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10 Comparison to Other Methods 9910.1 Engquist-Majda type Boundaries, and Dirihlet-to-Neumann Op-erators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9910.1.1 Exat Dirihlet-Neumann maps for the Shr�odinger Equa-tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10010.1.2 Paradi�erential Strategy . . . . . . . . . . . . . . . . . . . 10010.2 Absorbing Potentials/ PML . . . . . . . . . . . . . . . . . . . . . 10010.2.1 Absorbing Potentials . . . . . . . . . . . . . . . . . . . . . 10010.2.2 Perfetly Mathed Layers . . . . . . . . . . . . . . . . . . 1011 Introdution and De�nitionsConsider a semilinear Shr�odinger equation on RN+1i�t (x; t) = �(1=2)� (x; t) + g(t; ~x;  (~x; t)) (~x; t) (1.1)where g(t; ~x; �) is some semilinear, Lipshitz (in some Sobolev spae) nonlin-earity. For instane, g(t; ~x; �) ould be V (~x; t) + f(j (~x; t)j2) for some smoothfuntion f and (spatially) loalized potential V (~x; t).We assume the initial ondition and nonlinearity are suh that the nonlin-earity remains loalized inside some box [�LNL; LNL℄N . Outside this regionthe solution is assumed to behave like a free wave (a solution to (1.1) withg(t; ~x; �) = 0), whih is well understood.One very ommon method of solving suh a problem is domain trunation.That is, one solves the PDE (1.1) numerially on a region [�L;L℄N . On the�nite domain, of ourse, boundary onditions must be spei�ed. Dirihlet andNeumann boundaries introdue spurious reetions, while periodi boundaries(whih are desirable in order to use fast spetral methods) allow outgoing wavesto wrap around the omputational domain. In either ase, a serious mistakehas been made. This auses the numerial solution to beome inorret after atime T � L=kmax, where kmax is the \maximal veloity" of the solution1.It is an interesting and well known problem to �nd a way to minimize theseerrors. The simplest way is simply to expand the domain as the support of (~x; t) grows, but this is omputationally very expensive.For the wave equation and other stritly hyperboli wave equations thisproblem has a beautiful exat solution (.f. [18, 16℄), namely the Dirihlet-to-Neumann map. The equation (1.1) is solved in a region [�Lint; Lint℄N , and theboundary onditions are given by  (~x; t) (where  (~x; t) is the solution to (1.1)on RN ) on the boundary. Of ourse, sine  (~x; t) is not known, it must be ap-proximated. The usual method (used with great suess for the wave equatin) isto approximate the exat solution by rational funtions in the frequeny domain.1There is, in general, no maximal veloity of the solution. However, we will de�ne kmaxmore preisely later on. kmax will be the frequeny suh that the energy of  ̂(k; t) for k > kmaxis small. 3



These orrespond to boundary onditions given by a high order di�erential op-erator. This result depends strongly on the fat that in the frequeny domain,the Dirihlet-to-Neumann map behaves like a polynomial at 1.For the Shr�odigner equation and other dispersive wave equations, the situ-ation is not so simple. Even in the free ase (g(t; ~x;  (~x; t)) = 0), it is impossibleto onstrut loal (in time and spae) approximations to the Dirihlet-Neumannoperator. In addition, onstruting the Dirihlet-Neumann map in the ase�(1=2)�+V (x) is not an easy matter. In the nonlinear ase we know of resultsonly in 1 spae dimension, and with no rigorous error estimates [41, 42, 43℄.Another drawbak of the Dirihlet-to-Neumann approah is that it preludesthe use of spetral methods to solve the interior problem. Spetral methods(desribed on page 17) use the FFT (Fast Fourier Transform) to diagonalizethe operator ei(1=2)�t. This approah naturally imposes periodi boundaries.Spetral methods are desirable, sine they are