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tion and De�nitionsConsider a semilinear S
hr�odinger equation on RN+1i�t (x; t) = �(1=2)� (x; t) + g(t; ~x;  (~x; t)) (~x; t) (1.1)where g(t; ~x; �) is some semilinear, Lips
hitz (in some Sobolev spa
e) nonlin-earity. For instan
e, g(t; ~x; �) 
ould be V (~x; t) + f(j (~x; t)j2) for some smoothfun
tion f and (spatially) lo
alized potential V (~x; t).We assume the initial 
ondition and nonlinearity are su
h that the nonlin-earity remains lo
alized inside some box [�LNL; LNL℄N . Outside this regionthe solution is assumed to behave like a free wave (a solution to (1.1) withg(t; ~x; �) = 0), whi
h is well understood.One very 
ommon method of solving su
h a problem is domain trun
ation.That is, one solves the PDE (1.1) numeri
ally on a region [�L;L℄N . On the�nite domain, of 
ourse, boundary 
onditions must be spe
i�ed. Diri
hlet andNeumann boundaries introdu
e spurious re
e
tions, while periodi
 boundaries(whi
h are desirable in order to use fast spe
tral methods) allow outgoing wavesto wrap around the 
omputational domain. In either 
ase, a serious mistakehas been made. This 
auses the numeri
al solution to be
ome in
orre
t after atime T � L=kmax, where kmax is the \maximal velo
ity" of the solution1.It is an interesting and well known problem to �nd a way to minimize theseerrors. The simplest way is simply to expand the domain as the support of (~x; t) grows, but this is 
omputationally very expensive.For the wave equation and other stri
tly hyperboli
 wave equations thisproblem has a beautiful exa
t solution (
.f. [18, 16℄), namely the Diri
hlet-to-Neumann map. The equation (1.1) is solved in a region [�Lint; Lint℄N , and theboundary 
onditions are given by  (~x; t) (where  (~x; t) is the solution to (1.1)on RN ) on the boundary. Of 
ourse, sin
e  (~x; t) is not known, it must be ap-proximated. The usual method (used with great su

ess for the wave equatin) isto approximate the exa
t solution by rational fun
tions in the frequen
y domain.1There is, in general, no maximal velo
ity of the solution. However, we will de�ne kmaxmore pre
isely later on. kmax will be the frequen
y su
h that the energy of  ̂(k; t) for k > kmaxis small. 3



These 
orrespond to boundary 
onditions given by a high order di�erential op-erator. This result depends strongly on the fa
t that in the frequen
y domain,the Diri
hlet-to-Neumann map behaves like a polynomial at 1.For the S
hr�odigner equation and other dispersive wave equations, the situ-ation is not so simple. Even in the free 
ase (g(t; ~x;  (~x; t)) = 0), it is impossibleto 
onstru
t lo
al (in time and spa
e) approximations to the Diri
hlet-Neumannoperator. In addition, 
onstru
ting the Diri
hlet-Neumann map in the 
ase�(1=2)�+V (x) is not an easy matter. In the nonlinear 
ase we know of resultsonly in 1 spa
e dimension, and with no rigorous error estimates [41, 42, 43℄.Another drawba
k of the Diri
hlet-to-Neumann approa
h is that it pre
ludesthe use of spe
tral methods to solve the interior problem. Spe
tral methods(des
ribed on page 17) use the FFT (Fast Fourier Transform) to diagonalizethe operator ei(1=2)�t. This approa
h naturally imposes periodi
 boundaries.Spe
tral methods are desirable, sin
e they are believed to be more a

urate thanmost other methods on periodi
 domains (for a �nite set of spatial frequen
ies).The error due to boundary 
onditions, however, makes them unfeasible. Thus,one usually reverts to using FDTD (Finite Di�eren
e Time Domain) in theirpla
e, but the a

ura
y of these methods is limited and de
reases rapidly withhigh spatial frequen
ies.An ad-ho
 approa
h (des
ribed in, e.g. [29℄) whi
h is 
ommonly used is toadd an absorbing potential, �iV (x) (~x; t) to the right hand side of (1.1), withV (x) = 0 away from the boundary. This potential has the e�e
t of partiallydissipating waves as they pass over it. Thus, as waves rea
h the boundary, theyare partially dissipated by the 
omplex potential, redu
ing the re
e
tion. Thisapproa
h is far from optimal, but is still the industry standard due to the easeof implementation, 
ompatibility with spe
tral methods and simpli
ity.A variant on this approa
h is the PML (Perfe
tly Mat
hed Layer). Proposedoriginally for Maxwell's equations in [3℄ and for the S
hr�odinger equation in[24℄, it is a variant on the absorbing potential method in whi
h � is repla
edby (1� ia(x))� (with a(x) nonzero only in a boundary layer) in su
h a way sothat when a(x) \swit
hes on", there is no re
e
tion at the interfa
e.1.0.1 Our Approa
hWe propose an alternative approa
h to absorbing boundaries. We make theassumption that near the boundary of the box, the solution behaves like a freewave. We make no assumptions on the nonlinearity, beyond the fa
t that itis lo
alized on the inside of the box and lo
ally Lips
hitz. In parti
ular, thenonlinearity 
ould take the form of a 
ompli
ated time dependent short rangepotential V (~x; t) (~x; t), a polynomial nonlinearity f(j (~x; t)j2�) (~x; t) (for f(z)a Lips
hitz fun
tion) or others.We also assume that the solution remains lo
alized in frequen
y, that is ̂(~k; t) is small o� the box [�kmax; kmax℄N for some large number kmax (themaximal momentum of the problem, whi
h we assume exists).Our algorithm is as follows. We assume the initial data is lo
alized on aregion [�Lint; Lint℄N . We solve (1.1) on the box [�(Lint+w); Lint+w℄N on the4



time interval [0; Tstep℄.By making Tstep small enough (smaller than w=kmax), we 
an ensure that (~x; t) is mostly lo
alized inside box [�(Lint + w); (Lint + w)℄N . Thus, sin
every little mass has a
tually hit the boundaries, very little has re
e
ted and wehave made few errors.We now de
ompose the solution  (~x; t) into a sum of gaussians (indexed by~a;~b 2 ZN, with x0; k0; � all positive 
onstants satisfying 
ertain 
onstraints tobe made pre
ise later): (x; Tstep) = X(~a;~b)2ZN�ZN  (~a;~b)��N=4��N=2eik0~b�~xe�j~x�~ax0j22=2�2Be
ause  ̂(~k; t) is lo
alized on [�kmax; kmax℄N ,  (nTstep)(~a;~b) � 0 is for j~bk0j1 >kmax. Also, be
ause  (~x; t) is lo
alized on [�(Lint+w); (Lint+w)℄N ,  (~a;~b) � 0for j~ax0j1 > Lint + w.Thus, we �nd that: (x; Tstep) � Xj~ax0j1�Lint+wj~bk0j1�kmax  (~a;~b)��N=4��N=2eik0~b�~xe�j~x�~ax0j22=2�2We then examine the gaussians near the boundary (with j~ax0j1 � L) anddetermine whether they are leaving the box or not (after propagation under thefree 
ow). This is simple enough to do, sin
e elementary quantum me
hani
stells us that:ei(1=2)�t��N=4��N=2eik0~b�~xe�j~x�~ax0j22=2�2= exp�i~bk0 � (~x�~bk0t� ~ax0)��N=4�N=2(1 + it=�2)N=2 exp �j~x�~bk0t� ~ax0j222�2(1 + it=�2) !Essentially, ei(1=2)�t��N=4��N=2eik0~b�~xe�j~x�~ax0j22=2�2 moves along the traje
tory~ax0 +~bk0t, while spreading about it's 
enter at the rate ��1.Then, if a given gaussian is leaving the box, we delete it. If it is not, we keepit. Some gaussians spread more qui
kly than their 
enter of mass moves, andwe do not present here an algorithm to deal with these gaussians. We simplyassume that there are not many of these, and so they pose little problem.Thus, after this �ltering operation, the only gaussians remaining are eitherinside the box [�Lint; Lint℄N , or inside the box [�(Lint + w); (Lint + w)℄N butmoving towards [�Lint; Lint℄N . We then repeat the pro
ess, and propagate withperiodi
 boundaries until 2Tstep, and �lter again at this time.This des
ription is vague, and we will make it more pre
ise later. In parti
u-lar, we explain what we mean by \�", and also provide theoreti
al justi�
ationof the method.In parti
ular, we prove rigorous error bounds, subje
t to some relativelygeneral assumptions (most of whi
h 
an be estimated apriori or veri�ed apos-teriori). That is, for t 2 [0; Tmax℄ (where Tmax is some maximal time interval of5



interest) we show that:supt2[0;Tmax℄ 

�[�Lint;Lint℄N (x) ( (~x; t)�	(~x; t))

Hs � �where 	(~x; t) is our approximate solution, � is some pres
ribed error, and Hsb =Hs([�Lint; Lint℄N ) a Sobolev spa
e, with s = 0; 1. We believe that similar results
an be proved for s > 1 without mu
h diÆ
ulty, although 
ertain 
al
ulationswill be di�erent (most notably remark 4.6 and the exa
t 
al
ulations in se
tion4.2, see also remark 4.8 for a more pre
ise explanation of the modi�
ationsne
essary for higher Sobolev spa
es).1.0.2 Error BoundsWe 
al
ulate the error made at ea
h step in the above analysis and then add itall up to get the global error bound.For a general time-stepping algorithm (with periodi
 boundaries and no�ltering), the error bound would take the following form:supt2[0;Tmax℄ kU(t) 0(x) �	(x; t)kHsb � BoundaryError(Tmax)+ HighFrequen
y(Tmax) + LowFrequen
y(Tmax)+ Nonlo
alNonlinearity(Tmax) + Instability(Tmax) (1.2)The term BoundaryError(Tmax) en
ompasses errors due to waves wrap-ping/re
e
ting from the boundaries of the box. For many problems, this is thedominant error term. It is dire
tly proportional to the mass whi
h would have(if we were solving the problem on RN ) radiated outside the box [�Lint; Lint℄N .The HighFrequen
y(Tmax) part stems from waves with momenta too high tobe resolved by the dis
retization. The term LowFrequen
y(Tmax) en
ompasseserrors due to waves with wavelength that is long in 
omparison to the box. Theterm Nonlo
alNonlinearity(Tmax) stems from that fra
tion of the nonlinearityitself whi
h is lo
ated outside the box. The Instability(Tmax) stems from thepossibility that the dynami
s of the solution itself might amplify the other errorsdramati
ally (e.g. in strongly nonlinear problems).Our algorithm redu
es the term BoundaryError(Tmax) only. We show, by adis
rete variant of the gaussian beam method, that if we �lter o� the outgoingwaves in the manner des
ribed previously, the boundary error term 
an be madearbitrarily small. The 
ost is in
reasing the width of the region in whi
h �lteringtakes pla
e.The main drawba
k of our algorithm is that it does not provide us theability to �lter low frequen
y outgoing waves, that is to say waves for whi
h thewavelength is longer than the bu�er region. This is pre
isely what we wouldexpe
t from the Heisenberg un
ertainty prin
iple.Sin
e the goal of this work is to redu
e the error due to boundary re
e
tion,all the error terms besides the boundary error term are made small by assump-6



tion. We provide no bounds on them, sin
e these bound would depend verystrongly on the spe
i�
 form of g(t; ~x;  (~x; t)) (~x; t).Remark 1.1 At �rst glan
e, it would appear that an absorbing boundary layer(either 
omplex potential or PML) would redu
e the boundary error nearly tozero, with the error being nothing more than those waves whi
h it fails to absorb.This intuition is false, and a 
ounterexample is provided in se
tion 9.2.The reason is as follows. Suppose we add an absorbing boundary layer(denoted by A) term to (1.1). Let  a(x; t) solve:i�t a(x; t) = (�(1=2)�+A) a(x; t) + g(t; ~x;  a;b(~x; t)) a;b(~x; t)Let  a;b(x; t) solve the 
orresponding periodi
 problem:i�t a;b(x; t) = (�(1=2)�b +A) a;b(x; t) + g(t; ~x;  a;b(~x; t)) a;b(~x; t)It is true that k a(x; t)�  a;b(x; t)kHsb is small (that is, the box problem withan absorber approximates the RN problem with an absorber). However, it is notne
essarily true that k (x; t)�  a(x; t)kHsb is small, be
ause the RN problemwith an absorber may not a

urately approximate the RN problem with noabsorber.The TDPSF algorithm sidesteps this issue by dire
tly approximating thesolution on RN , and only using the box propagator on regions of phase spa
ewhere it is guaranteed to be a

urate.1.0.3 Strong PointsOur method is versatile and general, in the sense that it is merely a numeri
alappli
ation of the gaussian beam method. Extensions and modi�
ations to othersorts of equations are likely to be straightforward, although one might prefer tode
ompose  (~x; t) into some other fun
tions di�erent than gaussians2.In parti
ular, we believe this 
an be extended without mu
h diÆ
ulty to thefree wave equation, repla
ing gaussians by 
urvelets [7, 6℄.In addition, if the dynami
s on the boundary are non-free, we believe ourmethod 
an be modi�ed to treat these dynami
s eÆ
tively. Suppose that insteadof propagating along the traje
tory ~ax0 +~bk0t, a typi
al gaussian propagatedalong the traje
tory 
(~a;~b; t) instead. We 
ould still apply our method, ex
eptnow we would attempt to determine whether 
(~a; vb; t) is leaving the box ratherthan ~ax0+~bk0t when determining whi
h gaussians to �lter. We have no rigorouserror bounds on this method at this time, however we believe they 
ould be
onstru
ted by methods similar to what we do in this work.Another advantage to our method is that when it does fail, it fails gra
efully.The main mode of failure is for too many gaussian's to fall into the region where2More pre
isely, for a given equation, one should use a family of 
oherent states whi
h isalso a frame. In addition, the family of 
oherent states should not make 
omputations too
omplex. 7



we 
annot determine whether they are in
oming or outgoing3. However, if thiso

urs, the algorithm is aware of it and an ex
eption is raised. In addition, ifone 
an determine what to do with these gaussians, one 
an 
at
h the ex
eptionand do that. We are 
urrently developing a novel multis
ale algorithm that 
anbe used [37℄.We expe
t proofs of the error bound in 
ases like this to be simple (albeitlong) variations on the proof we give here.1.0.4 Our Weak SpotsOur method is based strongly on two main assumptions, whi
h will not hold forevery equation or every initial 
ondition.The most important assumption is that the solution behaves like a free waveoutside of a 
ertain box [�LF ; LF ℄N , and we demand that the 
omputationalregion en
ompass this box. If this does not hold, the error bound we provide isno longer valid. An example of this is the 
ase of a moving soliton whi
h leavesthe box4. The dynami
s near the boundary are no longer free, sin
e the freeequation has no soliton solutions.We also assume the existen
e of some frequen
y kmin, whi
h has the followingproperty. Outside a 
ertain box [�Lmin; Lmin℄N , the majority of the solution is
omprised of gaussians with the property that if ~ajx0 � Lmin, then ~bjk0 � kmin(respe
tively if ~ajx0 � �Lmin, then ~bjk0 � �kmin). This implies that anypart of the solution whi
h has moved outside the box [�Lmin; Lmin℄N is movingoutward.Roughly, what this means is that anything whi
h has already rea
hed theboundary must be moving in the dire
tion of the boundary.Another diÆ
ulty of our method is that it requires a bu�er region in whi
hwe �lter outgoing waves. This bu�er region needs to have width O(k�1min), andshould en
ompass many data points (in our examples we typi
ally use approxi-mately 128-512 data points). For 
omparison, most Diri
hlet-to-Neumann basedapproa
hes will use far fewer (just enough to numeri
ally 
al
ulate a few deriva-tives). However, those approa
hes are typi
ally nonlo
al in time, and insteadneed to use many data points in t rather than in x.Regardless, in both 
ases, the 
omputational 
ost on the boundary is ordersof magnitude smaller than the 
omputational 
ost simply to solve the problemon the interior region. See also [37℄.3The other mode of failure is spe
tral blo
king in the frequen
y domain, a 
ommon modeof failure for spe
tral methods. This problem o

urs when the latti
e spa
ing Æx is too largeto resolve the high frequen
ies generated by the problem.4Numeri
al experiments suggest that our method 
an also �lter outgoing solitons in 
ertain
ases, with reasonable a

ura
y. This is, however, more a 
oin
iden
e than anything else. Itwould not o

ur if one applied this s
heme to, e.g. the KdV equation.
8



1.1 De�nitions and NotationsFor the sake of pre
ision, we give de�nitions of 
ertain well known obje
ts(Sobolev spa
es, Fourier transforms, et
). We do this be
ause most 
onstants inthis paper are 
al
ulated expli
itly, and the 
onstants will vary depending on,e.g., how the Sobolev spa
e is de�ned.Variables written in bold, e.g. Js (de�ned below), denote 
onstants whi
hvary only with the parameters indi
ated. For the 
onvenien
e of the reader, anindex of symbols is provided on page 103.We will solve (1.1) on the region [�L
omp; L
omp℄N , whi
h is a larger domainthan [�Lint; Lint℄N . The extra region [�L
omp; L
omp℄N n [�Lint; Lint℄N is abu�er region in whi
h we will �lter the outgoing waves.De�nition 1.2 We de�ne �b to be the Lapla
ian on the box [�L
omp; L
omp℄Nwith periodi
 boundary 
onditions.De�nition 1.3 We de�ne U(t) to be the propagator of (1.1) on RN . That is,U(t) is the map taking  0(x) 7!  (~x; t) where  (~x; t) solves (1.1) with initial
ondition  (~x; t) =  0(x).For an initial 
ondition  0, we de�ne U(tj 0(x)) to be the mapping  1(x) 7! 1(~x; t) where  1(~x; t) solves (1.3) with initial 
ondition  1(x; 0) =  1(x):�t 1(~x; t) = �(1=2)� 1(~x; t) + g(t; ~x;U(t) 0) 1(~x; t) (1.3)Similarly, Ub(t) is the propagator asso
iated to (1.1), but with (1=2)�b repla
ing(1=2)� and [�L
omp; L
omp℄N repla
ing RN .De�nition 1.4 We make the following 
onventions regarding notation.j~xjp = 0� NXj=1 j~xj jp1A1=p for~x 2 RNWe let d(~x; ~y) denote the Eu
lidean metri
 on RN , i.e. d(~x; ~y) = j~x� ~yj2. Also,if A;B � RN , then: d(~x;A) = inf~y2A d(~x; ~y)d(A;B) = inf~x2A;~y2B d(~x; ~y)De�nition 1.5 We use the notation:hxi = (1 + jxj22)1=2We de�ne 
ertain 
onstants related to this notation:Js = sup~x2RNhxis=(1 + j~xjss)Jd = sup~x jrh~xijh~xi9



Thus: hxis � Js(1 + j~xjss)De�nition 1.6 We de�ne the Fourier transform by:f̂(~k) = (2�)�N=2 ZRN ei~k�~xd~xThe inverse Fourier transform is de�ned by:f(~x) = (2�)�N=2 ZRN e�i~k�~xd~kThus, the operator f(~x) 7! f̂(~k) is an isometry from L2(RN ; d~x)! L2(RN ; d~k),and kf(~x)kL2(RN;d~x) = 


f̂(~k)


L2(RN;d~k).De�nition 1.7 We de�ne the Sobolev spa
es Hs = Hs(RN ) by the norms:kfk2Hs = kfk2L2(RN) + NXj=1 


�sxjf


2L2(RN) (1.4)We make this parti
ular 
hoi
e of de�nition when we 
ompute the 
onstants.Similarly, we de�ne the Sobolev spa
es Hsb by the norms:kfk2Hsb = kfk2L2([�L
omp;L
omp℄N ) + NXj=1 


�sxjf


2L2([�L
omp;L
omp℄N )We de�ne the 
onstanth�s = supf2Hs �kfkHs = 


h~kisf̂(~k)


L2��1 = sup~k2Hs �(1 + ���~k���ss)=h~kis��1This allows us to relate the Sobolev spa
e we use to Sobolev spa
es de�ned byusing h~ki.No matter whi
h Sobolev spa
e we work in, we always let h�j�i denote theinner produ
t in L2.De�nition 1.8 We make use of smoothed out 
hara
teristi
 fun
tions. Let Abe a 
losed set and let w be a positive number. Toward that end, we demandthat the fun
tion P sA;w(~x) have the following properties:1. P sA;w(~x) = 1 for ~x 2 A, and P sA;w(~x) = 0 if the eu
lidean distan
e between~x and A is greater than w.2. �kxjP sA;w(~x) exists and is 
ontinuous for j = 1::N , k = 1::s.3. P sA;w(~x) has minimal norm as an operator from Hs ! Hs.10



We adopt the 
onvention that P 0A;w(~x) = 1A(~x), that is, P 0A;w(~x) = 0 for ~x 62 Aregardless of w.De�nition 1.9 We de�ne m
;s(�;N), mv;s(�;N) and m0
;s(�;N),m0v;s(�;N)so that ZRNh~xise�j~y�~xj=�2d~y �m
;s(�;N) +mv;s(�;N)j~xjs2ZRNh~xis ���re�j~y�~xj=�2 ��� d~y �m0
;s(�;N) +m0v;s(�;N)j~xjs21.2 A Brief Dis
ussion of FramesWe �rst dis
uss brie
y the 
on
ept of a frame, whi
h will be 
ru
ial to ouranalysis. A frame is basi
ally an over
omplete basis for a Hilbert spa
e, in our
ase, L2(RN ). A framelet de
omposition is the tool we use to break up thesolution  (~x; t) into in
oming and outgoing 
omponents.De�nition 1.10 A frame is a 
ountable set of fun
tions (in some Hilbert spa
e,e.g. L2) f�j(x)gj2J (for some index set J) su
h that 9AF ; BF su
h that forany f 2 L2(RN ):AF kfkL2 � khf(x)j�j(x)ikl2(J) � BF kfkL2The framelet analysis operator F is the map f(x) 7! ~f 2 l2(J), where ~fj =hf j�j(x)i.The individual ve
tors �j(x) are referred to as framelets, and j 2 J arereferred to as framelet indi
es.De�nition 1.11 For a frame f�j(x)gj2J , the dual frame n~�j(x)oj2J is theunique frame su
h that: ~�j(x) = (F ?F )�1�j(x)where F ? : l2(J) ! L2(RN ) is the adjoint of F . It is the \best" (see below foran explanation) set of ve
tors su
h that for all f(x) 2 L2:f(~x) =Xj2J D~�j(x)jf(x)E �j(x)The dual frame is also a frame, with frame bounds B�1F and A�1F .The framelet 
oeÆ
ients of a fun
tion f(x), are the \best" set of 
oeÆ
ientssu
h that: f(x) =Xj2J fj�j(x)11



The framelet 
oeÆ
ients are not unique. By \best", we mean that ~fj is the
olle
tion of framelet indi
es minimizingXj2J jfj j2 :They 
an be 
al
ulated by the formula:f(~a;~b) = D~�j(x)jf(~x)E (1.5)For a fun
tion f(x; t) depending on time, we denote by fj(t) the framelet 
oef-�
ients of f(~x; t) at time t.1.2.1 Windowed Fourier TransformAs an example, we 
an let J = ZN�ZN and let the individual framelets �(~a;~b)(~x)be given by: �(~a;~b)(~x) = ��N=4��N=2eik0~b�~xe�j~x�~ax0j22=2�2For � 2 R+ and x0; k0 2 R+ su
h that x0k0 � 2�, then the setn�(~a;~b)(~x)o(~a;~b)2ZN�ZNis a frame in L2(RN ). This is known as the windowed Fourier transform frame(with Gaussian window), abbreviated WFT frame. We will return to this spe-
i�
 example later, in se
tion 3. This is the frame we use to build the outgoingwave �lter.Subje
t to additional 
onditions on x0; k0 and �, the WFT 
an also form aframe in various Sobolev spa
es (see Theorem 3.5, proved in [11℄, and 
orollary3.6).1.2.2 Phase Spa
e Lo
alizationFor the WFT �lter, we 
onsider the index set ZN � ZN to be a dis
rete repre-sentation of phase spa
e. That is, we 
onsider the point (~a;~b) to represent thepoint (~ax0;~bk0) in phase spa
e.For a frame that is well lo
alized in phase spa
e, it is simple to 
hara
terizethe 
ow with respe
t to ei(1=2)�t. Under the free 
ow, individual frameletsbehave like 
lassi
al parti
les. For instan
e, the Gaussian framelet �(~a;~b)(~x)travels along the traje
tory ~ax0 + t~bk0 when propagated by ei(1=2)�t. Due tothe heisenberg un
ertainty prin
iple, the framelet also spreads out at the ratet=�. When ~bk0 � �, it is simple to determine whether the framelet is movinginward or outward, and delete it as is ne
essary. Of 
ourse, of ~bk0 is very 
loseto zero, then the spreading will be the dominant mode of transport. This is thelargest sour
e of error in our method. 12



Some other frames also provide good lo
alization in phase spa
e, althoughin di�erent ways. For instan
e, frames of wavelets travel 
onsistently along
lassi
al traje
tories, but with the added 
ost that more slowly moving frameletsare spread out more in spa
e (as opposed to the Gaussian WFT, for whi
h allframelets have the same width).It appears very likely that one 
ould repla
e the WFT frame that we use bya frame of wavelets, or other frames, provided they have the appropriate phasespa
e lo
alization properties.In addition, we remark on one extremely promising possibility for extendingour analysis to hyperboli
 systems. It was proved re
ently by Demanet andCandes (
.f. [7℄) that a 
urvelet frame allows for a sparse representation of wavepropagators in the high frequen
y regime. We intend to investigate the possi-bility of using 
urvelets to 
onstru
t a boundary �lter for dispersive hyperboli
systems, e.g. Maxwell's equations.1.2.3 Distinguished Sets of Framelets, Framelet Fun
tionalsWe now de�ne 
ertain distinguished sets of framelets, and also two relevantframelet fun
tionals. Namely, we de�ne the per-framelet error, and per-frameletrelevan
e fun
tions. The per framelet error fun
tional is a measure of the di�er-en
e between the propagators ei(1=2)�t and U(t) when applied to that parti
ularframelet. Similarly, the per-framelet relevan
e fun
tional is a measure of howimportant a parti
ular framelet is to the solution inside the box.De�nition 1.12 For a frame f�jg, a Sobolev spa
e Hs and a distan
e Lint (tobe spe
i�ed later), we de�ne a family of fun
tions, the relevan
e fun
tions to be:


ei(1=2)�t�j


Hs([�Lint;Lint℄N ) = Rsj(t) (1.6)We now de�ne the set of bad framelets, that is, those framelets whi
h 
ausemost of the short time error. Ideally, these are the ones we would like to �lter(although this will not be possible).De�nition 1.13 For a frame f�jg and a Sobolev spa
e Hsb , we de�ne a familyof fun
tions, the per-framelet error fun
tions to be a set of fun
tions Esj (t) su
hthat: 


(ei(1=2)�t � ei(1=2)�bt)�j


[�(Lint+w);(Lint+w)℄N 6 Esj (T ) (1.7)These will be 
omputed for the WFT frame later on.De�nition 1.14 For a frame f�jg, a Sobolev spa
e Hsb an error toleran
e", and a time T (possibly 1), we de�ne the set of error 
ausing frameletsBAD("; s; T ) to be:BAD("; s; T ) = fj 2 J j9t < T su
h that Esj (t) > "g (1.8)13



