. We observe that (by (3.45) and (3.46)):

2

|(B@)Pur 011 = P, 0 (B (@)
< by [|A@) |- 1 @)I17- [(3:51)° (3.52)

for any h(z) having norm 1 in H~*. Thus:

HPHF(K)[I*P%K,;o(lz)]f(m)HH <Vh; ||f(@)]] . 1(3.51)]
- (Vh_ gl 70, N, 5) [ (1 + Ja) (w0 /27) ™ (me,s (0. N) + (0, N)
+(@+ ) (o /2) )]

N s
s S dy -
x Js (1 + kg Z (215> > Ak (e),5 (%) > 1 @)l e
? 5.797-(’90 z0)kg

= O(K*(e) e om0 K0 |1 £ () | .

But k?(e) is defined precisely so that this is less than €||f(2)|| ;.. Hence we are
finished. 0

Proof of lemma 3.17. Divide and conquer.

Equation (3.43a)

We interpret this as a Riemann sum, approximating an integral, and calcu-
late.

Z <a27r/$0>s —o?(@2n/xo—2)?

aeznN
-N s _—o2(d—3) —o%(@a-2)*? =
< (mg/2m) </ (@)°e ‘V da)

R 1

< (330/27r)*N/ (@°e o%(a—2)? da + (zo/27)~ / ‘V<a>s‘67”2(572)2d(_j
RN RN

+ [ (@* -’ da

RN

<(1 +Jd)(T0/27r)*N/ (@ e T qg
JRN

x0/2m) N a)’
+ (/2 [ (@
< (14 30)(z0/2) ¥ (mes(o, N) + (0, N)) + (24 Ta) o/ 2m) M) (2)

Equation (3.43Dh)
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First, we consider the sum over [_;j > 0 only, and pull out a factor of 2/V:

Z (bko — E)se*'(’“m%)ﬁkrk\l
|F—Bko|oe>M

< 2N Z <Ek‘0 - k':>sefr(ko,mg)‘gkgfl_g‘|l

|k —bko|oo> M
EjZO

<2V ST I (1 [Bho[3)e T Ror0lThol (3 53)

[bko |00 > M — ko
BjZO

The last line follows because |E|loe < ko. We will now represent the sum by
a generating function, analytic jointly in the variable Z. We will evaluate the
generating function at 2; = e "(ko.zo)ko 6 obtain the bound.

Note that:

N N o,
)DIEID DENED DR | LI | JR
] E ] Lz Uit
o] _>m b; >0 |b] _<m j=1 j=1
b;>0 b;>0
N
->M >M
- Hl,z-h Zi |1+ Z Zi = aum,s(?)
i=1 J 1<j<N J<i<N

Then observe that multiplying under the sum by l?f is equivalent to applying
the operator z",;% to the generating function. Thus:

ST (Bhoyre ko) Tl < §™ g <1+k02b5> —r (ko) Bho,

i ik
b0 5;>0
(1 + kS Z <zi)> ant.s(2)
7, ¥
z;=e—x(ko.z0)ko
= O(Mse*l‘(kmwo)]\/[)
Thus we obtain the bound we seek. .

Remark 3.18 Later on, we will make certain demands on the framelet coeffi-
cients of the wavefunction ¢ (Z,t). One assumption will demand that

||PHF(K)f(~7f')||H5 be small. The assumption is formulated in that way merely
for technical simplicity. Theorem 3.16 will allow us to use the simpler statement

that ‘POE >K;k0(l_c’)f(a:)‘ to verify this assumption.

Hs

38



We now state a theorem regarding the phase space localization of the Gaus-
sian WFT. The theorem says that if function f(z) is small outside the box
[~ X, X]V x [-K, K]V (in phase space), then f(a ) are small outside a some-
what larger box

X~ X*(e,K), X + X°(e, K)] x [ K — K*(e, K), K + K*(e, K)]

(with X?*(e, K) and K*(e, K) given below).

This result is an extension of theorem 3.5.2 from [12]. We extend that result
to NV dimensions, and an arbitrary Sobolev space, while also pinning down
the constants precisely. However, we use the gaussian WFT frame specifically
(with even integer oversampling), while the aforementioned result works with
an arbitrary window.

Theorem 3.19 Let Bx = [—

= [-X, KN for X,K < oco. Then
letting X' = X — X% (¢, K, X), K'

I :
= ), we find that:

, B = [-K
K SD(67K
1 £(2) — Pryxpy f@)]| . < H(G(F)H (e 5/7)

% (10 = Phyay @@ + (1= Pl R F(@)

Felfll) 3:59)

The constants are given by:
X3 (e, K, X) = inf {t eER":
e Tk NTON (25 + 2[(X + t/mo] + 1)V e x(rokols
7=0

< (e/2) x [g(mg, ko, N,0)20V+2/2(X 4 ) (N-1)/2

N 1/24 -1
. (1+f§ (Z(%)S(exps(\/%f?kko)f)) ] }

i<k

K(e, K) = k*(¢/2) (3.55a)

Proof.
Setup
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To begin, we separate this into two separate problems:

||f(£L“) - PBX’ X B

Hs © H(PHF(K’) + PLF(K')mBg,)f(ﬂf)‘ -
b

< ||PHF(K’)f($)||H; + HPLF(K')mBg,f(ﬂf)HHS
b

B ||7’HF &) @) g

55, Py o (@)1 ()]

+ HPLF(K')mBg, (1= PRy H Hs
b

We apply theorem 3.16 to ||’PHF(K,) and bound

@) g
Hpo

| PLecnme, (0= Piyw, @) f@)]
<HLG@E)H (7)1 Py, @) @),

obtaining:

||f(T) - PBX, X B H
<HLG@ENH ) (1= Pl BB+ 2 1@

+H(§(@)H (e /) ||(1 - Pgmm)f(w)

I

+ HPLF(K')nt, f(x) HH

Thus, to complete the proof, we must bound the last term by (e/2) || f(z )||H
We write:

PLF(K')rmg, Pls?x;zo (2) f ()

- ¥ > {ban @by (@D (@) 67 (@)

= XY @ [ e ) P, @) @
Jile>X" /20 [B|_ <K' /o -
(3.56)

We will construct first a bound on the integral term, as a function of @, l_;, and
then return to (3.56) to complete the proof.

Bounds per framelet

For gsmall, we do the following;:

/ efibko'fg(ii.'_ _’xO)*ng;mo (f)f(i)df
RN

IN
o

&(z0, ko, N, 0) ‘e*”(m“*’““)‘f*‘““‘lP,S;Xm(:E’)f(:i’) A7 (3.57)

N
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Observe that D = [—(X + x¢), (X + x0)]" contains the support of Pg .y (T,
and apply Cauchy-Schwartz to obtain:

1(3.57)| < g(x0, ko, N, 0) HPB;O(n’:’)e*’(”’ko)‘f*‘i”“ L@l (358)

We now wish to bound || PR (#)e*(#o-ko)l#=dzo || .

We assume, without loss of generality, that @; > 0 for j = 1..N. We also
observe that |@zo|s > (X +%¢), and let I be the (possibly not unique) dimension
in |@xo| — || is maximized. Then:

1/2
= / e 2r(zoko)[E—dzolr gz
L2 [,(x+z0),x+z0]zv
1/2
2N/ o 20(z0.k0) [ oy gz
J10,X+zo|V
1/2
S 2N/ eiQr(zolkO)‘ffﬁzO‘Mdf
J[0,X+zo|V

1/2
< 2N/2 / / eiQr(zka)(_‘liﬁ)dedfl
- [0,X+z0] /[0, X +ao]N -1

— IN/2(X 4 ) (N-D/2 (efr(zo,kw(azf(xwo)) _ efr(zo,kowz)

HPl()).o(f)efr(zg,kg)\i‘fﬁzgh

IN

< 2(N+2)/2(X + wo)(Nfl)/Qefr(mg,kg)\(_i\oo(1 + er(mg,kg)(X+mg)) (359)

Noting that (1 4 e*(#o-ko)(X+20)) < 9er(zoko)(z+20) we find:

/N e’ibko-a?g(f _ d’mo)*Pf;X;wo(f)f(f)df
R

< (g(wo, ko, N,0)2N+4/2)
x ”f(?)”ﬁ (X + -730)(N7])/2€7r(z0’k0)‘E‘me"(z07ko)(x+w0) (3.60)

Conclusion
We now return to (3.56).
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13:56)][ . < D >

ld] o >X" /0 ‘E‘MSK'/ko

|65 @

Hs

< > X

|a] o >X" /o [B] <K'/ko

< [|f (@)l 1,2 g(x0, ko, N,0)2N+2)/2

~ (X + ;UO)(N1)/26r(mg,k‘,g)ﬁwer(mg,kg)(X+mg)] (361)

To get from the second line to the third line, we applied proposition 3.9 to
bound ngﬁ(ﬁ P (%)

and (3.60) to bound the integral term in the second line.
HS

We now do the sum over gﬁrst, pulling out the terms that depend only on
b:

N 1/2
(3.61) < > (1 +f2 (Z(QU)S(exps(\/%Hkko)P))

i<tk

% ||f(f)||L2 g(w07k0=N=0)2(N+2)/2(X + ;UO)(Nfl)/z

X er(flto,ko)(X+m0) Z e*l‘(,’l,‘o,k(])‘{_l"oc (362)

|d] oo >X" /o

We observe that for a given integer j, the number of integer lattice pts
@ with |@|s = j is bounded by 2N(2j + 1)V~!'. We also note that X' =
X + X (e, K, X), to find:

er(flto,ko)(X+fE0) Z e*l‘(,’l,‘o,k(])‘{_l"oc
|@] . >X"/xo
— er(zg,kg)(x+zg) Z 2N(2] + 1)N7167r(z0,k0)j
j>(X+XE(F,K,X))/fIJO
— el‘(fﬂ(],k‘,o)(X—F,’I?o)e*l‘(,’lto,kq)[(X+XE (F,K,X))/,’IT()-‘."EQ

X > 2N(2) + 2[(X + XEy(e, K, X)) /zo] + 1)V e r(rorkols
Jj=0

< Tk XE (KX § 7 9N (2] 42 (X +Xp (e, K, X)) f] +1)N e rrokols
Jj=0
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By the definition of X', we find that:

e T(@o.ko) Xy (e, K, X)

x 32N (2) 4+ 2[(X + Xy (e, K, X)) [ao] + )N e roko)i
j=0

< (e/2) x [g($07k0,N,0)2(N+2)/2(X + o) (N-1/2

N 1/24 -1
x oy <1+f52<2(20)s(exps(\/ﬂgk’%w)) ]

‘E‘OCSKI/ICU k=1
and therefore
(3.62) < (¢/2) [|f (@)l (3.63)
Thus, we observe that:
| Peecnnmg, Ph o @1 @) = 113:36)l17. < (3:61) < (3.62) < (3.63)
< (€/2)If (@)l 2 < (e/2) [[f (@)l -

This is what we wanted to prove (recalling the discussion just before (3.56)).
g

Remark 3.20 One can tune this estimate more carefully, if necessary. For any
6 € (0,1), the following choices of X¢ (e, K, X) and K¢ (e, K)X are also valid:

X3(e, K, X) = inf {t ER":
e Tkt N TON (25 + 2[(X 4t /3] + 1)V e o ko)s
j=0

< e lg(mg, ko, N,0)20N+2/2(X 4 ) (N-1)/2

N 1/24 -1
- <1+f§ (Z(%)S(expswﬁkko)f)) ] }

<Kk =
K (e, K) = k’(e(1 — 6)) (3.64a)
We now state a slightly technical corollary that we will use.

Corollary 3.21 Let f(z) € H®. Let Bx', Bi' be as in theorem 3.19. Then:

Ph b F(@)]) e < B (G(Z)HL (/)
x (11 = Px (@) f(@)l o + €) + | Prarcie) f(@)]| . (3-65)
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Proof. Repeat the proof of Theorem 3.19. However, instead of bounding
||77HF(K)f(a:)||HS using theorem 3.16 to bound this term, we simply leave it as
it is. O

4 Time Evolution of Gaussian Framelets

In this section we study the behavior of Gaussian framelets under the free flow,

ei(1/2)At " Thig is quite explicit, because we can write ei(1/2)A‘¢(675) (%) in closed
form:
ez(]/Q)Atd)(Eg (Z) = pi(1/2)At = N/4 [ =N/2 jikob-& ,—|E—dzo|5/20°

exp (igko (F - gkot — Eia:g)) Y- gkot _ d’x0|§ i1
T T ANAGNE(1 1 itfo2)N2 P\ T 202(1 + it/ o?) (4.1)

This allows us to compute precisely most of our framelet functions (error, rele-
vance, etc).

We begin with a general result, which allows us to control the error associated
with approximating Fourier multipliers on RV by restricting them to a box. This
result is sufficiently general to allow for the use of certain kinds of low pass filters
(in frequency) on the box, although we do not use it in this generality.

Theorem 4.1 Let S(iV)p(%) satisfy the hypothesis of the Poisson summation
formula, that is |S(iV)g(z)| < C{z)N*¢ and ‘S(iﬁ)@(k)‘ < CkYN*e. Let S(F),

Sb(E) be continuous bounded Fourier multiplication operators which are equal

for k € B (where B is some closed set).
Then:

S(AV)p(@) — 3 e /LS, (xk ) L)p(nk/ L)
keB

Hy
< IS(V) (@ + 2LiT) | g1 (1. 17wy + @(E)HHS(BC) sup |S(F) — Sy(F)

keBC

(4.2)

Remark 4.2 We only use this theorem with S(iV) = Sy(iV); thus, the last
term in (4.2) is zero for our purposes . The more general version might be useful
when studying the effects of low pass filters on numerical schemes. For many
years (since, e.g. [30]), low pass filters have been applied to numerical schemes
in order to preserve numerical stability. This result might be useful in proving
error bounds for such schemes.

Proof. The Poisson summation formula states that:

N f@E+n2L)= > &FLf (xk/L) (4.3)

nezd kezd
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We let f(k) = S(k)@(k). Then, by rearranging (4.3), we find:

S(IV)p(@) — Y ISk L)p(xk /L) = — Y S(iV)p(E +2LiT) (4.4)

kezN RN
A0

Now, we observe that S(k) and Sy (k) are equal on B. We add and subtract
S (S, (nk /L) — S(xk/L))p(xE/L)
nk/LeZN
to both sides of (4.4), to obtain:

-y ei™kT/ LG, (rk /L) (nk /L)

kezN
== ) SEV)p@E+2Li)+ Y i EF/L(Sy (nk /L) — S(mk/ L)) (nk/L)
rezN nk/LELN
A0
We again apply (4.3), and observe that:
S (S, (xk/L) — S(xk/L)¢(rE/L)

nk/LeZN

= > (8(iV) — S(iV))(& + 2Lii)

We now take norms and apply the triangle inequality. We find that:

> 1ISEV)(@ + 2Li)|

aezy
A£0

H; = HS(ZV)QD(;E_'_ 2Lﬁ)||H5(([7L7L]N)C)

and that:

Y I(S(iV) = SV)) (& + 2Ll g7, = [[(S(iV) — S(EV))(F + 2LT) | .

neZN

We put everything together to obtain the result we seek. O

4.1 Error and Relevance functionals

Using theorem 4.1 and equation (4.1), we can compute per-framelet error bounds
in L?(R). Before we continue, we define a function we will use a number of times.
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Definition 4.3 We define the Hermite Error Function, for x,k real and s > 0
to be:

Herf* (z, k) = %/ (afueiwke*wz/?) (a;e*iwkefwz/z’) dw  (4.5)
0

Note that Herf(z, k) = erf(z). We also define Herfi*(x, k) to be the inverse

function of Herf®( - | k).