De�nition 1.15 The Big Box is de�ned by:BB(ÆBB)= ([�(Lint+w+Xs�(�; kmax; Lint+w)); (Lint+w+Xs�(�; kmax; Lint+w))℄N\x0ZN)� ([�kmax; kmax℄N \ k0ZN)We de�ne the 
omputational width, L
omp, by:L
omp = Lint + w +Xs�(�; kmax; Lint + w)The number Xs�(�; kmax; Lint + w) is an extra bu�er region needed due tothe widthe of the framelets. We de�ne it pre
isely.De�nition 1.16 Let BX = [�X;X ℄N , BK = [�K;K℄N for X;K < 1. ThenXs�(�;K;X) and Ks�(�;K)X are the smallest numbers for whi
h the followingestimate holds.Let X 0 = X �Xs�(�;K;X), K 0 = K �Ks�(�;K). Then:

f(x)�PBX0�BK0 f(x)

Hs � Hs+(~g(~x))H�s+ (e�x2=�2)� �

(1� P sBX ;x0(~x))f(~x)

Hs + 


(1� P 0BK ;k0(~k))f(~x)


Hs + � kfkHs� (1.9)We provide a proof that this de�nition is not va
uous in Theorem 3.19.We note that when we solve (1.1) with periodi
 boundary 
onditions, we willdo so on the box [�L
omp; L
omp℄N .The set NECC("; s; t) is the set of framelets whi
h have a nontrivial in
oming
omponent. That is, these are the framelets whi
h will return to the region ofinterest, at least partially. NECC("; s; T ) should be thought of as \in
omingwaves", and 
annot be �ltered without 
ausing error.De�nition 1.17 For a frame f�jg, a Sobolev spa
e Hsb an error toleran
e ",and a time T (possibly 1), we de�ne the set NECC("; s; T ) to be:NECC("; s; T ) = fj 2 J j9t < T su
h thatRsj(t) > "g (1.10)2 Time Dependent Phase Spa
e FiltersWe now des
ribe the TDPSF (Time Dependent Phase Spa
e Filter) in moredetail. We �rst begin with a motivating example, namely the 
ase where we
onsider the semi
lassi
al limit of (1.1).
14



2.1 The Motivating Example: Phase Spa
e Filters forClassi
al TransportConsider the following simple S
hr�odinger equation, with V (x) a smooth, rapidlyde
aying potential. �t (~x; t) = (�~2(1=2)� + V (x)) (~x; t) (2.1)In the limit when ~ ! 0, one 
an derive the following kineti
 equation for�(~x; t) = j (~x; t)j2:�t~�(~x;~k; t) = (~k � rx)~�(~x;~k; t) + (rV (~k) � rk)~�(~x;~k; t) (2.2a)�(~x; t) = Z ~�(~x;~k; t)d~k (2.2b)This equation is simple be
ause it 
an be solved by the method of 
hara
ter-isti
s. The 
hara
teristi
 
urve of (2.2) passing through the point (~x;~k) is the
lassi
al traje
tory of a parti
le at the point ~x with initial velo
ity ~k. Now, sup-pose that we are 
onsidering (2.2) on a box suÆ
iently large so that V (x) � 0near the edge of the box.In that 
ase, near the boundary, the 
hara
teristi
 
urve at (~x;~k) is param-eterized lo
ally by (~x+~kt;~k). Thus, it is easy to determine whether the 
ow isin
oming or outgoing near the boundary. We merely 
he
k whether (~x + ~kt;~k)is moving in or out of the box. The algorithm is, therefore, as follows.Surround the box [�Lint; Lint℄N with an extra region (in the ~x dire
tion)of width w. We let Lbu� = Lint + w. We assume that the problem is su
hthat the velo
ity is bounded above by kmax. Then, inside the region [�(Lint +w); (Lint + w)℄N n [�Lint; Lint℄N , we �lter the outgoing traje
tories every timeTstep = w=kmax. That is, letting ~�(~x;~k; t) be the density, we set ~�(~x;~k; t) = 0at the points (~x;~k) (with ~x 2 [�(Lint +w); (Lint +w)℄N n [�Lint; Lint℄N ) where(~x+ t~k;~k) is a traje
tory whi
h is leaving the box in the time interval [0; Tstep℄.Thus, 
lassi
al traje
tories whi
h are leaving the box are deleted before theyrea
h the boundary, while traje
tories whi
h are not leaving the box are retained,and perfe
tly a

urate propagation is a
hieved.2.2 The TDPSFThe TDPSF algorithm is an attempt to perform this pro
edure for (1.1). Theprimary sti
king point is the Heisenberg un
ertainty prin
iple. We 
an no longerlo
alize the solution pre
isely on outgoing positions and momenta. We 
an,however, 
ome 
lose. By expanding the solution  (~x; t) in a frame having goodphase spa
e lo
alization properties, we 
an 
ome reasonably 
lose toThus, by using a �lter with good phase spa
e lo
alization, we 
an 
ome 
loseto extending this pro
edure to S
hr�odinger type equations. The only region ofphase spa
e where this works poorly is the region near ~k = 0, due to the inabilityto lo
alize a fun
tion only on outgoing traje
tories.15



Therefore, the algorithm we propose is as follows.Suppose we have an initial 
ondition  0(x). The initial 
ondition must bewell lo
alized in [�(Lint + w); (Lint + w)℄N , measured in Hs.We de
ompose  0(x; 0) =Pj2J  0j�j(x). We then split  0 up into framelets
oming from the regions NECC\BB, NECCC and NECC\BBC .We remove all framelets outside the set NECC\BB.It turns out that for a frame with good phase spa
e lo
alization, NECCand BAD are nearly mutually ex
lusive. This o

urs be
ause framelets, whenpropagated under the free 
ow, almost 
ompletely retain their 
oheren
e, andmove either into the box or out of the box (but not both). Thus, by removingframelets outside NECC\BB, we have removed nearly all of the outgoing waves.Be
ause of this, it is now most likely safe to propagate the remainder underthe periodi
 
ow, sin
e the remainder 
onsists of an initial 
ondition that willnot leave the box in the near future (with \near future" de�ned to be [0; Tstep℄).The only time this is not true for the WFT is if a signi�
ant number ofslow waves have rea
hed the boundary. Every time Tstep, we 
he
k if this haso

urred. If so, we raise an ex
eption.When we rea
h time Tstep, we go ba
k to step one. That is, takingUb(Tstep) 0;modi�ed as the new initial 
ondition, we again �lter o� the outgoingwaves. We repeat for as long as ne
essary.We now write out the algorithm in the form of pseudo
ode.The variable grid is some numeri
al representation of  (~x; t) restri
ted tothe region [�L
omp; L
omp℄N with periodi
 boundaries. In our implementation,we store evenly spa
ed samples of  (~x; t), but other representations (e.g. �niteelement) 
an be used.The fun
tion box_propagator(grid,timestep)}is some numeri
al approx-imation to the propagator Ub(t), whi
h a
ts on grid. The exa
t method ofimplementation is unimportant for our purposes, provided it is suÆ
iently a
-
urate. We use the FFT/Split Step propagation algorithm, but other methods(e.g. some high order FDTD or �nite element s
heme for rough problems) 
anbe substituted.The fun
tion bad_ne

_framelet_
oeffi
ients(grid) is a fun
tion whi
h
omputes whether or not there are too many framelets in the regionBAD\NECC.The number Tstep is the time between �lterings. The parametersfrm_params are some parameters whi
h 
hara
terize the frame. For instan
e,with the WFT, frm_params is a tuple (sdev,xs,ks,wb) 
ontaining the stan-dard deviation of the Gaussian, the latti
e spa
ings x0; k0 in position and mo-mentum, and the width of the boundary w.Finally, the pro
edure plotter(grid,t) is some pro
edure whi
h reads thedata in grid and pro
esses it in some useful way (i.e. storing it to a �le, plottinga graph based on it, et
). This must be determined by the appli
ation.Algorithm 2.1 Propagation algorithmex
eption CannotFilterEx
eption(grid 
urrent_grid,16



number 
urrent_time)Tstep, frm_params, toleran
edef propagate(psi0, Tmax, plotter)grid <- psi0for j = 0 ... Tmax / Tstep:f
oeffs <- 
ompute_framelet_
oeffi
ients(grid,frm_params)if norm(bad_ne

_framelet_
oeffi
ients(grid)) > tolerange:raise CannotFilterEx
eptiongrid <- (grid - bad_framelets_proje
tion(f
oeffs))grid <- box_propagator(grid,Tstep)plotter(grid,j*Tstep)return ()Be
ause all framelets inside the box [�Lint; Lint℄N are not bad framelets, wea
tually do not need to 
ompute them when we apply the fun
tion
ompute_framelet_
oeffi
ients(grid). Rather, we need only 
ompute theframelet 
oeÆ
ients inside the bu�er region, [�L
omp; L
omp℄N n [�Lint; Lint℄N .2.2.1 Implementation: FFT/Split Step Propagation AlgorithmThe algorithm we have des
ribed is, to a great extend, independent of theparti
ular method of implementation. However, we sket
h out one possiblemethod of implementing it here, namely the FFT/Split Step algorithm.We �x a grid spa
ing Æx, and timestep DT. The obje
t grid will be an Ndimensional array of size [2L
omp=Æx℄N . This 
orresponds to a latti
e spa
ing inmomentum of 2�=L
omp, with maximal momentum 2�=Æx. A 
ommon rule ofthumb is that if the problem has a maximal momentum kmax, then Æx = 4�=Æx(the extra fa
tor of 2 being put there for the sake of safety).Let FFT be the Fast Fourier Transform algorithm, and iFFT be the inverseFFT. Let NLIN(grid) be the numeri
al implementation of the nonlinearity.This is the standard split step/Trotter-Kato formula spe
tral propagator.Algorithm 2.2 Split Step Propagation Algorithmdef box_propagator(grid,timestep):for j in 0 ... timestep / DT:grid <- grid * exp(i * NLIN(grid) * DT/2)grid <- FFT(grid)grid <- grid * exp(i * (1/2)k^2 * DT)grid <- iFFT(grid)grid <- grid * exp(i * NLIN(grid) * DT/2)return gridAlgorithm 2.2 is \spe
trally a

urate" in x, of order O(Æt2) in time (fornonlinear problems, for linear problems it in
reases to O(Æt3)), and has 
ost17



O(MN lnM) per timestep (where M is the number of data points in the grid,per dimension). For this reason it is a popular method of propagating dispersivewaves.We will defer a dis
ussion on the implementation of the fun
tions
ompute_framelet_
oeffi
ients(grid) andbad_framelets_proje
tion(f
oeffs) until after we explain the WFT. Onepossible implementation of 
ompute_framelet_
oeffi
ients(grid) isdes
ribed in se
tion 3.3.2.3 Why This Works: A Heuristi
 ArgumentThe framelets in in NECCC 
onsist of framelets whi
h are moving out of thebox under the free 
ow ei(1=2)�t. Thus, there is little error 
aused by removingthem.For the WFT frame, the framelets in NECC\BBC 
onsist of framelets whi
hare outside the box, but are moving inward under the free 
ow. If the initial
ondition  (x; 0) is well lo
alized, the only way su
h framelets 
an exist is ifwaves moved out of the box, turned around and 
ame ba
k. This is extremelyunlikely. Thus, there is little error 
aused by removing these framelets.The remainder 
onsist of framelets in NECC\BB\BAD. In general, little
an be said about these framelets. But for the WFT, these 
onsist of frameletswhi
h are moving slowly, more slowly than a 
ertain velo
ity kmin. We makethis term small merely by assuming it to be true. In pra
ti
e, it may not be,although we outline (non-rigorously) methods of dealing with this.We now 
onsider the remaining framelets. Apart from the slowly movingones, the framelets in NECC\BB are not 
oming 
lose to the boundaries of[�L
omp; L
omp℄N . Thus, the boundary 
onditions we have 
hosen (periodi
, inthis 
ase) are irrelevant. This is true for a short time, say a time Tstep.In the event that the slowly moving framelets in BAD\NECC do rea
h theboundary, then an ex
eption is raised.2.4 Possible ImprovementsOne obvious improvement to our algorithm is useful for dealing with Hamil-tonians of the form H = �(1=2)� + V (x) + f(j (~x; t)j) with V (x) a lo
alizedpotential (possibly of long range type). Instead of trying to determine whetherthe free traje
tory of a given framelet, namely ~ax0+~bk0t is leaving the box suÆ-
iently fast, we try to determine whether the intera
ting traje
tory 
(~ax0;~bk0; t)is leaving the box. The intera
ting traje
tory is the traje
tory obeyed by a 
las-si
al parti
le with velo
ity ~bk0, moving in the potential V (x). Intuitively, thisis the right thing to do, although we 
annot prove this at the moment.One potential unknown fa
tor in our algorithm is kmin, the smallest relevantmomentum. If the problem we are given has an unknown kmin, all is not lost.We propose two methods, one simpler than the other, to deal with this 
ase.The problem will appear as follows. Suppose that at some time NTstep, we�nd that the mass sitting on the framelets in BAD\NECC is not small. We18




an redu
e kmin by in
reasing �, the standard deviation of the Gaussian. Theonly 
ost to doing this is that it be
omes ne
essary to in
rease the width of thebu�er region w.We also are investigating a multis
ale algorithm, utilizing multiple 
ompu-tational grids whi
h a

urately deal with the slower frequen
ies. More pre
isely,we use a tower of grids, having width Lint, 2Lint, et
, with ea
h grid havinglatti
e spa
ing �x, 2�x, et
 (so that the 
omputational 
omplexity is linearin the number of grids). Then, if slow waves rea
h the boundary of the �rstbox, they are �ltered, and pla
ed on the interior of the 2'nd box. They are nowat the physi
al position L, and 
an propagate an additional distan
e L beforeleaving the se
ond box. If the rea
h the edge of the se
ond box, they 
an bepla
ed in the third, and so on.Numeri
al experiments suggest that this result 
an dramati
ally de
rease theerror due to slow waves (by a fa
tor of 50 or more), and we plan to investigatethis further.2.5 A word on Ex
eptionsWe explain ex
eptions brie
y for readers unfamiliar with them.An ex
eption is merely a signal to the program to break out of the 
urrents
ope, and move upwards through en
losing s
opes until it �nds itself inside atry blo
k. At this point, 
ontrol is given over to the 
orresponding 
at
h blo
k.A simple example:...Ex
eption DivByZeroEx
eption(num)def f(x,y):if x == 0:raise DivByZeroEx
eption(y)return y/x...try:print f(3,z)
at
h DivByZeroEx
eption e:print ``Cannot divide by zero''...In this 
ode, if z!=0, the output would be merely be 3/z. If z = 0, theprogram will merely print \Cannot divide by zero" and then 
ontinue.Consider now this 
ode....print f(3,z)...This program will terminate if z=0, and any 
ommands after printf(3,z) willnot be exe
uted. 19



The purpose to using an ex
eption is to allow 
ontrol to move upwardthrough enough en
losing s
opes until a s
ope is found whi
h is 
apable of deal-ing with the ex
eption. If none is found, the program terminates. This avoids
luttering the 
ode with many if then statements to handle error 
he
king.3 Windowed Fourier Transforms and all that...In this se
tion, we review some basi
 results on frames and the windowed Fouriertransform. More detailed information 
an be found in [11, 12, 14℄, for example.3.1 Basi
 De�nitions and TheoremsThe dis
rete windowed Fourier transform frame is the standard frame of 
anon-i
al 
oherent states. We use it be
ause of it's ex
ellent time and frequen
ylo
alization properties if a Gaussian window is used.De�nition 3.1 The Gaussian WFT frame is the set of fun
tionsn�(~a;~b)(~x) = ��N=4��N=2eik0~b�~xe�j~x�~ax0j22=2�2o(~a;~b)2ZN�ZNfor some x0; k0; �. To be a frame, x0k0 < 2�, otherwise there exist ve
torsorthogonal to the span of the WFT frame. The dual frame to the GaussianWFT frame is also a WFT frame, given byneik0~b�~x~g(~x� ~ax0)o(~a;~b)2ZN�ZNfor a 
ertain ~g 2 L2(RN ) (
lari�ed later).We will refer to �(~a;~b)(~x) as a framelet lo
alized at (~ax0;~bk0) in phase spa
e.When we refer to the position or velo
ity of a framelet, we are referring to ~ax0and ~bk0, respe
tively.The following theorem establishes that the WFT is a frame, in the spe
ial
ase when x0k0 = 2�=M, for some M 2 N. The number M is 
alled theoversampling rate. It also expli
itly provides the frame bounds.We remark here that throughout this paper, we will always take x0k0 =2�=M, with M an even integer. We do this in order to use both theorem 3.4and also theorem 3.11 (whi
h is stated later).We 
onje
ture that a similar result holds for M 2 (1;1). The assumptionM 2 2Z is made for algebrai
 simpli
ity, and very likely is unne
essary.De�nition 3.2 The Zak transform is the isometry Z : L2(RN )! L2([0; 1℄N �[0; 1℄N) de�ned by:(Zf)(~t; ~s) = xN=20 X~l2ZN e2�i(~t�~l)f(x0(~s�~l)) (3.1)20



and for �(~t; ~s) 2 L2([0; 1℄N � [0; 1℄N):Z�1'(~x) = xN=20 Z[0;1℄N e�2�i(~t�b~x=x0
)� �~t; ~x=x0� dt (3.2)Note that (Zf)(~t; ~s) is 1-periodi
 ~t.The Zak transform will be used to diagonalize the operator F �F in theorem3.4. We �rst state some results 
on
erning the �3(zj�), whi
h are ne
essary topro
eed.De�nition 3.3 The ellipti
 fun
tion �3(zj�) is de�ned by:�3(zj�) = 1 + 2 1Xl=1 
os(2�lz)ei��l2 (3.3)It has the equivalent de�nition:�3(zj�) = 1Yn=1(1� ei2�n� )(1 + e(2n�1)i��e2�iz)(1 + e(2n�1)i��e�2�iz) (3.4)It 
an be analyti
ally 
ontinued in z by the re
urren
e relation:�3(z + �; �) = e��i(��2z)�3(z; �) (3.5)Using the Zak transform, we 
an now diagonalize the operator F �F . By 
om-puting the inf and sup of the diagonalized operator, we 
an obtain the framebounds.Theorem 3.4 (Daube
hies and Grossman) Let F be the framelet analysisoperator for a windowed Fourier transform. Suppose that for some integer M �2, x0k0 = 2�=M. De�ne:S(x0;M;~t; ~s) = ���[Ze�x2=2℄(~s;~t)���2= � x0p��N X~r2f0;:::M�1gN ������X~l2ZN exp�2�i~l � (~t� ~r=M)� exp��x202 (~s�~l)2�������2= xN0 e�jsj2x20�N=2 X~r2f0;:::M�1gN NYj=1 �3 ~tj ~rjM + i x202�~sj����� ix202� !��3 ~tj � ~rjM � i x202�~sj����� ix202� ! (3.6)21



Then: [ZF �FZ�1f ℄(~t; ~s) = S(x0;M;~t; ~s)f(~t; ~s) (3.7)This implies that: AF = inf(~s;~t)2[0;1℄N+N ��S(x0;M;~t; ~s)�� (3.8a)BF = sup(~s;~t)2[0;1℄N+N ��S(x0;M;~t; ~s)�� (3.8b)Proof. This is proved in [13℄ for the one dimensional 
ase, where � = 1. Themultidimensional follows by noting that:S(x0;M;~t; ~s) = NYj=1S1d(x0;M;~tj ; ~sj)The 
ase when � 6= 1 is re
overed by s
aling. �The next theorem is taken from [11℄. It shows that for a suÆ
iently over-sampled frame, the WFT is a frame in Sobolev spa
es as well.Theorem 3.5 (Daube
hies,[11℄) Re
all the operator:F �Ff(x) = X(~a;~b)2Z�Zeibk0g(x� ax0) 
eibk0g(x� ax0)jf(x)�where g(x) is either e�x2=2 or the 1 dimensional dual window ~g(x). The operatorF �F is bounded above and below, in Hs and H�s, provided the 
onstants As(g)and Bs(g) (de�ned below) are stri
tly positive. This implies that if As(g) andBs(g) are stri
tly positive, then the GWFT is a frame in Hs(R) and H�s(R).As(g) 

h�xi�sf(x)

L2 � 

h�xi�sF �Ff(x)

L2 � Bs(g) 

h�xi�sf(x)

L2We must �rst 
onstru
t some auxiliary fun
tions. De�ne:m(ĝ; k0) = infx2RXb2Zjĝ(k + bk0)j2 (3.9a)M(ĝ; k0) = supx2RXb2Zjĝ(k + bk0)j2 (3.9b)De�ne, for s � 0:��s (k0) = supk "hki�shk + k0i�sXb2Zjĝ(k + bk0)j jĝ(k + bk0 + k0j#As(g) = 2�x0 24m(ĝ; k0)�Xa6=0 ��+s (2�a=x0)��s (�2�a=x0)�1=235 (3.10a)Bs(g) = 2�x0 24m(ĝ; k0) +Xa6=0 ��+s (2�a=x0)��s (�2�a=x0)�1=235 (3.10b)22



Corollary 3.6 In N dimensions, we �nd thatHs�(g) kf(~x)kH�s � kF �Ff(~x)kH�s �Hs+(g) kf(~x)kH�swhere Hs+(g) = NB0(g)N�1Bs(g) (3.11a)Hs�(g) = NA0(g)N�1As(g) (3.11b)Thus, in Hs(RN ) and H�s(RN ), the WFT is a frame with frame boundsHs�(g) and Hs+(g), provided they are both positive.Proof. We want to 
ompute upper and lower bounds on:kF �Fg(~x)kHs = NXj=1 

(1 + (i�xj )s)F �Fg(~x)

L2To the j'th term of the sum, we apply theorem 3.5 in the j0th dire
tion. Thispulls out a fa
tor of As(g). In the dire
tions 1 : : : j � 1 and j + 1 : : :N , we dothe same thing, whi
h pulls out a fa
tor of A0(g) (sin
e there are no derivativesin that dire
tion). We then add up over j = 1 : : :N . Thus we obtain the lowerbound. The upper bound is done identi
ally. �Remark 3.7 As one 
an see from table 1, even for a frame whi
h is oversampledonly byM = 4, the WFT is a reasonably tight frame even in H3, where it di�ersfrom being tight by less than 10 per
ent. In pra
ti
e, for �ltering outgoing waves,we will often want a higher oversampling rate to ensure good de
ay of the dualwindow, so we expe
t this will not usually pose a problem.In fa
t, we believe this bound is suboptimal, and 
onje
ture that the WFTis a frame in any Sobolev spa
e. But we do not know how to prove it, althoughthe result 
an probably be tightened using the Zak transform.s As Bs Bs=As0 3.853 4.147 1.0761 3.852 4.148 1.0772 3.849 4.151 1.0793 3.836 4.164 1.0864 3.787 4.213 1.1125 3.600 4.400 1.2226 2.865 5.135 1.793Table 1: Frame Bounds, as a fun
tion of s, for a parti
ular GWFT frame. Theparameters are � = 1, x0 = 1, k0 = �=2. For s = 7, the estimates break down.This table is taken from [11℄, where it is table VI-A.We make another observation, about the Sobolev norms of framelets.23



De�nition 3.8 We denote the per-framelet energy by:(Ms(~a;~b))2 = NXk=1 


�sxj�(~a;~b)(~x)


2L2(RN) (3.12)Also, M0(~a;~b) = 1.Note that M0(~a;~b) = 1. We have the relation 


�(~a;~b)(~x)


2Hs = (M0(~a;~b))2 +(Ms(~a;~b))2 = 1 + (Ms(~a;~b))2.Proposition 3.9 The framelet energy is bounded by:Ms(~a;~b) � fs NXk=1(2�)�s(exps(p2�~bkk0))2!1=2 (3.13)fs = s!p2� �Z 2�0 e�2 
os(�)d��1=2 (3.14)The fun
tion exps(z) is de�ned by:exps(z) = sXj=0 zjj! (3.15)Thus, (Ms(~a;~b))2 � (fs=s!) ���~bk0���ss +O����~bk0���s�1s � as ���~bk0���!1.Proof. We begin by 
omputing in 1 dimension. We negle
t the spa
e transla-tions, whi
h will not e�e
t the mass.�sxeibk0xe�x2=2�2 = sXj=0�sj�(ibk0)jeibk0x�s�jx e�x2=2�2= eibk0x sXj=0�sj�(ibk0)j(�2�)�(s�j)=2Hs�j(x=p2�)e�x2=2�2 (3.16)We use the 
ontour integral representation of Hn(z) to write:(3.16) = eibk0x sXj=0�sj�(ibk0)j(�2�)�(s�j)=2(s� j)!� Zjzj=1 e�(x=p2��z)2z�(s�j)�1 dz2�iz= eibk0xs!(�2�)�s=2 Zjzj=1 exps(�p2�bk0z)e�(x=p2��z)2z�(s�1) dz2�iz (3.17)24



We multiply this by it's 
omplex 
onjugate, and integrate with respe
t to x:Z "(s!)2(2�)�s Zjzj=1 Zjtj=1 exps(�p2�bk0z) exps(�p2�bk0t)e�(x=p2��z)2e�(x=p2��t)2z�(s�1) dz2�iz t�(s�1) dt2�it#dx= Z "(s!)2(2�)�s Zjzj=1 Zjtj=1 exps(�p2�bk0z) exps(�p2�bk0t)e�(x=��(t+z))2e�2tzz�(s�1) dz2�iz t�(s�1) dt2�it#dx= Zjzj=1 Zjtj=1�Z e�(x=��(t+z))2dx�(s!)2(2�)�s exps(�p2�bk0z) exps(�p2�bk0t)e�2tzz�(s�1) dz2�iz t�(s�1) dt2�it(3.18)The integral in x is independent of the values of t and z. Thus:(3.18) = �Z e�x2=�2dx� (s!)2(2�)�s Zjzj=1 Zjtj=1exps(�p2�bk0z) exps(�p2�bk0t)e�2tzz�(s�1) dz2�iz t�(s�1) dt2�it (3.19)We bound the integral by the L1 � L1 duality, to obtain:j(3.19)j = Z (�sxeibk0xe�x2=2�2)(�sxe�ibk0xe�x2=2�2)dx� 


exps(�p2�bk0z) exps(�p2�bk0t)


L1(ds=2�is;dt=2�it)� 


e�2tzz�(s�1)t�s�1


L1(ds=2�is;dt=2�it)� (s!)2(2�)�s(exps(p2�bk0))2 �(2�)�1 Z 2�0 e�2
os(�)d�� (3.20)We moved from the se
ond line to the third by 
omputing:Zjzj=1 Zjtj=1 ��e�2tzz�s�1t�s�1�� dt2�t dz2�t= (2�)�2 Z 2�0 Z 2�0 e�2 
os(���)d�d� = (2�)�2 Z 2�0 Z 2�0 e�2 
os(�)d�d�= (2�)�1 Z 2�0 e�2 
os(�)d�25



To �nish, we 
ompute:(Ms(~a;~b))2 = NXk=1 


�sxj�(~a;~b)(~x)


2L2(RN)= NXk=1 ZRN ����sxj��N=4��N=2eik0~b�~xe�j~x�~ax0j22=2�2 ���2 d~x� NXk=1(s!)2(2�)�s�(2�)�1 Z 2�0 e�2 
os(�)d�� (exps(p2�~bkk0))2 (3.21)This is what we wanted to prove. �In this subse
tion, we des
ribe some properties of the WFT frame that weuse at various points.3.2 Dual WindowWe now 
hara
terize the dual window. Re
all that the dual window is theunique fun
tion su
h thatf(~x) = X(~a;~b)2ZN�ZN Df(x)jeik0~b�~x~g(~x � ~ax0)E��N=4��N=2eik0~b�~xe�j~x�~ax0j22=2�2for f(~x) 2 L2(RN ).We show that the dual window is exponentially lo
alized in position andmomentum, and 
al
ulate the 
onstants expli
itly (this is theorem 3.11). Ourresults only apply whenM 2 2N, but this is merely be
ause the algebra be
omessimple in this 
ase. It appears highly likely that similar results will hold for Mnot an even integer.Our result implies that asM!1, the exponential de
ay rate of ~g(x) growswithout bound. This is to be expe
ted, sin
e the dual window is 
onverging toa Gaussian in this 
ase.The fa
t that ~g(x) de
ays exponentially is also argued in [12℄ but the pre
isedependen
e of the 
onstants on x0; k0; � is not pinned down there (and theargument there does not use the Zak transform).We state �rst a te
hni
al lemma.Lemma 3.10 Let M 2 2N. Then S(x0;M;~t; ~s) redu
es to:S(x0;M;~t; ~s) =�Mx0p� �N 0�X~l2ZN exp��x20[(~s�~l)2℄�1A NYj=1 �3(2�M~tj jix20M2=4�) (3.22)
26



Proof. Consider the sum in (3.6). We 
an 
ompute:X~r2f0;:::M�1gN ������X~l2ZN exp�2�i~l � (~t� ~r=M)� exp��x202 (~s�~l)2�������2 == X~r2f0;:::M�1gN 24X~l2ZN exp�2�i~l � (~t� ~r=M)� exp��x202 (~s�~l)2�35�" X~n2ZN exp ��2�i~n � (~t� ~r=M)� exp��x202 (~s� ~n)2�#= X~r2f0;:::M�1gN X~l2ZN X~n2ZN exp�2�i(~l � ~n) � (~t� ~r=M)��exp��x202 ((~s�~l)2 + (~s� ~n)2)� (3.23)For simpli
ity, in this 
al
ulation, ~v2 = PNj=1 ~v2j . Note that we do not takeabsolute values or 
omplex 
onjugates anywhere, and thus our result is analyti
.By passing the sum over ~r inside the other two sums, and noting the follow-ing: X~r2f0;:::M�1gN exp��2�i(~l� ~n) � (~r=M)� = ( 0; (~l� ~n) 62 (MZ)NMN ; (~l � ~n) 2 (MZ)NWe 
an then set ~n = ~l +M~k. We then �nd:(3.23) = X~l2ZN X~n2ZN X~r2f0;:::M�1gNexp�2�i(~l� ~n) � (~t� ~r=M)� exp��x202 ((~s�~l)2 + (~s� ~n)2)� =MN X~l2ZN X~k2ZNexp�2�i(M~k) � (~t� ~r=M)� exp��x202 ((~s�~l)2 + (~s�~l �M~k)2)� =MN X~k2ZN exp�2�iM~k � ~t� X~l2ZN exp��x20[(~s�~l �M~k=2)2 +M2~k2=4℄� (3.24)This is true whether M is odd or even.
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Now if M is even, then M=2 is an integer. Therefore:X~l2ZN exp��x20[(~s�~l �M~k=2)2 +M2~k2=4℄� =exp(�x20M2~k2=4) X~l2ZN exp��x20[(~s�~l)2℄�This follows sin
e the latter sum is merely an integer translate (in ~l) of theformer. But sin
e the sum is taken over all ZN , integer translates do not matter.Then we 
an simplify (3.24) even further to:(3.24)=MN 0�X~l2ZN exp(�x20[(~s�~l)2℄)1A X~k2ZN exp(2�iM~k � ~t) exp(�x20M2~k2=4)=MN 0�X~l2ZN exp��x20(~s�~l)2�1A NYj=1 �3(2�M~tj jix20M2~k2=4�)We now multiply by (x0=p�)N to re
over S(x0;M; t; s), thus proving (3.22).�Theorem 3.11 Let x0k0 = 2�=M for M 2 2N. Let ~g(~x) be the dual windowto the GWFT. Then ~g(~x) satis�es the following bounds:k~g(~x)kL1 6 �x0� �N A�1F X~n2ZN exp��x20j~nj2�2 � = �x0� �N A�1F k�kL1(~t;~s)(3.25)Letting ~� = (�1; :::�N ) be a multi-index, we �nd that:���~�x ~g(~x)�� � g(x0; k0; N; ~�)e�r(x0;k0)j~xj1 (3.26)When s is a s
alar, we will let g(x0; k0; N; s) = g(x0; k0; N; (s; 0; ::; 0)).The de
ay rate r(x0; k0) is given by:r(x0; k0) = x0M=8�� (3.27)The 
onstant g(x0; k0; N; s) is de�ned below. We must �rst de�ne the fol-lowing auxiliary fun
tions:�(~t; ~s) = [Ze�x2 ℄(~t; ~s) = �x0� �N=2 X~l2ZN e2�i(~t�~l) exp(�x20j~s�~lj2l2=�2) (3.28)F (x0;M; t; x) = �(t� i
; x=x0)Mx0��1=2 �Pl2Ze�(x�lx0)2=�2� �3(2�Mtjix20M2=4��2)(3.29)28



G(x0;M; t; x) = �(t� i
; x=x0)�Pl2Ze�(x�lx0)2=�2� �3;z(2�Mtj jix20M2=4��2) (3.30)Here, �3(zj�) is one of Ja
obi's theta fun
tions (des
ribed in the appendix). Thenotation �3;z signi�es �3;z(z0j�) = �z�3(zj�)jz=z0 .We 
an now de�ne the 
onstant term:g(x0; k0; N; ~�) = NYj=1 x1=20 ��1=2ex20M=8�2 

�~�jx F (x0;M; t; x)

L1+ �1=22M2x1=20 �1=2 b2�M� 1=2
 

�~�jx G(x0;M; t; x)

L1 ! (3.31)Proof. In this theorem, we mainly do 
al
ulations on the dual window. Weperform the 
al
ulations in 1 dimension, and then note that:~g(~x) = NYj=1 ~g1D(~xj)In one dimension, we �nd that (dropping the 1D subs
ript) the dual window
an be 
omputed (re
alling that �(t; s) = Ze�x2=2:~g(x) = Z�1Z(F �F )�1e�x2=2 = Z�1S(x0;M; t; s)�1�(t; s)= x1=20 Z 10 e�i2�tbx=x0
�(t; x=x0)S(x0;M; t; x=x0) dt (3.32)We also assume � = 1, for simpli
ity. To do the 
al
ulation when � 6= 1, wemerely s
ale the result.Bound in L1To bound ~g(x) in L1, we need only bound the integral. Note thatS(x0;M; t; x=x0)�1 is bounded by A�1F (by theorem 3.4). Thus, we obtain theL1 bound: k~g(x)kL1 � x1=20 A�1F k�(t; s)kL1([0;1℄2;dtds)Shifting the Integration ContourHere we work in 1 spa
e dimension. We then observe that the ~g(~x) =QNj=1 ~g1d(~xj).To determine the de
ay of the dual window, we move the 
ontour of inte-gration in (3.32) up from [0; 1℄ to [0; 1℄ � i
 (depending on the sign of x, forsimpli
ity we suppose x > 0). The 
onstant is 
hosen to be 
 = ix20M=8�2, dueto the fa
t that �3(zj�) obeys a re
urren
e relation with this period (see (3.5)).The endpoints do not 
ontribute to the integral, sin
e S(x0;M; t; s) and�(t; s) are 1-periodi
 in t. Thus, the integral in (3.32) be
omes:e�2�
bx=x0
x1=20 Z 10 e�i2�tbx=x0
�(t� i
; x=x0)S(x0;M; t� i
; x=x0) dt+Residues (3.33)29



Using (3.22) in one dimension, we �nd that:S(x0;M; t; s) =Mx0��1=2 Xl2Ze�x20(s�l)2! �3(2�Mtjix20M2=4�) (3.34)We now need to �nd the zeros of S(x0;M; t; s) in the region 0 � <t � 1,0 � =t � 
.The produ
t formula (3.4) for the fun
tion �3(zj�) implies that �3(zj�) = 0only when (2n � 1)i�� � 2�iz = ��i + 2�ni for some n 2 Z, and all zero's atthese points are of �rst order.Using this and (3.34), we �nd that the relevant zeros of S(x0;M; t; s) o

urat 2�Mt = 1=2 + j � ix20M2=8�, with t 2 [0; 1℄. These aretj = (j + 1=2)=2�M+ ix20M=16�2with j = 0 : : : b2�M� 1=2
.The residue term therefore takes the form:Residues = x1=20 e�(x20M=16�)bx=x0
� b2�M�1=2
Xj=0 e�i2�tjbx=x0
�(tj ; x=x0)Mx0��1=2 �Pl2Ze�(x�lx0)2� 2�M�3;z(2�Mtj jix20M2=4�)(3.35)Here, �3;z(z0j�) = �z�3(zj�)jz=z0 .We 
ombine these two results, and note that �3(z+� j�) = e�i�(��2z)�3(z; �)to obtain the following expression for ~g(x):~g(x) = e�(x20M=8�)bx=x0
x1=20 ex20M=8 Z 10 e�i2�tbx=x0
�(t� i
; x=x0)S(x0;M; t; x=x0)ei2�t dt+ ��1=2x�1=20 e�(x20M=16�)bx=x0
2M2 �Pl2Ze�(x�lx0)2� b2�M�1=2
Xj=0 e�i2�<tjbx=x0
�(tj ; x=x0)�3;z(2�Mtj jix20M2=4�) (3.36)Cal
ulation of DerivativesLet us de�ne the following two fun
tions:F (x0;M; t; x) = �(t� i
; x=x0)S(x0;M; t; x=x0)= �(t� i
; x=x0)Mx0��1=2 �Pl2Ze�(x�lx0)2� �3(2�Mtjix20M2=4�)G(x0;M; t; x) = �(t� i
; x=x0)�Pl2Ze�(x�lx0)2� �3;z(2�Mtj jix20M2=4�)30



Then we 
an rewrite (3.36) as follows:~g(x) = e�(x20M=8�)bx=x0
x1=20 ex20M=8 Z 10 e�i2�tbx=x0
F (x0;M; t; x)dt+ e�(x20M=16�)bx=x0
 ��1=2x�1=202M2 b2�M�1=2
Xj=0 G(x0;M; t; x) (3.37)Cal
ulation of the De
ay RateTaking (3.37) as a starting point, we 
an now 
al
ulate the de
ay rate of~g(x). We use the simple fa
t that:e��bx=x0
 � e�e��x=x0 (3.38)The de
ay rate 
an be 
omputed simply enough, taking absolute values of (3.37)and using (3.38):j�nx ~g(x)j � e�(x0M=8�)x x1=20 ex20M=8 k�nxF (x0;M; t; x)kL1+ ��1=2x�1=202M2 b2�M� 1=2
 k�nxG(x0;M; t; x)kL1 !This is what we wanted to prove. To obtain the result in N dimensions, we takeprodu
ts. To obtain the result when � 6= 1, we s
ale. �Corollary 3.12 If we inter
hange ~x and ~k, x0 and k0, and � with ��1 every-where in the above theorem, then the 
on
lusion still holds.Proof. The Fourier transform of the WFT is still a WFT. The Fourier trans-form of the window fun
tion e�j~xj2=2 is e�j~kj2=2. Therefore the same result holdswith ~x and ~k inter
hanged. �3.3 Computation of the WFT CoeÆ
ients: A Pra
ti
alAlgorithmNow that we have dis
ussed the dual window, we present here an algorithm for
omputing it (taken from [12℄). We also present the algorithm for 
omputingthe framelet 
oeÆ
ients.The algorithm is basi
ally nothing more than s
anning the dual window overthe fun
tion, and Fourier transforming at ea
h point ~ax0 for ~a 2 ZN. However,due to the spatial de
ay of ~g(~x) (
.f. theorem 3.11), we 
an trun
ate the domainto a small box surrounding ~ax0.Algorithm 3.1 Cal
ulation of Windowed Fourier Transforms31



def wft_
oeffi
ients(grid, arange, brange):NxN_grid wft_
oeffi
ientsfor a in arange:xbuff = multiply(exp(-(x-a*xs)^2 / (2*sigma^2)), grid)kbuff = FFT(xbuff)wft_
oeffi
ients[a℄[:℄ = kbuffreturn wft_
oeffi
ients3.4 Phase Spa
e Lo
alizationThe WFT allow us to de�ne a 
on
rete realization of phase spa
e. From hereonward, we will 
onsider ZN � ZN to be a dis
rete realization of phase spa
e.The ve
tor (~a;~b) 2 ZN�ZN will represent the point at ~ax0 in position, and ~bk0in momentum.With this in mind, we 
an now 
onstru
t phase spa
e lo
alization operatorsvery simply.De�nition 3.13 For a set F 2 ZN�ZN, we de�ne the phase spa
e lo
alizationoperator: PF (x) = X(~a;~b)2F  (~a;~b)�(~a;~b)(~x) (3.39)Intuitively, one expe
ts that phase spa
e lo
alization based on the WFTwill 
orrespond to the usual phase spa
e lo
alization based on position andmomentum proje
tions. Of 
ourse, the 
orresponden
e is fuzzy, and we domake small errors (whi
h we quantify).Also, for 
onvenien
e of notation, here and later, we name the sets of highfrequen
y framelets and low frequen
y framelets.De�nition 3.14 For K 2 R+ , we de�ne the set of high frequen
y and lowfrequen
y framelets, respe
tively:HF(K) = n(~a;~b) 2 ZN �ZN : k0j~bj1 > Ko (3.40a)LF(K) = n(~a;~b) 2 ZN �ZN : k0j~bj1 � Ko (3.40b)First, we show a result 
on
erning high pass �lters, namely that a high pass�lter 
onstru
ted from the WFT is very similar to a high pass �lter 
onstru
tedfrom the Fourier transform.Remark 3.15 We remark at this time that we do not believe our estimatesare optimal. We have taken a number of short
uts in the proofs of the varioustheorems in this se
tion. We 
onje
ture that these results 
an be improvedsigni�
antly by a more 
areful analysis.32



Theorem 3.16 Let P 0BK0 ;k0(~k) be a proje
tion operator onto the set [�(K �ks(�));K � ks(�)℄N . Then:

PHF(K)f(x)

Hs� Hs+(~g(~x))H�s+ (e�x2=�2) 


(1� P 0BK0 ;k0(~k))f̂(~k)


Hs + � kf(x)kHs (3.41)The 
onstant ks(�) is de�ned by:ks(�) = infM2N(Mk0 :ph�s g(k0; x0; N; s)h(1 + Jd)(x0=2�)�N(m
;s(�;N) +m0
;s(�;N)) + ((2 + Jd)(x0=2�)�N)i� Js 1 + ks0 NXi=1 �~zi dd~zi�s!aM;N (~z)�����~zj=e�r(k0 ;x0)k0 � �)= O(jln �j) (3.42)with the generating fun
tion aM;s(~z) de�ned below, in lemma 3.17.Before pro
eeding with the proof, we state a te
hni
al lemma whi
h we use.Lemma 3.17 We have the following bound for the dis
rete 
onvolution:X~a2ZNh~a2�=x0ise��2(~a2�=x0�~z)2� (1 + Jd)(x0=2�)�N(m
;s(�;N) +m0
;s(�;N))+ ((2 + Jd)(x0=2�)�N)h~zis = O(h~zis) (3.43a)supj~kj1<k0 Xj~k�~bk0j1�Mh~bk0 � ~kise�r(k0;x0)j~bk0�~kj1� Js 1 + ks0 NXi=1 �~zi dd~zi�s!aM;s(~z)�����~zj=e�r(k0 ;x0)k0= O(Mse�r(k0;x0)M ) (3.43b)The generating fun
tion aM;N (~z) is de�ned as:aM;N (~z) = 0� NYj=1 11� ~zj1A24 NX1�j�N ~zMj 0�1 + Xj<i�N ~zMi 1A35 (3.44)
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Proof of Theorem 3.16. We pro
eed in three steps.SetupWe begin by de
omposing f(x) into high and low frequen
ies, and applyingthe high pass �lter:

PHF(K)f(x)

Hs= 


PHF(K)P 0BK0 ;0(~k)f(x)


Hs + 


PHF(K)[1� P 0BK0 ;0(~k)℄f(x)


HsThe �rst term is bounded by Hs+(~g(~x))H�s+ (e�x2=�2) 


P 0BK0 ;0(~k)f̂(~k)


Hs , thusit remains to bound the se
ond. Let h(x) 2 H�s have norm 1. Then:Dh(x)jPHF(K)[1� P 0BK0 ;0(~k)℄f(x)E= X(~a;~b)2HF(K)Dh(x)j�(~a;~b)(~x)ED~�(~a;~b)(~x)j[1� P 0BK0 ;0(~k)℄f(x)E= X~a2ZN Xk0j~bj1>K Z Z ĥ(~k)��̂(~a;~b)(~k) ~̂�(~a;~b)(~k0)�[1� P 0BK0 ;0(~k0)℄f̂(~k0)d~k0d~k= Z Z �ĥ(~k)�[1� P 0BK0 ;0(~k + ~z)℄f̂(~k + ~z)� X~a2ZN ei~ax0�~z!�0B� Xk0j~bj1>K ~̂g(~k + ~z �~bk0)e��2(~k�~bk0)21CA d~zd~k (3.45)Between lines 3 and 4 we used the 
hange of variables, ~k0 = ~k + ~z. We use herethe fa
t that: X~a2ZN ei~ax0�~z = X~a2ZN Æ(~z � ~a2�=x0)Substituting this into (3.45) allows us to do the ~z integral relatively simply. We
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obtain:j(3.45)j2 = ����� Z ĥ(~k)� X~a2ZN Xk0j~bj1>K �~̂g(~k + ~a2�=x0 �~bk0)e��2(~k�~bk0)2� [1� P 0BK0 ;0(~k + ~a2�=x0)℄f̂(~k + ~a2�=x0)�d~k�����2� 


h~ki�sĥ(~k)


2L2 Z ���[1� P 0BK0 ;0(~k)℄f̂(~k)� X~a2ZN Xk0j~bj1>K ~̂g(~k �~bk0)h~k � ~a2�=x0ise��2(~k�~a2�=x0�~bk0)2���2d~k� h�s kh(x)k2H�s kf(x)k2L2� supj~kj1�K�ks(�) ������� X~a2ZN Xk0j~bj1>K ~̂g(~k �~bk0)h~k � ~a2�=x0ise��2(~k�~a2�=x0�~bk0)2�������2(3.46)Thus it remains to bound the sup term in the last equation.Bounds on the SumWe 
onsider this term, dropping the j � j2 sin
e everything underneath ispositive. We obtain:supj~kj1�K�ks(�) X~a2ZN Xk0j~bj1>K ~̂g(~k �~bk0)h~k � ~a2�=x0ise��2(~k�~a2�=x0�~bk0)2= supj~kj1�K�ks(�) Xk0j~bj1>K ~̂g(~k �~bk0) X~a2ZNh~k � ~a2�=x0ise��2(~k�~a2�=x0�~bk0)2(3.47)Thus we �nd, after applying theorem 3.11 in order to bound the ~̂g( � ) terms:(3.47) � supj~kj1�K�ks(�)g(k0; x0; N; s) Xk0j~bj1>K e�r(k0;x0)j~bk0�~kj1� X~a2ZNh~k � ~a2�=x0ise��2(~k�~a2�=x0�~bk0)2 (3.48)We bound the sum over ~a term using lemma 3.17 (stated just after this proof),
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in parti
ular (3.43a). This yields:(3.48) � g(k0; x0; N; s)(1 + Jd)(x0=2�)�N(m
;s(�;N) +m0
;s(�;N))� supj~kj1<K�ks(�) Xk0j~bj1>K e�r(k0;x0)j~bk0�~kj1+ g(k0; x0; N; s)((2 + Jd)(x0=2�)�N )� supj~kj1<K�ks(�) Xk0j~bj1>Kh~bk0 � ~kise�r(k0;x0)j~bk0�~kj1 (3.49)We observe now that for j~kj1 � K � ks(�), we �nd that j~k �~bk0j1 � ks(�) ifk0j~bj1 � K. Thus, we 
an 
ontinue:(3.49) � g(k0; x0; N; s)(1 + Jd)(x0=2�)�N(m
;s(�;N) +m0
;s(�;N))� supj~kj1<K�ks(�) Xj~k�~bk0j1�ks(�) e�r(k0;x0)j~bk0�~kj1+ g(k0; x0; N; s)((2 + Jd)(x0=2�)�N )� supj~kj1<K�ks(�) Xj~k�~bk0j1�ks(�)h~bk0 � ~kise�r(k0;x0)j~bk0�~kj1� g(k0; x0; N; s)h(1 + Jd)(x0=2�)�N (m
;s(�;N) +m0
;s(�;N))+ ((2 + Jd)(x0=2�)�N )i� supj~kj1<k0 Xj~k�~bk0j1�ks(�)h~bk0 � ~kise�r(k0;x0)j~bk0�~kj1 (3.50)To get from the �rst inequality to the se
ond, we used the fa
t that h~bk0�~kis � 1to 
ombine the sums5. Then we used the fa
t that the sum is invariant undertranslations on the latti
e k0ZN to redu
e the domain of the sup.We bound this (applying 3.17, in parti
ular (3.43b)) as follows:(3.50) � g(k0; x0; N; s)h(1 + Jd)(x0=2�)�N(m
;s(�;N) +m0
;s(�;N))+ ((2 + Jd)(x0=2�)�N )i� Js 1 + ks0 NXi=1 �~zi dd~zi�s!aks(�);s(~z)�����~zj=e�r(k0 ;x0)k0 (3.51)We note that the bound in (3.51) is O(ks(�)2e�r(k0;x0)ks(�)).Con
lusion5This is a suboptimal result, but di�ers from the best result based on this proof strategyonly logarithmi
ally. 36



We now �nish the argument. We observe that (by (3.45) and (3.46)):���Dh(x)jPHF(K)[1� P 0BK0 ;0(~k)℄f(x)E���2� h�s kh(x)k2H�s kf(x)k2L2 j(3.51)j2 (3.52)for any h(x) having norm 1 in H�s. Thus:


PHF(K)[1� P 0BK0 ;0(~k)℄f(x)


Hs �ph�s kf(x)kHs j(3.51)j=  ph�s g(k0; x0; N; s)h(1 + Jd)(x0=2�)�N (m
;s(�;N) +m0
;s(�;N))+ ((2 + Jd)(x0=2�)�N )i� Js 1 + ks0 NXi=1 �~zi dd~zi�s!aks(�);s(~z)�����~zj=e�r(k0 ;x0)k0! kf(x)kHs= O(ks(�)2e�r(k0;x0)ks(�)) kf(x)kHsBut ks(�) is de�ned pre
isely so that this is less than � kf(x)kHs . Hen
e we are�nished. �Proof of lemma 3.17. Divide and 
onquer.Equation (3.43a)We interpret this as a Riemann sum, approximating an integral, and 
al
u-late.X~a2ZNh~a2�=x0ise��2(~a2�=x0�~z)2� (x0=2�)�N �ZRNh~aise��2(~a�~z)2 + ���rh~aise��2(~a�~z)2 ���1 d~a�� (x0=2�)�N ZRNh~aise��2(~a�~z)2d~a+ (x0=2�)�N ZRN jrh~aisj e��2(~a�~z)2d~a+ ZRNh~ais ���re��2(~a�~z)2��� d~a� (1 + Jd)(x0=2�)�N ZRNh~aise��2(~a�~z)2d~a+ (x0=2�)�N ZRNh~ais ���re��2(~a�~z)2��� d~a� (1 + Jd)(x0=2�)�N (m
;s(�;N) +m0
;s(�;N)) + ((2 + Jd)(x0=2�)�N)h~zisEquation (3.43b) 37



First, we 
onsider the sum over ~bj � 0 only, and pull out a fa
tor of 2N :Xj~k�~bk0j1�Mh~bk0 � ~kise�r(k0;x0)j~bk0�~kj1� 2N Xj~k�~bk0j1�M~bj�0 h~bk0 � ~kise�r(k0;x0)j~bk0�~kj1� 2N Xj~bk0j1�M�k0~bj�0 Js(1 + j~bk0jss)e�r(k0;x0)j~bk0j1 (3.53)The last line follows be
ause j~kj1 � k0. We will now represent the sum bya generating fun
tion, analyti
 jointly in the variable ~z. We will evaluate thegenerating fun
tion at ~zj = e�r(k0;x0)k0 to obtain the bound.Note that:Xj~bj1>M~bj�0 ~z~b = X~bj�0 ~z~b � Xj~bj1�M~bj>0 ~z~b = NYj=1 11� ~zj � NYj=1 1� ~zMj1� ~zj != 0� NYj=1 11� ~zj1A24 X1�j�N ~zMj 0�1 + Xj<i�N ~zMi 1A35 = aM;s(~z)Then observe that multiplying under the sum by ~ksi is equivalent to applyingthe operator ~zi dd~zi to the generating fun
tion. Thus:Xj~bj1>K~bj�0 h~bk0ise�r(k0;x0)j~bk0j1 � Xj~bj1>K~bj�0 Js 1 + ks0 NXi=1~bsi!)e�r(k0;x0)j~bk0j1= Js 1 + ks0 NXi=1 �~zi dd~zi�s!aM;s(~z)�����~zj=e�r(k0 ;x0)k0= O(Mse�r(k0;x0)M )Thus we obtain the bound we seek. �Remark 3.18 Later on, we will make 
ertain demands on the framelet 
oeÆ-
ients of the wavefun
tion  (~x; t). One assumption will demand that

PHF(K)f(x)

Hs be small. The assumption is formulated in that way merelyfor te
hni
al simpli
ity. Theorem 3.16 will allow us to use the simpler statementthat 



P 0j~kj1>K;k0(~k)f(x)



Hs to verify this assumption.38



We now state a theorem regarding the phase spa
e lo
alization of the Gaus-sian WFT. The theorem says that if fun
tion f(x) is small outside the box[�X;X ℄N � [�K;K℄N (in phase spa
e), then f(~a;~b) are small outside a some-what larger box[�X �Xs(�;K); X +Xs(�;K)℄� [�K �Ks(�;K);K +Ks(�;K)℄(with Xs(�;K) and Ks(�;K) given below).This result is an extension of theorem 3.5.2 from [12℄. We extend that resultto N dimensions, and an arbitrary Sobolev spa
e, while also pinning downthe 
onstants pre
isely. However, we use the gaussian WFT frame spe
i�
ally(with even integer oversampling), while the aforementioned result works withan arbitrary window.Theorem 3.19 Let BX = [�X;X ℄N , BK = [�K;K℄N for X;K < 1. Thenletting X 0 = X �Xs�(�;K;X), K 0 = K �Ks�(�;K), we �nd that:

f(x)�PBX0�BK0 f(x)