Remark 4.4 We observe that to leading order in k (as k becomes large), that
Herf® (z, k) = |k|** erf(z) + O(|k|** ")

In L2 = HO, Herf’(z,k) = erf(z).In higher Sobolev spaces, they can be deter-
mined by a symbolic computation utility, e.g. Maple.

We will use the Herf® function when we need to compute the L? norm of
derivatives of gaussians.

Proposition 4.5 In H?, we can compute the framelet functionals:

RS . tQ:RO_‘d t2+27N 0_71 1+t2 0_4 1/2\2s

(a@.b)

Herfs Lint + bjk(]t-i-(_]:j.’li[)
oy/1+t%/c*

(Lint + gjk0t+aj$0

oy/1+t%/c*
N - -
Ling + brkot + Gro —Ling + brkot + @;x0
X erf —erf : 4.6a
H l ( o/1+t%/ct ) ( o/1+1t%/ct (4.62)

biko (o (1 + t2/a4)1/2>

biko (o (14 t2/a4)1/2)> ]

k=1
k#j
1,y (17 = E0 5 (07 + (M0 )7 =27 V(o (1 £2/0")1 1)
N -
Lbllﬂ+bjk0t+(ijﬂ?0 - 1 2/ 4\—1/2
X Herf® Jbiko(om (14+ ¢t /o
Z( ( e bk (o)

o/ 1+t2/o4
orf Lyus + gkkot + drxo ~erf —Lpug + gkkﬁot + drxo
o\/1+t%/o? o\/1+1t%/o?

(4.6b)

— Lt + bijkot + @m0 » -
Herfs< buft + 05 +a]T0,bjko(rf Y1 +#/0%) UQ)]
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Proof. By theorem 4.1, to calculate 5(5 (t), we need only compute the mass

B
outside the box B = [~ (Lint +w), (Lint +w)]Y. We observe that Hd) 55 z) .

1+ /\/lg , so therefore:

Hs (RN\[—(Lint+w),(Lint+w)]N)

-1 +M?ﬁj) ei(]/Q)Atd)(aj)("Z)

H*([—(Lint+w),(Lint+w)]N)

We need to compute

for j =1...N, and also for s = 0. We compute as follows:
L2([~ Ling, Ling]N)

exp (ngg (% - gk()t — d’xo)) _|a—3' _ gk()t _ Eiﬂ?o|2
:/ s NN T oaNj2 &XP 2 72 2 di
[7Lim,lzim]N ’ T / a / (]' + Zt/(T ) / 2(7 (]‘ + Zt/(T )

as i(1/2) Atd)-‘ )(—o)

L2([~Lin¢, Lint] V)

2

1', (1/2) At¢(5 5 (,1—;)

o\ (2
— . -
— | — bkot — dxg

202(1 + ito?)

ibko-@

;€ exp dz

vl
aN2gN 1+t2/0'4 [=Lint,Lint ]V

(4.7)

We change variables to §; = o~ '(1 + t2/o%)"V/2(Z; — bkot — @,x¢), then

0'\/].+t2/(74d_17j = d’I‘-‘j

H / ir ¢+b kot+djzo)/o \/m
1<k<N Lint+b;kot+d;zo)/o W

k#j
/Ul(1+t2/a) Y2( [ —bkot—dxo)
o (1442 /0%) =1/ 2(—Lint — bkgt dzg)

(07 (L 820y /2) 0y ke R s

6‘7'1;]2' d’[j}]

Evaluating the integrals yields:
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(4.8) = (o7 (1 4 t2/o*)/?)?*

Lin _" a; e — y —1/:
X (Herfs ( L +b]k0t+a]x0,bjko(0 Y1 +t*/o") 1/z)>

oy/1+1t%?/c*

Lin b a; - B . iy
—Herfs< Okl F djTo p o1 (14 120 1/2)>>

o/1+t%/ct
9—N H orf Ling + bikot + @0 erf — Ling + bikot + @izo
LSieN o/1+1t%/ct I o/1+1t%/ct

i£j
(4.9)
We add this up for j = 1..N (since we take derivatives in each component
of #) and add a term with s = 0. This yields the result we seek. A similar
computation allows us to compute 5(55 ) (t). O

Remark 4.6 For the specific cases of L? and H', we include simpler formu-
las. We single out these cases because they are sufficient to encompass most
simulations of practical interest.

In L?, we obtain:

N > "
£ () =1—-2 N H [erf ((L +w) +bjkot + a]%) B

(.b) o/1+%/ct

- 1/2
—(L bikot + d;x
erf( (L+w) +biko +a]T0>] (4.10a)

oy/1+1t%?/c*

J=1

0
R
N - . - . 1/2
— 9 N/2 H orf L+ bjkot + djxo ~erf —L 4+ bjkot + djzo
=1 o/1+1t%/ct o/1+1t%/ct

(4.10b)
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In H'(R), we find that REE 5 (t) is given by:

2 2
1 _ 0
Rz 0] = [R50

+ 2,]\/‘ g: { <(2bk0t — 2Lint — 2015170)
k=1 8y/m(1+1%)

% |:e*(Lint+ﬁ:k'750+gkk‘rot)Q/(l-Ff?) _ ef(L;nt75kmo—gkkgf,)2/(1+t2):|

L Lb— _
+871 (14 20%k2) {erf (—b+ aTo + bkot) +erf <—b 4o bkotﬂ )

V142 V1 +¢2

N - . - .
y H orf Line + bjkot + ajzo | orf —Line + bjkot + djxo
=1 itk l o/1+1t%/ct l o/1+1t%/ct

(4.11a)

e} (t)f: ‘£°a~(t)‘2+(/\/ls )’

(@b

N i (2bkot — 2(Ling + w) — 2azo)
k=1 8y/m(1+1%)

% |:€7((Lint+w)+(_ikm0+gkkot)Q/(1+f,2) - e*((L;nt—Hu)7(_z'kmgfgkkgf,)2/(1+f,2):|

B o Lint + w) + axo + bkot
+871 (1 + 2b°k2 erf<( ¢ )
( o) Vit 2

(Ling + w) — azg — bkot>
+ erf
( V1+12
X ﬁ erf (Lint +w) + gjkot + djxo
i=1.#k o/1+ 20"

_erf —(Lint + w) + gjkot + d;mg
' o /Tt 2ot

These formulas were found by a Maple computation. Similar formulas not

(4.11b)

involving Herf® can be found for s > 2 by maple as well, but there is no need
to list them here.

4.2 Bounding Boxes

We now introduce the bounding box, which we use to pinpoint the location of
each framelet after it is propagated under the free flow, e?(1/2A%  Intuitively, we
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are treating each framelet as a classical particle which has a finite radius which
varies with time.

Definition 4.7 The collection of sets {BB (@i ”)( e,t)} (indezxed by (d, b) € 7N x
ZN, e € Rt , t € R) is a family of bounding boxes if:

e1/2) a5 (D) <e (4.12)

H*(BB;.,,(=.4)°)

In particular, if BB )(z—: t) is a collection of balls having radii which do not

o

vary with @, we let W (b ) denote the radius.
We also let w3 s(be), w ( €) denote the initial radius and the rate of disper-
sion, respectively, so that:

%
—~
S
o
~
=
IN
<
»
—~
>
)
2
+
<
—~
=
)
2
~

(4.13a)

lim ———— = 1 (4.13b)

=00 wi (B, e)t

Remark 4.8 We only prove that the numbers wf(l_f7 €), w;'j(l_;7 €) satisfying (4.13)
exist for s = 0,1 (c.f. proposition 4.12). However, we believe it is intuitively
clear that they will exist for any s € N, and that they could be found by doing
calculations similar to those used in the proof of proposition 4.12.

We now state a pair of Lemmas which demonstrate the usefulness of bound-
ing boxes. This results show that to determine whether a given framelet is in
BAD or NECC, it suffices to track it’s bounding box. They are each formulated
in somewhat technical terms. But the basic idea is this: if the distance between
the classical center of mass of the framelet and the interior box is greater than
the spreading of the framelet, the framelet is not relevant. Similarly, if the dis-
tance between the classical center of mass and the exterior of the computational
boxx is less than the spreading of the framelet, the framelet is not bad.

Lemma 4.9 Fixz T > 0. Then the following two implications hold:

a. Suppose, for t € |0,T], that BB({7 o) (6,8) N [=Ling, Ling) ¥ =0 (or

BB(ﬁg”) (e,t) N [~ Lint, Lint]¥ has measure 0). Then (@, [_;) ¢ NECC(e, s, T).

b. Suppose, for t € [0,T], that BB ;5.0 (6,t) C [—(Lint + w), (Ling + w)]N (or

—

BB(ﬁg )(5 t) N ([~ (Ling +w), (Lint +w)]™)C has measure 0). Then (@, b) ¢
BAD(e, s, T).
Proof.
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i) (6,8) N [=Ling, Ling)¥ = 0 (after possibly ignoring a set of measure
0), then [~ Ling, Ling]N C BB(a .0) (e,1)¢. Therefore:

3

ei(l/Q)At¢(a75) (,1—;)

H* ([— Lint, Lint]N)

< ei(]/Q)Atd)(a g)(,r-»)

<e
H*(BB; 5 ,,(=.)°)
where the last step follows by the definition of BB(E o) (e,t). Thus,

R;. 58 <efort€[0,7] and (@, b) ¢ NECC(e, s, T).

b If BB, 5 (,t) C [~(Lint + w), (Lint + w)]N, then ([~ (Lint + w), (Ling +
w)|V)¢ c BB 5.0 (,t)¢. By theorem 4.1, we find that:

<e€

H*(BB; 5, (:6)°)

-

Again, the last step follows by the definition of BB(a o) (e,t). Thus (@,b) ¢
BAD(e, s, T).

O

Lemma 4.10 Fiz T > 0. Then the following two implications hold.

- -

a. Suppose, fort € [0,T], that d(d’azg+gk0t, [~ Lint, Lint]V) > wi(b,€)+w2 (b, €)t.

Then (d,b) ¢ NECC(e, s,T).

b. Suppose, for t € [0,T), that |Gxe + bkot|oe < Wi(b,€) + wi(b,€)t. Then

(@,b) ¢ BAD(e, s,T).

Proof.

-

a. Tf d(@zo + bkot, [~ Ling, Lint)N) > w2 (b, €) + w? (b, €)t, then

interior{BB(ﬁ Fo) (6,)} N [~ Lint, Ling] =0

-,

Since the boundary of BB, (e,t) has measure 0, we find that (@, b) satisfies

lemma 4.9, part (a).

6,570')

b. The same idea applis, except now:
interior{BB(a .0) (e,)} N ([~ (Lint + w), (Ling +w)]N)¢ =0

This, combined with lemma 4.9, part (b) yields the result we seek.
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We now calculate precisely a bounding box in the spaces L? and H'. We re-
call first the complementary incomplete Gamma function, and define it’s partial
inverse.

Definition 4.11 The complementary incomplete Gamma function, T'(a,x) is

defined by: .
['(a,z) :/ et tat (4.14)

It has the asymptotic behavior:

Flayg) -t 5 @7~ (0 ) s
Moreover, if n > a — 1, we find that:
o) a0t e 30 €102 =)
BN e (U BRI R ) S

— :L.n+1

We define the partial inverse of the complementary incomplete Gamma func-
tion, T~Y(a,x) to be the inverse of the function RY > x — I'(a, ) for fived a,
so that T'(a, T " (a,z)) = z.

Note that because T'(a,x) is monotone decreasing in = for a real, T~ '(a,¢)
is monotonically increasing as ¢ — 0. The rate of increase is slower than e
for any t > 0.

Proposition 4.12 The following family forms a collection of bounding boxes:

BB(E,RU) (6, f) = BWS(E,e,t) ((i’l‘g + bk‘(]f) (417)

For s =0,1, Ws(l_;, €,t) is given by:

WO(b,e,t) = /o2 +12/a2 (I (N/2,262xN/? ) |SN=1))1/2 (4.18a)

) 1/2
Wl(g,e,t) = \/mmax{ [1“1 (N/Q € 7rN/2 2))] 7

2SN (1 4 |bko
- 2527N/2 1/2
[r ! <(N +2)/2, W)} (4.18b)

Here, ‘SN’]| is the angular measure of the unit ball. We also find that:

wi(b,e) = a(DTL(N/2,2¢3aN/2 [ |SN=1)))1/2

92



wl(b,e) = o (D" (N/2,2627N/? ) ‘SN” |))]/2 (4.19a)

1/2
2. N
wi(be) = omax{ [T [ N/2, e /2_. ,
2[SNI (1 + |bkol3)

(o5 )

1/2
2N
wl(b,e) =0 'max{ [T [ N/2, T /2_. ‘ ,
2[SNTI (1 + |bkol3)

[rl <(N +2)/2, ;%;iﬁ/?ﬂ . } (4.19b)

Proof. A straightforward computation, similar to the previous results. The
main difference is that we work in spherical, rather than rectangular coordinates.
To begin, change variables to Z(t) = (Z — bkot — dzo)/\/o? + t2/o%. We note
that dZ = (0 + t?/o?)N/?dZ. Tn this new coordinate system, we find that:

2 2
/A8y (@) =7 V(0 + 12 )0?) Ve (4.20)
Thus:
2
/ez(]/Q)Atd)(gj)(f) dz

2

exp (75]4’0 (7 — bkot — ('1'.770)) —|7 - bkot — @m0l .
B / aN/AgN/2(1 + it /o?)N/? <P 202(1 +it/o?) ’

:/n*N/Qe*\f\idz (4.21)

Note that the domain of integration also needs to be altered, but we sup-
pressed this to simplify (4.21).

Bounding Boxes in L?

We switch to polar coordinates about the center of mass of the framelet,
Z= rﬁ, where Q € SN-1.

Thus, if we integrate outside a ball of radius R around the point Z(t), we
obtain:

/ /Oo 7 N2 N g (= = N/2 ‘SNJ‘ /Oo U(Nfl)/Qe*”—du
JSN-1 JR J R2 2\/’17

= (1/2)n=N/? |SN7]‘ / uN/* et du
JR2

= (1/2)r N2 |SNTY T(N/2, R (4.22)
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where I'(a, z) is the incomplete Gamma function (c.f. [1]).
Therefore, if R = (I~ (N/2,2¢*>xV/2/|SN=1]))!/2, then we find that
(4.22) < €2. Backtracking, this implies that in the Z(t) coordinate system,
the bounding box is a ball of radius (I'""'(N/2,2¢>xV/2/|SN=1]))1/2. In the
Z coordinate system, this implies that the bounding box is a ball of radius
Vo2 +12[a2(071(N/2,2¢*xN/? [ |SN=1]))!/? around the point dzo + bkot.
Bounding Boxes in H!
The main difference between L? and H' is that in H', we need to compute:

/

We begin by computing 6%1.6"(]/2)Atgi)([i ;) (7).

6‘1'(1/2)At¢([i’g) (7)

Zj

aN/AGN/2(1 +it/g?)N/? 202(1 +it/o?)