Hs � Hs+(~g(~x))H�s+ (e�x2=�2)� �

(1� P sBX ;x0(~x))f(~x)

Hs + 


(1� P 0BK ;k0(~k))f(~x)


Hs + � kfkHs� (3.54)The 
onstants are given by:Xs�(�;K;X) = inf (t 2 R+ :e�r(x0;k0)t 1Xj=0 2N(2j + 2d(X + t=x0e+ 1)N�1e�r(x0;k0)j� (�=2)� "g(x0; k0; N; 0)2(N+2)=2(X + x0)(N�1)=2� Xj~bj1�K0=k0 1 + f2s  NXk=1(2�)�s(exps(p2�~bkk0))2!!1=2 #�1)Ks�(�;K) = ks(�=2) (3.55a)Proof.Setup
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To begin, we separate this into two separate problems:

f(x)�PBX0�BK0

Hsb = 


(PHF(K0) + PLF(K0)\BCX0 )f(x)


Hsb� 

PHF(K0)f(x)

Hsb + 


PLF(K0)\BCX0 f(x)


Hsb� 

PHF(K0)f(x)

Hsb+ 


PLF(K0)\BCX0 (1� P sBX ;x0(~x))f(x)


Hsb 


PLF(K0)\BCX0P sBX ;x0(~x)f(x)


HsbWe apply theorem 3.16 to 

PHF(K0)f(x)

Hsb , and bound


PLF(K0)\BCX0 (1� P sBX ;x0(~x))f(x)


Hsb�Hs+(~g(~x))H�s+ (e�x2=�2 ) 

(1� P sBX ;x0(~x))f(x)

Hsb ;obtaining:

f(x)�PBX0�BK0

Hsb� Hs+(~g(~x))H�s+ (e�x2=�2) 


(1� P 0BK ;k0(~k))f̂(~k)


Hs + (�=2) kf(x)kHs+Hs+(~g(~x))H�s+ (e�x2=�2) 

(1� P sBX ;x0(~x))f(x)

Hsb+ 


PLF(K0)\BCX0 f(x)


HsbThus, to 
omplete the proof, we must bound the last term by (�=2) kf(x)kHsb .We write:PLF(K0)\BCX0P sBX ;x0(~x)f(x)= Xj~aj1>X0=x0 Xj~bj1�K0=k0 D~�(~a;~b)(~x)jP sBX ;x0(~x)f(x)E �(~a;~b)(~x)= Xj~aj1>X0=x0 Xj~bj1�K0=k0 �(~a;~b)(~x) ZRN e�i~bk0�~x~g(~x � ~ax0)�P sBX ;x0(~x)f(~x)d~x(3.56)We will 
onstru
t �rst a bound on the integral term, as a fun
tion of ~a;~b, andthen return to (3.56) to 
omplete the proof.Bounds per frameletFor ~b small, we do the following:����ZRN e�i~bk0�~x~g(~x� ~ax0)�P sBX ;x0(~x)f(~x)d~x����� ZRN g(x0; k0; N; 0) ���e�r(x0;k0)j~x�~ax0j1P sBX ;x0(~x)f(~x)��� d~x (3.57)40



Observe that D = [�(X + x0); (X + x0)℄N 
ontains the support of P sBX ;x0(~x),and apply Cau
hy-S
hwartz to obtain:j(3.57)j � g(x0; k0; N; 0) 


P 0D;0(~x)e�r(x0;k0)j~x�~ax0j1


L2 kf(~x)kL2 (3.58)We now wish to bound 

P 0D;0(~x)e�r(x0;k0)j~x�~ax0j1

L2 .We assume, without loss of generality, that ~aj � 0 for j = 1::N . We alsoobserve that j~ax0j1 � (X+x0), and let l be the (possibly not unique) dimensionin j~alx0j � j~xlj is maximized. Then:


P 0D;0(~x)e�r(x0;k0)j~x�~ax0j1


L2 =  Z[�(X+x0);X+x0℄N e�2r(x0;k0)j~x�~ax0j1d~x!1=2�  2N Z[0;X+x0℄N e�2r(x0;k0)j~x�~ax0j1d~x!1=2�  2N Z[0;X+x0℄N e�2r(x0;k0)j~x�~ax0j1d~x!1=2� 2N=2 Z[0;X+x0℄ Z[0;X+x0℄N�1 e�2r(x0;k0)(~al�~xl)d~x?d~xl!1=2= 2N=2(X + x0)(N�1)=2 �e�r(x0;k0)(~al�(X+x0)) � e�r(x0;k0)~al�� 2(N+2)=2(X + x0)(N�1)=2e�r(x0;k0)j~aj1(1 + er(x0;k0)(X+x0)) (3.59)Noting that (1 + er(x0;k0)(X+x0)) � 2er(x0;k0)(x+x0), we �nd:����ZRN e�i~bk0�~x~g(~x� ~ax0)�P sBX ;x0(~x)f(~x)d~x����� (g(x0; k0; N; 0)2(N+4)=2)� kf(~x)kL2 (X + x0)(N�1)=2e�r(x0;k0)j~aj1er(x0;k0)(X+x0) (3.60)Con
lusionWe now return to (3.56).
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k(3.56)kHs � Xj~aj1>X0=x0 Xj~bj1�K0=k0


�(~a;~b)(~x)


Hs ����ZRN e�i~bk0�~x~g(~x � ~ax0)�P sBX ;x0(~x)f(~x)d~x����� Xj~aj1>X0=x0 Xj~bj1�K0=k0 " 1 + f2s  NXk=1(2�)�s(exps(p2�~bkk0))2!!1=2� kf(~x)kL2 g(x0; k0; N; 0)2(N+2)=2� (X + x0)(N�1)=2e�r(x0;k0)j~aj1er(x0;k0)(X+x0)# (3.61)To get from the se
ond line to the third line, we applied proposition 3.9 tobound 


�(~a;~b)(~x)


Hs and (3.60) to bound the integral term in the se
ond line.We now do the sum over ~b �rst, pulling out the terms that depend only on~b: (3.61) � 0B� Xj~bj1�K0=k0 1 + f2s  NXk=1(2�)�s(exps(p2�~bkk0))2!!1=21CA� kf(~x)kL2 g(x0; k0; N; 0)2(N+2)=2(X + x0)(N�1)=2�0�er(x0;k0)(X+x0) Xj~aj1>X0=x0 e�r(x0;k0)j~aj11A (3.62)We observe that for a given integer j, the number of integer latti
e pts~a with j~aj1 = j is bounded by 2N(2j + 1)N�1. We also note that X 0 =X +Xs�(�;K;X), to �nd:er(x0;k0)(X+x0) Xj~aj1>X0=x0 e�r(x0;k0)j~aj1= er(x0;k0)(X+x0) Xj>(X+Xs�(�;K;X))=x0 2N(2j + 1)N�1e�r(x0;k0)j= er(x0;k0)(X+x0)e�r(x0;k0)d(X+Xs�(�;K;X))=x0ex0� 1Xj=0 2N(2j + 2d(X +Xs�(�;K;X))=x0e+ 1)N�1e�r(x0;k0)j� e�r(x0;k0)Xs�(�;K;X) 1Xj=0 2N(2j+2d(X+Xs�(�;K;X))=x0e+1)N�1e�r(x0;k0)j42



By the de�nition of X 0, we �nd that:e�r(x0;k0)Xs�(�;K;X)� 1Xj=0 2N(2j + 2d(X +Xs�(�;K;X))=x0e+ 1)N�1e�r(x0;k0)j� (�=2)� "g(x0; k0; N; 0)2(N+2)=2(X + x0)(N�1)=2� Xj~bj1�K0=k0 1 + f2s  NXk=1(2�)�s(exps(p2�~bkk0))2!!1=2 #�1and therefore (3.62) � (�=2) kf(x)kL2 (3.63)Thus, we observe that:


PLF(K0)\BCX0P sBX ;x0(~x)f(x)


Hs = k(3.56)kHs � (3.61) � (3.62) � (3.63)� (�=2) kf(x)kL2 � (�=2) kf(x)kHsThis is what we wanted to prove (re
alling the dis
ussion just before (3.56)).�Remark 3.20 One 
an tune this estimate more 
arefully, if ne
essary. For any� 2 (0; 1), the following 
hoi
es of Xs�(�;K;X) and Ks�(�;K)X are also valid:Xs�(�;K;X) = inf (t 2 R+ :e�r(x0;k0)t 1Xj=0 2N(2j + 2d(X + t=x0e+ 1)N�1e�r(x0;k0)j� ��"g(x0; k0; N; 0)2(N+2)=2(X + x0)(N�1)=2� Xj~bj1�K0=k0 1 + f2s  NXk=1(2�)�s(exps(p2�~bkk0))2!!1=2 #�1)Ks�(�;K) = ks(�(1� �)) (3.64a)We now state a slightly te
hni
al 
orollary that we will use.Corollary 3.21 Let f(x) 2 Hs. Let BX0 , BK0 be as in theorem 3.19. Then:

PBX0�BK0nHF(K)f(x)

Hs �Hs+(~g(~x))H�s+ (e�x2=�2 )� (k(1� PX(~x))f(~x)kHs + �) + 

PHF(K)f(x)

Hs (3.65)43



Proof. Repeat the proof of Theorem 3.19. However, instead of bounding

PHF(K)f(x)

Hs using theorem 3.16 to bound this term, we simply leave it asit is. �4 Time Evolution of Gaussian FrameletsIn this se
tion we study the behavior of Gaussian framelets under the free 
ow,ei(1=2)�t. This is quite expli
it, be
ause we 
an write ei(1=2)�t�(~a;~b)(~x) in 
losedform:ei(1=2)�t�(~a;~b)(~x) = ei(1=2)�t��N=4��N=2eik0~b�~xe�j~x�~ax0j22=2�2= exp�i~bk0 � (~x�~bk0t� ~ax0)��N=4�N=2(1 + it=�2)N=2 exp �j~x�~bk0t� ~ax0j222�2(1 + it=�2) ! (4.1)This allows us to 
ompute pre
isely most of our framelet fun
tions (error, rele-van
e, et
).We begin with a general result, whi
h allows us to 
ontrol the error asso
iatedwith approximating Fourier multipliers on RN by restri
ting them to a box. Thisresult is suÆ
iently general to allow for the use of 
ertain kinds of low pass �lters(in frequen
y) on the box, although we do not use it in this generality.Theorem 4.1 Let S(ir)'(~x) satisfy the hypothesis of the Poisson summationformula, that is jS(ir)'(x)j � ChxiN+� and ���S(i~k)'̂(k)��� � ChkiN+�. Let S(~k),Sb(~k) be 
ontinuous bounded Fourier multipli
ation operators whi
h are equalfor ~k 2 B (where B is some 
losed set).Then:





S(ir)'(~x)�X~k2B ei�~k�~x=LSb(�~k=L)'̂(�~k=L)





Hsb� kS(ir)'(~x+ 2L~n)kHs(([�L;L℄N)C) + 


'̂(~k)


Hs(BC) sup~k2BC ���S(~k)� Sb(~k)���(4.2)Remark 4.2 We only use this theorem with S(ir) = Sb(ir); thus, the lastterm in (4.2) is zero for our purposes . The more general version might be usefulwhen studying the e�e
ts of low pass �lters on numeri
al s
hemes. For manyyears (sin
e, e.g. [30℄), low pass �lters have been applied to numeri
al s
hemesin order to preserve numeri
al stability. This result might be useful in provingerror bounds for su
h s
hemes.Proof. The Poisson summation formula states that:Xn2Zd f(~x+ n2L) = Xk2Zd ei�~k�~x=Lf̂ (�k=L) (4.3)44



We let f̂(~k) = S(~k)'̂(~k). Then, by rearranging (4.3), we �nd:S(ir)'(~x)� X~k2ZN ei�~k�~x=LS(�~k=L)'̂(�~k=L) = � X~n2ZN~n6=0 S(ir)'(~x+ 2L~n) (4.4)Now, we observe that S(~k) and Sb(~k) are equal on B. We add and subtra
tX�~k=L2ZN ei�~k�~x=L(Sb(�~k=L)� S(�~k=L))'̂(�~k=L)to both sides of (4.4), to obtain:S(ir)'(~x)� X~k2ZN ei�~k�~x=LSb(�~k=L)'̂(�~k=L)= � X~n2ZN~n6=0 S(ir)'(~x+2L~n)+ X�~k=L2ZN ei�~k�~x=L(Sb(�~k=L)�S(�~k=L))'̂(�~k=L)We again apply (4.3), and observe that:X�~k=L2ZN ei�~k�~x=L(Sb(�~k=L)� S(�~k=L))'̂(�~k=L)= X~n2ZN(Sb(ir)� S(ir))'(~x + 2L~n)We now take norms and apply the triangle inequality. We �nd that:X~n2ZN~n6=0 kS(ir)'(~x + 2L~n)kHsb = kS(ir)'(~x+ 2L~n)kHs(([�L;L℄N)C)and that:X~n2ZN k(Sb(ir)� S(ir))'(~x + 2L~n)kHsb = k(Sb(ir)� S(ir))'(~x + 2L~n)kHs� 


'̂(~k)


Hs(BC) sup~k2BC ���S(~k)� Sb(~k)���We put everything together to obtain the result we seek. �4.1 Error and Relevan
e fun
tionalsUsing theorem 4.1 and equation (4.1), we 
an 
ompute per-framelet error boundsin L2(R). Before we 
ontinue, we de�ne a fun
tion we will use a number of times.45



De�nition 4.3 We de�ne the Hermite Error Fun
tion, for x; k real and s > 0to be: Herfs(x; k) = 2p� Z x0 ��sweiwke�w2=2���swe�iwke�w2=2� dw (4.5)Note that Herf0(x; k) = erf(x). We also de�ne Her�s(x; k) to be the inversefun
tion of Herfs( � ; k).Remark 4.4 We observe that to leading order in k (as k be
omes large), thatHerfs(x; k) = jkj2s erf(x) +O(jkj2s�1)In L2 = H0, Herfs(x; k) = erf(x).In higher Sobolev spa
es, they 
an be deter-mined by a symboli
 
omputation utility, e.g. Maple.We will use the Herfs fun
tion when we need to 
ompute the L2 norm ofderivatives of gaussians.Proposition 4.5 In Hs, we 
an 
ompute the framelet fun
tionals:Rs(~a;~b)(t)2 = R0(~a;~b)(t)2 + 2�N (��1(1 + t2=�4)1=2)2s� NXj=1 "Herfs Lint +~bjk0t+ ~ajx0�p1 + t2=�4 ;~bjk0(��1(1 + t2=�4)�1=2!�Herfs �Lint +~bjk0t+ ~ajx0�p1 + t2=�4 ;~bjk0(��1(1 + t2=�4)�1=2)!#� NYk=1k 6=j " erf  Lint +~bkk0t+ ~akx0�p1 + t2=�4 !� erf  �Lint +~bkk0t+ ~ajx0�p1 + t2=�4 !#! (4.6a)Es(~a;~b)(t)2 = E0(~a;~b)(t)2 + (Ms(~a;~b))2 � 2�N(��1(1 + t2=�4)1=2)2s� NXj=1 "Herfs Lbu� +~bjk0t+ ~ajx0�p1 + t2=�4 ;~bjk0(��1(1 + t2=�4)�1=2!�Herfs �Lbu� +~bjk0t+ ~ajx0�p1 + t2=�4 ;~bjk0(��1(1 + t2=�4)�1=2!#� NYk=1k 6=j " erf  Lbu� +~bkk0t+ ~akx0�p1 + t2=�4 !� erf  �Lbu� +~bkk0t+ ~akx0�p1 + t2=�4 !#!(4.6b)46



Proof. By theorem 4.1, to 
al
ulate Es(~a;~b)(t), we need only 
ompute the massoutside the box B = [�(Lint+w); (Lint+w)℄N . We observe that 


�(~a;~b)(~x)


Hs =1 +Ms(~a;~b), so therefore:


ei(1=2)�t�(~a;~b)(~x)


Hs(RNn[�(Lint+w);(Lint+w)℄N )= 1 +Ms(~a;~b) � 


ei(1=2)�t�(~a;~b)(~x)


Hs([�(Lint+w);(Lint+w)℄N )We need to 
ompute


�sxjei(1=2)�t�(~a;~b)(~x)


L2([�Lint;Lint℄N )for j = 1 : : :N , and also for s = 0. We 
ompute as follows:


�sxjei(1=2)�t�(~a;~b)(~x)


2L2([�Lint;Lint℄N )= Z[�Lint;Lint℄N �������sxj exp�i~bk0 � (~x�~bk0t� ~ax0)��N=4�N=2(1 + it=�2)N=2 exp �j~x�~bk0t� ~ax0j222�2(1 + it=�2) !������2 d~x= 1�N=2�Np1 + t2=�4 Z[�Lint;Lint℄N ��������sxjei~bk0�~x exp0B�� ���~x�~bk0t� ~ax0���22�2(1 + it�2) 1CA�������2 d~x(4.7)We 
hange variables to ~yj = ��1(1 + t2=�4)�1=2(~xj � ~bjk0t � ~ajx0), then�p1 + t2=�4d~yj = d~xj .(4.7) = " Y1�k�Nk 6=j Z (Lint+~bjk0t+~ajx0)=�p1+t2=�4(�Lint+~bjk0t+~ajx0)=�p1+t2=�4 e�~y2j d~yj#" Z ��1(1+t2=�4)�1=2(Lint�~bk0t�~ax0)��1(1+t2=�4)�1=2(�Lint�~bk0t�~ax0)���(��1(1 + t2=�4)�s=2)�syjei~bjk0�+1(1+t2=�4)1=2~yje�y2j=2���2 dxj# (4.8)Evaluating the integrals yields:
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(4.8) = (��1(1 + t2=�4)1=2)2s� Herfs Lint +~bjk0t+ ~ajx0�p1 + t2=�4 ;~bjk0(��1(1 + t2=�4)�1=2)!�Herfs Lint +~bjk0t+ ~ajx0�p1 + t2=�4 ;~bjk0(��1(1 + t2=�4)�1=2)!!2�N Y1�i�Ni6=j " erf  Lint +~bik0t+ ~aix0�p1 + t2=�4 !� erf  �Lint +~bik0t+ ~aix0�p1 + t2=�4 !#(4.9)We add this up for j = 1::N (sin
e we take derivatives in ea
h 
omponentof ~x) and add a term with s = 0. This yields the result we seek. A similar
omputation allows us to 
ompute Es(~a;~b)(t). �Remark 4.6 For the spe
i�
 
ases of L2 and H1, we in
lude simpler formu-las. We single out these 
ases be
ause they are suÆ
ient to en
ompass mostsimulations of pra
ti
al interest.In L2, we obtain:E0(~a;~b)(t) = 1� 2�N=2 NYj=1" erf  (L+ w) +~bjk0t+ ~ajx0�p1 + t2=�4 !�erf  �(L+ w) +~bjk0t+ ~ajx0�p1 + t2=�4 !#1=2 (4.10a)R0(~a;~b)(t)= 2�N=2 NYj=1 "erf  L+~bjk0t+ ~ajx0�p1 + t2=�4 !� erf  �L+~bjk0t+ ~ajx0�p1 + t2=�4 !#1=2(4.10b)
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In H1(R), we �nd that R1(~a;~b)(t) is given by:���R1(~a;~b)(t)���2 = ���R0(~a;~b)(t)���2+ 2�N NXk=1( (2bk0t� 2Lint � 2ax0)8p�(1 + t2)� he�(Lint+~akx0+~bkk0t)2=(1+t2) � e�(Lint�~akx0�~bkk0t)2=(1+t2)i+ 8�1 �1 + 2b2k20� �erf �Lb+ ax0 + bk0tp1 + t2 �+ erf �Lb� ax0 � bk0tp1 + t2 ��!� NYj=1;j 6=k "erf  Lint +~bjk0t+ ~ajx0�p1 + t2=�4 !� erf  �Lint +~bjk0t+ ~ajx0�p1 + t2=�4 !#)(4.11a)���E1(~a;~b)(t)���2 = ���E0(~a;~b)(t)���2 + (Ms(~a;~b))2� 2�N NXk=1( (2bk0t� 2(Lint + w)� 2ax0)8p�(1 + t2)� he�((Lint+w)+~akx0+~bkk0t)2=(1+t2) � e�((Lint+w)�~akx0�~bkk0t)2=(1+t2)i+ 8�1 �1 + 2b2k20� " erf � (Lint + w) + ax0 + bk0tp1 + t2 �+ erf � (Lint + w) � ax0 � bk0tp1 + t2 �#!� NYj=1;j 6=k " erf  (Lint + w) +~bjk0t+ ~ajx0�p1 + t2=�4 !� erf  �(Lint + w) +~bjk0t+ ~ajx0�p1 + t2=�4 !#) (4.11b)These formulas were found by a Maple 
omputation. Similar formulas notinvolving Herfs 
an be found for s � 2 by maple as well, but there is no needto list them here.4.2 Bounding BoxesWe now introdu
e the bounding box, whi
h we use to pinpoint the lo
ation ofea
h framelet after it is propagated under the free 
ow, ei(1=2)�t. Intuitively, we49



are treating ea
h framelet as a 
lassi
al parti
le whi
h has a �nite radius whi
hvaries with time.De�nition 4.7 The 
olle
tion of sets fBB(~a;~b;�)("; t)g (indexed by (~a;~b) 2 ZN�ZN, � 2 R+ , t 2 R) is a family of bounding boxes if:


ei(1=2)�t�(~a;~b)(~x)


Hs(BB(~a;~b;�)(";t)C) � " (4.12)In parti
ular, if BB(~a;~b;�)("; t) is a 
olle
tion of balls having radii whi
h do notvary with ~a, we let Ws(~b; �; t) denote the radius.We also let wsi (~b; �), wsv(~b; �) denote the initial radius and the rate of disper-sion, respe
tively, so that:Ws(~b; �; t) � wsi (~b; �) +wsv(~b; �)t (4.13a)limt!1 Ws(~b; �; t)wsv(~b; �)t = 1 (4.13b)Remark 4.8 We only prove that the numberswsi (~b; �),wsv(~b; �) satisfying (4.13)exist for s = 0; 1 (
.f. proposition 4.12). However, we believe it is intuitively
lear that they will exist for any s 2 N, and that they 
ould be found by doing
al
ulations similar to those used in the proof of proposition 4.12.We now state a pair of Lemmas whi
h demonstrate the usefulness of bound-ing boxes. This results show that to determine whether a given framelet is inBAD or NECC, it suÆ
es to tra
k it's bounding box. They are ea
h formulatedin somewhat te
hni
al terms. But the basi
 idea is this: if the distan
e betweenthe 
lassi
al 
enter of mass of the framelet and the interior box is greater thanthe spreading of the framelet, the framelet is not relevant. Similarly, if the dis-tan
e between the 
lassi
al 
enter of mass and the exterior of the 
omputationalboxx is less than the spreading of the framelet, the framelet is not bad.Lemma 4.9 Fix T > 0. Then the following two impli
ations hold:a. Suppose, for t 2 [0; T ℄, that BB(~a;~b;�)("; t) \ [�Lint; Lint℄N = ; (orBB(~a;~b;�)("; t) \ [�Lint; Lint℄N has measure 0). Then (~a;~b) 62 NECC(�; s; T ).b. Suppose, for t 2 [0; T ℄, that BB(~a;~b;�)("; t) � [�(Lint + w); (Lint + w)℄N (orBB(~a;~b;�)("; t) \ ([�(Lint +w); (Lint +w)℄N )C has measure 0). Then (~a;~b) 62BAD(�; s; T ).Proof.
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a. If BB(~a;~b;�)("; t)\ [�Lint; Lint℄N = ; (after possibly ignoring a set of measure0), then [�Lint; Lint℄N � BB(~a;~b;�)("; t)C . Therefore:Rs(~a;~b)(t) = 


ei(1=2)�t�(~a;~b)(~x)


Hs([�Lint;Lint℄N )� 


ei(1=2)�t�(~a;~b)(~x)


Hs(BB(~a;~b;�)(";t)C) � �where the last step follows by the de�nition of BB(~a;~b;�)("; t). Thus,Rs(~a;~b)(t) � � for t 2 [0; T ℄ and (~a;~b) 62 NECC(�; s; T ).b. If BB(~a;~b;�)("; t) � [�(Lint + w); (Lint + w)℄N , then ([�(Lint + w); (Lint +w)℄N )C � BB(~a;~b;�)("; t)C . By theorem 4.1, we �nd that:Es(~a;~b)(t) � 


ei(1=2)�t�(~a;~b)(~x)


Hs(([�(Lint+w);(Lint+w)℄N )C)� 


ei(1=2)�t�(~a;~b)(~x)


Hs(BB(~a;~b;�)(";t)C) � �Again, the last step follows by the de�nition of BB(~a;~b;�)("; t). Thus (~a;~b) 62BAD(�; s; T ). �Lemma 4.10 Fix T > 0. Then the following two impli
ations hold.a. Suppose, for t 2 [0; T ℄, that d(~ax0+~bk0t; [�Lint; Lint℄N ) � wsi (~b; �)+wsv(~b; �)t.Then (~a;~b) 62 NECC(�; s; T ).b. Suppose, for t 2 [0; T ℄, that j~ax0 + ~bk0tj1 � wsi (~b; �) + wsv(~b; �)t. Then(~a;~b) 62 BAD(�; s; T ).Proof.a. If d(~ax0 +~bk0t; [�Lint; Lint℄N ) � wsi (~b; �) +wsv(~b; �)t, theninteriorfBB(~a;~b;�)("; t)g \ [�Lint; Lint℄N = ;Sin
e the boundary of BB(~a;~b;�)("; t) has measure 0, we �nd that (~a;~b) satis�eslemma 4.9, part (a).b. The same idea applis, ex
ept now:interiorfBB(~a;~b;�)("; t)g \ ([�(Lint + w); (Lint + w)℄N )C = ;This, 
ombined with lemma 4.9, part (b) yields the result we seek.51