_ (ig]'ko _ & = biket — 67.7$0>

exp (ibko (& — bkot — ('1'.7:0)) (5: bkot — ('1'.7703)
exp

a?(1+it/o?)

exp (igko (7 - gkot — Eia:g)) - I;kgt _ &'mg\g 193
alN/AgN/2(1 + it)o?)N/2 xp 202(1 +it/o?) (423)

We take the absolute square of this, to obtain:

- 7 — bikot — @0l
<|bjk0|2 + 17 4& +0 tQ/Gi;O + antisymmetric terms>
o o

ZNJ2,. 2 | 42 2\—N @ — bhot — dwol}
x 7 N2(g% + 12 0?) exp( Ty (4.24)

The antisymmetric terms are antisymmetric about the point & = @;z¢ + I_J}kot.
Thus, upon integration in #, these terms will vanish.
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We then add this up for j = 1... N, and add a constant term. This implies
that:

— T - 2
CNJ2(.2 | 427 2\—N & — bkot — dxo;
™ (0 +t*/0%) exp( 1+ 2o

S @ — bikot — @0l
Bk |2 4 [Td T 3ol — @50 : _
+ jz::l (bjko + ST+ 2707 + antisymmetric terms>

_ 9\ ﬂ_f'—gk()t—(_l'ZEOQ
< N/2(02+t2/0,2) N exp (| 02(1+t2/04)|2

- # — bkot — d@rol?2
:71'*N/2(02+t2/02)*N(1+|bk0\§)exp (|T 0 (”0|2>

(1 + 20"

|7 — bkot - dzo|3 o \7_“'* Bot — do 3 (4.25)
o1+ 2/ (1 +7]a")

Switching to the 2’ coordinate system yields:
(4.25) =7 N2(02 +£2/02) N(1 + |Bko|2)e 1712
+a NP0 +12/0?) No Y Z3e 1T (4.26)

Switching again to polar coordinates and integrating out the angular part yields:

/ ~ (4.26)az

R
= N2 |gN <(1+Ek0|§)/ e*”erldma*/
R

R

(o]

r2eT2rN1dr>
= (1/2)x N2 | SN ((1 + [bko|2)T(N/2, R?) + 0 2T(N/2 + 1, RQ)) (4.27)

If R? satisfies

2, N
R?>max{I ' [N/2, r/2 _
2SN (1 + [bkol3)

e2g2nN/2
r! <(N + 2)/2,W> } (4.28)

then:

(1/2)m~N/2 SNV (1 + |bko|3)T(N/2, R?)
(1/2)x N |SNTD(N/2 4+ 1,R?)0 >

62/2
62/2

IN A

and thus (4.27) < €2.
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Switching from polar coordinates to z' coordinates implies that the bounding
box consists of Br(0)¢ with R satisfying (4.28). Changing coordinates once
more to T yields the result we seek.

To obtain (4.19), we simply observe that /o2 +#2/0%2 < o+ t/o for t > 0,
and apply this to (4.18). O

Similar computations can be done in H® for s > 1, but we neglect to do
them here.
We now state one more result, which we will use later.

Proposition 4.13 Let s = 0,1. Then:

sup WE(b,0,1) = /o2 + 12/o2(D (N/2, 22/ [ |[SN1)'/? (4.29a)

beLF(K)
sup Wb, 1,t) = /o2 + £2/0?

beLF(K)
<2 N 9 1/2
(N2, en/ .
Xmax{[ < /2 SN T+ NED) '
- 2527N/2\11/?
[r ! <(N+2)/2,W>} (4.29b)

Note the result is independent of K for s = 0.

Proof. If s =0, W‘(I;, 0,t) does not vary with b. This proves (4.29a).

We now prove (4.29b). This follows simply because if ¢+ < ¢, [ ~'(a,t) >
T'~1(a,t') for any a € RT. Applying this to (4.18b), we find that the sup on the
left side of (4.29b) is maximized when |5k0\2 is maximized. This occurs when
gjk(] = | K|. Thus, |bko|> < VNK, and we obtain the bound we seek. O

5 Algorithm, Assumptions, and error bounds

In this section, we prove the accuracy of our method, subject to some assump-
tions on the equation.

We do not prove a complete error bound. Let (%, ) be the solution to (1.1)
on RV and let ¥(Z,¢) be the approximate solution generated by our algorithm
(defined on [~ Leomp; Leomp]™)-

To obtain complete control on the error (letting ¥,(%,t) be the discretized
version of ¥(Z,t)), we need to control:

10(F, 1)~ Ca(E, D)l gy < IW6(E 1) — U@ D]y + [U(E ) — (D),

We only prove a bound on the first term, ||[¢(%, ) — ¢ (%, t)”Hg-

26



Bounds on the second term depend crucially on many details of the imple-
mentation. That is, they will vary depending on whether one chooses a finite
element, finite difference or spectral method. They will vary with the timestep,
space discretization and also floating point (or other roundoff) error. We assume
this is known and is also sufficiently small as to be negligable.

Our goal, is to reduce the error caused by ||¢(%,t) — ¥(Z, t)HH,f to the same

order of magnitude as the discretization error, ||V (F,t) — ¥4(Z, t)

g

5.1 Assumptions

Let us assume we wish to solve (1.1) on a time interval [0, Tiyax] with error e
measured in a Sobolev space H* ([~ Lin, Lint]”Y). We now state our assumptions.

Assumption 1 We assume the solution to (1.1) ezists and is unique on RY
for t € [0, Tyax]. We denote by U(t) the propagator on RY .

In particular, we assume that there exists a function L(t) and a large number
M such that for all yo(x) with ||t (z)|| g < M:

() o (x) = U@ b1 ()|l o (pro ey < L) ([P0 () = hr ()l (5.1)

Assumption 2 There exists a mazimal momentum kmax = Kkmax(o) in the
following sense. For all t € [0, Tinax], Omax > 0, we can compute a kmax(Omax)
such that:

SUD || Prr (k) ¥ (F 1) || < G (5.2)

t€[0,Tmax]
Assumption 3 The nonlinearity is Lipschitz in H®. That is, there exists a
constant G such that for u,v € H®:
lg(t, & uju — g(t, Z,v)v[| g < Gllu—vllg. (5.3)

Although many common nonlinearities are not Lipschitz, they are typically
locally Lipschitz, c.f. [8, section 3.2]. Therefore most nonlinearities of interest
can be modified appropriately to satisfy these assumptions.

Assumption 4 The nonlinearity g(t,%,1)y is well localized in phase space.
That is, for any dnt, > 0, there exist constants Lnt, = Lt (0n1,) and kmax N1, =
Emax,NL(On1,) (uniform on t € [0,T]) such that:

||PNch(t7 f7 ’l/}(f t))¢(f7 t) ||H‘? < 6NL ||1/}(f t)HH‘? (543‘)

NL = {(@,5) € ZN x ZV : |G| _ < Lxy.(dx1,) and \6\ < Emaxnn(On1)} (5.4D)
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Assumption 5 We assume that for each dp > 0, we can find an € = €(dr),
Lp = Lr(dr), so that the following implication holds:
Let F CZN x ZN be a set for which,

V(@ b) e F sup ‘
t€[0,Tmax)

i(1/2)At
€ ) (t_)HH( <e.

—[Lp,LrlN)

Then Prip propagates essentially freely, in the following sense:

sup ]Huum)w(m)fei“/”“vapzp(x) SO Prp@)ly  (559)

t€[0,Timax

sup  |{[U(t[to) Pretho(x) = U(HPrepo)Pre ()] e

t€[0,Timax]

< Lext () I1Pr ()|l ;- (5.5D)

The function Lex(t) must satisfy Lext(0) = 0 and sup;c(o r,,,.) Lext(t) = dr.

Remark 5.1 This proposition says that outside of a certain box in phase space,
the problem is essentially linear, and therefore the free propagator is sufficiently
accurate. This assumption will be the most difficult assumption to verify in the
nonlinear case.

We note that we can, in principle, use L(#) as a bound on Ly (t). However,
this is far from optimal. Ley(t) should be small for relatively long times, while
L(t) may not be. In the linear case, as an example, measuring error in H® = .2,
L(t) = 1 and Ley (t) = 0 (identically).

Assumption 6 We assume that mass does not pile up on tangential, slow
waves or returning waves in the following sense. We assume there exists a
kmin - kmin(émin); Lmin - Lmin((smin) such that:

sup ||IPS’I/J(57 t)”H; < Omin (56)

tE[0, Trmax]
with S a set satisfying:

V(@ b) € S,1(3j,|@;x0| > Lmin and b;ko(@;/ |@;]) > Kmin)
and |@zo|eo > Limin  (5.7)

Essentially, what assumption 6 is saying is that most of the waves outside
the box [~ Lmin, Lmin]" are moving faster than some small velocity kmi, and
are moving outward (away from [~ Lumin, Liin]" )
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5.1.1 Remarks on the assumptions

It is simple to observe that Gronwall’s lemma combined with assumption 3 im-
plies assumption 1 with L(t) = Ge®*. However, if better estimates are available,
they should be used, since the error estimates we give will be given in terms of
L(t).

Although we state our assumptions in terms of WFT coefficients, they are
actually just rephrased versions of more standard assumptions. We provide here
some sufficient conditions for verifying the more technical assumptions.

Proposition 5.2 (Sufficient conditions for Assumption 2) Suppose that
there exists a mazimal momentum kmax = kmax(10) in the following sense. For
all t € [0, Timax], Omax > 0, we can compute a kmax(Omax) such that:

- S [~ (= —s/ —x2/o?
| PL s a0 D) < b/ QHLGEDH e 7)) (5.8)
with K' = kmax — kK*(K). Then assumption 2 holds.

Proof. Merely apply theorem 3.16. g

Proposition 5.3 (Sufficient conditions for Assumption 4) Suppose that
tThe nonlinearity g(t,@,¥)y is well localized in phase space in the traditional
sense. That is, for any dn. > 0, there exist constants Ly, = L, (onxL) and
Einax NL = Kmax N (ONL) (uniform on t € [0,T]) such that:

[T C, P (S AT A CAO] I
1) 7.t .
: ]zI14J|¢($:S)||H~2 . (593)
(4H2 (9(2))H* (e~ 7*/7%))
| Pt 3o @9 7 0@ D)0 (1)
1) Tt .
NL ||UJ(T/ )HH (59b)

(4H3 (5()H " (e 7*/77))

!

The constants Ly, and k 1, are related to those in assumption 4 by the

max,N
relations
2 2
Ly = Lni — XE(0nn /4HS (§(2)H (e /%), Emax, N1, Ln1,05.10)
Frpaxnt, = kmaxne — K500 /4HS (§(2)H (67 /7 ), kmaxne) (5.11)

Then assumption 4 holds.

Proof. Merely apply theorem 3.19. g
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We now discuss assumption 5. This assumption says that framelets which
are propagated out of the box under the free flow are also propagated outwards
under the full flow. We show that this can be verified by an Enss type condition®.

Proposition 5.4 (Sufficient condition for Assumption 5) Let F be as
in assumption 5. Assume the right side of (5.12) is bounded, for all ¢(x) with
()|l s < M (the same M as in assumption 1).

Assume further that g(t, &, (%, 1))y (F,t) is a real valued potential (possible
time dependent), that is

g(t, T, (%, 1)Y(Z,t) = V(T t)(4, 1)
Then Lext (t) = 0 and dr is bounded:

Tmax
op < /
0

Supposing additionally that 6 can be made arbitrarily small by increasing Lp,
then assumption 5 holds.

/DAy (7 t)u(t’)Ppw(x)H . (5.12)
b

Proof. The fact that Lex(f) = 0 follows because the propagators U(t) and
Uy (t) do not vary depending on the initial condition. That is to say:

U(tlvo) = U(H|Ppe) = U(H)

Now let us construct the bound on dp. Let u(z,0) = Ppt)(F,t). Let u(Z,t)
solve:

iOpu(@.t) = —(1/2)Au(Z, t) + g(t, Z,U(s)p(z))u(z, 5)
Then setting up Duhamel’s equation, we find:

t

u(Z, t) = /DAy (1 0) + i /0 Uf(t—s)g(t, Z,U(s)Y(x))u(z,s)

Subtracting e?!/?)Aty(z, 0) from both sides and taking norms proves (5.12). O

Note that assumption 5 is strictly weaker than the conditions given in prop-
sition 5.4. The reason for his is as follows. Proposition 5.4 requires that the
free flow and the full flow are almost the same on framelets which don’t interact
with the nonlinearity. Assumption 5 requires only that they are equal inside the
box. Assumption 5 will be satisfied even if the free flow and full flow diverge
from each other completely, provided the divergence remains outside the box.

Assumption 6 is two statements. First, it assumes that the mass of the so-
lution below some velocity kmin is small. Second, it assumes that the solution
stays on the “propagation set”, that is the solution remains restricted to tra-
jectories where # || k. This assumption is really just a rephrasing of standard
propagation estimates into the language of framelets.

A stronger assumption than assumption 6 would be the following;:

6The Enss condition is a common method used to prove asymptotic completeness and other
such results in scattering theory. See, e.g. chapter 5 (in particular 5.3) from [9] for details on
this method.
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Proposition 5.5 (Sufficient condition for Assumption 6) Let PS(L, kuin)
(the propagation set) be defined by:

-

PS(L, kmin) = {(@,b) € ZN x ZN : |bko|s > 2V Nkmin,
|bko — (ld@l, @) - bkol> < [bkol2/(4V/N)}

Suppose that for any dmin, Ikmin, Lmin S0 that if S is a set satisfying

S N PS(Luin, kmin) = 0 (5.13a)

S C {(a@b) €N xZ" :|dro|ly > Lmin}, (5.13b)

then:

sup ||[Psw(Z, t)||H; < Omin (5.14)
t€[0,Tmax]

Then assumption 6 holds.

Proof. We must show that any set S satisfying (5.7) also satisfies (5.13). This
will show that the conditions of proposition 5.5 imply assumption 6.

-

Toward that end, let S be such a set. Since for any (a@,b) € S, |@zo|oc > Lmin,
we find that (5.13b) is satisfied. We must now show that:

¥(@,b) € S,1(3j,|@;x0| > Lunin and biko(d@; / |@;1) > Fumin)
Equivalently:

v((_i/ g) € S: v7, |6JT0| S Lmin or gjkﬂ(aj/ |(_ij‘) S kmin

-

Now fix (@,b) € S. We must show that (@,5) & PS(Lmin, kmin). We proceed by
contradiction. .
Suppose (@,b) € PS(Lmin, kmin) NS. Define z = ||, '@ - bky. Then:

|22 > |bkola — |bko — Z]2 > |bkol2 — |bko|2/(4V/N) (5.15)

Since 2’ is a vector in the direction of d@, we find that 3j € 1...N so that
|Zj| > |Z]2/V/N, and in addition, for this same j, |@;zo| > |@xolo/V/N. If
j is chosen to be the component for which |@;| is largest, then in addition
|(-ijm0| 2 Lmin-

This implies that:

|I;k:o\2/\/N* |5k0\2/(4\/ﬁ)

2] >
|67$0‘ 2 Lmin

In addition, the signs of @; and Z; are the same. Now, observe that:

Biko — 2| < |bko — 212 < [Bko|2/ (4V/N)

61



SO:

[bka| > |Zj| — |bkol2/(4VN) > [bkola/V'N — 2[|bko|2/(4V'N)]
2 ‘iﬁ(‘ob/(?\/ﬁ) > kmin

—

But this contradicts (5.7), and also (5.15). Therefore there does not exist (@, b) €

3

PS(Lmin; kmin) N S, and we are done. O

Remark 5.6 Without using framelets, statements such as those assumed in

proposition 5.5 are common if we ignore low frequencies. The following estimate
holds when g(t, &, ¢ (x,t))¢(z,t) = 0 (in which case C = ||y (z,t)||;2), and also
for the case when g(t,Z, (%, 1)) (Z,t) = (T, t)|" (&, t) (for certain o, [8,
proposition 7.3.4]):

sup ||(Z +itV)yY(Z,t)||;. <C (5.16)

t€[0,00]

We now make a heuristic argument suggesting that this estimate implies the
conditions of proposition 5.5. Suppose we have, for some large time, a gaussian

at a position dzo (far from the origin, say L units) where ‘d’xo - gkot‘ > L/2
(where L/2 is chosen simply for concreteness). Then supposing |bkqls > 0:
(& +itV) ;.5 (¥) ~ (@xo — ithko)d 4 5, (%)

But then:
H (F+itV)d 3.5, (#)

L2 (L)

Therefore, if 1 (z,t) = P i) (t)cb(ﬁ ) (Z) + rest, then either
else ¥ (z,t) will violate (5.16).

’([)(E’g) < 20/L or

5.2 The Algorithm

We now describe how to construct the approximate solution, ¥ (%, t). First, we
assume that the various parameters we have described satisfy the constraints
given in section 5.2.1.

The precise mathematical definition of U(Z,t) is as follows:

\I/(ZE, nTstep + tl) = U, (tl)PNF)CC A BB\Il(f7 nTstep) (5.17&)
¥(z,(n+ 1)Tstep) = Ub(Tstep)PNFICC BB Y (T, nTStep) (5.17b)
U (z,0) = Pnrccner(Z,0) (5.17¢)

Here, 0 < t' < Typep and n € N. Note that W(Z, ) is not continuous in ¢ at
t = nTtep, due to the filtering.

The critically important part of the algorithm is satisfying the constraints
we have described. This ensures that the framelets which we delete from the
solution are, in fact, outgoing framelets.

"In particular a > (2 — N + /N2 + 12N + 4)/(2N).
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5.2.1 Choosing the Parameters

There are a number of constraitns on the parameters which need to be satisfied
in order for the algorithm to work. One constraint demands that outside the
interior box, waves must move freely. That is:

Ling > Ly (5.18)

This result is needed to prove Theorem 5.10.

Theorem 5.12 imposes a number of conditions on the parameters, nearly all
of which are there in order to make sure certain sets of framelets stay inside the
box for time Tiep.

Vb € HF (kmin), |Bkoloo > wi(B,e€) (5.19a)
w > 3 sup  wihe) (5.19b)
BELF (Kmax)
Taey < v (5.19¢)
- 19c
TP T Bl + wi (b €)
Ling < Luin (5.19d)
Lin 2-L J
Tep < inf v w/2- I (5.19¢)
‘bk"ohgkmax,NL kmax,NL + Wf) (b7 6)
Lxi, £ Ling (5.19f)
sup wf(ge) < w/2 (5.19g)
|bko |2 < Ko, NI
Lint +w/3 < Lumin (5.19h)

This list of constraints is deceptively short. In addition to these constraints,
one also needs to determine the relation between, e.g. dnin and Lp;,, and
the various other parameters described in the assumptions. These are model
dependent, and can not be treated at this level of generality.

5.3 Statement and Proof of the Error Bound

We make some demands on the parameters (Lint, Tytep, €tc), which are summa-
rized in section 5.2.1.
We will first compute the error between NTgiep and (N + 1) Tggep-

Definition 5.7 We define the auziliary functions:

1/2
~ 2
_ —1 s
En=a5| 3 ‘5@5) (1) (5.20a)
(@,b)eBADC NNECC N BB
1/2
~ 2
_ —1 s
R(t) = A, 3 \gm (1) (5.20b)

(@,b)eENECCC N BB
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(5.20c)

We now state a simple upper bound on éA'(t) and ﬁ(t) In practice, it should
not be used. £(t) and R(¢) are finite sums of known quantities, and thus they

should be computed precisely. But it is convenient to demonstrate the order of
magnitude of £(t) and R(¢).

Proposition 5.8 The following inequalities hold for 0 <t < Tyiep-

~

sup E(t)
t€[0,Tstep)
< AZN2Lwer/20) N (2kmax ko) V2 sup &h (t)‘
(@,b)eBADC NNECC N BB ’
< €Ap' 2Lwrr/10) N (2kmax /ko)N? (5.21)
sup  R(t)
t€[0,Tmax]
< Ap' 2Lwer/70)"" (2kmax /o) N sup i (t)\
(@,b)eNECCC N BB ’
< eAn 2wt /20) N (2kmax /o) N? (5.22)
sup  O(t)
t€[0,Trmax]
< Ap' (2LNL/20)N? (2kmax N /o) V2 sup 55{715) (t)‘

(@,b)eENECCC N BB
< €A (20Nt /7o) N2 (2kmax N ko) VP (5.23)

Proof. A simple calculation. Just count the number of elements in the sums.
Then observe that for ¢ € [0, Tytep], SUD ;7 ) eBADC A NECC A BB ‘5(55,5) (t)‘ < € by
the definition of BAD = BAD(e, s, Tstep) (and similarly for the other equation).

The bound for @(t) is proven by similarly, except by counting the number of
elements in Lny, (a region in phase space of width Ly, in position and kmax N1,
in momentum, see assumption 4). (|

Remark 5.9 In practice, proposition 5.8 should not be used. Rather, one can
calculate £(t), R(t) and Q(t) precisely. This should be done in practice to
choose the parameters. However, we provide these crude upper bounds in order
to demonstrate the validity of the method, and to provide rough guidelines as
to the choices of the parameters.
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5.3.1 Local (1 step) Error

We first compute the error we make over short time intervals (time [0, Tstep])-
We will later string together a number of these short time errors, and calculate
the global in time error.

Suppose we are given an initial condition f(z), and an initial error e(z) (the
error accumulated from previous timesteps).

We want to compute a bound on:

sup |[U(t)f(x) — Un(t)Pxeccnsalf (=) + e(@)]ll s (5.24)

t€[0,Tstep)

We first add and subtract U(t|f(z))Pxgcce f(z) under the norm, and apply the
triangle inequality. Thus, we find:

[4(8) f (z) — Un(t)Pxece neef(z) + e(@)]ll e
< UEf) f () = UEF)Precof (@)l
+[U(t]f)Pxecc f (@) — Up(t)Pxecc neslf (=) + e(@)]lly,  (5.25)

We state our first result.

Theorem 5.10 (Outgoing waves) Suppose the following constraints are sat-
isfied:

Lp
6(6]:‘)
with €(dp) defined as in assumption 5. Then the following holds:
1At ) f () = Uy Paeccf (@)l g = U] f(2) Papcce £(@)] g
< b [Papcce f@)lly; + ROIF @] 2

+ HEL(§(F)HL (e /) x| E(Tyep) 1 £(2) + e@)]] 12 +

Lint (5263.)

<
< e (5.26b)

(O(Tyep) G + tone) sup UMY (F(2) + e(@))ll . + €] + Gumae

t'€[0,t]
=0UT(t) (5.27)
This is proved in section 7.1 on page 86. Applying this result, yields:
(5.25) < OUT(¢)
+ 1t f)Pxeco f(z) — Us(t)Paeccneslf (2) + e()]ll g, (5.28)

We now add and subtract U (¢t|Pnecc f)Prxece f(z) inside the norm, to ob-
tain:

(5.28) < OUT(#)
+ 1 (] f) Pamce f(x) — Ut [Precc f)Paece f(2)| g
+ [1U(t|Pxuce f)Paecc f(2) — Up(t) Paecc nesf(2) +e(@)ll g (5.29)
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Observing that |[U(t| f)Pxrcc f(z) — U(t|Pnrcc f)Prrce f(z)]
by Lexi(t) [|Pxuccf(2)l g (by assumption 5), we find:

e 18 bounded

(5.29) < OUT(?) + Lext () [Pnece f (2)]]
+ Ut Pxece f)Pxecc f () — Us(t)Pxecc nealf () + e(@)]|l, - (5.30)
We add and subtract U (t)Pxecc nss f(z) next, yielding:

(5.30) < OUT(?) + Lext () [Pnece f (2)]]
+ 1t (t[Pxeco f)Paece f(x) — U(HPNecc neB) Paecc n BB f (2) | 4
+ [l (t[PxeccnBe f)Prece nBB f(2) — Us(t)PaEce neBlf (%) + e(2)]| 4
(5.31)
We state another result:

Theorem 5.11 (Residual Waves) The residual waves satisfy the following
estimate:

I (t|Pnece f)Paeco f(x) — U(t|Pnecc nBB)PNEcc nBB f () ||H;;
<wa(Hi@me4%em”*>faawnum>+dmmﬂ

+ (Q(Tuep)G + 0x1) sup [U(H)(F () + @)y + ]

t'€[0,t]
+ 6m;n> = RES(t) (5.32)
This is proved in section 7.2 on page 87.
Applying this yields:

(5.31) < OUT(t) + Lext (t) [IPnece f ()|l g
+ RES(t)
+ ||[U(t)Pnecc nBB f(2) — Up(t)PNECC nBB[f () + e(m)]HH; (5.33)

We now add and subtract U (¢|Pxeccnse(f + €))Prnrccnsa(f(z) + e(z)),
and bound this by L(t) ||e(.77)||Hg:

(5.33) < OUT(t) + Lext (1) [[Pxece f ()|l

+ RES(t)
+ lle@)ll g, L)

+ ltd(t)Pxece nea(f (2) + e(#)] — Up(t)Preccneslf (2) + e()]ll g, (5.34)

Finally, we bound the last term as follows.
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Theorem 5.12 (Lingering Waves) Let the nonlinearity satisfy assumption
3. Let the following conditions on the parameters be satisfied:

Vb € HF (kmin), [Bkoloe > wi(B,e€) (5.35a)
w > 3 sup wf(l_f7 €) (5.35b)
bELF (kmax)
Tep < v (5.35¢)
T 3k + wi(5,0) o
Lint S Lmin (535(1)
Ling 2—L
Tyep < inf et w/2 - L (5.35¢)
‘ka‘QSkmax,NL kmax,NL + qu) (b7 6)
LNy, < Ling (5.35¢)
sup wf(l_; €) < w/2 (5.35¢g)
|bko |2 <Emax,NL
Lint +w/3 < Lpin (5.35h)

Let y(z,t = 0) = Pnrccnse®o(z). Then the following estimate holds:

1(U(t) — Up(t))Pnrcc nBBY0(2) ”H,f
< (E(t) + Q(t)) + GeCt x (E(t) + Q(t)) (5.36a)

12 (t) = Up(t))Pnrcc nerbo ()]l g
< (E(t) + Qu(t)) + GeSt % (E(t) + Qu(t))  (5.36b)

The free error and interaction error are given by:
E(t) < E(t) [14l| > + 20umin (5.37a)

Q) < (QM)G + toxe) |14l . (5.37b)

A similar estimate holds for Qu(t) but with ¢ (Z,t) replaced by y(Z,t). The
functions E(t) and Q(t) are defined in 5.7 on page 63.

This result is proved in section 6. Applying this result shows that:
(5.34) < OUT(?) + Lext () [Pnecc f(2)] gs + RES(?)
+ lle(@)ll 7, L(2)
(14 GeSTR)(E(t) 6] 2 + 20min + (OD)G + tone) [0l 1.)  (5.38)

Remark 5.13 This analysis can be extended to encompass discretization er-
rors. Assuming one has control of discretization errors on the box, one can
simply include these errors in e(z). We do not do this here, since it is well
beyond the scope of this paper.
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5.3.2 Global Error

Given the above result on the one timestep error, we now compute the global-
in-time error.

At time ¢ = 0, we let f(z) = ¢o(x) and e(z) = 0. At time nTgtep (n =
1,...,N), we let f(z) = ¥(x,nTstep) and

e(x) = U(Tstep)Pnecc nBBY (2, (n—1)Tstep) —Us (Tstep) PneEcc nBBY (2, (n—1)Ttep)

Putting this all together, for n =0... M, with M = Tiax/Tstep, we find:

||u(MTstep)1/’0 (T) - \I!(m, MTstep)HH;

M
< Z (OUT((M - n)Tstep) + Lext (M — n)Tstep) ||PNECCf($)||Hg
n=0
+ L((M — n)Tstep) RES(nTtep) + L((M — n)Tstep) BoxError(nTstep)> (5.39)

The term BoxError(nTstep) is bounded by (5.36) with ¢o(x) = ¥ (2, nTstep)-

Remark 5.14 This result is essentially what one would expect. The term
RES(nTgtep) represents the main source of error. This is the error caused by
waves we cannot filter with our algorithm. The error bound says that at tine
nTstep, we make an error of size RES(nTytep). After that, the error grows at a
rate L(t — nTyep)-

BoxError(nTgep) represents the error due to filtering at time nTgep, and
this also grows at the rate L(t — nTyep) after that.

We now wish to make sense of (5.39). We first substitute everything in order
to get a complete picture. We will then rearrange and simplify significantly.
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||U(NTstep)7/’0(33) - V(z, NTstep)|

Hy

M
< Z or || Pnecce ¥ (7, nTstep)HH; + R(M —n)Tstep) [[¥ (2, nTstep)]| 12

n=0

+ HE(G(@)H (e /7Y | E(Tyep) 12 (@, (0 — 1) Tiep) I

+ (é(Tstep) + t6NL) Sl[lp , U4 (#)¥ (@, (7 — 1) Tseep)l g7 + €
t'€f0,t

+ Lext((M - ”/)thep) ||PNECC‘IJ('T: nT@tep)|

+ 6max

Hs

L((M —n)Tstep) (Hﬂg(f))H;(u”ﬁ
ETn) 1960, (1 )T

+ (Q(Tstep) +ton) sup [UE)U(z, (n — 1)Tseep) || 7. + 6:| + 6min>
t'€[0,1]

L((M - n)thep)(]- + TstepGeGTStEP) E(Tﬁtep) ||‘I}(T, nTQtep) ||L2 + (smin

+ (Q(Tstep) + TstepfsNL) [SUP | ||\I/(£E7 nTstep + t)HLz :| (540)
t€]0, Tatep

We now take this and collect all the terms containing

M) 192 nTuep)l2 + OlTwen) _sup  [[¥(z,nTuep + 0l
t€[0,Tstep

as well as dmin, 0w, Lext(t), etc. We also replace the terms ||Pp¥(Z,t)||, . by

VB A U (E )2 and [[P¥(E, 8)] . by B (3(2)H (e /7") |9 (#, )]
We thus arrive at our main theorem.

Hs-

Theorem 5.15 (Global Error Bound) We have the following bound on the
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error:

sup  [U(tWo(x) — U, 1), < (5.40) < sup ||w<.f,t>||ys[

t€[0,Tmax] t€[0, Tmax]

E(Tyiep) ([(1 + TaiepGeS ) 4 2HY (5(2) H (e /)| S L((a — nmtep)>

+ (Z R((M — n)Tste,»)

M
+ @(Tstep) (2+ TstepGeGTsw) (Z L((M — n)Tstep)>
n=0

+ (T max/Tstep)Hi(a(f))Hf(e12/”2)1

M
+ ONL Tistep (Z R((M — ”)Tst,ep)> (2 + Titep GeCTeter)

n=0

M
+ (SF (Tmax/thep) + (Z Lext((M - n)Tetep))

n=0

|

M
+ 6min(2 + TstepGeGTStep) <Z L((M - n)Tstep)> + 6max(Tmax/Tstep)
n=0

(5.41)

Although the error bound looks complicated, each term has a simple mean-
ing.

The term dnp, (. . .) is similar. This term measures how much of the nonlinear-
ity actually outside the computational domain. In order to accurately compute
the effect of the nonlinearity, it must be contained inside the computational
domain. Thus, whatever mass exists outside the computational region (namely
[~ Lnr, Lan )N x [—Kmax, NI, kma&NL]N in phase space) will also cause an error.