�We now 
al
ulate pre
isely a bounding box in the spa
es L2 and H1. We re-
all �rst the 
omplementary in
omplete Gamma fun
tion, and de�ne it's partialinverse.De�nition 4.11 The 
omplementary in
omplete Gamma fun
tion, �(a; x) isde�ned by: �(a; x) = Z 1x e�tta�1dt (4.14)It has the asymptoti
 behavior:�(a; x) � xa�1e�x 1Xj=0 (a� 1)(a� 2) : : : (a� j)xj (4.15)Moreover, if n � a� 1, we �nd that:�������(a; x)� xa�1e�x nXj=0 (a� 1)(a� 2) : : : (a� j)xj ������� xa�1e�x (a� 1)(a� 2) : : : (a� (n+ 1))xn+1 (4.16)We de�ne the partial inverse of the 
omplementary in
omplete Gamma fun
-tion, ��1(a; x) to be the inverse of the fun
tion R+ 3 x 7! �(a; x) for �xed a,so that �(a;��1(a; x)) = x.Note that be
ause �(a; x) is monotone de
reasing in x for a real, ��1(a; �)is monotoni
ally in
reasing as � ! 0. The rate of in
rease is slower than ��tfor any t > 0.Proposition 4.12 The following family forms a 
olle
tion of bounding boxes:BB(~a;~b;�)("; t) = BWs(~b;�;t)(~ax0 +~bk0t) (4.17)For s = 0; 1, Ws(~b; �; t) is given by:W0(~b; �; t) =p�2 + t2=�2(��1(N=2; 2�2�N=2= ��SN�1��))1=2 (4.18a)W1(~b; �; t) =p�2 + t2=�2max("��1 N=2; �2�N=22 jSN�1j (1 + j~bk0j22)!#1=2 ;���1�(N + 2)=2; �2�2�N=22 jSN�1j ��1=2) (4.18b)Here, ��SN�1�� is the angular measure of the unit ball. We also �nd that:w0i (~b; �) = �(��1(N=2; 2�2�N=2= ��SN�1��))1=252



w0v(~b; �) = ��1(��1(N=2; 2�2�N=2= ��SN�1��))1=2 (4.19a)w1i (~b; �) = �max("��1 N=2; �2�N=22 jSN�1j (1 + j~bk0j22)!#1=2 ;���1�(N + 2)=2; �2�2�N=22 jSN�1j ��1=2)w1v(~b; �) = ��1max("��1 N=2; �2�N=22 jSN�1j (1 + j~bk0j22)!#1=2 ;���1�(N + 2)=2; �2�2�N=22 jSN�1j ��1=2) (4.19b)Proof. A straightforward 
omputation, similar to the previous results. Themain di�eren
e is that we work in spheri
al, rather than re
tangular 
oordinates.To begin, 
hange variables to ~z(t) = (~x �~bk0t � ~ax0)=p�2 + t2=�2. We notethat d~x = (�2 + t2=�2)N=2d~z. In this new 
oordinate system, we �nd that:���ei(1=2)�t�(~a;~b)(~x)���2 = ��N=2(�2 + t2=�2)�N=2e�z2 (4.20)Thus:Z ���ei(1=2)�t�(~a;~b)(~x)���2 d~x= Z ������exp�i~bk0 � (~x�~bk0t� ~ax0)��N=4�N=2(1 + it=�2)N=2 exp �j~x�~bk0t� ~ax0j222�2(1 + it=�2) !������2 d~x= Z ��N=2e�j~zj22d~z (4.21)Note that the domain of integration also needs to be altered, but we sup-pressed this to simplify (4.21).Bounding Boxes in L2We swit
h to polar 
oordinates about the 
enter of mass of the framelet,~z = r~
, where 
 2 SN�1.Thus, if we integrate outside a ball of radius R around the point ~z(t), weobtain:ZSN�1 Z 1R ��N=2e�r2rN�1drd~
 = ��N=2 ��SN�1�� Z 1R2 u(N�1)=2e�u du2pu= (1=2)��N=2 ��SN�1�� Z 1R2 uN=2�1e�udu= (1=2)��N=2 ��SN�1���(N=2; R2) (4.22)53



where �(a; x) is the in
omplete Gamma fun
tion (
.f. [1℄).Therefore, if R = (��1(N=2; 2�2�N=2= ��SN�1��))1=2, then we �nd that(4.22) � �2. Ba
ktra
king, this implies that in the ~z(t) 
oordinate system,the bounding box is a ball of radius (��1(N=2; 2�2�N=2= ��SN�1��))1=2. In the~x 
oordinate system, this implies that the bounding box is a ball of radiusp�2 + t2=�2(��1(N=2; 2�2�N=2= ��SN�1��))1=2 around the point ~ax0 +~bk0t.Bounding Boxes in H1The main di�eren
e between L2 and H1 is that in H1, we need to 
ompute:Z ���ei(1=2)�t�(~a;~b)(~x)���2 + NXj=1 ����xjei(1=2)�t�(~a;~b)(~x)���2 d~xWe begin by 
omputing �xjei(1=2)�t�(~a;~b)(~x).�xj exp�i~bk0 � (~x�~bk0t� ~ax0)��N=4�N=2(1 + it=�2)N=2 exp �j~x�~bk0t� ~ax0j222�2(1 + it=�2) !=  i~bjk0 � j~xj �~bjk0t� ~ajx0j�2(1 + it=�2) !� exp�i~bk0 � (~x�~bk0t� ~ax0)��N=4�N=2(1 + it=�2)N=2 exp �j~x�~bk0t� ~ax0j222�2(1 + it=�2) ! (4.23)We take the absolute square of this, to obtain: j~bjk0j2 + j~xj �~bjk0t� ~ajx0j2�4(1 + t2=�4) + antisymmetri
 terms!� ��N=2(�2 + t2=�2)�N exp j~x�~bk0t� ~ax0j22�2(1 + t2=�4) ! (4.24)The antisymmetri
 terms are antisymmetri
 about the point ~x = ~ajx0 +~bjk0t.Thus, upon integration in ~x, these terms will vanish.
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We then add this up for j = 1 : : :N , and add a 
onstant term. This impliesthat:��N=2(�2 + t2=�2)�N exp j~x�~bk0t� ~ax0j22�2(1 + t2=�4) !+ NXj=1 j~bjk0j2 + j~xj �~bjk0t� ~ajx0j2�4(1 + t2=�4) + antisymmetri
 terms!� ��N=2(�2 + t2=�2)�N exp j~x�~bk0t� ~ax0j22�2(1 + t2=�4) != ��N=2(�2 + t2=�2)�N (1 + j~bk0j22) exp j~x�~bk0t� ~ax0j22�2(1 + t2=�4) !+ j~x�~bk0t� ~ax0j22�4(1 + t2=�4) exp j~x�~bk0t� ~ax0j22�2(1 + t2=�4) ! (4.25)Swit
hing to the ~z 
oordinate system yields:(4.25) = ��N=2(�2 + t2=�2)�N (1 + j~bk0j22)e�j~zj22+ ��N=2(�2 + t2=�2)�N��2j~zj22e�j~zj22 (4.26)Swit
hing again to polar 
oordinates and integrating out the angular part yields:Z 1R (4.26)d~z= ��N=2 ��SN�1�� �(1 + j~bk0j22) Z 1R e�r2rN�1dr + ��2 Z 1R r2e�r2rN�1dr�= (1=2)��N=2 ��SN�1�� �(1 + j~bk0j22)�(N=2; R2) + ��2�(N=2 + 1; R2)� (4.27)If R2 satis�esR2 � max(��1 N=2; �2�N=22 jSN�1j (1 + j~bk0j22)! ;��1�(N + 2)=2; �2�2�N=22 jSN�1j �) (4.28)then: (1=2)��N=2 ��SN�1�� (1 + j~bk0j22)�(N=2; R2) � �2=2(1=2)��N=2 ��SN�1���(N=2 + 1; R2)��2 � �2=2and thus (4.27) � �2. 55



Swit
hing from polar 
oordinates to ~z 
oordinates implies that the boundingbox 
onsists of BR(0)C with R satisfying (4.28). Changing 
oordinates on
emore to ~x yields the result we seek.To obtain (4.19), we simply observe that p�2 + t2=�2 � � + t=� for t > 0,and apply this to (4.18). �Similar 
omputations 
an be done in Hs for s > 1, but we negle
t to dothem here.We now state one more result, whi
h we will use later.Proposition 4.13 Let s = 0; 1. Then:sup~b2LF(K)W�(~b; 0; t) =p�2 + t2=�2(��1(N=2; 2�2�N=2= ��SN�1��))1=2 (4.29a)sup~b2LF(K)W�(~b; 1; t) =p�2 + t2=�2�max(���1�N=2; �2�N=22 jSN�1j (1 +NK2)��1=2 ;���1�(N + 2)=2; �2�2�N=22 jSN�1j ��1=2) (4.29b)Note the result is independent of K for s = 0.Proof. If s = 0, W�(~b; 0; t) does not vary with ~b. This proves (4.29a).We now prove (4.29b). This follows simply be
ause if t < t0, ��1(a; t) ���1(a; t0) for any a 2 R+ . Applying this to (4.18b), we �nd that the sup on theleft side of (4.29b) is maximized when j~bk0j2 is maximized. This o

urs when~bjk0 = bK
. Thus, j~bk0j2 � pNK, and we obtain the bound we seek. �5 Algorithm, Assumptions, and error boundsIn this se
tion, we prove the a

ura
y of our method, subje
t to some assump-tions on the equation.We do not prove a 
omplete error bound. Let  (~x; t) be the solution to (1.1)on RN and let 	(~x; t) be the approximate solution generated by our algorithm(de�ned on [�L
omp; L
omp℄N ).To obtain 
omplete 
ontrol on the error (letting 	d(~x; t) be the dis
retizedversion of 	(~x; t)), we need to 
ontrol:k (~x; t)�	d(~x; t)kHsb � k (~x; t)�	(~x; t)kHsb + k	(~x; t)�	d(~x; t)kHsbWe only prove a bound on the �rst term, k (~x; t)�  b(~x; t)kHsb .56



Bounds on the se
ond term depend 
ru
ially on many details of the imple-mentation. That is, they will vary depending on whether one 
hooses a �niteelement, �nite di�eren
e or spe
tral method. They will vary with the timestep,spa
e dis
retization and also 
oating point (or other roundo�) error. We assumethis is known and is also suÆ
iently small as to be negligable.Our goal, is to redu
e the error 
aused by k (~x; t)�	(~x; t)kHsb to the sameorder of magnitude as the dis
retization error, k	(~x; t)�	d(~x; t)kHsb .5.1 AssumptionsLet us assume we wish to solve (1.1) on a time interval [0; Tmax℄ with error "measured in a Sobolev spa
eHs([�Lint; Lint℄N ). We now state our assumptions.Assumption 1 We assume the solution to (1:1) exists and is unique on RNfor t 2 [0; Tmax℄. We denote by U(t) the propagator on RN .In parti
ular, we assume that there exists a fun
tion L(t) and a large numberM su
h that for all  0(x) with k 0(x)kHs �M :kU(t) 0(x) � U(t) 1(x)kL(Hs;Hs) � L(t) k 0(x)�  1(x)kHs (5.1)Assumption 2 There exists a maximal momentum kmax = kmax( 0) in thefollowing sense. For all t 2 [0; Tmax℄, Æmax > 0, we 
an 
ompute a kmax(Æmax)su
h that: supt2[0;Tmax℄ 

PHF(kmax) (~x; t)

 < Æmax (5.2)Assumption 3 The nonlinearity is Lips
hitz in Hs. That is, there exists a
onstant G su
h that for u; v 2 Hs:kg(t; ~x; u)u� g(t; ~x; v)vkHs � G ku� vkHs (5.3)Although many 
ommon nonlinearities are not Lips
hitz, they are typi
allylo
ally Lips
hitz, 
.f. [8, se
tion 3.2℄. Therefore most nonlinearities of interest
an be modi�ed appropriately to satisfy these assumptions.Assumption 4 The nonlinearity g(t; ~x;  ) is well lo
alized in phase spa
e.That is, for any ÆNL > 0, there exist 
onstants LNL = LNL(ÆNL) and kmax;NL =kmax;NL(ÆNL) (uniform on t 2 [0; T ℄) su
h that:kPNLCg(t; ~x;  (~x; t)) (~x; t)kHs < ÆNL k (~x; t)kHs (5.4a)NL = f(~a;~b) 2 ZN � ZN : j~aj1 � LNL(ÆNL) and ���~b���1 � kmax;NL(ÆNL)g (5.4b)
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Assumption 5 We assume that for ea
h ÆF > 0, we 
an �nd an � = �(ÆF),LF = LF (ÆF), so that the following impli
ation holds:Let F � ZN �ZN be a set for whi
h,8(~a;~b) 2 F supt2[0;Tmax℄ 


ei(1=2)�t�(~a;~b)(~t)


Hs(�[LF ;LF ℄N ) < ":Then PF propagates essentially freely, in the following sense:supt2[0;Tmax℄ 


U(tj 0)PF (x) � ei(1=2)�tPF (x)


Hsb � ÆF kPF (x)kHsb (5.5a)supt2[0;Tmax℄ kU(tj 0)PFC 0(x)� U(tjPFC 0)PFC 0(x)kHsb� Lext(t) kPF (x)kHsb (5.5b)The fun
tion Lext(t) must satisfy Lext(0) = 0 and supt2[0;Tmax℄ Lext(t) = ÆF.Remark 5.1 This proposition says that outside of a 
ertain box in phase spa
e,the problem is essentially linear, and therefore the free propagator is suÆ
ientlya

urate. This assumption will be the most diÆ
ult assumption to verify in thenonlinear 
ase.We note that we 
an, in prin
iple, use L(t) as a bound on Lext(t). However,this is far from optimal. Lext(t) should be small for relatively long times, whileL(t) may not be. In the linear 
ase, as an example, measuring error in H0 = L2,L(t) = 1 and Lext(t) = 0 (identi
ally).Assumption 6 We assume that mass does not pile up on tangential, slowwaves or returning waves in the following sense. We assume there exists akmin = kmin(Æmin), Lmin = Lmin(Æmin) su
h that:supt2[0;Tmax℄ kPS (~x; t)kHsb < Æmin (5.6)with S a set satisfying:8(~a;~b) 2 S; !(9j; j~ajx0j � Lmin and~bjk0(~aj= j~aj j) > kmin)and j~ax0j1 � Lmin (5.7)Essentially, what assumption 6 is saying is that most of the waves outsidethe box [�Lmin; Lmin℄N are moving faster than some small velo
ity kmin, andare moving outward (away from [�Lmin; Lmin℄N ).
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5.1.1 Remarks on the assumptionsIt is simple to observe that Gronwall's lemma 
ombined with assumption 3 im-plies assumption 1 with L(t) =GeGt. However, if better estimates are available,they should be used, sin
e the error estimates we give will be given in terms ofL(t).Although we state our assumptions in terms of WFT 
oeÆ
ients, they area
tually just rephrased versions of more standard assumptions. We provide heresome suÆ
ient 
onditions for verifying the more te
hni
al assumptions.Proposition 5.2 (SuÆ
ient 
onditions for Assumption 2) Suppose thatthere exists a maximal momentum kmax = kmax( 0) in the following sense. Forall t 2 [0; Tmax℄, Æmax > 0, we 
an 
ompute a kmax(Æmax) su
h that:


P 0[�K0;K0℄N ;0(k) (~x; t)


Hs < Æmax=(2Hs+(~g(~x))H�s+ (e�x2=�2 )) (5.8)with K 0 = kmax � ks(K). Then assumption 2 holds.Proof. Merely apply theorem 3.16. �Proposition 5.3 (SuÆ
ient 
onditions for Assumption 4) Suppose thattThe nonlinearity g(t; ~x;  ) is well lo
alized in phase spa
e in the traditionalsense. That is, for any ÆNL > 0, there exist 
onstants L0NL = L0NL(ÆNL) andk0max;NL = k0max;NL(ÆNL) (uniform on t 2 [0; T ℄) su
h that:


P s[�k0max;NL;k0max;NL℄N ;k0(~x)g(t; ~x;  (~x; t)) (~x; t)


Hs< ÆNL k (~x; t)kHs(4Hs+(~g(~x))H�s+ (e�x2=�2)) (5.9a)


P s[�L0NL;L0NL℄N ;x0(~x)g(t; ~x;  (~x; t)) (~x; t)


Hs< ÆNL k (~x; t)kHs(4Hs+(~g(~x))H�s+ (e�x2=�2)) (5.9b)The 
onstants L0NL and k0max;NL are related to those in assumption 4 by therelationsL0NL = LNL �Xs�(ÆNL=4Hs+(~g(~x))H�s+ (e�x2=�2 ); kmax;NL; LNL)(5.10)k0max;NL = kmax;NL �Ks�(ÆNL=4Hs+(~g(~x))H�s+ (e�x2=�2); kmax;NL) (5.11)Then assumption 4 holds.Proof. Merely apply theorem 3.19. �59



We now dis
uss assumption 5. This assumption says that framelets whi
hare propagated out of the box under the free 
ow are also propagated outwardsunder the full 
ow. We show that this 
an be veri�ed by an Enss type 
ondition6.Proposition 5.4 (SuÆ
ient 
ondition for Assumption 5) Let F be asin assumption 5. Assume the right side of (5.12) is bounded, for all  (x) withk (x)kHs �M (the same M as in assumption 1).Assume further that g(t; ~x;  (~x; t)) (~x; t) is a real valued potential (possibletime dependent), that isg(t; ~x;  (~x; t)) (~x; t) = V (~x; t) (~x; t):Then Lext(t) = 0 and ÆF is bounded:ÆF � Z Tmax0 


ei(1=2)�(t�t0)V (~x; t)U(t0)PF (x)


Hsb dt0 (5.12)Supposing additionally that ÆF 
an be made arbitrarily small by in
reasing LF ,then assumption 5 holds.Proof. The fa
t that Lext(t) = 0 follows be
ause the propagators U(t) andUb(t) do not vary depending on the initial 
ondition. That is to say:U(tj 0) = U(tjPFC ) = U(t)Now let us 
onstru
t the bound on ÆF. Let u(x; 0) = PF (~x; t). Let u(~x; t)solve: i�tu(~x; t) = �(1=2)�u(~x; t) + g(t; ~x;U(s) (x))u(x; s)Then setting up Duhamel's equation, we �nd:u(~x; t) = ei(1=2)�tu(x; 0) + i Z t0 Uf(t� s)g(t; ~x;U(s) (x))u(x; s)Subtra
ting ei(1=2)�tu(x; 0) from both sides and taking norms proves (5.12). �Note that assumption 5 is stri
tly weaker than the 
onditions given in prop-sition 5.4. The reason for his is as follows. Proposition 5.4 requires that thefree 
ow and the full 
ow are almost the same on framelets whi
h don't intera
twith the nonlinearity. Assumption 5 requires only that they are equal inside thebox. Assumption 5 will be satis�ed even if the free 
ow and full 
ow divergefrom ea
h other 
ompletely, provided the divergen
e remains outside the box.Assumption 6 is two statements. First, it assumes that the mass of the so-lution below some velo
ity kmin is small. Se
ond, it assumes that the solutionstays on the \propagation set", that is the solution remains restri
ted to tra-je
tories where ~x k ~k. This assumption is really just a rephrasing of standardpropagation estimates into the language of framelets.A stronger assumption than assumption 6 would be the following:6The Enss 
ondition is a 
ommon method used to prove asymptoti
 
ompleteness and othersu
h results in s
attering theory. See, e.g. 
hapter 5 (in parti
ular 5.3) from [9℄ for details onthis method. 60



Proposition 5.5 (SuÆ
ient 
ondition for Assumption 6) Let PS(L; kmin)(the propagation set) be de�ned by:PS(L; kmin) = f(~a;~b) 2 ZN �ZN : j~bk0j2 > 2pNkmin;j~bk0 � (j~aj�12 ~a) �~bk0j2 � j~bk0j2=(4pN)gSuppose that for any Æmin, 9kmin; Lmin so that if S is a set satisfyingS \ PS(Lmin; kmin) = ; (5.13a)S � f(~a;~b) 2 ZN �ZN : j~ax0j2 � Lming; (5.13b)then: supt2[0;Tmax℄ kPS (~x; t)kHsb < Æmin (5.14)Then assumption 6 holds.Proof. We must show that any set S satisfying (5.7) also satis�es (5.13). Thiswill show that the 
onditions of proposition 5.5 imply assumption 6.Toward that end, let S be su
h a set. Sin
e for any (~a;~b) 2 S, j~ax0j1 � Lmin,we �nd that (5.13b) is satis�ed. We must now show that:8(~a;~b) 2 S; !(9j; j~ajx0j � Lmin and~bjk0(~aj= j~aj j) > kmin)Equivalently: 8(~a;~b) 2 S;8j; j~ajx0j � Lmin or~bjk0(~aj= j~aj j) � kminNow �x (~a;~b) 2 S. We must show that (~a;~b) 62 PS(Lmin; kmin). We pro
eed by
ontradi
tion.Suppose (~a;~b) 2 PS(Lmin; kmin) \ S. De�ne ~z = j~aj�12 ~a �~bk0. Then:j~zj2 � j~bk0j2 � j~bk0 � ~zj2 � j~bk0j2 � j~bk0j2=(4pN) (5.15)Sin
e ~z is a ve
tor in the dire
tion of ~a, we �nd that 9j 2 1 : : : N so thatj~zj j � j~zj2=pN , and in addition, for this same j, j~ajx0j � j~ax0j2=pN . Ifj is 
hosen to be the 
omponent for whi
h j~aj j is largest, then in additionj~ajx0j � Lmin.This implies that: j~zj j � j~bk0j2=pN � j~bk0j2=(4pN)j~ajx0j � LminIn addition, the signs of ~aj and ~zj are the same. Now, observe that:j~bjk0 � ~zj j � j~bk0 � ~zj2 � j~bk0j2=(4pN)61



so:j~bjk0j � j~zj j � j~bk0j2=(4pN) � j~bk0j2=pN � 2[j~bk0j2=(4pN)℄� j~bk0j2=(2pN) > kminBut this 
ontradi
ts (5.7), and also (5.15). Therefore there does not exist (~a;~b) 2PS(Lmin; kmin) \ S, and we are done. �Remark 5.6 Without using framelets, statements su
h as those assumed inproposition 5.5 are 
ommon if we ignore low frequen
ies. The following estimateholds when g(t; ~x;  (x; t)) (x; t) = 0 (in whi
h 
ase C = k~x (x; t)kL2), and alsofor the 
ase when g(t; ~x;  (~x; t)) (~x; t) = j (~x; t)j�  (~x; t) (for 
ertain �7, [8,proposition 7.3.4℄): supt2[0;1℄ k(~x + itr) (~x; t)kL2 � C (5.16)We now make a heuristi
 argument suggesting that this estimate implies the
onditions of proposition 5.5. Suppose we have, for some large time, a gaussianat a position ~ax0 (far from the origin, say L units) where ���~ax0 �~bk0t��� � L=2(where L=2 is 
hosen simply for 
on
reteness). Then supposing j~bk0j2 � 0:(~x+ itr)�(~a;~b)(~x) � (~ax0 � it~bk0)�(~a;~b)(~x)But then: 


(~x+ itr)�(~a;~b)(~x)


L2 � (L=2)Therefore, if  (x; t) =  (~a;~b)(t)�(~a;~b)(~x) + rest, then either ��� (~a;~b)��� � 2C=L orelse  (x; t) will violate (5.16).5.2 The AlgorithmWe now des
ribe how to 
onstru
t the approximate solution, 	(~x; t). First, weassume that the various parameters we have des
ribed satisfy the 
onstraintsgiven in se
tion 5.2.1.The pre
ise mathemati
al de�nition of 	(~x; t) is as follows:	(x; nTstep + t0) = Ub(t0)PNECC\BB	(~x; nTstep) (5.17a)	(x; (n+ 1)Tstep) = Ub(Tstep)PNECC\BB	(~x; nTstep) (5.17b)	(x; 0) = PNECC\BB (~x; 0) (5.17
)Here, 0 < t0 � Tstep and n 2 N. Note that 	(~x; t) is not 
ontinuous in t att = nTstep, due to the �ltering.The 
riti
ally important part of the algorithm is satisfying the 
onstraintswe have des
ribed. This ensures that the framelets whi
h we delete from thesolution are, in fa
t, outgoing framelets.7In parti
ular � � (2�N +pN2 + 12N + 4)=(2N).62



5.2.1 Choosing the ParametersThere are a number of 
onstraitns on the parameters whi
h need to be satis�edin order for the algorithm to work. One 
onstraint demands that outside theinterior box, waves must move freely. That is:Lint � LF (5.18)This result is needed to prove Theorem 5.10.Theorem 5.12 imposes a number of 
onditions on the parameters, nearly allof whi
h are there in order to make sure 
ertain sets of framelets stay inside thebox for time Tstep.8~b 2 HF(kmin); j~bk0j1 � wsv(~b; �) (5.19a)w � 3 sup~b2LF(kmax)wsi (~b; �) (5.19b)Tstep � w3(kmax +wsv(~b; �)) (5.19
)Lint � Lmin (5.19d)Tstep � infj~bk0j2�kmax;NL Lint + w=2� LNLkmax;NL +wsv(~b; �) (5.19e)LNL � Lint (5.19f)supj~bk0j2�kmax;NLwsi (~b; �) � w=2 (5.19g)Lint + w=3 � Lmin (5.19h)This list of 
onstraints is de
eptively short. In addition to these 
onstraints,one also needs to determine the relation between, e.g. Æmin and Lmin, andthe various other parameters des
ribed in the assumptions. These are modeldependent, and 
an not be treated at this level of generality.5.3 Statement and Proof of the Error BoundWe make some demands on the parameters (Lint; Tstep, et
), whi
h are summa-rized in se
tion 5.2.1.We will �rst 
ompute the error between NTstep and (N + 1)Tstep.De�nition 5.7 We de�ne the auxiliary fun
tions:bE(t) = A�1F 0� X(~a;~b)2BADC \NECC\BB ���Es(~a;~b)(t)���21A1=2 (5.20a)bR(t) = A�1F 0� X(~a;~b)2NECCC \BB ���Es(~a;~b)(t)���21A1=2 (5.20b)63



bQ(t) = tA�1F 0� X(~a;~b)2NL ���Es(~a;~b)(t)���21A1=2 (5.20
)We now state a simple upper bound on bE(t) and bR(t). In pra
ti
e, it shouldnot be used. bE(t) and bR(t) are �nite sums of known quantities, and thus theyshould be 
omputed pre
isely. But it is 
onvenient to demonstrate the order ofmagnitude of bE(t) and bR(t).Proposition 5.8 The following inequalities hold for 0 � t � Tstep.supt2[0;Tstep℄ bE(t)� A�1F (2LWFT=x0)N=2(2kmax=k0)N=2 sup(~a;~b)2BADC \NECC\BB ���Es(~a;~b)(t)���� �A�1F (2LWFT=x0)N=2(2kmax=k0)N=2 (5.21)supt2[0;Tmax℄ bR(t)� A�1F (2LWFT=x0)N=2(2kmax=k0)N=2 sup(~a;~b)2NECCC \BB ���Es(~a;~b)(t)���� �A�1F (2LWFT=x0)N=2(2kmax=k0)N=2 (5.22)supt2[0;Tmax℄ bQ(t)� A�1F (2LNL=x0)N=2(2kmax;NL=k0)N=2 sup(~a;~b)2NECCC \BB ���Es(~a;~b)(t)���� �A�1F (2LNL=x0)N=2(2kmax;NL=k0)N=2 (5.23)Proof. A simple 
al
ulation. Just 
ount the number of elements in the sums.Then observe that for t 2 [0; Tstep℄, sup(~a;~b)2BADC \NECC\BB ���Es(~a;~b)(t)��� � � bythe de�nition of BAD = BAD(�; s; Tstep) (and similarly for the other equation).The bound for bQ(t) is proven by similarly, ex
ept by 
ounting the number ofelements in LNL (a region in phase spa
e of width LNL in position and kmax;NLin momentum, see assumption 4). �Remark 5.9 In pra
ti
e, proposition 5.8 should not be used. Rather, one 
an
al
ulate bE(t), bR(t) and bQ(t) pre
isely. This should be done in pra
ti
e to
hoose the parameters. However, we provide these 
rude upper bounds in orderto demonstrate the validity of the method, and to provide rough guidelines asto the 
hoi
es of the parameters. 64