The term O (Tmax/Tstep) measures how much of the solution which we
thought was outgoing actually wasn’t. That is, we examined each gaussian,
and determined that under the free flow, that particular gaussian was leavining
the computational domain. But although the flow is nearly free on the bound-
ary, it is possible that some small fraction of the waves we believe are outgoing
are returning. That is measured by .

The next piece,

<Z Lext((M - n)Tetep)) 3
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is a little bit trickier to describe. This part of the error measures how the
nonlinearity changes in response to the small errors made when we filter off the
outgoing waves. In the event the “nonlinearity” is linear, this term is identically
zero. But in other cases, it may grow rather large with ¢.

It is best illustrated by an example. Consider the NLS:

10 (. 1) = (—(1/2) A + V(@)9(a, 1) + f (| (2, 1)) (x, 1)

with V' (z) an even, real valued potential having two (nonlinear) bound states,
and (|1(z,t)|) a monotone real-positive function satisfying certain other con-
straints (see [39]). It is known that this system exhibits ground state selec-
tion [39]. That is, if ¢(x,0) is an odd function, then ¢(x,t) remains situ-
ated on the odd (excited) bound state for all time. If, however, we replace
¥(z,0) = odd(z) + eeven(z), then half the mass of ¢(z,t) will radiate off to
infinity, while the other half will be trapped in the ground state.

The function Leyt () measures the capacity of the system to behave nonlin-
early in response to perturbations, in a manner like that which we just described.

The last term, dmax(Tmax/Tstep), is essentially the amount of mass at fre-
quencies higher than kmax. Although kmax (as used in assumption 2) is slightly
different from the usual definition of kyax (namely kpnax = 7/Az, with Az the
lattice spacing in position on the grid), it is a very similar object, namely the
largest frequency we can resolve.

Finally, we come to the term containing kmin(. ..). This term contains waves
with frequency sufficiently low so that it is very difficult to tell if they are
entering the box or leaving. This is basically due to the fact that for functions
localized in the filter region, the Heisenberg uncertainty principle says that we
cannot determine whether low frequency waves are incoming or outgoing. In
most of our experiments, this was the dominant term in the error.

We now prove a corollary to theorem 5.15, which states that under the as-
sumptions given in section 5.1, we can make the error due to boundary reflections
vanish by making certain explicit choices of the parameters.

Corollary 5.16 (Convergence to Zero) We can choose the parameters
Tsteps Lint and w in such a way that for any 7 > 0 and Thax < 00,

sup  |U(tWo(e) — U, 1) <7 (5.42)

t€[0,Timax]

The proof is deferred to the end of this section, after we have discussed the
sources of the error.
Proof of Corollary 5.16. We show here how we can make the error bound
(5.41) arbitrarily small.

We begin by considering the terms dmin, dmax ONL, OF and Ley¢ (¢) found in the
last four lines of (5.41). According to assumptions 6, 2, 4 and 5 (respectively),
we can choose the parameters kmin, kmax: LNIL, Kmax,N1, @and Lg in such a way
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that dmin, Omax ONT., OF and Ley(£)® are all arbitrarily small. Therefore, it is
possible to choose these parameters in such a way that:

M
6NL sup ||‘II(.’E7 t) ||Hq Tstep (Z R((M — n)Tstep)> (2 =+ TstepGeGT""’p)

t€[0, Tmax] n=0
+0p sup |[¥(Z, t)||H5 (TmaX/Tstep)
tE€[0, Timax]
M
+ (Z Lext (M — ")Tstep)> sup || (&, 1)]| .
n—0 t€[0, Tmax

M
+ 6min(2 + TstepGeGTStep) (Z L((M - n)Tstep)> + 6max(Tmax/Tstep)
n=0
< T/2 (5.43)

The exact manner in which this will be done is highly model dependent. Later
on (in remark 5.17) we will discuss briefly the obvious way to make this small,
and why this may not be the best way to satisfy (5.43).

We now take kmin, Kmax, LNL, kmax,N1, and L to be fixed quantities.

Once these terms are chosen, we must choose Lint,w satisfying the various
constraints. After this is done, Proposition 5.8 provides a bound on &(Titep),
ﬁ(Tstep) and Q(Tstep) — in particular each is bounded by const x e (with const
a function of the various parameters).

More precisely, we do the following. We now need to obtain the following
bound:

sup || W (7, 1)|| 5. [

t€[0,Trmax]
_~ 2 2 M
g(Tstep) ([(1 +TﬁteDG€GTStep) + QHi(a(?))erg(eiT /e )} ZL((M - ')Tstep)
n=0

M ~
+ (Z R((M - n)Tstep)>

(2 + Tygep GeGTer) (Z L((M — n)Tmp))

n=0

+ Q(thep)

+ (Ta / Tatep)HE (G(@)H* (€7 /7Y [ | < 7/2 (5.44)

We recall the bounds computed in Proposition 5.8, and substitute them in

8Recall that SUD; € [0, Tomas] Lext(t) < dp. In principle, one could simply use this bound.

However, in practice, we expect that Zy:o Lext (M — n)Tstep) € Mg, so this would be an
inefficient choice.
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to obtain:

(5.44) < sup  [|U(Z,1)]] - l
t€]0, Tmax]
CA;;I(QLWFT/ZEO)N/Z(2 max /ko)N/2
x ([(1+TsmpGeGT5tep)+2Hi(a(*>> (/™) }ZL m))

+ 6‘4;“] (2LWFT/$O)N/2(kaax/kO)N/Q( max/Tstep)
+ €A (2LxL/20) N (2kmax N1 Ro) N

(2 + Tytep GeTer) (Z L(( “"D)>

+ (Tmax/Tstep)Hi(.t?(-f))Hf(e“2/”2)H (5.45)

We observe that this is linear in €. Thus, by making the choice:

et=2r"" sup ||U(Z,1)] .
t€[0, Tmax]

AR 2Lwrr/70)N? (2km /kO)N/z
" <{(1+TsrepGeGTﬂev> + 2B () B (/) ZL >>

+ A;‘] (QLWFT/wO)N/Q(2kmax/k0)N/2( max/Tstep)
+ A (2L /20) N * (2kmax N1 /o) N2

(2 + TstepGeGTSte" (Z L step))

¥ Tima/ Tetep>Hi<§<.f>>Hf(em?/‘*)H

we find that (5.44) < (5.45) < 7/2. This holds only of € < €(dp), with €(dr)
defined in assumption 5.

Thus, by this choice of parameters, we have made the error smaller than 7.

O

Remark 5.17 The obvious way to make (5.43) small is to make the following
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choices for kmin, kmax, INT,, kmax, N1, and Lp:

r
10 SUPt€[0, Trmax] ¥ (7, t)HHs

1
X Y ) (5.46a)
Tstep (Zn:(] R((M - n)Tstep)) (2 + TstepGeGTSteP)

Ly, = Ly, (

r
108up; (o, 7,0 ] 1 (Z )| 1

1
x MA ) (5.46D)
Tﬁtep (zn:O R((M - n)T@tep)) (2 + TstepGeGTs"?p)

kmax,NL = kmax7NL (

TTstep
Lp=1L _ 5.46¢
v =Le <ao:rm S ||w<x,t>||Hs> (546
kmin kmin( ° I > (546(1)
10(2 + TepGeS o) (L2 L(M — 1)Tieep))
Tite
kmax - kmax (17-01_,t P > (5466)

This particular choice ensures that each term on the right hand side of (5.43)
is smaller than 7/10. Since there are 5 terms on the right, the whole thing is
less than 7/2.

Although obvious and clearly effective, this choice is likely to be inefficient.
Supposing one term to be significantly more expensive than the others (e.g. one
term being polynomial in 771, the rest being logarithmic), it makes more sense
to make the expensive term only smaller than, e.g. (1 — §)7/2, and make each
of the others smaller than d7/2 (with 6 <« 1/2).

Thus, although we illustrate that this can be done with (5.46), we emphasize
that the exact method of satisfying (5.43) is strongly dependent on the particular
model chosen.

Remark 5.18 To get from (5.44) to (5.45), we made use of the the weak form of
proposition 5.8. That is to say, in the bounds on éA'(t), ﬁ(t) and @(t), we had an
intermediate estimate which appeared unwieldy. Nevertheless, the intermediate
estimate is far sharper, and is the one that should be used in practice. We
used the less sharp estimate simply to demonstrate that £(t), R(t) and Q(t) are

quantities which we can make arbitrarily small.
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5.4 Comments
5.4.1 Near Optimality of the Estimates

The estimates we give here are crude at some points, and can probably be
improved significantly. However, in principle, we believe that a result of the
form (5.39) is the best possible result one can hope for with our method, or any
other method based on time stepping.

The reason for this is the following. Consider any numerical method based
on time integration. Suppose that it makes an error (however small) at times
to. This error has now been made, and it is highly unlikely that further errors
will completely cancel it. Suppose after ty3, we have the ability to propagate
further with no error (but we need to take the incorrect result ¥(x,ty) as an
initial condition). Then |[U/(t)y(x,t0) fL[(t)\Il(m,tg)HH; is only bounded by
L(t) || (z,t0) — ¥(z,t0)|| .- Repeating this argument every time an error is
made leads to a bound very similar to ours.

5.4.2 No Hierarchy of Boundaries

Unlike the Dirichlet-to-Neumann approach, the TDPSF is not embedded in a
hierarchy of increasingly accurate boundary conditions. The reason for this is
that we are not attempting to construct the exact solution on the boundary.
Rather, we are merely assuming the wave behaves freely and semiclassically on
the boundary, and filtering it based on this. Thus, apart from increasing w,
we have little recourse to increase the accuracy of this method. So although
our method is highly accurate, we can not increase the accuracy without bound
while leaving the size of the box fixed.

5.4.3 Bourgain’s Phenomenon

One potential difficulty in solving time dependent problems is that a problem
which is stable on RN may exhibit long time instability on a periodic boxes.
Given a box [~ Leomp; Leomp]” with periodic boundaries, Bourgain (c.f. [5]) has
proven the existence of a time dependent potential V(#,¢) which is smooth and
well localized in # having the property that ||Ub(t)1/)0||H§ grows logarithmically
in time. This occurs because the time dependent potential essentially plays a
quantum mechanical variant of “ping pong”.

This suggests that some numerical methods might exhibit this long time
instability if one attempt to solve (1.1) on RV with such a potential. However,
our method prevents this from occurring. We do this by periodically removing
all framelets which move faster than k. (since we filter off waves which are

outside of NECCN BB, and BB has no framelets with gko > Kkmax)-

5.4.4 Lack of Bounds on k.,

Another potential difficulty comes from the fact that in general, one has no
bounds on kmin. We describe here a situation with a simple linear (time-
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dependent) potential for which kmi, can be arbitrarily small while leaving the
potential bounded and smooth in any reasonable norm.

Consider a nonlinearity of the form g(t,Z, v /(Z,t))(Z,t) = V(&) (Z,1).
We suppose that V (Z,t) takes the form Vy(z — (e/w?) cos(wt)) for some smooth,
rapidly decaying potential Vy(z).

This system is equivalent, by a unitary gauge transformation, to the time
dependent system with Hamiltonian H (¢) = —(1/2)A + Vp(x) + e cos(wt) -z (c.f.
[9], chapter 7).

Now, suppose further that the reference Hamiltonian Hy = —(1/2)A+ Vp(x)
has a single bound state, having energy —Ej.

Consider an initial condition initially localized in this bound state.

In this case, Fermi’s golden rule suggests that for e small and w > |Ep|,
mass will be ejected from the bound state into the continuum?, and will have
energy w — Fy after ejection. Thus, energy transitions from the bound state
into frequencies localized near /w — Ey. By making w sufficiently close to Ey,
we can make this as small as possible.

Thus, in this scenario, kmin <€ Vw — Fo, i.e. kmin can be made as small as
desired.

6 Lingering Waves (proof of theorem 5.12)

In this section, we construct a bound on the difference between the free propa-
gator and the box propagator acting on waves which are not outgoing:

(U (t) — Up(t)Pnrcc a0 (Z)|| 4

We do this by Duhamel’s principle and Gronwall, and use the fact that the
nonlinearity is locally Lipschitz (assumption 3). The bound on this term is
summarized in theorem 5.12 in the next section.

We first define three functions, E(t), Q(t) and Q(t) which we will use to
construct error bounds.

Definition 6.1 Let (Z,t) be a solution to (1.1) on RN, and vy(Z,t) be a
solution to (1.1) on [—Lint, Ling)Y . Suppose that

Y(2,0) = y(7,0) = PneccnBBYo(T)

for some 1o ().
We define the free error function to be some function E(t) for which:

|errmar— ety o)< B (6.1)

H;

9This happens only generically. More precisely, it happens if (uq(z)|e - zu(z,w — Ep)) # 0,
where ug(z) is the bound state and u(z,w — Fq) is the generalized eigenfunction at energy
w — E().
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We define the interaction error to be functions Q(t) (or Qu(t)) for which:

< Q(t) (6.2a)

t
/ (MDA — DA (1! 7 ) (1) o, )t
0 Hy

t
‘ / (MDA — U (i 7,y (a,8) ) (o, ) !

0

g < Qu(t)

Hy

(6.2b)

We will write our estimates in terms of these functions. We show that (5.37)
is consistent with definition 6.1.

The rest of section 6 is devoted to proving various pieces of theorem 5.12.
We prove (5.36) in section 6.1. The estimate (5.37a) is done in in section 6.2
(proposition 6.9) while (5.37b) is proved in section 6.3 (proposition 6.13).

6.1 Estimates in terms of E(t), Q(t)

Here, we prove the estimates (5.36a) and (5.36b) assuming that E(t) and Q(t)
are known.

We state the result in a more general manner, which we believe will also be
useful for proving short time error bounds for other types of absorbing boundary
conditions.

Theorem 6.2 Let o(z) € H®. Let g(t,Z,-) satisfy assumption 3. Let E(t) be
defined by (6.1), and Q(t),Qp(t) by (6.2). Then the following holds:

1@ (t) = Us(8))tb0 (@) |7 < (B(1)+Q(1)) +GeC % (E(t) +Q(1)) (apriori) (6.3a)

1) — U)o @), < (B +Qu(t)) + GeS x (B(1) + Qu(1)) (aposteriori)

(6.3b)
Lemma 6.3 (Gronwall) Let y(t) satisfy the inequality:
t
w0 <o) +C [y (6.4)
Jo
y(t) satisfies the bound:
t
y(t) < p(t) + C’eCt/ e~ “*p(s)ds (6.5)
0

Proof of Theorem 6.2. We use Duhamel. We observe the following equality:

Y(t) =y (t) = /DR () — /DRl (2)

+i/t[ei(1/2)A(ts)g(s=j’,1/)(s))1/)(s) DA (o 7 () )b (5)]ds
0
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We then add and subtract e?('/2)A=5) g (s 2 1)y (s))1Py(s) under the integral sign,
and take norms in H?® to obtain:

1) = o (D)l gy < Es(t)

+ +

Hy

/0 e M/AAE=3) g (s, &, 1h(s))(s) — g(s, Z, P (s))1hs(s)]ds

t
/ [ (/DR8] — HU2A g (5, 7,4y (5))fn (5)ds
0

We then observe that

llg(s, Z,4b())4(s) — g(s, 7, u($))0n ()l s < G [|1b(s) — o ()] s

and also that the first term is Q(t). Gronwall’'s Lemma (6.3) gives us (6.3b).
Estimate (6.3a) follows in much the same way, except that we add and subtract
e 1/2)8t=5 (s 7 4h(s))th(s) instead. a

Proof of Lemma 6.3. In the case of equality, we have:

Hy

y(t) = p(t) + C / y(t)dt

Laplace transformation yields:

Y(z) = P(2) — cyiz)
Or equivalently:
Y(z) = (1 + Z-%-%) P(z2)

Inverting the Laplace transform and collecting residues yields the result we seek:

t

t dn(: £
y(t) = e’ / efcs—lzl(:) ds = p(t) + Ce* / e *p(s)ds
Jo Jo
g

In the event that g(t,Z, ¢)y = V(z,t)y(z) a sharper estimate holds. This
can not be shown to hold in the nonlinear case indeed, counterexamples exist.

Theorem 6.4 Let (z,t = 0) € H?® be an initial condition of (1.1), where

g(t, 2,0y = V(x,t)(x) (that is, a “linear nonlinearity”). Suppose that the
equation

i (7,1) = (—(1/2)Ap + V (7, 1)) (. 1)

)
satisfies the energy conservation law ||y (2, t)|| - < a(t) [|s(2,0)|| .- Then we

find:
[V(Z,t) — (4, t)HH,f

< a(®)[6(2.0) = (.0l + [ alt =) 1SE Dl ' (66
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where:
S(.’I:,t) — |:(€i(1/2)A;,t - ei(1/2)At)’([J(.’17,O)
t
+i/ (ei“/mb(t*t’) - eiWM(f*t')) V(x,t')(x,t')dt| (6.7a)
0

s(x,t) =i0;S(x,t) (6.7b)

In particular, observe that ||S(x,t)|| g < E(t) + Q(t), so to bound the error, it
is sufficient to construct E(t) and Q(t).

Proof. We write ¢y(z,t) = ¢(x,t) + e(z,t) where e(x,t) is the error. We
then subtract the Duhamel equation for 1 (z, t) from the Duhamel equation for
(x,t) to obtain:

t
e(z,t) = /D20 (1 0) 44 / '8 =)y (0 e, 1)t
Jo
+ (ei(]/Q)Abt _ ei(]/Q)At)’l/J(QZ, 0)

t
+7:/ (ei(l/Q)Ab<t*t'> 76“1/2)““”) V(x,t")(w, t")dt!
J0

If we apply i0; to this equation, we observe that:
idhe(a,1) = (—(1/2) 80+ V(2,8)) e(a, ) + S(a,1)

Taking norms and bringing them under the integral sign gives us the result we
seek. O

6.2 Bounds on E(t)

Here, the bound (5.37a) on E(t) is constructed from the framelet decomposi-
tion and the fact that ¢ (z,0) is given by framelets which are in NECC N BB.
We further split this up into framelets which are in BAD "\ NECCN BB and
BADNNECCNBB. We then add the results together to obtain the estimate.

Lemma 6.5 Let {¢;} be a frame with frame bounds Ap, Br and with per-
framelet error bounds {E;(t)}. Suppose J is a finite set of framelet indices.
Then:

(/A 8NN 65 (@)|| <D il €5 (1)

jeJ e €T

<A S lE® ] 19l < A;lﬂeﬂ;g(*t;(t)nwny (6.8)
jeJ ¥

Here, |J| represents the cardinality of J. The same result holds if we replace
(ei(1/2)At _ ei(1/2)Abt) by % Lm]Nei(l/2)At and E;(f) by 'R;(f)

[=Lint,
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Proof. The triangle inequality yields:

(ei(l/Q)At - ei(l/Q)Abt) Z wj¢j (T) < Z ‘wj‘ S;(f)

jeJ He jET

We have a sharp bound:

<Swlesm < il e < ARt vl [ &)
jeJ jeJ jeJ jeJ

We obtain a suboptimal (although still reasonably useful) bound:

Z|E <\/_sup5
jeJ

This yields the result we seek. The proof with R (#) instead of £7(¢) is identical,
but with e?(1/2At replacing (ef(1/2)At — gi1/2)Aut), 0

Remark 6.6 For practical purposes, the estimate Z_ieJ |5;(t)|2 should be

used rather than A,'\/]J] supjcy €2 (t) ||l - For any given set of parameters
it is simple to compute, and gives a precise estimate (which does not grow
with L). The cruder estimate is included to demonstrate that the estimate is
nontrivial.

We now apply lemma 6.5 to obtain the following result dealing with framelets
in NECCNBBNBADY.

Proposition 6.7 Let ¢y (z) satisfy assumption 2. Then we find:

(/DAL _ i1/t EM el (69)

Pganc aneccneeYo(T) " <
b
Proof. Compute:

(ei(l/Z)At _ ei(]/Z)Abt) Z 1/)0(515)(1)(515) (f)

(@,5)eBADC N NECC N BB e
b

< Z ‘%(5 b)

(@,b)eBADC NNECC N BB

< \/ > Eap P
(@h)

(1288 i1/280t)g o (7)

@,b)eBADC NNECC N BB

E(t) ||voll 2

X Z ‘7/}0(515) : <

(@,5)eBADC NNECC N BB
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Here we used the fact that

2
< Apt ol

> ‘d’“(a )

(@,6)eBADC NNECC N BB

and the definition of £(t) (definition 5.7 on page 63). O

Proposition 6.8 Let the parameters kmin, w and Tgiep satisfy (5.35). Let io(x)
satisfy assumption 6. Then the following estimate holds:

(e 1/DAE _ e (I/DAY Py 1y NBCC BB Y0 (o )HH < 20min (6.10)
b

This result is slightly trickier, and subsubsection 6.2.1 is devoted to the
proof. We now arrive at the bound on E(t):

Proposition 6.9 Let ¢o(z) satisfy assumption 6, and let Ling, Tstep and w
satisfy (5.35). Then:

H(ez‘(l/Q) ei1/2)A o) Prass o et (x )HHA
b
< E) 1vo(2)] 2 + 26min = B(t)  (6.11)
Proof. Observe that

P nnecc?o(r) = PeapnBBnNEcc®o(T) + Peapc neenNECcc?o(z) (6.12)

We therefore apply (e!(1/2)A% — ¢i(1/2)A01) tq (6.12), then take the norm in H}
and use the triangle inequality, to obtain:

(e!L/2AL _ Gil/DAY DR Npoctbo ()

Hy
< H(ei(l/Z)At _ ei(l/z)Abt)pBADmBBmNECCz/)O(a:)H .
b

(e"/2AL _ i/ Dy e pe A nECCY0 (T )HH (6.13)
b

Then apply proposition 6.7 to the last term and proposition 6.8 to the first term
on the right side of (6.13). O

6.2.1 Slowly Moving Waves

We now prove proposition 6.8. .
The idea of the proof is to show that for any (@,b) € BADNNECCNBB,

(@,b) satisfies (5.7). This, combined with BAD NNECC N BB implies that:

1PeaD nNECenBBY0 ()| s < Omin
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-

Thus we need only prove that (@,b) € BADNNECCNBB satisfies (5.7).
We prove first a technical lemma, showing that a given framelet is either
incoming or outgoing (not both) if it has velocity sufficiently fast.

Lemma 6.10 Assume that w, Tyep satisfy (5.35b) and (5.35¢). Then for

(6370: gkO) € [_(Lint + 'LU/?)) (Lint + w/S)]N X [_kma)n kmax]N7

-,

we find that (@,b) ¢ BAD(e, s, Tytep)-

Proof. By lemma 4.9, it suffices to show that BB 5. (e,t) C [—(Lint +

w), (Lint +w)]V.
Note that:

@z + bkot € [~ (Lint + w/3 + kmaxt), (Lint + w/3 + kmaxt)]™
- [_(Lint + 'LU/?) + kmasztep)7 (Lint + ’LU/3 + kmasztep)]N
Consider Z € BB ) (e,t). By definition 4.7 (the definition of BB, (e,t)),

we find that: . . .
|Z — dxo + bkot|la < Wi(b,e) + wi(b,e)t

Thus, since dxg + g]{?gt € [~ (Lint + w/3 + kmaxTstep), (Lint +w/3 + kmaxTStep)]N
and BB, ; (e,t) is contained in a ball of radius wf(l_f7 €) + w5 (b, €)Tstep about

aro + l_;k:gt, we find that:

-

BB ; .0y (&:1) € [~ (Lint + /3 + kmax Tatep + Wi (5, €) + W3 (5, €) Tigep),
(Lint + ’LU/3 + kmasztep + Wf(b7 6) +

Then applying (5.35b) and (5.35c), we find that:

-

[ (Ling + /3 + FuaTutep + w3 (5. €) + w3 (B, ) Tep),
(Lint +71)/3+kmaxT§tep +w:(g, F)+WZ(E, €)T€tep)]N g [7(Lint +7U)7 (Lint +7U)]N

Lemma 4.9 implies the result we seek. O

Lemma 6.11 Assume w and Tyep satisfy (5.35b) and (5.35¢).

-, -,

Fiz (@,b) € ZN x ZN. Suppose that (@,b) satisfies:
3j €1...N,|@;x0| > Lminand bko(a@;/ |@;]) > kmin (6.14)

Suppose also that Lint, w and Lyin satisfy (5.35h), that is Lyin > Lint +w/3.

-

Then (d,b) ¢ NECC(e, s, 0).
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Proof. For the duration of this proof, let j denote the (possibly nonunique)
index j for which (6.14) holds.

Note that by (5.35b) and (5.35h), we find that |@;xzo| > Liny + w/3. For
simplicity, suppose that @; > 0, and therefore that [_;j > 0.

Then note that:

djro + bkot > (Lint +w/3) + w (b, e)t

The constant term was obtained by using (5.35h) while the ¢ term was obtained
using (5.35a).
Thus, we find that:

d(@zq + bkot, [~ Ling, Line)N) > w/3 + w;(g €)t > w;(vh,€) + w;(g €)t

The last inequality follows by applying (5.35b). Applying lemma 4.10 implies

-,

that (d@,5) ¢ NECC. O

Proof of proposition 6.8. We now wish to show that:

(ef1/DAL ei(]/Q)Abt)PBADﬁNECCﬁBB'(/JO(m)H < 20min (6.15)

Hy

We do this by showing that BADNNECC N BB is a set which satisfies (5.7).
Fix (@,5) € BADNNECCNBB. Note that since (@,5) € BB, we find that
|Ek0‘00 S kmax-
Applying the converse of lemma 6.10, we find that |@zo|co > Lint + w/3.

-

Now suppose (i, b) satisfies (6.14). Then:

-,

(@,b) ¢ NECC(e, s,00) D BADNNECCNBB

-,

Thus, if (@, b) € BADNNECCNBB, we find that:
I(3j €1...N,|@;x0| > Lunin and bjko(@;/ |@;]) > Kumin)

This implies that BAD NNECCNBB is a set satisfying (5.7). Hence:

H (el1/DAL _ i/DAtY Py 1y Nmcc nBRYO () H

Hy

<2 ||PBADONECCOBB¢0($)||H§ < 26min

Thus, we have proved proposition 6.8. g

6.3 Bounds on Q(t)

We now attempt to determine bounds on Q(¢) and Qp(t) based on apriori and
aposteriori knowledge of v(z,t) and g(t,Z, ). This is where we use assumption
4.
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The main tool is phase space localization based on the WFT and assumption
4. In particular, we wish to treat g(t,#,1(t))1(t) as a source term and then
figure out how much of it’s mass can leave [~ Ling, Lint]Y. We will decompose
ZN x 7N = NLUNLY (with the set NL defined as in assumption 4), and write:

g(t= 577/})1/) = Z 9(57‘) (t)qs(ﬁ,*) (f) + Z g(aj) (t)(ls(ﬁj) (f)
(@,b)eNL (@,b)eNLC
The last term is small by assumption 4. We now come up with sufficient

conditions on Lin, and Tyep (depending on Emax nt, and Lyg,) so that framelets
in NL are not bad.

Proposition 6.12 Let Tyep, Lint satisfy (5.35¢), (5.35f) and (5.35g). Then
NLNBAD(e, 5, Thep) = 0.

-

Proof. Fix (a@,b) € NL.
Note that BB ; (e,t) is a ball of radius wf(g €) + w (b, €)t around the

point dzg + bkot. Thus, if # € BB(a .0) (e,t), then:

|00 < [d@m0] oo + [bhio| ot + WS (B, €) + W (B, €)t
S Lint + kmax7NLTStep + w/2 + Wf,(& 6)T5tep
< Lint + w/2 + (Lint + w/2 — Ln1)

This calculation follows by applying (5.35€) t0 (kmax,NL + wZ(I; €))Tstep and
(5.35g) to wi(b,e).

Note that (5.35f) is needed only to insure that (5.35e) is possible to satisfy,
i.e. that Ljpy — Ln1, > 0.

This implies that # € [~ (Lint + w), (Lint +w)]~, hence

3

BB(E’EJ) (5: t) - [_(Lint + 'LU), (Lint + w)]N

-,

Applying lemma 4.9 implies that (@, b) ¢ BAD(e, s, Tstep). The only assumption
on (@,b) was (@,5) € NL, hence NLNBAD(e, s, Tytep) = 0. O

We can now compute a bound on Q(t) for Q(t) satisfying assumption 4.

Proposition 6.13 Let g(t, %, )y satisfy assumption 4. Suppose that Lin and
Tstep satisfy (5.35e), (5.35f) and (5.35g). Then Q(t) satisfies:

Q) < (QM)G +tdnt) sup [[¢(z,t")]| . (6.16)
t'€[0,t]
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Proof. We note that:

t
/ (XV/2BEE) — I UDAED g 1, 2, 4p(, 1)) (. )t
0

t
i A(t—t' i Ay (t—t' =
< /0 (el(W/A0=) _ i(1/2)As(t=t1)y Z 9ap) (t)t’)(j)(aj) (%) dt'

(@,b)ENL H;

t
+/0 (0/DA0E) _ /200y SN g g @) e

By assumption 4, for any fixed ¢, the last term satisfies:

(/) DA ST g (016 ()

(@,b)eNLC

Hp
< 20nit sup (e, ) (6.17)
' €[0,t]
The first term satisfies (at each fixed ¢ < Tytep):
(XA — DM R 7 g (D)6 (45 ()
(@,5)ENL H;
2
< llg(t 79, )0 (1) 2 Af! )
(@,5)eNL
- 1 2
< G 6 (@ D)l Ar €an®)
(@,b)eNL

We then integrate this result over time:

/ G (7, 1)|

HSAFl\l 3 ‘5(575)(75)
(

t'elo,t o
€lo.t (@,b)eENL

<Gt sup ||w<f,t>||HsAF1J > [ewn®| =G@ ol 0w ©19)

Adding (6.17) and (6.18) yields the result we seek. O
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7 Exterior Waves

In this section, we prove theorems 5.10 and 5.11.

We first prove a technical result, that the waves outside [—(Lint + w), (Lint +
w)]V and also the waves of high frequency are small. We will use this result in
the proof of both theorem 5.10 and 5.11.

Now we will show that f(x) is localized. We assume throughout this section
that f(z) = U(Tstep) Pyecc nrrh(z) for some h(z) € H*.

Proposition 7.1 The following inequality holds.

1F @) 10 @ Loy Loy < & (Tsten) [B(@)]] 2 + Q(Titep) (7.1)
where E(t) and Q(t) are given by (5.37a) and (5.37b) with h(x) replacing ¥ (z).