5.3.1 Lo
al (1 step) ErrorWe �rst 
ompute the error we make over short time intervals (time [0; Tstep℄).We will later string together a number of these short time errors, and 
al
ulatethe global in time error.Suppose we are given an initial 
ondition f(x), and an initial error e(x) (theerror a

umulated from previous timesteps).We want to 
ompute a bound on:supt2[0;Tstep℄ kU(t)f(x) � Ub(t)PNECC\BB[f(x) + e(x)℄kHsb (5.24)We �rst add and subtra
t U(tjf(x))PNECCCf(x) under the norm, and apply thetriangle inequality. Thus, we �nd:kU(t)f(x) � Ub(t)PNECC\BB[f(x) + e(x)℄kHsb� kU(tjf)f(x)� U(tjf)PNECCf(x)kHsb+ kU(tjf)PNECCf(x)� Ub(t)PNECC\BB[f(x) + e(x)℄kHsb (5.25)We state our �rst result.Theorem 5.10 (Outgoing waves) Suppose the following 
onstraints are sat-is�ed: LF � Lint (5.26a)�(ÆF) � � (5.26b)with �(ÆF) de�ned as in assumption 5. Then the following holds:kU(tjf)f(x) � U(tjf)PNECCf(x)kHsb = kU(tjf(x))PNECCCf(x)kHsb� ÆF kPNECCCf(x)kHsb + bR(t) kf(x)kL2+Hs+(~g(~x))H�s+ (e�x2=�2)� hbE(Tstep) kf(x) + e(x)kL2 +( bQ(Tstep)G+ tÆNL) supt02[0;t℄ kU(t0)(f(x) + e(x))kHs + �i+ Æmax� OUT(t) (5.27)This is proved in se
tion 7.1 on page 86. Applying this result, yields:(5.25) � OUT(t)+ kU(tjf)PNECCf(x)� Ub(t)PNECC\BB[f(x) + e(x)℄kHsb (5.28)We now add and subtra
t U(tjPNECCf)PNECCf(x) inside the norm, to ob-tain:(5.28) � OUT(t)+ kU(tjf)PNECCf(x)� U(tjPNECCf)PNECCf(x)kHsb+ kU(tjPNECCf)PNECCf(x)� Ub(t)PNECC\BB[f(x) + e(x)℄kHsb (5.29)65



Observing that kU(tjf)PNECCf(x)� U(tjPNECCf)PNECCf(x)kHsb is boundedby Lext(t) kPNECCf(x)kHsb (by assumption 5), we �nd:(5.29) � OUT(t) + Lext(t) kPNECCf(x)kHsb+ kU(tjPNECCf)PNECCf(x)� Ub(t)PNECC\BB[f(x) + e(x)℄kHsb (5.30)We add and subtra
t U(t)PNECC\BBf(x) next, yielding:(5.30) � OUT(t) + Lext(t) kPNECCf(x)kHsb+ kU(tjPNECCf)PNECCf(x)� U(tjPNECC\BB)PNECC\BBf(x)kHsb+ kU(tjPNECC\BBf)PNECC\BBf(x)� Ub(t)PNECC\BB[f(x) + e(x)℄kHsb(5.31)We state another result:Theorem 5.11 (Residual Waves) The residual waves satisfy the followingestimate:kU(tjPNECCf)PNECCf(x)� U(tjPNECC\BB)PNECC\BBf(x)kHsb� L(t) Hs+(~g(~x))H�s+ (e�x2=�2)hbE(Tstep) kf(x) + e(x)kL2+ ( bQ(Tstep)G+ tÆNL) supt02[0;t℄ kU(t0)(f(x) + e(x))kHs + �i+ Æmin! � RES(t) (5.32)This is proved in se
tion 7.2 on page 87.Applying this yields:(5.31) � OUT(t) + Lext(t) kPNECCf(x)kHsb+RES(t)+ kU(t)PNECC\BBf(x)� Ub(t)PNECC\BB[f(x) + e(x)℄kHsb (5.33)We now add and subtra
t U(tjPNECC\BB(f + e))PNECC\BB(f(x) + e(x)),and bound this by L(t) ke(x)kHsb :(5.33) � OUT(t) + Lext(t) kPNECCf(x)kHsb+RES(t)+ ke(x)kHsb L(t)+ kU(t)PNECC\BB[f(x) + e(x)℄� Ub(t)PNECC\BB[f(x) + e(x)℄kHsb (5.34)Finally, we bound the last term as follows.66



Theorem 5.12 (Lingering Waves) Let the nonlinearity satisfy assumption3. Let the following 
onditions on the parameters be satis�ed:8~b 2 HF(kmin); j~bk0j1 � wsv(~b; �) (5.35a)w � 3 sup~b2LF(kmax)wsi (~b; �) (5.35b)Tstep � w3(kmax +wsv(~b; �)) (5.35
)Lint � Lmin (5.35d)Tstep � infj~bk0j2�kmax;NL Lint + w=2� LNLkmax;NL +wsv(~b; �) (5.35e)LNL � Lint (5.35f)supj~bk0j2�kmax;NLwsi (~b; �) � w=2 (5.35g)Lint + w=3 � Lmin (5.35h)Let  (x; t = 0) = PNECC\BB 0(x). Then the following estimate holds:k(U(t) � Ub(t))PNECC\BB 0(x)kHsb� (E(t) +Q(t)) +GeGt ? (E(t) +Q(t)) (5.36a)k(U(t) � Ub(t))PNECC\BB 0(x)kHsb� (E(t) +Qb(t)) +GeGt ? (E(t) +Qb(t)) (5.36b)The free error and intera
tion error are given by:E(t) � bE(t) k kL2 + 2Æmin (5.37a)Q(t) � ( bQ(t)G+ tÆNL) k kHs (5.37b)A similar estimate holds for Qb(t) but with  (~x; t) repla
ed by  b(~x; t). Thefun
tions bE(t) and bQ(t) are de�ned in 5.7 on page 63.This result is proved in se
tion 6. Applying this result shows that:(5.34) � OUT(t) + Lext(t) kPNECCf(x)kHsb +RES(t)+ ke(x)kHsb L(t)+ (1 +GeGt?)(bE(t) k kL2 + 2Æmin + ( bQ(t)G+ tÆNL) k kHs) (5.38)Remark 5.13 This analysis 
an be extended to en
ompass dis
retization er-rors. Assuming one has 
ontrol of dis
retization errors on the box, one 
ansimply in
lude these errors in e(x). We do not do this here, sin
e it is wellbeyond the s
ope of this paper. 67



5.3.2 Global ErrorGiven the above result on the one timestep error, we now 
ompute the global-in-time error.At time t = 0, we let f(x) =  0(x) and e(x) = 0. At time nTstep (n =1; : : : ; N), we let f(x) = 	(x; nTstep) ande(x) = U(Tstep)PNECC\BB	(x; (n�1)Tstep)�Ub(Tstep)PNECC\BB	(x; (n�1)Tstep)Putting this all together, for n = 0 : : :M , with M = Tmax=Tstep, we �nd:kU(MTstep) 0(x)�	(x;MTstep)kHsb� MXn=0 OUT((M � n)Tstep) + Lext((M � n)Tstep) kPNECCf(x)kHsb+ L((M � n)Tstep) RES(nTstep) + L((M � n)Tstep) BoxError(nTstep)! (5.39)The term BoxError(nTstep) is bounded by (5.36) with  0(x) = 	(x; nTstep).Remark 5.14 This result is essentially what one would expe
t. The termRES(nTstep) represents the main sour
e of error. This is the error 
aused bywaves we 
annot �lter with our algorithm. The error bound says that at tinenTstep, we make an error of size RES(nTstep). After that, the error grows at arate L(t� nTstep).BoxError(nTstep) represents the error due to �ltering at time nTstep, andthis also grows at the rate L(t� nTstep) after that.We now wish to make sense of (5.39). We �rst substitute everything in orderto get a 
omplete pi
ture. We will then rearrange and simplify signi�
antly.
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kU(NTstep) 0(x) �	(x;NTstep)kHsb� MXn=0 ÆF kPNECCC	(x; nTstep)kHsb + bR((M � n)Tstep) k	(x; nTstep)kL2+Hs+(~g(~x))H�s+ (e�x2=�2)"bE(Tstep) k	(x; (n� 1)Tstep)kL2+ ( bQ(Tstep) + tÆNL) supt02[0;t℄ kU(t0)	(x; (n� 1)Tstep)kHs + �#+ Æmax+ Lext((M � n)Tstep) kPNECC	(x; nTstep)kHsL((M � n)Tstep) Hs+(~g(~x))H�s+ (e�x2=�2)�bE(Tstep) k	(x; (n� 1)Tstep)kL2+ ( bQ(Tstep) + tÆNL) supt02[0;t℄ kU(t0)	(x; (n� 1)Tstep)kHs + ��+ Æmin!L((M � n)Tstep)(1 + TstepGeGTstep)hbE(Tstep) k	(x; nTstep)kL2 + Æmin+ ( bQ(Tstep) + TstepÆNL) supt2[0;Tstep℄ k	(x; nTstep + t)kL2 i (5.40)We now take this and 
olle
t all the terms 
ontaininghbE(Tstep) k	(x; nTstep)kL2 + bQ(Tstep) supt2[0;Tstep℄ k	(x; nTstep + t)kL2 ias well as Æmin, ÆF, Lext(t), et
. We also repla
e the terms kPF	(~x; t)kL2 bypBF =AF k	(~x; t)kL2 and kPF	(~x; t)kHs byHs+(~g(~x))H�s+ (e�x2=�2) k	(~x; t)kHs .We thus arrive at our main theorem.Theorem 5.15 (Global Error Bound) We have the following bound on the
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error:supt2[0;Tmax℄ kU(t) 0(x) �	(x; t)kHsb � (5.40) � supt2[0;Tmax℄ k	(~x; t)kHs "bE(Tstep) h(1 + TstepGeGTstep) + 2Hs+(~g(~x))H�s+ (e�x2=�2)i MXn=0L((M � n)Tstep)!+ MXn=0 bR((M � n)Tstep)!+ bQ(Tstep)"(2 + TstepGeGTstep) MXn=0L((M � n)Tstep)!+ (Tmax=Tstep)Hs+(~g(~x))H�s+ (e�x2=�2)#+ ÆNLTstep MXn=0 bR((M � n)Tstep)! (2 + TstepGeGTstep)+ ÆF(Tmax=Tstep) + MXn=0Lext((M � n)Tstep)!#+ Æmin(2 + TstepGeGTstep) MXn=0L((M � n)Tstep)!+ Æmax(Tmax=Tstep)(5.41)Although the error bound looks 
ompli
ated, ea
h term has a simple mean-ing.The term ÆNL(: : :) is similar. This term measures how mu
h of the nonlinear-ity a
tually outside the 
omputational domain. In order to a

urately 
omputethe e�e
t of the nonlinearity, it must be 
ontained inside the 
omputationaldomain. Thus, whatever mass exists outside the 
omputational region (namely[�LNL; LNL℄N � [�kmax;NL; kmax;NL℄N in phase spa
e) will also 
ause an error.The term ÆF(Tmax=Tstep) measures how mu
h of the solution whi
h wethought was outgoing a
tually wasn't. That is, we examined ea
h gaussian,and determined that under the free 
ow, that parti
ular gaussian was leaviningthe 
omputational domain. But although the 
ow is nearly free on the bound-ary, it is possible that some small fra
tion of the waves we believe are outgoingare returning. That is measured by ÆF.The next pie
e,  MXn=0Lext((M � n)Tstep)! ;70



is a little bit tri
kier to des
ribe. This part of the error measures how thenonlinearity 
hanges in response to the small errors made when we �lter o� theoutgoing waves. In the event the \nonlinearity" is linear, this term is identi
allyzero. But in other 
ases, it may grow rather large with t.It is best illustrated by an example. Consider the NLS:i�t (x; t) = (�(1=2)�b + V (x)) (x; t) + f(j (x; t)j2) (x; t)with V (x) an even, real valued potential having two (nonlinear) bound states,and (j (x; t)j) a monotone real-positive fun
tion satisfying 
ertain other 
on-straints (see [39℄). It is known that this system exhibits ground state sele
-tion [39℄. That is, if  (x; 0) is an odd fun
tion, then  (x; t) remains situ-ated on the odd (ex
ited) bound state for all time. If, however, we repla
e (x; 0) = odd(x) + � even(x), then half the mass of  (x; t) will radiate o� toin�nity, while the other half will be trapped in the ground state.The fun
tion Lext(t) measures the 
apa
ity of the system to behave nonlin-early in response to perturbations, in a manner like that whi
h we just des
ribed.The last term, Æmax(Tmax=Tstep), is essentially the amount of mass at fre-quen
ies higher than kmax. Although kmax (as used in assumption 2) is slightlydi�erent from the usual de�nition of kmax (namely kmax = �=�x, with �x thelatti
e spa
ing in position on the grid), it is a very similar obje
t, namely thelargest frequen
y we 
an resolve.Finally, we 
ome to the term 
ontaining kmin(: : :). This term 
ontains waveswith frequen
y suÆ
iently low so that it is very diÆ
ult to tell if they areentering the box or leaving. This is basi
ally due to the fa
t that for fun
tionslo
alized in the �lter region, the Heisenberg un
ertainty prin
iple says that we
annot determine whether low frequen
y waves are in
oming or outgoing. Inmost of our experiments, this was the dominant term in the error.We now prove a 
orollary to theorem 5.15, whi
h states that under the as-sumptions given in se
tion 5.1, we 
an make the error due to boundary re
e
tionsvanish by making 
ertain expli
it 
hoi
es of the parameters.Corollary 5.16 (Convergen
e to Zero) We 
an 
hoose the parametersTstep, Lint and w in su
h a way that for any � > 0 and Tmax <1,supt2[0;Tmax℄ kU(t) 0(x) �	(x; t)kHsb � � (5.42)The proof is deferred to the end of this se
tion, after we have dis
ussed thesour
es of the error.Proof of Corollary 5.16. We show here how we 
an make the error bound(5.41) arbitrarily small.We begin by 
onsidering the terms Æmin, Æmax ÆNL, ÆF and Lext(t) found in thelast four lines of (5.41). A

ording to assumptions 6, 2, 4 and 5 (respe
tively),we 
an 
hoose the parameters kmin, kmax, LNL, kmax;NL and LF in su
h a way71



that Æmin, Æmax ÆNL, ÆF and Lext(t)8 are all arbitrarily small. Therefore, it ispossible to 
hoose these parameters in su
h a way that:ÆNL supt2[0;Tmax℄ k	(~x; t)kHs Tstep MXn=0 bR((M � n)Tstep)! (2 + TstepGeGTstep)+ ÆF supt2[0;Tmax℄ k	(~x; t)kHs (Tmax=Tstep)+ MXn=0Lext((M � n)Tstep)! supt2[0;Tmax℄ k	(~x; t)kHs+ Æmin(2 + TstepGeGTstep) MXn=0L((M � n)Tstep)!+ Æmax(Tmax=Tstep)� �=2 (5.43)The exa
t manner in whi
h this will be done is highly model dependent. Lateron (in remark 5.17) we will dis
uss brie
y the obvious way to make this small,and why this may not be the best way to satisfy (5.43).We now take kmin, kmax, LNL, kmax;NL and LF to be �xed quantities.On
e these terms are 
hosen, we must 
hoose Lint,w satisfying the various
onstraints. After this is done, Proposition 5.8 provides a bound on bE(Tstep),bR(Tstep) and bQ(Tstep) { in parti
ular ea
h is bounded by 
onst� � (with 
onsta fun
tion of the various parameters).More pre
isely, we do the following. We now need to obtain the followingbound:supt2[0;Tmax℄ k	(~x; t)kHs "bE(Tstep) h(1 + TstepGeGTstep) + 2Hs+(~g(~x))H�s+ (e�x2=�2)i MXn=0L((M � n)Tstep)!+ MXn=0 bR((M � n)Tstep)!+ bQ(Tstep)"(2 + TstepGeGTstep) MXn=0L((M � n)Tstep)!+ (Tmax=Tstep)Hs+(~g(~x))H�s+ (e�x2=�2)## � �=2 (5.44)We re
all the bounds 
omputed in Proposition 5.8, and substitute them in8Re
all that supt2[0;Tmax℄ Lext(t) � ÆF. In prin
iple, one 
ould simply use this bound.However, in pra
ti
e, we expe
t that PMn=0 Lext((M � n)Tstep)�MÆF, so this would be anineÆ
ient 
hoi
e. 72



to obtain:(5.44) � supt2[0;Tmax℄ k	(~x; t)kHs "�A�1F (2LWFT=x0)N=2(2kmax=k0)N=2� h(1 + TstepGeGTstep) + 2Hs+(~g(~x))H�s+ (e�x2=�2)i MXn=0L((M � n)Tstep)!+ �A�1F (2LWFT=x0)N=2(2kmax=k0)N=2(Tmax=Tstep)+ �A�1F (2LNL=x0)N=2(2kmax;NL=k0)N=2� "(2 + TstepGeGTstep) MXn=0L((M � n)Tstep)!+ (Tmax=Tstep)Hs+(~g(~x))H�s+ (e�x2=�2)## (5.45)We observe that this is linear in �. Thus, by making the 
hoi
e:��1 = 2��1 supt2[0;Tmax℄ k	(~x; t)kHs "A�1F (2LWFT=x0)N=2(2kmax=k0)N=2� h(1 + TstepGeGTstep) + 2Hs+(~g(~x))H�s+ (e�x2=�2)i MXn=0L((M � n)Tstep)!+A�1F (2LWFT=x0)N=2(2kmax=k0)N=2(Tmax=Tstep)+A�1F (2LNL=x0)N=2(2kmax;NL=k0)N=2� "(2 + TstepGeGTstep) MXn=0L((M � n)Tstep)!+ (Tmax=Tstep)Hs+(~g(~x))H�s+ (e�x2=�2)##we �nd that (5.44) � (5.45) � �=2. This holds only of � � �(ÆF), with �(ÆF)de�ned in assumption 5.Thus, by this 
hoi
e of parameters, we have made the error smaller than � .�Remark 5.17 The obvious way to make (5.43) small is to make the following
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hoi
es for kmin, kmax, LNL, kmax;NL and LF :LNL = LNL �10 supt2[0;Tmax℄ k	(~x; t)kHs� 1Tstep �PMn=0 bR((M � n)Tstep)� (2 + TstepGeGTstep)! (5.46a)kmax;NL = kmax;NL �10 supt2[0;Tmax℄ k	(~x; t)kHs� 1Tstep �PMn=0 bR((M � n)Tstep)� (2 + TstepGeGTstep)! (5.46b)LF = LF  �Tstep20Tmax supt2[0;Tmax℄ k	(~x; t)kHs! (5.46
)kmin = kmin �10(2 + TstepGeGTstep)�PMn=0 L((M � n)Tstep)�! (5.46d)kmax = kmax� �Tstep10Tmax� (5.46e)This parti
ular 
hoi
e ensures that ea
h term on the right hand side of (5.43)is smaller than �=10. Sin
e there are 5 terms on the right, the whole thing isless than �=2.Although obvious and 
learly e�e
tive, this 
hoi
e is likely to be ineÆ
ient.Supposing one term to be signi�
antly more expensive than the others (e.g. oneterm being polynomial in ��1, the rest being logarithmi
), it makes more senseto make the expensive term only smaller than, e.g. (1� Æ)�=2, and make ea
hof the others smaller than Æ�=2 (with Æ � 1=2).Thus, although we illustrate that this 
an be done with (5.46), we emphasizethat the exa
t method of satisfying (5.43) is strongly dependent on the parti
ularmodel 
hosen.Remark 5.18 To get from (5.44) to (5.45), we made use of the the weak form ofproposition 5.8. That is to say, in the bounds on bE(t), bR(t) and bQ(t), we had anintermediate estimate whi
h appeared unwieldy. Nevertheless, the intermediateestimate is far sharper, and is the one that should be used in pra
ti
e. Weused the less sharp estimate simply to demonstrate that bE(t), bR(t) and bQ(t) arequantities whi
h we 
an make arbitrarily small.
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5.4 Comments5.4.1 Near Optimality of the EstimatesThe estimates we give here are 
rude at some points, and 
an probably beimproved signi�
antly. However, in prin
iple, we believe that a result of theform (5.39) is the best possible result one 
an hope for with our method, or anyother method based on time stepping.The reason for this is the following. Consider any numeri
al method basedon time integration. Suppose that it makes an error (however small) at timest0. This error has now been made, and it is highly unlikely that further errorswill 
ompletely 
an
el it. Suppose after t0, we have the ability to propagatefurther with no error (but we need to take the in
orre
t result 	(x; t0) as aninitial 
ondition). Then kU(t) (x; t0)� U(t)	(x; t0)kHsb is only bounded byL(t) k (x; t0)�	(x; t0)kHs . Repeating this argument every time an error ismade leads to a bound very similar to ours.5.4.2 No Hierar
hy of BoundariesUnlike the Diri
hlet-to-Neumann approa
h, the TDPSF is not embedded in ahierar
hy of in
reasingly a

urate boundary 
onditions. The reason for this isthat we are not attempting to 
onstru
t the exa
t solution on the boundary.Rather, we are merely assuming the wave behaves freely and semi
lassi
ally onthe boundary, and �ltering it based on this. Thus, apart from in
reasing w,we have little re
ourse to in
rease the a

ura
y of this method. So althoughour method is highly a

urate, we 
an not in
rease the a

ura
y without boundwhile leaving the size of the box �xed.5.4.3 Bourgain's PhenomenonOne potential diÆ
ulty in solving time dependent problems is that a problemwhi
h is stable on RN may exhibit long time instability on a periodi
 boxes.Given a box [�L
omp; L
omp℄N with periodi
 boundaries, Bourgain (
.f. [5℄) hasproven the existen
e of a time dependent potential V (~x; t) whi
h is smooth andwell lo
alized in ~x having the property that kUb(t) 0kHsb grows logarithmi
allyin time. This o

urs be
ause the time dependent potential essentially plays aquantum me
hani
al variant of \ping pong".This suggests that some numeri
al methods might exhibit this long timeinstability if one attempt to solve (1.1) on RN with su
h a potential. However,our method prevents this from o

urring. We do this by periodi
ally removingall framelets whi
h move faster than kmax (sin
e we �lter o� waves whi
h areoutside of NECC\BB, and BB has no framelets with ~bk0 � kmax).5.4.4 La
k of Bounds on kminAnother potential diÆ
ulty 
omes from the fa
t that in general, one has nobounds on kmin. We des
ribe here a situation with a simple linear (time-75



dependent) potential for whi
h kmin 
an be arbitrarily small while leaving thepotential bounded and smooth in any reasonable norm.Consider a nonlinearity of the form g(t; ~x;  (~x; t)) (~x; t) = V (~x; t) (~x; t).We suppose that V (~x; t) takes the form V0(x� (e=!2) 
os(!t)) for some smooth,rapidly de
aying potential V0(x).This system is equivalent, by a unitary gauge transformation, to the timedependent system with Hamiltonian H(t) = �(1=2)�+V0(x)+e 
os(!t) �x (
.f.[9℄, 
hapter 7).Now, suppose further that the referen
e Hamiltonian H0 = �(1=2)�+V0(x)has a single bound state, having energy �E0.Consider an initial 
ondition initially lo
alized in this bound state.In this 
ase, Fermi's golden rule suggests that for e small and ! > jE0j,mass will be eje
ted from the bound state into the 
ontinuum9, and will haveenergy ! � E0 after eje
tion. Thus, energy transitions from the bound stateinto frequen
ies lo
alized near p! �E0. By making ! suÆ
iently 
lose to E0,we 
an make this as small as possible.Thus, in this s
enario, kmin � p! �E0, i.e. kmin 
an be made as small asdesired.6 Lingering Waves (proof of theorem 5.12)In this se
tion, we 
onstru
t a bound on the di�eren
e between the free propa-gator and the box propagator a
ting on waves whi
h are not outgoing:k(U(t) � Ub(t)PNECC\BB 0(x)kHsWe do this by Duhamel's prin
iple and Gronwall, and use the fa
t that thenonlinearity is lo
ally Lips
hitz (assumption 3). The bound on this term issummarized in theorem 5.12 in the next se
tion.We �rst de�ne three fun
tions, E(t), Q(t) and Qb(t) whi
h we will use to
onstru
t error bounds.De�nition 6.1 Let  (~x; t) be a solution to (1.1) on RN , and  b(~x; t) be asolution to (1.1) on [�Lint; Lint℄N . Suppose that (~x; 0) =  b(~x; 0) = PNECC\BB 0(x)for some  0(x).We de�ne the free error fun
tion to be some fun
tion E(t) for whi
h:


(ei(1=2)�t � ei(1=2)�bt) (x; 0)


Hsb 6 E(t) (6.1)9This happens only generi
ally. More pre
isely, it happens if hu0(x)je � xu(x;! � E0)i 6= 0,where u0(x) is the bound state and u(x; ! � E0) is the generalized eigenfun
tion at energy! �E0. 76



We de�ne the intera
tion error to be fun
tions Q(t) (or Qb(t)) for whi
h:



Z t0 (ei(1=2)�(t�t0) � ei(1=2)�b(t�t0))g(t0; ~x;  (x; t0)) (x; t0)dt0



Hsb � Q(t) (6.2a)



Z t0 (ei(1=2)�(t�t0) � ei(1=2)�b(t�t0))g(t0; ~x;  b(x; t0)) b(x; t0)dt0



Hsb � Qb(t)(6.2b)We will write our estimates in terms of these fun
tions. We show that (5.37)is 
onsistent with de�nition 6.1.The rest of se
tion 6 is devoted to proving various pie
es of theorem 5.12.We prove (5.36) in se
tion 6.1. The estimate (5.37a) is done in in se
tion 6.2(proposition 6.9) while (5.37b) is proved in se
tion 6.3 (proposition 6.13).6.1 Estimates in terms of E(t), Q(t)Here, we prove the estimates (5.36a) and (5.36b) assuming that E(t) and Q(t)are known.We state the result in a more general manner, whi
h we believe will also beuseful for proving short time error bounds for other types of absorbing boundary
onditions.Theorem 6.2 Let  0(x) 2 Hs. Let g(t; ~x; �) satisfy assumption 3. Let E(t) bede�ned by (6.1), and Q(t); Qb(t) by (6.2). Then the following holds:k(U(t)� Ub(t)) 0(x)kHsb � (E(t)+Q(t))+GeGt?(E(t)+Q(t)) (apriori) (6.3a)k(U(t) � Ub(t)) 0(x)kHsb � (E(t) +Qb(t)) +GeGt ? (E(t) +Qb(t)) (aposteriori)(6.3b)Lemma 6.3 (Gronwall) Let y(t) satisfy the inequality:y(t) � p(t) + C Z t0 y(t)dt (6.4)y(t) satis�es the bound:y(t) � p(t) + CeCt Z t0 e�Csp(s)ds (6.5)Proof of Theorem 6.2. We use Duhamel. We observe the following equality: (t)�  b(t) = ei(1=2)�t'(x)� ei(1=2)�bt'(x)+ i Z t0 [ei(1=2)�(t�s)g(s; ~x;  (s)) (s) � ei(1=2)�bt�sg(s; ~x;  b(s)) b(s)℄ds77