Proof. Recall that the per-framelet error functions, used to construct
E(t) ||h(x)|| ;= and Q(t) are nothing more than the mass (in H*) outside
[ (Lint + w), (Ling +w)]N. Thus, the proofs of propositions 6.9 and 6.13 apply

without change, and we can merely add & (Tytep) |2(7)]| > and O(Tyep) to get
our bound. O

Proposition 7.2 The framelet coefficients of f(x) satisfy:

1 Page £(@)]| 7. < HL(G@)HL (e /) [E(Totep) ||h<m>||,12+@<thep>+el+((s;;;

Proof. Note that BB® Cconsists of framelets moving faster than kp.x, or
outside the region [~ Leomp; Leomp)™ - We apply corollary 3.21.
Assumption 2 can be invoked to bound ||7DHF(kmax)f(33)||Hs by Omax- ToO
bound the spatial component, we apply proposition 7.1.
1PaB f ()] e < H(GE@))VH (€™ /7 )[B(Tatep) + Q(Tetep) + €]
+ ||fPHF(k,.m)f(37)||Hs (7.3)

O

7.1 Outgoing Waves (Proof of theorem 5.10)

In this section we prove theorem 5.10, concerning the outgoing wave term:

1U(t]f)Parcce f(@)] gy

Our goal is to show that because the waves are outgoing, this term remains
small for a long time. The function f(z) will be assumed to satisfy assumptions
2, and also satisfy the assumption that f(xz) = U(t)Pnrcc nsrh(z).

This is where we use assumption 5. Assumption 5 states that:

||u(t\f)PNEcch(ﬂf)||H; < 0r ||Pagcce f(l")HHg
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We first add and subtract e/('/?2¢Pypcc f under the norm, and apply the
triangle inequality:

Ut f)Pagcce ()] H;
< Hu(t)PNECCC f(z) - ei(]/Q)AtPNECCCf(w)‘ "

s
b

+

6‘Z.(]/Q)AtfPNECCCf(-T) H (7-4)

s
b

The first term is bounded by dr ||Pyrcce f(2)] 5., by assumption 5. This is
true provided Liy; > L, since in this case

pi(1/2)At y < |lef1/2)Aty (7 <
(UL I (UL PN
for any (@,b) € NECCC.
Thus we need only compute a bound on ||’/ Pypcce f(z)|| Hy .We break

up PNECCC f( ) further:

Pxecce f(z) = Pypcce mHF(kmax)uBf(ﬂf) + Pnecce n(HF(kmax)uB)Cf(ﬂf)

Proposition 7.2 provides a bound on the first term. To bound the second,
we need merely count the framelets in (HF (kpax) U B)¢ and apply lemma 6.5.
We observe that B consists only of framelets with ld] . o < Leomp +

X?®(€, kmax) , while HF (kpax)© consists only of framelets with b

It is easy to see that there are only (2kmax/ko)"™ (2[Lcomp + X (€, kmax)]/20)™
such framelets. Thus, we obtain the result of theorem 5.10:

o S kmax .

14 ) Parcce f (@) uy < OF Pxpcce f(@)] by

+HL(G(@)H (e " /7 [B(Tuep) + Q(Totep) + €] + Omax
1/2

A ) R | 1@l

(@,5) ENECCE N(HF (kmax)UB)C

= 0 | Pxpcce £ @)l + R (@)l
+ HL(§(@)HL (e /) [E(Totep) 11(@) | 12 + O(Tatep) + €] + Omax  (7.5)

Here, we used definition of ﬁ(f) to simplify the inequality.

7.2 Residual Waves

In this section, we wish to show that

[U@)Prece f(x) = U Precensaf (@) 4 = U () Pxgce se.f (2 ||H
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is small, provided f(z) = ¥(x, nTstep) for some n.

The residual waves consist of waves which are located outside the box, but
are moving in a direction that will take them into the box at some future point.
They can be thought of as outgoing waves that have turned around outside the
box, and are returning.

Remark 7.3 This proof does not use the fact that the waves are off the prop-
agation set. It merely uses the fact that BB consists of framelets which are
localized outside the box, and it takes a moderate amount of time to reach them.

Proof of theorem 5.11. By proposition 7.2, and the observation that
NECC \ BB c BBY
we observe that:
| Pxece e f(2)]| 4
< HL(G(@)HL (e /7 ) [B(Tuep) + Q(Thtep) + ¢
+ | Puae (k) f(2) | 1

We then observe that:
1U(tPrecc f)Parcc f(2) — U(tPaecon ) Pnecc neB f ()] g
< L) [[Precc f(2) = Paeccneef (@)l g
<L) (B @@ H (€7 ) [E(Tuep) + QTuiep) + ¢
[ Pre ) F@) 1 )

This is the result we seek, after substituting the definitions of E(Tyep) and
Q(Tetep) iIl. D

8 Validation of the Assumptions: Some Simple
Examples

In this section we verify that the assumptions hold for certain common examples.

8.1 Time Independent Potentials

In this section, we consider the case where g(t, %, ¥ (%, t))(F,t) is merely a time
independent linear potential. That is, g(¢, %, (%, t))(Z,t) = V(z)(Z,t) for

V(x) an analytic, short range potential which is real-valued. More precisely, we
demand the following:

07V (x)] < Cy (z)~(1+H) (8.1a)
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V(k) < CLeelF] (8.1b)
Assumption 1

This follows trivially from standard functional analysis. The operator H =
—(1/2)A + V(z) is self adjoint and bounded below, so e'f* is an isometric
semigroup on L2. Thus, the solution exists and is unique. This also implies
that L(t) = 1.
Assumption 2

This assumption holds due to conservation of energy, which allows us to
prove that [|¢)(Z,1)|| 51 is bounded.

Lemma 8.1 We have the following bound on ||¢(Z,t)|| g :

W Bl < VI 1Bl + [0 O (V@ +1/2)  (82)
E, is the energy of the system, i.e. Eq = (¢ (z,0)|Ho(x,0)).

Proof. Since V(z) is real valued, (1.1) becomes a Hamiltonian system. Thus,
(V(Z,t)|Hy(Z,t)) is a conserved quantity. Therefore:

(&, 1)] — (L/2)AG(E, 1)) = ((x, 0) Hib(w,0)) — ((F )|V (2)(F, 1))

Multiplying by 2, adding ||1/)(az70)||ig to both sides and then taking absolute
values yields:

19 (&, ) [0 < 2 (W (a, 0)[Hp(, 0)) + 2 [(&, I |V (@) + [[0(F, )]l

Applying conservation of mass to the ¢)(Z,t) terms on the right, and then taking
square roots yields the result we seek. O

We note that H[l - P[(lK,K]N;O(k)]f(m)‘ < (K)""|f(®)||j:. Combining

this with proposition 5.2 on page 59, we have verified assumption 2. Thus:

2

11— P2 s B 0]

< K-V Bol + 4@, 0) |22 (IV @) [ = +1/2) (8:3)

L?

Now, given dpay, we let

kmax - ks (kmax)

= G 2 (@) H (7 | Bol + e, Ol (IV (@)l +1/2)

Substituting this definition of kyax into (8.3), we find that proposition 5.2 is
satisfied and therefore assumption 2 is also satisfied.

One can, of course, use energy estimates (based on the fact that
(V(Z,t)|H*y(Z,t)) is conserved) in higher order Sobolev spaces to bound kmax

as well. In general, one can show that kmax ~ 0°.¢ where s is the sobolev

max
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space in which we measure the error, and ¢t > s is some higher Sobolev space.
However, the constants are difficult to control, due to the need to estimate many
commutators, e.g. [—(1/2)A%, V()] (and the like).
Assumption 3

Since V(z) is a bounded linear operator, we find that G = ||V ()|l £ g+ g1
But [[V ()| osre gze) 15 given merely by [V (@)l zgzze szey = V(@) lypee- In the
case when s = 0, we find simply that |[V(2)[|z 2 r2) = [IV(@)| poe-
Assumption 4

This follows from assumption 2 combined with the fact that the potential
is smooth and decays rapidly in space. We use the alternative assumption to
assumption 4 found on page 59. We need to verify (5.9a) and (5.9b).

Bounds in Momentum

To verify (5.9a), we need to compute a bound on:

|0 = B, @DV @@ 0)

We do this by using the fact that V(k) decays rapidly, combined with (8.3). We
write:

L2
<= P2 sy @DV () % P g g, @k
= PR gy @DV () % (1= P s, (@), 1]
<= P s g NIV (R) % P e gy, @0 (D]
IV @)l || (1= Py, @R, D),
<= P sy NIV (R) % P2 e gy, (@0 (R D]

V@)l KV [Bol + 0, 012 (IV (@)l +1/2)  (8:4)

The last term can be made as small as necessary by making K large, which we
will do shortly. We can calculate this by:

~ “ 2
| = P s e @DV () 5 P ey, @0, 8]
2
S/ / e lF-Fly@ vyak'| di
J([=(M+ko),(M+ko)|N)C |J[—(K+ko),(K+ko)]V
(8.5)

The inner integral is the convolution of a compactly supported function with
an exponentially decaying one. The result is exponentially decaying. The outer
integral is then integrated over the tail of this exponentially decaying function,
and is therefore exponentially small.
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Lemma 8.2 Suppose |E\Oo > (K + ko), in particular suppose that \E7| > K+ky
with j € 1...N. We have the following bound on the inner integral:

2
Cle e lF=F R, t)dk’

‘/[(KHCO);(KHGO)]N
< (CY)?2(K + ko)e 2 (Fl =K ko) sz 0)[12, @ N+

Proof. Since Woo > (K + ko), there exists j so that ‘EJ‘ > K + kq. Suppose,

without loss of generality, that k_:j > K + ko (the case when Ej < —K — kg is
just a change of coordinates). We can then calculate:

2
<

(Cy)2e e FFLy @, t)dk

‘/[(K+ko),(K+1m)]N

(C(/)2€72Q|E751‘ 2

biE, 1)

/[(K+ko),(K+k0)]N v
[(E, 1)

2

< 2K + ko)e (ki =K —ko) e 2elF=F |, gj

L /[(K+ko>,(K+ko)]N1

P 2 oo —
¢(k7t)‘ / o 2a|R-F|| g
L2 JpN-1

)

L2

< 2K + ko)e 2 (Fi—K ko)

< 2K + ky)e 2o (Fi K ko)

Finally, note that Hd}(l?, f)‘

. [|¢(z,0)| - and we are done. O

Lemma 8.3 The following equation holds.

o 20Kl — K —ko) gji

/<[(M+ko>7<M+ko>]N>C
= 2N (20) N2 Bk D(N 20(M + kq))
~ MNe 20M=K)9N(20)"N  (8.6)

In particular, (8.6) vanishes faster than e~ *=9M for any § > 0.
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Proof. The set {k : |k|oo = u} has surface area 2Nu™~'. Thus, we find that:

67205(\1?\004(7140)%

/([(M+k0)7(M+k0)]N)C
_ /oo 2N1LN71€72{1(117K7k0)d7l: — 2N62Q(K,k0) /Oo U‘N71€72audu

M+kq J M+kq

= 2Ne2“(K7k°)/ (U/QO()N71€71)ﬂ

20(M+ko) 2a

= 2N(2a)’N62°‘(K*’“0)/ vV eV dy
2a(M+ko)

= 2N (2a) N2 E=kID(N 20(M + ko))

The asymptotics follow by applying (4.15) to I'(V,2aM). O

We now apply lemma 8.2 to the inner integral of (8.5), and lemma 8.3 to
the outer integral. We thus find that:

(8.5) < (Ci)*2a " NH12N (20) N

x |9ED| (K + ho)e KEITN, 2a(M + ko)) (8.7)

2
L

Thus:

(8.4) < Cl 20~ NFD/2N1/2(20)~N/2
x [[¢(z, 0)| > VE + koe® K *)/T(N, 2a(M + ko))
+ IV (@)l K”\/@\/\Eol + (@, )72 (IV (@)l e +1/2)  (8:8)

We will now make K and M sufficiently large.
We choose K in order to obtain:

IV (@)l K~V | Bol + 146, 0) 22 (IV (@)l + 1/2)

ONL [(Z,1)]] 12

<L
T2 (4H3 (9(8)H (e /)

This yields:
K = 2*?(4H5 (g()H (e /7))

V@l e V1] + 90 00 (1Y () +1/2)
S 0@, 0) 2
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We now select M so that:

O}, 20~ NFD/2N1/2(90)=N/2

X |9(x,0)]| 2 VK + koe® K k) /T(N, 2a(M + ky))
1 one, |92, )|

S 9 2 2
2 (4H2 (9(2))H (e~ /%))
This yields:
- kmax NL - kO
IN =T 2N—1o—2a(K—kq)
+(20)7' T N, —— .2V Ta le el Y w9
(C4)2N (K + ko) (HS, (g(2)H, * (e—=*/77))

In terms of asymptotics, we find that K = O(dy; ) and M = T ~1(N,e 22K /K) =
F*](N7e*2°“5§156NL), thus M = ki, N1, grows at most 6@11‘75 for any § > 0.
Thus we have satisfied (5.9a).

Bounds in Space

To verify (5.9b), we need to compute a bound on

HP Lyvu, Lxn]Vjzo (,?)w(,ﬁ f)‘

L2
where we are free to choose Ly .
We can bound this by H B I ] wo(f))V(T)H,oc |(Z,t)]|;2. Ob-
serve that:
|- Py v @V @) <

Ov(Ly) 7 < Ov(Ly) '™

Therefore, we find that in order to make

1- P[i Lt Lt ]V () .

S WDl
L2 — (4Hi(§(f))Hls(e*“2/”2))‘

HP[ LNL LNL]N To(f)w(i t)‘

we need only let

1

1+8

Ly, = |:(5§11le(4Hi(g(a‘3‘))HIS(6772/”2))

Asymptotically, Lyr, = O((1/6x1)77).

If V(x) decays exponentially, one can prove a similar estimate in which Ly,
will behave like O(In(1/dn1,)).
Assumption 5

Various propagation estimates can be used to verify assumption 5 (using
proposition 5.4) using propagation estimates, e.g. [27].
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We would break the non-necessary waves involved in assumption 5 into waves
which are pointing away from & = 0, waves which are pointing towards & but
do not have enough velocity to reach [~ Ling, Lint]V before t = Tay, and those
waves for which & -k = 0 (waves moving in the angular direction).

The outgoing waves can be treated by using minimal velocity bounds on the
positive spectral subspace of the dilation generator (—i/2[Z-V + V - 7]).

The waves which are moving inward, but too slowly too reach the computa-
tional region, are controlled by maximal velocity bounds.

The treatment of the third type of waves is more intricate, which requires the
use of velocity bounds with modified dilation operators and covering arguments
in phase space. The idea is that they are contained in regions of phase space
for which [~ Leomp, Leomp)” is outside the propagation set.

It is our intent to calculate this all explicitly at some later point.
Assumption 6

This is, we believe, the most difficult assumption to verify.

Assumption 6 has two components which need to be verified. We only know
of a general argument which is capable of dealing with one of them.

The basic tool for verifying assumption 6 is proposition 5.5. Proposition 5.5
says that all we need to do is verify that framelets which are outside the box
have \gk0|2 > 2¢/Nkmin, and for which @z is located cone around bl .

This means that we need to show that framelets which are far from this cone
have small mass, and framelets below 2v/Nkpmin, have small mass.

We believe the first can be verified by using pseudoconformal-type estimates,
which we will sketch out below. We are uncertain at this time how to show that
the amount of mass below 2\/Nkmin is small. For this reason, we are developing
a multiscale algorithm capable of handling low frequency waves [37].

We now sketch an argument suggesting that waves cluster on waves where
Z || k. Recall that in remark 5.6, we provided an argument suggesting that
if ||[(& —itV)f(Z)|| . was bounded, then the mass of f(&) sitting on framelets
with |@zg — bkot| > 0 is small.

We now suppose that t(z,t) is located strictly on positive energies, i.e.
Xlkminso0) (H)¥ (2, t) = p(x,t). Let us also suppose that (Z)*V (Z) decays rapidly.
This suggests to us that |[|Z|3V (Z)¢(x,1)| ., < constt3/2.

We can then decompose 1(z,t) by Duhamel in the following way:

, (G+Dt/n ,
la, ) = /DA (g 0) 4+ / /XY () (a, )
Jjt/n
We then observe that:
H —itV)e! (/DA (2. 0) H = |||a:| P(z,0) ||L2

In addition, we find that:

BTV (2) (a, 1)

(o — ilt ~ Y9)EINOV @y )| | =

= |[[Z[3V (@)¢(z,t)]| ;- < const(t)~*/2
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We then observe that this suggests that the framelet coefficients of e!('/2 A=)V (2)eh(z, ¢')
are also small when dzg L bkg.
This indicates that:

t
1P, (D) 2 < small|||72(z,0)[|,, + small / const (#')"*/2dt’ (8.10)
Jo
This argument, which we believe can be made rigorous, suggests why we
believe that all of our assumptions can be verified for the case of linear, time
independent potentials.

9 Numerical Tests

In this section we discuss the results of our numerical tests.

We built and implemented the algorithm in the program Kitty . Kitty
is implemented in the Python programming language, with external libraries
(written in C) handling the expensive numerical computations. The external li-
braries used are FFTW (Fastest Fourier Transform in the West), and Numarray
(support for large arrays in Python, at C-like speeds). Kitty also calls the ex-
ternal programs Gnuplot to generate graphs and ImageMagick/gifsicle in order
to produce movies for 2-dimensional simulations.

Kitty is licensed under the GPL. It is very much a work in progress. Kitty
comes with little documentation and no warranty. Use it at your own risk.

Various test cases, spanning many types of parameters, are also available for
download from the author’s webpage, http://math.rutgers.edu/ “stucchio.

9.1 T+ R = F: Simple Tests

The standard method for testing absorbing boundaries is simply to throw co-
herent states (which are well localized in frequency) at the boundary. After
the collision, the amount transmitted (if absorbing potentials are used for
Dirichlet-to-Neumann and other boundaries nothing is transmitted) and the
amount reflected are measured.

This is a useful test, although it is by no means completely characterizes
the errors. We explain why, and provide an example where this method fails in
section 9.2.

9.2 T+ R # E: A trickier test

We describe in this section a scenario in which computing a bound on 7'+ R
provides no useful estimate.
Consider the following linear Schrédinger equation (with (7,¢) € R**1):

15
) T, t) = —(1/2)A — ———— T, t 1
i1, 1) (/DA — g | V0 (9.1)
(x,0) = ei7i’2€7\f\§/20 +ei4a?,1€7\,i'\§/20
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Observe that the initial condition consists of two coherent states of equal
mass, one with velocity 4 and one with velocity 7. The notable fact about
this particular potential is that the fast gaussian has enough kinetic energy to
(mostly) escape from the binding potential. The slow gaussian does not. The
slow gaussian moves toward the boundary, turns around and returns.

The problem with the absorbing potential approach is that the absorbing po-
tential does not distinguish between incoming and outgoing waves. It dissipates
everything on the boundary including the waves that should have returned. This
will occur even if one can construct a complex potential for which 7'+ R = 0!

We ran three simulations of (9.1). The first was performed using the TDPSF
with ¢ = 2.0. The region of computation was [—25.6,25.6]> The second was
performed (on the same region) with an absorbing potential

Vi(3) = _20i67(5¢25.6)2/36 _ 20i67(52i25.6)2/3e_

The third was solved with periodic boundary conditions on the region
[~102.4,102.4]?. This boundary is sufficiently distant so that the outgoing waves
cannot return to the origin for a time 204.8/7.0 & 29. Thus, we will take the
distant boundaries simulation as our benchmark, at least for ¢ < 29.

After t = 29, we have some qualitative knowledge of the behavior. We expect
that the solution consists of continuum and bound states. Over a short time,
the continuum will disperse, leaving only the bound states. The bound states
will remain forever.

In all three cases, the quantity M(t) = ||[v(z,?)[[12((_19,102) Was computed.
The simulation using the TDPSF agreed with the simulation on the larger region
to within 1.25% for ¢+ < 29'°.The simulation using complex potentials had an
error of 4% for t < 29, and the error appears to increase after that.

In fact, examining the graphs of M (t) (see figure 1) part of the bound states
appear to be dissipating. In fact, we believe that this dissipation will continue
and the error will only get worse with time.

The reason the TDPSF performs so much better than the complex potential
is that it distinguishes outgoing waves from incoming waves on the boundary.
The TDPSF only removes waves which sit on the boundary and are also outgoing
with sufficiently high velocity. The trapped waves, although they sit on the
boundary, do not have high outgoing velocity, and thus are not removed.

9.3 Violations of Assumption 4: Soliton Filtering

Numerical experiments suggest that in some cases, assumption 4 can be re-
laxed. Consider g(t,#,(Z,1))¢(Z,t) of the form f(|o(&,1)|*)¢(Z, 1), where
f(u(z, t)|2)¢(f, t) is some nonlinearity that supports solitons.

10Tn fact, the 1.25% is much better than one might otherwise expect. A simple calculation
shows that the potential is equal to —0.44 on the boundary. Therefore, assumption 4 is not
satisfied, since the “nonlinearity” is not contained inside the box. Additional simulations
using the domain [—51.2,51.2]% yielded almost complete agreement with the simulation using
distant boundaries, and had the correct qualitative behavior after that.
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Figure 1: A graph of M (t) = ||¢(m7t)||,12([7]0 10)2) VS 1. The distant boundary
simulation is invalid at time ¢ = 29, due to the fact that the outgoing pulse
returns at this time.

It turns out that solitons moving with sufficiently high velocity are filtered
by our boundary conditions as well. The reason is simply the fact that an
outgoing soliton is localized in phase space on outgoing waves. Consider a
soliton, taking the form e!(**~“%) ¢(x — vt), for some smooth, well localized ¢(x)
(e.g. ¢(x) = cosh(x)™1).

The Fourier transform of the soliton is also well localized around frequency
v. If v is sufficiently large, then the framelet coefficients of e/ (**=“t) ¢(x — vt)
will cluster around (z,v). When z is near the boundary, these framelets will all
be outgoing under the free flow e!(1/2)A%,

The soliton is also leaving the box under the full flow 2/(¢). Although e'(1/2)A1
and U(t) move the soliton very differently (one dispersively, one coherently),
they both move it out of the box and in nearly the same direction.

We ran numerical tests to demonstrate this as follows. We solved the
Schrodinger equation

10 (2,1) = ~(1/2)A — (2, 1) 9 (x, 1)
on the region [—51.2,51.2]. The TDPSF was placed on the boundary. The
initial condition was taken to be t(x,0) = 271/2¢"* / cosh(x — 15) for v = 1..15.
We then computed:
b (z,t) — wem(fﬁ:t)np([flo,m])

E(v) = sup 9.2
(®) <200/ v ||1/Jem(37:0||112(mz) 92)
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Figure 2: A plot of the error (defined as in (9.2)) as a function of velocity. Note
the exponential improvement in accuracy with velocity.

The function ., (z,t) is the exact solution. The result of this experiment is
plotted in figure 9.3. The time 200/v was chosen since it is more than enough
time for errors to return to the region [—10, 10].

Remark 9.1 The paper [40] proposes an alternative method of absorbing bound-
aries (namely the paradifferential strategy), based on a novel method of ap-
proximating the Dirichlet-to-Neumann operator. A similar numerical test was
performed for those boundary conditions. For a soliton at velocity 15, Szeftel
obtained E(15) = 0.08 at best. For comparison, we obtain E(v) = 2.86 x 10~°
for o = 1 and E(v) = 1.88 x 107 for ¢ = 3. Tt is worth noting that the
methodology we use differs somewhat from that of [40] (amoung other things,
we used spectral methods to solve the interior problem rather than FTDT).

It is somewhat surprising that this occurs, since the method described in [40]
actually takes the nonlinearity into account. In contrast, our method actually
assumes the nonlinearity is nearly zero on the boundary. In spite of that, we
have an error which is of order 107% — 10~7 as opposed to 0.08.

9.3.1 A Coincidence, not a Conjecture

This is not a general phenomenon, however, as illustrated by the following
example. Consider the KdV equation, and suppose a scheme similar to ours
were implemented. That is, we decompose the solution into gaussian framelets,
and filter them if they are leaving under the free flow. If a soliton exists, and is
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sitting near the right boundary, it too will be filtered, since it is leaving under
the free flow. But under the full flow, the soliton will not leave the box, since
solitons propagate leftward while free waves propagate rightward.

The fact that our method succesfully filters outwardly moving solitons is a
consequence of the fact that fast-moving solitons have very little incoming waves.
For some nonlinearities, a soliton or soliton-like object at position (dzy, gko) in
phase space actually propagates along the trajectory dzg + tgkg. However, not
all solitons have this feature, and when they lack it, there is no reason to believe
our method will be effective.

9.3.2 Soliton Filters

Our motivation in constructing the TDPSF was the following. Nonreflecting
boundary conditions are possible because we understand the motion of waves
away from the support of the nonlinearity. So we used that knowledge to deter-
mine what to filter, and what not to filter.

We propose that a practical way to filter outgoing solitons is simply to iden-
tify them and remove them. That is, at a time Tytep, we determine whether
(x, Tstep) might have a soliton located near the boundary. If so, use the de-
composition Y(z, Tsep) = S(x) + R(x), where S(z) is the soliton and R(z) is
the remainder. We then determine whether S(x) is outgoing. If it is, we then
set (7, Tstep, ) = R(7). Thus, the soliton has been filtered.

This does, of course, depend on an explicit knowledge of what solitons look
like. But that information is available in many cases, so assuming it to be
available is not unreasonable.

10 Comparison to Other Methods

A variety of other approaches have been proposed for open boundaries. They
fall into two main categories, and we discuss them both briefly.

10.1 Engquist-Majda type Boundaries, and Dirichlet-to-
Neumann Operators

The closest approach to ours is the original Engquist-Majda boundary condi-
tions, found in [18, 16]. The principle that was guiding them was that near
the boundary, the geometric optics approximation to wave flow is sufficiently
accurate to filter off the outgoing waves.

Our result is a direct analogue of this - the gaussian framelet elements behave
(under the free flow) like classically free particles. We use a different method to
filter, but the guiding principle is the same.

In comparison, the approach that is farthest from ours are the various mod-
ern extensions to [18]. Modern approaches attempt to construct the exact solu-
tion on the boundary, and then impose it as a boundary condition. In principle,
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this is the best possible approach. However, in practice, this will be very diffi-
cult, because if the exact solution were known, we would not need a simulation!

In fact, this approach is sufficiently difficult that we know of few aproaches
for the Schrodinger equation. We describe the two main approaches we are
aware of, and remark that only the paradifferential strategy of J. Szeftel even
attempts to deal with nonlinear equations.

10.1.1 Exact Dirichlet-Neumann maps for the Schrodinger Equation

To deal with the free Schrodinger equation (no nonlinearity or potential),Lubich
and Schédle [28, 34, 33] constructed a novel method for using the exact boundary
conditions rather than an approximate one. Their method consists of approxi-
mating the integral kernel by using a piecewise exponential approximation (in
time) and the fact that convolution with an exponential can be done in linear
rather than polynomial time. This approach appears to work nicely for the free
Schrédinger equation, although it is uncertain that it could be applied to the
full Dirichlet-to-Neumann operator of a nonlinear equation.

10.1.2 Paradifferential Strategy

The only fully nonlinear Dirichlet-to-Neumann operator that we are aware of was
constructed by J. Szeftel in [41]. Szeftel constructs the Dirichlet-to-Neumann
operator by a modified version of the paradifferential calculus (introduced in [4]).
His methodology is demonstrated in 1 space dimension, with a nonlinearity that
is C* in z, ¢(#,t) and 9,9 (F,t). He proves local well posedness of the boundary
operator.

However, extensions to R appear highly nontrivial. The assumptions are
significantly stronger than ours, and there are no error bounds. However, the
numerical experiments look promising and the results appear accurate for ra-
diative problems (see also remark 9.1).

10.2 Absorbing Potentials/ PML
10.2.1 Absorbing Potentials

Absorbing (complex) potentials, described in [29], are the current “industry

standard”. The approach consists of the following. Instead of solving (1.1) on
the box [~ Lint, Ling]", we solve

i0,W(,t) = —(1/2)AW(F, 1) + g(t, 7, U(T, 1))V (Z, 1) + —ia(z)V(F, 1)

on the region [—(Lin + w), (Lins + w)]¥. The function a(z) is a positive func-
tion supported in [—(Ling + w), (Lint + w)]N \ [~ Lint, Lint]N. The term —ia(z)
is a dissipative term which is localized on waves which have left the region
[~ Lint, Ling)V . Thus, it (partially) absorbs waves which have left the domain of
interest.

This approach is the mainstay of absorbing boundaries, due to it’s generality
and simplicity. One important reason for the attractiveness is that they are
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compatible with the FFT/Split Step algorithm (algorithm 2.2), with minimal
difficulty of programming.

Of course, the potential a(z) must be tuned to the given problem. Given
Emin, kmax, one must select the height and width of the absorber so that it kills
most of the wave between ki, and kpax, resulting in an error 7.

Waves with momentum lower than ki, are mostly reflected, and waves
with momentum higher than kna, are mostly transmitted (and therefore wrap
around the computational domain).

Heuristic calculations and numerical experiments suggest that the absorber
must have width proportional to Ckmax In(€)/kmin, with C' depending on the
precise shape of the potential. In contrast, our method works on a boundary
layer of width C'In(€)/kmin, which is smaller by a factor of kyax.

An additional problem with absorbing potentials is that they kill everything
on the boundary. They make no distinction between incoming and outgoing
waves, and thus they absorb some waves which should return to the region of
interest. This poses a fundamental limitation on their use, especially in problems
where the nonlinearity creates long range effects, which was illustrated in section
9.2.

10.2.2 Perfectly Matched Layers

Perfectly Matched Layers (PML) are a variation on this approach, proposed in
[24] for the Schridinger equation (see also [3], where they are first proposed
for Maxwell’s equations). In [24], they are tested for the 1 dimensional free
Schrédinger equation, and the result appears reasonably accurate.

To use a PML, instead of solving (10.2.1), we solve:

i0,0(7,1) = —(1 +ia(z))(1/2) AU(Z, t) + g(t, 7, U(Z, 1)) ¥(Z, 1)

where a(z) is now a function chosen rather carefully (see below).

The PML has two main advantages over complex absorbing potentials. First,
the fact that ia(z) is now in the coefficient of A now means that high momentum
waves are dissipated more strongly than low momentum ones. Thus, fast waves
do not pass through the absorbing potential without being dissipated.

Second, the function a(z) can be chosen precisely so that there is no re-
flection at the interface (the boundary of [—Ling, Ling)"). However, this does
not eliminate all reflections, as some reflections will be created in the region
[_(Lint + ’lU), (Lint + w)]N \ [_Lint: Lint]N-

The PML has the same problem as complex absorbing potentials with re-
gards to dissipating incoming waves on the boundary.

Lastly, some PML methods are unstable. Numerical experiments in [32]
suggest that the PML for 2 dimensional Maxwell’s Equations exhibit a long time
instability. It is possible that this effect occurs for the Schrédinger equation as
well.

The PML method for the Schrédinger equation is still very much undevel-
oped. This makes a more detailed comparison difficult to make.
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