We then add and subtra
t ei(1=2)�(t�s)g(s; ~x;  b(s)) b(s) under the integral sign,and take norms in Hs to obtain:k (t)�  b(t)kHsb 6 Es(t)+ 



Z t0 [ei(1=2)�(t�s) � ei(1=2)�bt�s℄g(s; ~x;  b(s)) b(s)ds



Hsb +



Z t0 ei(1=2)�(t�s)[g(s; ~x;  (s)) (s) � g(s; ~x;  b(s)) b(s)℄ds



HsbWe then observe thatkg(s; ~x;  (s)) (s)� g(s; ~x;  b(s)) b(s)kHs � G k (s)�  b(s)kHsand also that the �rst term is Qb(t). Gronwall's Lemma (6.3) gives us (6.3b).Estimate (6.3a) follows in mu
h the same way, ex
ept that we add and subtra
tei(1=2)�bt�sg(s; ~x;  (s)) (s) instead. �Proof of Lemma 6.3. In the 
ase of equality, we have:y(t) = p(t) + C Z t0 y(t)dtLapla
e transformation yields:Y (z) = P (z)� CY (z)zOr equivalently: Y (z) = �1 + Cz + C�P (z)Inverting the Lapla
e transform and 
olle
ting residues yields the result we seek:y(t) = eCt Z t0 e�Cs dp(s)ds ds = p(t) + CeCt Z t0 e�Csp(s)ds �In the event that g(t; ~x;  ) = V (x; t) (x) a sharper estimate holds. This
an not be shown to hold in the nonlinear 
ase { indeed, 
ounterexamples exist.Theorem 6.4 Let  (x; t = 0) 2 Hs be an initial 
ondition of (1.1), whereg(t; ~x;  ) = V (x; t) (x) (that is, a \linear nonlinearity"). Suppose that theequation i�t b(~x; t) = (�(1=2)�b + V (~x; t)) b(~x; t)satis�es the energy 
onservation law k b(x; t)kHs 6 �(t) k b(x; 0)kHs . Then we�nd:k (~x; t)�  b(~x; t)kHsb� �(t) k (x; 0)�  b(x; 0)kHsb + Z t0 �(t� t0) kS(~x; t)kHsb dt0 (6.6)78



where:S(x; t) = h(ei(1=2)�bt � ei(1=2)�t) (x; 0)+ i Z t0 �ei(1=2)�b(t�t0) � ei(1=2)�(t�t0)�V (x; t0) (x; t0)dti (6.7a)s(x; t) = i�tS(x; t) (6.7b)In parti
ular, observe that kS(x; t)kHs 6 E(t) +Q(t), so to bound the error, itis suÆ
ient to 
onstru
t E(t) and Q(t).Proof. We write  b(x; t) =  (x; t) + e(x; t) where e(x; t) is the error. Wethen subtra
t the Duhamel equation for  b(x; t) from the Duhamel equation for (x; t) to obtain:e(x; t) = ei(1=2)�b(t�t0)e(x; 0) + i Z t0 ei(1=2)�b(t�t0)V (x; t0)e(x; t0)dt0+ (ei(1=2)�bt � ei(1=2)�t) (x; 0)+ i Z t0 �ei(1=2)�b(t�t0) � ei(1=2)�(t�t0)�V (x; t0) (x; t0)dt0If we apply i�t to this equation, we observe that:i�te(x; t) = (�(1=2)�b + V (x; t)) e(x; t) + S(x; t)Taking norms and bringing them under the integral sign gives us the result weseek. �6.2 Bounds on E(t)Here, the bound (5.37a) on E(t) is 
onstru
ted from the framelet de
omposi-tion and the fa
t that  (x; 0) is given by framelets whi
h are in NECC\BB.We further split this up into framelets whi
h are in BADC \NECC\BB andBAD\NECC\BB. We then add the results together to obtain the estimate.Lemma 6.5 Let f�jg be a frame with frame bounds AF ; BF and with per-framelet error bounds fEsj (t)g. Suppose J is a �nite set of framelet indi
es.Then:





(ei(1=2)�t � ei(1=2)�bt)Xj2J  j�j(x)





Hs �Xj2J j j j Esj (t)� A�1F sXj2J ��Esj (t)��2 k kL2 � A�1F pjJ j supj2J Esj (t) k kL2 (6.8)Here, jJ j represents the 
ardinality of J . The same result holds if we repla
e(ei(1=2)�t � ei(1=2)�bt) by �[�Lint;Lint℄N ei(1=2)�t and Esj (t) by Rsj(t).79



Proof. The triangle inequality yields:





(ei(1=2)�t � ei(1=2)�bt)Xj2J  j�j(x)





Hs 6Xj2J j j j Esj (t)We have a sharp bound:6Xj2J j j j Esj (t) �sXj2J j j j2sXj2J ��Esj (t)��2 � A�1F k kL2sXj2J ��Esj (t)��2We obtain a suboptimal (although still reasonably useful) bound:sXj2J ��Esj (t)��2 �pjJ j supj2J Esj (t)This yields the result we seek. The proof with Rsj(t) instead of Esj (t) is identi
al,but with ei(1=2)�t repla
ing (ei(1=2)�t � ei(1=2)�bt). �Remark 6.6 For pra
ti
al purposes, the estimate qPj2J ��Esj (t)��2 should beused rather than A�1F pjJ j supj2J Esj (t) k kL2 . For any given set of parametersit is simple to 
ompute, and gives a pre
ise estimate (whi
h does not growwith L). The 
ruder estimate is in
luded to demonstrate that the estimate isnontrivial.We now apply lemma 6.5 to obtain the following result dealing with frameletsin NECC\BB\BADC .Proposition 6.7 Let  0(x) satisfy assumption 2. Then we �nd:


(ei(1=2)�t � ei(1=2)�bt)PBADC \NECC\BB 0(x)


Hsb � bE(t) k kL2 (6.9)Proof. Compute:





(ei(1=2)�t � ei(1=2)�bt) X(~a;~b)2BADC \NECC\BB 0(~a;~b)�(~a;~b)(~x)





Hsb� X(~a;~b)2BADC \NECC\BB ��� 0(~a;~b)��� 


(ei(1=2)�t � ei(1=2)�bt)�(~a;~b)(~x)


Hsb�s X(~a;~b)2BADC \NECC\BB E(~a;~b)(t)2�vuut X(~a;~b)2BADC \NECC\BB ��� 0(~a;~b)���2 � bE(t) k 0kL280



Here we used the fa
t thatvuut X(~a;~b)2BADC \NECC\BB ��� 0(~a;~b)���2 � A�1F k 0kL2and the de�nition of bE(t) (de�nition 5.7 on page 63). �Proposition 6.8 Let the parameters kmin, w and Tstep satisfy (5.35). Let  0(x)satisfy assumption 6. Then the following estimate holds:


(ei(1=2)�t � ei(1=2)�bt)PBAD\NECC\BB 0(x)


Hsb � 2Æmin (6.10)This result is slightly tri
kier, and subsubse
tion 6.2.1 is devoted to theproof. We now arrive at the bound on E(t):Proposition 6.9 Let  0(x) satisfy assumption 6, and let Lint, Tstep and wsatisfy (5.35). Then:


(ei(1=2)�t � ei(1=2)�bt)PBB\NECC 0(x)


Hsb� bE(t) k 0(x)kL2 + 2Æmin = E(t) (6.11)Proof. Observe thatPBB\NECC 0(x) = PBAD\BB\NECC 0(x) + PBADC \BB\NECC 0(x) (6.12)We therefore apply (ei(1=2)�t � ei(1=2)�bt) to (6.12), then take the norm in Hsband use the triangle inequality, to obtain:


(ei(1=2)�t � ei(1=2)�bt)PBB\NECC 0(x)


Hsb� 


(ei(1=2)�t � ei(1=2)�bt)PBAD\BB\NECC 0(x)


Hsb+ 


(ei(1=2)�t � ei(1=2)�bt)PBADC \BB\NECC 0(x)


Hsb (6.13)Then apply proposition 6.7 to the last term and proposition 6.8 to the �rst termon the right side of (6.13). �6.2.1 Slowly Moving WavesWe now prove proposition 6.8.The idea of the proof is to show that for any (~a;~b) 2 BAD\NECC\BB,(~a;~b) satis�es (5.7). This, 
ombined with BAD\NECC\BB implies that:kPBAD\NECC\BB 0(x)kHsb � Æmin81



Thus we need only prove that (~a;~b) 2 BAD\NECC\BB satis�es (5.7).We prove �rst a te
hni
al lemma, showing that a given framelet is eitherin
oming or outgoing (not both) if it has velo
ity suÆ
iently fast.Lemma 6.10 Assume that w, Tstep satisfy (5.35b) and (5.35
). Then for(~ax0;~bk0) 2 [�(Lint + w=3); (Lint + w=3)℄N � [�kmax; kmax℄N ;we �nd that (~a;~b) 62 BAD(�; s; Tstep).Proof. By lemma 4.9, it suÆ
es to show that BB(~a;~b;�)("; t) � [�(Lint +w); (Lint + w)℄N .Note that:~ax0 +~bk0t 2 [�(Lint + w=3 + kmaxt); (Lint + w=3 + kmaxt)℄N� [�(Lint + w=3 + kmaxTstep); (Lint + w=3 + kmaxTstep)℄NConsider ~x 2 BB(~a;~b;�)("; t). By de�nition 4.7 (the de�nition of BB(~a;~b;�)("; t)),we �nd that: j~x� ~ax0 +~bk0tj2 � wsi (~b; �) +wsv(~b; �)tThus, sin
e ~ax0+~bk0t 2 [�(Lint+w=3+kmaxTstep); (Lint+w=3+kmaxTstep)℄N ,and BB(~a;~b;�)("; t) is 
ontained in a ball of radius wsi (~b; �) +wsv(~b; �)Tstep about~ax0 +~bk0t, we �nd that:BB(~a;~b;�)("; t) � [�(Lint + w=3 + kmaxTstep +wsi (~b; �) +wsv(~b; �)Tstep);(Lint + w=3 + kmaxTstep +wsi (~b; �) +wsv(~b; �)Tstep)℄NThen applying (5.35b) and (5.35
), we �nd that:[�(Lint + w=3 + kmaxTstep +wsi (~b; �) +wsv(~b; �)Tstep);(Lint+w=3+kmaxTstep+wsi (~b; �)+wsv(~b; �)Tstep)℄N � [�(Lint+w); (Lint+w)℄NLemma 4.9 implies the result we seek. �Lemma 6.11 Assume w and Tstep satisfy (5.35b) and (5.35
).Fix (~a;~b) 2 ZN �ZN. Suppose that (~a;~b) satis�es:9j 2 1 : : :N; j~ajx0j � Lmin and~bjk0(~aj= j~aj j) > kmin (6.14)Suppose also that Lint, w and Lmin satisfy (5.35h), that is Lmin � Lint + w=3.Then (~a;~b) 62 NECC(�; s;1). 82



Proof. For the duration of this proof, let j denote the (possibly nonunique)index j for whi
h (6.14) holds.Note that by (5.35b) and (5.35h), we �nd that j~ajx0j � Lint + w=3. Forsimpli
ity, suppose that ~aj > 0, and therefore that ~bj > 0.Then note that: ~ajx0 +~bk0t � (Lint + w=3) +wsv(~b; �)tThe 
onstant term was obtained by using (5.35h) while the t term was obtainedusing (5.35a).Thus, we �nd that:d(~ax0 +~bk0t; [�Lint; Lint℄N ) � w=3 +wsv(~b; �)t � wsi (vb; �) +wsv(~b; �)tThe last inequality follows by applying (5.35b). Applying lemma 4.10 impliesthat (~a;~b) 62 NECC. �Proof of proposition 6.8. We now wish to show that:


(ei(1=2)�t � ei(1=2)�bt)PBAD\NECC\BB 0(x)


Hsb � 2Æmin (6.15)We do this by showing that BAD\NECC\BB is a set whi
h satis�es (5.7).Fix (~a;~b) 2 BAD\NECC\BB. Note that sin
e (~a;~b) 2 BB, we �nd thatj~bk0j1 � kmax.Applying the 
onverse of lemma 6.10, we �nd that j~ax0j1 � Lint + w=3.Now suppose (~a;~b) satis�es (6.14). Then:(~a;~b) 62 NECC(�; s;1) � BAD\NECC\BBThus, if (~a;~b) 2 BAD\NECC\BB, we �nd that:!(9j 2 1 : : :N; j~ajx0j � Lmin and~bjk0(~aj= j~aj j) > kmin)This implies that BAD\NECC\BB is a set satisfying (5.7). Hen
e:


(ei(1=2)�t � ei(1=2)�bt)PBAD\NECC\BB 0(x)


Hsb� 2 kPBAD\NECC\BB 0(x)kHsb � 2ÆminThus, we have proved proposition 6.8. �6.3 Bounds on Q(t)We now attempt to determine bounds on Q(t) and Qb(t) based on apriori andaposteriori knowledge of  (x; t) and g(t; ~x; �). This is where we use assumption4. 83



The main tool is phase spa
e lo
alization based on the WFT and assumption4. In parti
ular, we wish to treat g(t; ~x;  (t)) (t) as a sour
e term and then�gure out how mu
h of it's mass 
an leave [�Lint; Lint℄N . We will de
omposeZN�ZN = NL[NLC (with the set NL de�ned as in assumption 4), and write:g(t; ~x;  ) = X(~a;~b)2NL g(~a;~b)(t)�(~a;~b)(~x) + X(~a;~b)2NLC g(~a;~b)(t)�(~a;~b)(~x)The last term is small by assumption 4. We now 
ome up with suÆ
ient
onditions on Lint and Tstep (depending on kmax;NL and LNL) so that frameletsin NL are not bad.Proposition 6.12 Let Tstep, Lint satisfy (5.35e), (5.35f) and (5.35g). ThenNL\BAD(�; s; Tstep) = ;.Proof. Fix (~a;~b) 2 NL.Note that BB(~a;~b;�)("; t) is a ball of radius wsi (~b; �) + wsv(~b; �)t around thepoint ~ax0 +~bk0t. Thus, if ~x 2 BB(~a;~b;�)("; t), then:j~xj1 � j~ax0j1 + j~bk0j1t+wsi (~b; �) +wsv(~b; �)t� Lint + kmax;NLTstep + w=2 +wsv(~b; �)Tstep� Lint + w=2 + (Lint + w=2� LNL)This 
al
ulation follows by applying (5.35e) to (kmax;NL + wsv(~b; �))Tstep and(5.35g) to wsi (~b; �).Note that (5.35f) is needed only to insure that (5.35e) is possible to satisfy,i.e. that Lint � LNL > 0.This implies that ~x 2 [�(Lint + w); (Lint + w)℄N , hen
eBB(~a;~b;�)("; t) � [�(Lint + w); (Lint + w)℄NApplying lemma 4.9 implies that (~a;~b) 62 BAD(�; s; Tstep). The only assumptionon (~a;~b) was (~a;~b) 2 NL, hen
e NL\BAD(�; s; Tstep) = ;. �We 
an now 
ompute a bound on Q(t) for Q(t) satisfying assumption 4.Proposition 6.13 Let g(t; ~x;  ) satisfy assumption 4. Suppose that Lint andTstep satisfy (5.35e), (5.35f) and (5.35g). Then Q(t) satis�es:Q(t) � ( bQ(t)G+ tÆNL) supt02[0;t℄ k (x; t0)kHs (6.16)
84



Proof. We note that:



Z t0 (ei(1=2)�(t�t0) � ei(1=2)�b(t�t0))g(t; ~x;  (~x; t0)) (~x; t0)dt0



Hsb� Z t0 





(ei(1=2)�(t�t0) � ei(1=2)�b(t�t0)) X(~a;~b)2NL g(~a;~b)(t)t0)�(~a;~b)(~x)





Hsb dt0+ Z t0 





(ei(1=2)�(t�t0) � ei(1=2)�b(t�t0)) X(~a;~b)2NLC g(~a;~b)(t)t0)�(~a;~b)(~x)





Hsb dt0By assumption 4, for any �xed t, the last term satis�es:





(ei(1=2)�(t�t0) � ei(1=2)�b(t�t0)) X(~a;~b)2NLC g(~a;~b)(t)t0)�(~a;~b)(~x)





Hsb� 2ÆNLt supt02[0;t℄ k (x; t0)kHs (6.17)The �rst term satis�es (at ea
h �xed t � Tstep):





(ei(1=2)�(t�t0) � ei(1=2)�b(t�t0)) X(~a;~b)2NL g(~a;~b)(t)t0)�(~a;~b)(~x)





Hsb� kg(t; ~x;  (~x; t)) (~x; t)kL2 A�1F vuut X(~a;~b)2NL ���E(~a;~b)(t)���2� G k (~x; t)kHs A�1F vuut X(~a;~b)2NL ���E(~a;~b)(t)���2We then integrate this result over time:Z t0 G k (~x; t)kHs A�1F vuut X(~a;~b)2NL ���E(~a;~b)(t)���2�Gt supt02[0;t℄ k (~x; t)kHs A�1F vuut X(~a;~b)2NL ���E(~a;~b)(t)���2 = G k (~x; t)kHs bQ(t) (6.18)Adding (6.17) and (6.18) yields the result we seek. �85



7 Exterior WavesIn this se
tion, we prove theorems 5.10 and 5.11.We �rst prove a te
hni
al result, that the waves outside [�(Lint+w); (Lint+w)℄N and also the waves of high frequen
y are small. We will use this result inthe proof of both theorem 5.10 and 5.11.Now we will show that f(x) is lo
alized. We assume throughout this se
tionthat f(x) = U(Tstep)PNECC\BBh(x) for some h(x) 2 Hs.Proposition 7.1 The following inequality holds.kf(x)kHs(RNn[�L
omp;L
omp℄N ) � bE(Tstep) kh(x)kL2 + bQ(Tstep) (7.1)where E(t) and Q(t) are given by (5.37a) and (5.37b) with h(x) repla
ing  (x).Proof. Re
all that the per-framelet error fun
tions, used to 
onstru
tbE(t) kh(x)kL2 and bQ(t) are nothing more than the mass (in Hs) outside[�(Lint + w); (Lint + w)℄N . Thus, the proofs of propositions 6.9 and 6.13 applywithout 
hange, and we 
an merely add bE(Tstep) kh(x)kL2 and bQ(Tstep) to getour bound. �Proposition 7.2 The framelet 
oeÆ
ients of f(x) satisfy:kPBBCf(x)kHs � Hs+(~g(~x))H�s+ (e�x2=�2)[bE(Tstep) kh(x)kL2+ bQ(Tstep)+�℄+Æmax(7.2)Proof. Note that BBC C
onsists of framelets moving faster than kmax, oroutside the region [�L
omp; L
omp℄N . We apply 
orollary 3.21.Assumption 2 
an be invoked to bound 

PHF(kmax)f(x)

Hs by Æmax. Tobound the spatial 
omponent, we apply proposition 7.1.kPBBf(x)kHs � Hs+(~g(~x))H�s+ (e�x2=�2)[E(Tstep) +Q(Tstep) + �℄+ 

PHF(kmax)f(x)

Hs (7.3)�7.1 Outgoing Waves (Proof of theorem 5.10)In this se
tion we prove theorem 5.10, 
on
erning the outgoing wave term:kU(tjf)PNECCCf(x)kHsbOur goal is to show that be
ause the waves are outgoing, this term remainssmall for a long time. The fun
tion f(x) will be assumed to satisfy assumptions2, and also satisfy the assumption that f(x) = U(t)PNECC\BBh(x).This is where we use assumption 5. Assumption 5 states that:kU(tjf)PNECCCf(x)kHsb � ÆF kPNECCCf(x)kHsb86



We �rst add and subtra
t ei(1=2)�tPNECCf under the norm, and apply thetriangle inequality:kU(tjf)PNECCCf(x)kHsb� 


U(t)PNECCCf(x)� ei(1=2)�tPNECCCf(x)


Hsb+ 


ei(1=2)�tPNECCCf(x)


Hsb (7.4)The �rst term is bounded by ÆF kPNECCCf(x)kHs , by assumption 5. This istrue provided Lint � LF , sin
e in this 
ase


ei(1=2)�t�(~a;~b)(~x)


Hs([�LF ;LF ℄N ) � 


ei(1=2)�t�(~a;~b)(~x)


Hs([�Lint;Lint℄N ) � "for any (~a;~b) 2 NECCC .Thus we need only 
ompute a bound on 

ei(1=2)�tPNECCCf(x)

Hsb .We breakup PNECCCf(x) further:PNECCCf(x) = PNECCC \HF(kmax)[Bf(x) + PNECCC \(HF(kmax)[B)Cf(x)Proposition 7.2 provides a bound on the �rst term. To bound the se
ond,we need merely 
ount the framelets in (HF(kmax) [B)C and apply lemma 6.5.We observe that BC 
onsists only of framelets with j~aj1 x0 � L
omp +Xs(�; kmax) , while HF(kmax)C 
onsists only of framelets with ���~b���1 x0 � kmax.It is easy to see that there are only (2kmax=k0)N (2[L
omp +Xs(�; kmax)℄=x0)Nsu
h framelets. Thus, we obtain the result of theorem 5.10:kU(tjf)PNECCCf(x)kHsb � ÆF kPNECCCf(x)kHsb+Hs+(~g(~x))H�s+ (e�x2=�2 )[E(Tstep) +Q(Tstep) + �℄ + Æmax+A�1F 0� X(~a;~b)2NECCC \(HF(kmax)[B)C ���R(~a;~b)(s)t���21A1=2 kf(x)kL2= ÆF kPNECCCf(x)kHsb + bR(t) kf(x)kL2+Hs+(~g(~x))H�s+ (e�x2=�2)[bE(Tstep) kh(x)kL2 + bQ(Tstep) + �℄ + Æmax (7.5)Here, we used de�nition of bR(t) to simplify the inequality.7.2 Residual WavesIn this se
tion, we wish to show thatkU(t)PNECCf(x)� U(t)PNECC\BBf(x)kHsb = 

U(t)PNECC nBBf(x)

Hsb87



is small, provided f(x) = 	(x; nTstep) for some n.The residual waves 
onsist of waves whi
h are lo
ated outside the box, butare moving in a dire
tion that will take them into the box at some future point.They 
an be thought of as outgoing waves that have turned around outside thebox, and are returning.Remark 7.3 This proof does not use the fa
t that the waves are o� the prop-agation set. It merely uses the fa
t that BBC 
onsists of framelets whi
h arelo
alized outside the box, and it takes a moderate amount of time to rea
h them.Proof of theorem 5.11. By proposition 7.2, and the observation thatNECC nBB � BBCwe observe that:

PNECC nBBf(x)

Hs� Hs+(~g(~x))H�s+ (e�x2=�2)[E(Tstep) +Q(Tstep) + �℄+ 

PHF(kmax)f(x)

HsWe then observe that:kU(tjPNECCf)PNECCf(x)� U(tjPNECC\BB)PNECC\BBf(x)kHsb� L(t) kPNECCf(x)�PNECC\BBf(x)kHsb� L(t)�Hs+(~g(~x))H�s+ (e�x2=�2)[E(Tstep) +Q(Tstep) + �℄+ 

PHF(kmax)f(x)

Hs �This is the result we seek, after substituting the de�nitions of E(Tstep) andQ(Tstep) in. �8 Validation of the Assumptions: Some SimpleExamplesIn this se
tion we verify that the assumptions hold for 
ertain 
ommon examples.8.1 Time Independent PotentialsIn this se
tion, we 
onsider the 
ase where g(t; ~x;  (~x; t)) (~x; t) is merely a timeindependent linear potential. That is, g(t; ~x;  (~x; t)) (~x; t) = V (x) (~x; t) forV (x) an analyti
, short range potential whi
h is real-valued. More pre
isely, wedemand the following: ���jxV (x)�� � CV hxi�(1+�) (8.1a)88



V̂ (k) � C 0V e��j~kj (8.1b)Assumption 1This follows trivially from standard fun
tional analysis. The operator H =�(1=2)� + V (x) is self adjoint and bounded below, so eiHt is an isometri
semigroup on L2. Thus, the solution exists and is unique. This also impliesthat L(t) = 1.Assumption 2This assumption holds due to 
onservation of energy, whi
h allows us toprove that k (~x; t)kH1 is bounded.Lemma 8.1 We have the following bound on k (~x; t)kH1 :k (~x; t)kH1 � p2qjE0j+ k (x; 0)k2L2 (kV (x)kL1 + 1=2) (8.2)E0 is the energy of the system, i.e. E0 = h (x; 0)jH0 (x; 0)i.Proof. Sin
e V (x) is real valued, (1.1) be
omes a Hamiltonian system. Thus,h (~x; t)jH (~x; t)i is a 
onserved quantity. Therefore:h (~x; t)j � (1=2)� (~x; t)i = h (x; 0)jH (x; 0)i � h (~x; t)jV (x) (~x; t)iMultiplying by 2, adding k (x; 0)k2L2 to both sides and then taking absolutevalues yields:k (~x; t)k2H1 � 2 h (x; 0)jH (x; 0)i+ 2 k (~x; t)k2L2 kV (x)k2L1 + k (~x; t)kL2Applying 
onservation of mass to the  (~x; t) terms on the right, and then takingsquare roots yields the result we seek. �We note that 


[1� P 0[�K;K℄N ;0(k)℄f(x)


L2 � hKi�1 kf(x)kH1 . Combiningthis with proposition 5.2 on page 59, we have veri�ed assumption 2. Thus:


[1� P 0[�K;K℄N ;0(k)℄ (~x; t)


L2� K�1p2qjE0j+ k (x; 0)k2L2 (kV (x)kL1 + 1=2) (8.3)Now, given Æmax, we letkmax � ks(kmax)= Æ�1max23=2Hs+(~g(~x))H�s+ (e�x2=�2)qjE0j+ k (x; 0)k2L2 (kV (x)kL1 + 1=2)Substituting this de�nition of kmax into (8.3), we �nd that proposition 5.2 issatis�ed and therefore assumption 2 is also satis�ed.One 
an, of 
ourse, use energy estimates (based on the fa
t thath (~x; t)jHs (~x; t)i is 
onserved) in higher order Sobolev spa
es to bound kmaxas well. In general, one 
an show that kmax � Æs�tmax where s is the sobolev89



spa
e in whi
h we measure the error, and t > s is some higher Sobolev spa
e.However, the 
onstants are diÆ
ult to 
ontrol, due to the need to estimate many
ommutators, e.g. [�(1=2)�a; V (x)b℄ (and the like).Assumption 3Sin
e V (x) is a bounded linear operator, we �nd that G = kV (x)kL(Hs;Hs).But kV (x)kL(Hs;Hs) is given merely by kV (x)kL(Hs;Hs) = kV (x)kW s;1 . In the
ase when s = 0, we �nd simply that kV (x)kL(L2;L2) = kV (x)kL1 .Assumption 4This follows from assumption 2 
ombined with the fa
t that the potentialis smooth and de
ays rapidly in spa
e. We use the alternative assumption toassumption 4 found on page 59. We need to verify (5.9a) and (5.9b).Bounds in MomentumTo verify (5.9a), we need to 
ompute a bound on:


(1� P s[�M;M ℄N ;k0(~x))V (x) (~x; t)


L2We do this by using the fa
t that V̂ (k) de
ays rapidly, 
ombined with (8.3). Wewrite:


(1� P 0[�M;M ℄N ;k0(~x))V (x) (~x; t)


L2� 


(1� P 0[�M;M ℄N ;k0(~x))[V̂ (k) ? P 0[�K;K℄N ;k0(~x) ̂(k; t)℄


L2+ 


(1� P 0[�M;M ℄N ;k0(~x))[V̂ (k) ? (1� P 0[�K;K℄N ;k0(~x)) ̂(k; t)℄


L2� 


(1� P 0[�M;M ℄N ;k0(~x))[V̂ (k) ? P 0[�K;K℄N ;k0(~x) ̂(k; t)℄


L2+ kV (x)kL1 


(1� P 0[�K;K℄N ;k0(~x)) ̂(k; t)


L2� 


(1� P 0[�M;M ℄N ;k0(~x))[V̂ (k) ? P 0[�K;K℄N ;k0(~x) ̂(k; t)℄


L2+ kV (x)kL1 K�1p2qjE0j+ k (x; 0)k2L2 (kV (x)kL1 + 1=2) (8.4)The last term 
an be made as small as ne
essary by making K large, whi
h wewill do shortly. We 
an 
al
ulate this by:


(1� P 0[�M;M ℄N ;k0(~x))[V̂ (k) ? P 0[�K;K℄N ;k0(~x) ̂(k; t)℄


2L2� Z([�(M+k0);(M+k0)℄N )C �����Z[�(K+k0);(K+k0)℄N C 0V e��j~k�~k0j ̂(~k0; t)d~k0�����2 d~k(8.5)The inner integral is the 
onvolution of a 
ompa
tly supported fun
tion withan exponentially de
aying one. The result is exponentially de
aying. The outerintegral is then integrated over the tail of this exponentially de
aying fun
tion,and is therefore exponentially small. 90



Lemma 8.2 Suppose j~kj1 � (K+k0), in parti
ular suppose that j~kj j � K+k0with j 2 1 : : : N . We have the following bound on the inner integral:�����Z[�(K+k0);(K+k0)℄N C 0V e��j~k�~k0j ̂(~k0; t)d~k0�����2� (C 0V )22(K + k0)e�2�(j~kj1�K�k0) k (x; 0)k2L2 ��N+1Proof. Sin
e j~kj1 � (K + k0), there exists j so that ���~kj��� � K + k0. Suppose,without loss of generality, that ~kj � K + k0 (the 
ase when ~kj � �K � k0 isjust a 
hange of 
oordinates). We 
an then 
al
ulate:�����Z[�(K+k0);(K+k0)℄N (C 0V )2e��j~k�~k0j ̂(~k0; t)d~k0�����2 �Z[�(K+k0);(K+k0)℄N (C 0V )2e�2�j~k�~k0j 


 ̂(~k; t)


2L2� 2(K + k0)e�2�(~kj�K�k0) 


 ̂(~k; t)


2L2 Z[�(K+k0);(K+k0)℄N�1 e�2�j~k�~k0j1d~k0� 2(K + k0)e�2�(~kj�K�k0) 


 ̂(~k; t)


2L2 ZRN�1 e�2�j~k�~k0j1d~k0� 2(K + k0)e�2�(~kj�K�k0) 


 ̂(~k; t)


2L2 ��N+1Finally, note that 


 ̂(~k; t)


L2 = k (x; 0)kL2 and we are done. �Lemma 8.3 The following equation holds.Z([�(M+k0);(M+k0)℄N )C e�2�(j~kj1�K�k0)d~k= 2N(2�)�Ne2�(K�k0)�(N; 2�(M + k0))�MNe�2�(M�K)2N(2�)�N (8.6)In parti
ular, (8.6) vanishes faster than e�(2��Æ)M for any Æ > 0.
91



Proof. The set f~k : j~kj1 = ug has surfa
e area 2NuN�1. Thus, we �nd that:Z([�(M+k0);(M+k0)℄N )C e�2�(j~kj1�K�k0)d~k= Z 1M+k0 2NuN�1e�2�(u�K�k0)du = 2Ne2�(K�k0) Z 1M+k0 uN�1e�2�udu= 2Ne2�(K�k0) Z 12�(M+k0)(v=2�)N�1e�v dv2�= 2N(2�)�Ne2�(K�k0) Z 12�(M+k0) vN�1e�vdv= 2N(2�)�Ne2�(K�k0)�(N; 2�(M + k0))The asymptoti
s follow by applying (4.15) to �(N; 2�M). �We now apply lemma 8.2 to the inner integral of (8.5), and lemma 8.3 tothe outer integral. We thus �nd that:(8.5) � (C 0V )22��N+12N(2�)�N� 


 ̂(~k; t)


2L2 (K + k0)e2�(K�k0)�(N; 2�(M + k0)) (8.7)Thus:(8.4) � C 0V 2��(N+1)=2N1=2(2�)�N=2� k (x; 0)kL2pK + k0e�(K�k0)p�(N; 2�(M + k0))+ kV (x)kL1 K�1p2qjE0j+ k (x; 0)k2L2 (kV (x)kL1 + 1=2) (8.8)We will now make K and M suÆ
iently large.We 
hoose K in order to obtain:kV (x)kL1K�1p2qjE0j+ k (x; 0)k2L2 (kV (x)kL1 + 1=2)� 12 ÆNL k (~x; t)kL2(4Hs+(~g(~x))H�s+ (e�x2=�2))This yields:K = 23=2(4Hs+(~g(~x))H�s+ (e�x2=�2))� kV (x)kL1qjE0j+ k (x; 0)k2L2 (kV (x)kL1 + 1=2)ÆNL k (x; 0)kL2
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We now sele
t M so that:C 0V 2��(N+1)=2N1=2(2�)�N=2� k (x; 0)kL2pK + k0e�(K�k0)p�(N; 2�(M + k0))� 12 ÆNL k (~x; t)kL2(4Hs+(~g(~x))H�s+ (e�x2=�2))This yields:M = k0max;NL = �k0+ (2�)�1��1 N; ÆNL2N�7�2N�1e�2�(K�k0)(C 0V )2N(K + k0)(Hs+(~g(~x))H�s+ (e�x2=�2))2! (8.9)In terms of asymptoti
s, we �nd thatK = O(Æ�1NL) andM = ��1(N; e�2�K=K) =��1(N; e�2�Æ�1NLÆNL), thus M = k0max;NL grows at most Æ�1�ÆNL for any Æ > 0.Thus we have satis�ed (5.9a).Bounds in Spa
eTo verify (5.9b), we need to 
ompute a bound on


P s[�LNL;LNL℄N ;x0(~x) (~x; t)


L2 ;where we are free to 
hoose L0NL.We 
an bound this by 


(1� P s[�LNL;LNL℄N ;x0(~x))V (x)


L1 k (~x; t)kL2 . Ob-serve that:


(1� P s[�LNL;LNL℄N ;x0(~x))V (x)


L1 �


1� P s[�LNL;LNL℄N ;x0(~x)


L1 CV hL0NLi�1�� � CV hL0NLi�1��Therefore, we �nd that in order to make


P s[�LNL;LNL℄N ;x0(~x) (~x; t)


L2 � ÆNL k (~x; t)kL2(4Hs+(~g(~x))H�s+ (e�x2=�2)) ;we need only letLNL = hÆ�1NLCV (4Hs+(~g(~x))H�s+ (e�x2=�2))i 11+�Asymptoti
ally, LNL = O((1=ÆNL) 11+� ).If V (x) de
ays exponentially, one 
an prove a similar estimate in whi
h LNLwill behave like O(ln(1=ÆNL)).Assumption 5Various propagation estimates 
an be used to verify assumption 5 (usingproposition 5.4) using propagation estimates, e.g. [27℄.93



We would break the non-ne
essary waves involved in assumption 5 into waveswhi
h are pointing away from ~x = 0, waves whi
h are pointing towards ~x butdo not have enough velo
ity to rea
h [�Lint; Lint℄N before t = Tmax, and thosewaves for whi
h ~x � ~k = 0 (waves moving in the angular dire
tion).The outgoing waves 
an be treated by using minimal velo
ity bounds on thepositive spe
tral subspa
e of the dilation generator (�i=2[~x � r+r � ~x℄).The waves whi
h are moving inward, but too slowly too rea
h the 
omputa-tional region, are 
ontrolled by maximal velo
ity bounds.The treatment of the third type of waves is more intri
ate, whi
h requires theuse of velo
ity bounds with modi�ed dilation operators and 
overing argumentsin phase spa
e. The idea is that they are 
ontained in regions of phase spa
efor whi
h [�L
omp; L
omp℄N is outside the propagation set.It is our intent to 
al
ulate this all expli
itly at some later point.Assumption 6This is, we believe, the most diÆ
ult assumption to verify.Assumption 6 has two 
omponents whi
h need to be veri�ed. We only knowof a general argument whi
h is 
apable of dealing with one of them.The basi
 tool for verifying assumption 6 is proposition 5.5. Proposition 5.5says that all we need to do is verify that framelets whi
h are outside the boxhave j~bk0j2 � 2pNkmin, and for whi
h ~ax0 is lo
ated 
one around ~bk0.This means that we need to show that framelets whi
h are far from this 
onehave small mass, and framelets below 2pNkmin have small mass.We believe the �rst 
an be veri�ed by using pseudo
onformal-type estimates,whi
h we will sket
h out below. We are un
ertain at this time how to show thatthe amount of mass below 2pNkmin is small. For this reason, we are developinga multis
ale algorithm 
apable of handling low frequen
y waves [37℄.We now sket
h an argument suggesting that waves 
luster on waves where~x k ~k. Re
all that in remark 5.6, we provided an argument suggesting thatif k(~x � itr)f(~x)kL2 was bounded, then the mass of f(~x) sitting on frameletswith j~ax0 �~bk0tj2 � 0 is small.We now suppose that  (x; t) is lo
ated stri
tly on positive energies, i.e.�[kmin;1)(H) (x; t) =  (x; t). Let us also suppose that h~xi2V (~x) de
ays rapidly.This suggests to us that 

j~xj22V (~x) (x; t)

L2 � 
onst t�3=2.We 
an then de
ompose  (x; t) by Duhamel in the following way: (x; t) = ei(1=2)�t (x; 0) + Z (j+1)t=njt=n ei(1=2)�(t�t0)V (x) (x; t0)dt0We then observe that:


(x� itr)ei(1=2)�t (x; 0)


L2 = 

j~xj22 (x; 0)

L2In addition, we �nd that:


(x� i(t� t0)r)ei(1=2)�(t�t0)V (x) (x; t0)


L2 = 


ei(1=2)�(t�t0)j~xj22V (x) (x; t0)


L2= 

j~xj22V (x) (x; t0)

L2 � 
onst(t0)�3=294



We then observe that this suggests that the framelet 
oeÆ
ients of ei(1=2)�(t�t0)V (x) (x; t0)are also small when ~ax0 ? ~bk0.This indi
ates that:

P~a?~b (x; t)

L2 � small 

j~xj22 (x; 0)

L2 + small Z t0 
onst(t0)�3=2dt0 (8.10)This argument, whi
h we believe 
an be made rigorous, suggests why webelieve that all of our assumptions 
an be veri�ed for the 
ase of linear, timeindependent potentials.9 Numeri
al TestsIn this se
tion we dis
uss the results of our numeri
al tests.We built and implemented the algorithm in the program Kitty . Kittyis implemented in the Python programming language, with external libraries(written in C) handling the expensive numeri
al 
omputations. The external li-braries used are FFTW (Fastest Fourier Transform in the West), and Numarray(support for large arrays in Python, at C-like speeds). Kitty also 
alls the ex-ternal programs Gnuplot to generate graphs and ImageMagi
k/gifsi
le in orderto produ
e movies for 2-dimensional simulations.Kitty is li
ensed under the GPL. It is very mu
h a work in progress. Kitty
omes with little do
umentation and no warranty. Use it at your own risk.Various test 
ases, spanning many types of parameters, are also available fordownload from the author's webpage, http://math.rutgers.edu/~stu

hio.9.1 T +R = E: Simple TestsThe standard method for testing absorbing boundaries is simply to throw 
o-herent states (whi
h are well lo
alized in frequen
y) at the boundary. Afterthe 
ollision, the amount transmitted (if absorbing potentials are used { forDiri
hlet-to-Neumann and other boundaries nothing is transmitted) and theamount re
e
ted are measured.This is a useful test, although it is by no means 
ompletely 
hara
terizesthe errors. We explain why, and provide an example where this method fails inse
tion 9.2.9.2 T +R 6= E: A tri
kier testWe des
ribe in this se
tion a s
enario in whi
h 
omputing a bound on T + Rprovides no useful estimate.Consider the following linear S
hr�odinger equation (with (~x; t) 2 R2+1 ):i�t (x; t) = ��(1=2)�� 150:05j~xj22 + 1� (x; t) (9.1) (x; 0) = ei7~x2e�j~xj22=20 + ei4~x1e�j~xj22=2095



Observe that the initial 
ondition 
onsists of two 
oherent states of equalmass, one with velo
ity 4 and one with velo
ity 7. The notable fa
t aboutthis parti
ular potential is that the fast gaussian has enough kineti
 energy to(mostly) es
ape from the binding potential. The slow gaussian does not. Theslow gaussian moves toward the boundary, turns around and returns.The problem with the absorbing potential approa
h is that the absorbing po-tential does not distinguish between in
oming and outgoing waves. It dissipateseverything on the boundary in
luding the waves that should have returned. Thiswill o

ur even if one 
an 
onstru
t a 
omplex potential for whi
h T +R = 0!We ran three simulations of (9.1). The �rst was performed using the TDPSFwith � = 2:0. The region of 
omputation was [�25:6; 25:6℄2 The se
ond wasperformed (on the same region) with an absorbing potentialV1(~x) = �20ie�(~x1�25:6)2=36 � 20ie�(~x2�25:6)2=36:The third was solved with periodi
 boundary 
onditions on the region[�102:4; 102:4℄2. This boundary is suÆ
iently distant so that the outgoing waves
annot return to the origin for a time 204:8=7:0 � 29. Thus, we will take thedistant boundaries simulation as our ben
hmark, at least for t � 29.After t = 29, we have some qualitative knowledge of the behavior. We expe
tthat the solution 
onsists of 
ontinuum and bound states. Over a short time,the 
ontinuum will disperse, leaving only the bound states. The bound stateswill remain forever.In all three 
ases, the quantity M(t) = k (x; t)kL2([�10;10℄2) was 
omputed.The simulation using the TDPSF agreed with the simulation on the larger regionto within 1:25% for t < 2910.The simulation using 
omplex potentials had anerror of 4% for t < 29, and the error appears to in
rease after that.In fa
t, examining the graphs ofM(t) (see �gure 1) part of the bound statesappear to be dissipating. In fa
t, we believe that this dissipation will 
ontinueand the error will only get worse with time.The reason the TDPSF performs so mu
h better than the 
omplex potentialis that it distinguishes outgoing waves from in
oming waves on the boundary.The TDPSF only removes waves whi
h sit on the boundary and are also outgoingwith suÆ
iently high velo
ity. The trapped waves, although they sit on theboundary, do not have high outgoing velo
ity, and thus are not removed.9.3 Violations of Assumption 4: Soliton FilteringNumeri
al experiments suggest that in some 
ases, assumption 4 
an be re-laxed. Consider g(t; ~x;  (~x; t)) (~x; t) of the form f(j (~x; t)j2) (~x; t), wheref(j (~x; t)j2) (~x; t) is some nonlinearity that supports solitons.10In fa
t, the 1:25% is mu
h better than one might otherwise expe
t. A simple 
al
ulationshows that the potential is equal to �0:44 on the boundary. Therefore, assumption 4 is notsatis�ed, sin
e the \nonlinearity" is not 
ontained inside the box. Additional simulationsusing the domain [�51:2; 51:2℄2 yielded almost 
omplete agreement with the simulation usingdistant boundaries, and had the 
orre
t qualitative behavior after that.96
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Figure 1: A graph of M(t) = k (x; t)kL2([�10;10℄2) vs t. The distant boundarysimulation is invalid at time t = 29, due to the fa
t that the outgoing pulsereturns at this time.It turns out that solitons moving with suÆ
iently high velo
ity are �lteredby our boundary 
onditions as well. The reason is simply the fa
t that anoutgoing soliton is lo
alized in phase spa
e on outgoing waves. Consider asoliton, taking the form ei(vx�!t)�(x�vt), for some smooth, well lo
alized �(x)(e.g. �(x) = 
osh(x)�1).The Fourier transform of the soliton is also well lo
alized around frequen
yv. If v is suÆ
iently large, then the framelet 
oeÆ
ients of ei(vx�!t)�(x � vt)will 
luster around (x; v). When x is near the boundary, these framelets will allbe outgoing under the free 
ow ei(1=2)�t.The soliton is also leaving the box under the full 
ow U(t). Although ei(1=2)�tand U(t) move the soliton very di�erently (one dispersively, one 
oherently),they both move it out of the box and in nearly the same dire
tion.We ran numeri
al tests to demonstrate this as follows. We solved theS
hr�odinger equationi�t (x; t) = �(1=2)�� j (x; t)j2  (x; t)on the region [�51:2; 51:2℄. The TDPSF was pla
ed on the boundary. Theinitial 
ondition was taken to be  (x; 0) = 2�1=2eivx= 
osh(x�15) for v = 1::15.We then 
omputed:E(v) = supt<200=v k (x; t) �  ex(x; t)kL2([�10;10℄)k ex(x; 0)kL2(R) (9.2)97
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Figure 2: A plot of the error (de�ned as in (9.2)) as a fun
tion of velo
ity. Notethe exponential improvement in a

ura
y with velo
ity.The fun
tion  ex(x; t) is the exa
t solution. The result of this experiment isplotted in �gure 9.3. The time 200=v was 
hosen sin
e it is more than enoughtime for errors to return to the region [�10; 10℄.Remark 9.1 The paper [40℄ proposes an alternative method of absorbing bound-aries (namely the paradi�erential strategy), based on a novel method of ap-proximating the Diri
hlet-to-Neumann operator. A similar numeri
al test wasperformed for those boundary 
onditions. For a soliton at velo
ity 15, Szeftelobtained E(15) = 0:08 at best. For 
omparison, we obtain E(v) = 2:86� 10�6for � = 1 and E(v) = 1:88 � 10�09 for � = 3. It is worth noting that themethodology we use di�ers somewhat from that of [40℄ (amoung other things,we used spe
tral methods to solve the interior problem rather than FTDT).It is somewhat surprising that this o

urs, sin
e the method des
ribed in [40℄a
tually takes the nonlinearity into a

ount. In 
ontrast, our method a
tuallyassumes the nonlinearity is nearly zero on the boundary. In spite of that, wehave an error whi
h is of order 10�6 � 10�7 as opposed to 0:08.9.3.1 A Coin
iden
e, not a Conje
tureThis is not a general phenomenon, however, as illustrated by the followingexample. Consider the KdV equation, and suppose a s
heme similar to ourswere implemented. That is, we de
ompose the solution into gaussian framelets,and �lter them if they are leaving under the free 
ow. If a soliton exists, and is98



sitting near the right boundary, it too will be �ltered, sin
e it is leaving underthe free 
ow. But under the full 
ow, the soliton will not leave the box, sin
esolitons propagate leftward while free waves propagate rightward.The fa
t that our method su

esfully �lters outwardly moving solitons is a
onsequen
e of the fa
t that fast-moving solitons have very little in
oming waves.For some nonlinearities, a soliton or soliton-like obje
t at position (~ax0;~bk0) inphase spa
e a
tually propagates along the traje
tory ~ax0 + t~bk0. However, notall solitons have this feature, and when they la
k it, there is no reason to believeour method will be e�e
tive.9.3.2 Soliton FiltersOur motivation in 
onstru
ting the TDPSF was the following. Nonre
e
tingboundary 
onditions are possible be
ause we understand the motion of wavesaway from the support of the nonlinearity. So we used that knowledge to deter-mine what to �lter, and what not to �lter.We propose that a pra
ti
al way to �lter outgoing solitons is simply to iden-tify them and remove them. That is, at a time Tstep, we determine whether (x; Tstep) might have a soliton lo
ated near the boundary. If so, use the de-
omposition  (x; Tstep) = S(x) + R(x), where S(x) is the soliton and R(x) isthe remainder. We then determine whether S(x) is outgoing. If it is, we thenset  (x; Tstep+) = R(x). Thus, the soliton has been �ltered.This does, of 
ourse, depend on an expli
it knowledge of what solitons looklike. But that information is available in many 
ases, so assuming it to beavailable is not unreasonable.10 Comparison to Other MethodsA variety of other approa
hes have been proposed for open boundaries. Theyfall into two main 
ategories, and we dis
uss them both brie
y.10.1 Engquist-Majda type Boundaries, and Diri
hlet-to-Neumann OperatorsThe 
losest approa
h to ours is the original Engquist-Majda boundary 
ondi-tions, found in [18, 16℄. The prin
iple that was guiding them was that nearthe boundary, the geometri
 opti
s approximation to wave 
ow is suÆ
ientlya

urate to �lter o� the outgoing waves.Our result is a dire
t analogue of this - the gaussian framelet elements behave(under the free 
ow) like 
lassi
ally free parti
les. We use a di�erent method to�lter, but the guiding prin
iple is the same.In 
omparison, the approa
h that is farthest from ours are the various mod-ern extensions to [18℄. Modern approa
hes attempt to 
onstru
t the exa
t solu-tion on the boundary, and then impose it as a boundary 
ondition. In prin
iple,99



this is the best possible approa
h. However, in pra
ti
e, this will be very diÆ-
ult, be
ause if the exa
t solution were known, we would not need a simulation!In fa
t, this approa
h is suÆ
iently diÆ
ult that we know of few aproa
hesfor the S
hr�odinger equation. We des
ribe the two main approa
hes we areaware of, and remark that only the paradi�erential strategy of J. Szeftel evenattempts to deal with nonlinear equations.10.1.1 Exa
t Diri
hlet-Neumann maps for the S
hr�odinger EquationTo deal with the free S
hr�odinger equation (no nonlinearity or potential),Lubi
hand S
h�adle [28, 34, 33℄ 
onstru
ted a novel method for using the exa
t boundary
onditions rather than an approximate one. Their method 
onsists of approxi-mating the integral kernel by using a pie
ewise exponential approximation (intime) and the fa
t that 
onvolution with an exponential 
an be done in linearrather than polynomial time. This approa
h appears to work ni
ely for the freeS
hr�odinger equation, although it is un
ertain that it 
ould be applied to thefull Diri
hlet-to-Neumann operator of a nonlinear equation.10.1.2 Paradi�erential StrategyThe only fully nonlinear Diri
hlet-to-Neumann operator that we are aware of was
onstru
ted by J. Szeftel in [41℄. Szeftel 
onstru
ts the Diri
hlet-to-Neumannoperator by a modi�ed version of the paradi�erential 
al
ulus (introdu
ed in [4℄).His methodology is demonstrated in 1 spa
e dimension, with a nonlinearity thatis C1 in x,  (~x; t) and �x (~x; t). He proves lo
al well posedness of the boundaryoperator.However, extensions to RN appear highly nontrivial. The assumptions aresigni�
antly stronger than ours, and there are no error bounds. However, thenumeri
al experiments look promising and the results appear a

urate for ra-diative problems (see also remark 9.1).10.2 Absorbing Potentials/ PML10.2.1 Absorbing PotentialsAbsorbing (
omplex) potentials, des
ribed in [29℄, are the 
urrent \industrystandard". The approa
h 
onsists of the following. Instead of solving (1.1) onthe box [�Lint; Lint℄N , we solvei�t	(~x; t) = �(1=2)�	(~x; t) + g(t; ~x;	(~x; t))	(~x; t) +�ia(x)	(~x; t)on the region [�(Lint + w); (Lint + w)℄N . The fun
tion a(x) is a positive fun
-tion supported in [�(Lint + w); (Lint + w)℄N n [�Lint; Lint℄N . The term �ia(x)is a dissipative term whi
h is lo
alized on waves whi
h have left the region[�Lint; Lint℄N . Thus, it (partially) absorbs waves whi
h have left the domain ofinterest.This approa
h is the mainstay of absorbing boundaries, due to it's generalityand simpli
ity. One important reason for the attra
tiveness is that they are100




ompatible with the FFT/Split Step algorithm (algorithm 2.2), with minimaldiÆ
ulty of programming.Of 
ourse, the potential a(x) must be tuned to the given problem. Givenkmin, kmax, one must sele
t the height and width of the absorber so that it killsmost of the wave between kmin and kmax, resulting in an error � .Waves with momentum lower than kmin are mostly re
e
ted, and waveswith momentum higher than kmax are mostly transmitted (and therefore wraparound the 
omputational domain).Heuristi
 
al
ulations and numeri
al experiments suggest that the absorbermust have width proportional to Ckmax ln(�)=kmin, with C depending on thepre
ise shape of the potential. In 
ontrast, our method works on a boundarylayer of width C ln(�)=kmin, whi
h is smaller by a fa
tor of kmax.An additional problem with absorbing potentials is that they kill everythingon the boundary. They make no distin
tion between in
oming and outgoingwaves, and thus they absorb some waves whi
h should return to the region ofinterest. This poses a fundamental limitation on their use, espe
ially in problemswhere the nonlinearity 
reates long range e�e
ts, whi
h was illustrated in se
tion9.2.10.2.2 Perfe
tly Mat
hed LayersPerfe
tly Mat
hed Layers (PML) are a variation on this approa
h, proposed in[24℄ for the S
hr�odinger equation (see also [3℄, where they are �rst proposedfor Maxwell's equations). In [24℄, they are tested for the 1 dimensional freeS
hr�odinger equation, and the result appears reasonably a

urate.To use a PML, instead of solving (10.2.1), we solve:i�t	(~x; t) = �(1 + ia(x))(1=2)�	(~x; t) + g(t; ~x;	(~x; t))	(~x; t)where a(x) is now a fun
tion 
hosen rather 
arefully (see below).The PML has two main advantages over 
omplex absorbing potentials. First,the fa
t that ia(x) is now in the 
oeÆ
ient of � now means that high momentumwaves are dissipated more strongly than low momentum ones. Thus, fast wavesdo not pass through the absorbing potential without being dissipated.Se
ond, the fun
tion a(x) 
an be 
hosen pre
isely so that there is no re-
e
tion at the interfa
e (the boundary of [�Lint; Lint℄N ). However, this doesnot eliminate all re
e
tions, as some re
e
tions will be 
reated in the region[�(Lint + w); (Lint + w)℄N n [�Lint; Lint℄N .The PML has the same problem as 
omplex absorbing potentials with re-gards to dissipating in
oming waves on the boundary.Lastly, some PML methods are unstable. Numeri
al experiments in [32℄suggest that the PML for 2 dimensional Maxwell's Equations exhibit a long timeinstability. It is possible that this e�e
t o

urs for the S
hr�odinger equation aswell.The PML method for the S
hr�odinger equation is still very mu
h undevel-oped. This makes a more detailed 
omparison diÆ
ult to make.101
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