believed to be more aurate thanmost other methods on periodi domains (for a �nite set of spatial frequenies).The error due to boundary onditions, however, makes them unfeasible. Thus,one usually reverts to using FDTD (Finite Di�erene Time Domain) in theirplae, but the auray of these methods is limited and dereases rapidly withhigh spatial frequenies.An ad-ho approah (desribed in, e.g. [29℄) whih is ommonly used is toadd an absorbing potential, �iV (x) (~x; t) to the right hand side of (1.1), withV (x) = 0 away from the boundary. This potential has the e�et of partiallydissipating waves as they pass over it. Thus, as waves reah the boundary, theyare partially dissipated by the omplex potential, reduing the reetion. Thisapproah is far from optimal, but is still the industry standard due to the easeof implementation, ompatibility with spetral methods and simpliity.A variant on this approah is the PML (Perfetly Mathed Layer). Proposedoriginally for Maxwell's equations in [3℄ and for the Shr�odinger equation in[24℄, it is a variant on the absorbing potential method in whih � is replaedby (1� ia(x))� (with a(x) nonzero only in a boundary layer) in suh a way sothat when a(x) \swithes on", there is no reetion at the interfae.1.0.1 Our ApproahWe propose an alternative approah to absorbing boundaries. We make theassumption that near the boundary of the box, the solution behaves like a freewave. We make no assumptions on the nonlinearity, beyond the fat that itis loalized on the inside of the box and loally Lipshitz. In partiular, thenonlinearity ould take the form of a ompliated time dependent short rangepotential V (~x; t) (~x; t), a polynomial nonlinearity f(j (~x; t)j2�) (~x; t) (for f(z)a Lipshitz funtion) or others.We also assume that the solution remains loalized in frequeny, that is ̂(~k; t) is small o� the box [�kmax; kmax℄N for some large number kmax (themaximal momentum of the problem, whih we assume exists).Our algorithm is as follows. We assume the initial data is loalized on aregion [�Lint; Lint℄N . We solve (1.1) on the box [�(Lint+w); Lint+w℄N on the4



time interval [0; Tstep℄.By making Tstep small enough (smaller than w=kmax), we an ensure that (~x; t) is mostly loalized inside box [�(Lint + w); (Lint + w)℄N . Thus, sinevery little mass has atually hit the boundaries, very little has reeted and wehave made few errors.We now deompose the solution  (~x; t) into a sum of gaussians (indexed by~a;~b 2 ZN, with x0; k0; � all positive onstants satisfying ertain onstraints tobe made preise later): (x; Tstep) = X(~a;~b)2ZN�ZN  (~a;~b)��N=4��N=2eik0~b�~xe�j~x�~ax0j22=2�2Beause  ̂(~k; t) is loalized on [�kmax; kmax℄N ,  (nTstep)(~a;~b) � 0 is for j~bk0j1 >kmax. Also, beause  (~x; t) is loalized on [�(Lint+w); (Lint+w)℄N ,  (~a;~b) � 0for j~ax0j1 > Lint + w.Thus, we �nd that: (x; Tstep) � Xj~ax0j1�Lint+wj~bk0j1�kmax  (~a;~b)��N=4��N=2eik0~b�~xe�j~x�~ax0j22=2�2We then examine the gaussians near the boundary (with j~ax0j1 � L) anddetermine whether they are leaving the box or not (after propagation under thefree ow). This is simple enough to do, sine elementary quantum mehanistells us that:ei(1=2)�t��N=4��N=2eik0~b�~xe�j~x�~ax0j22=2�2= exp�i~bk0 � (~x�~bk0t� ~ax0)��N=4�N=2(1 + it=�2)N=2 exp �j~x�~bk0t� ~ax0j222�2(1 + it=�2) !Essentially, ei(1=2)�t��N=4��N=2eik0~b�~xe�j~x�~ax0j22=2�2 moves along the trajetory~ax0 +~bk0t, while spreading about it's enter at the rate ��1.Then, if a given gaussian is leaving the box, we delete it. If it is not, we keepit. Some gaussians spread more quikly than their enter of mass moves, andwe do not present here an algorithm to deal with these gaussians. We simplyassume that there are not many of these, and so they pose little problem.Thus, after this �ltering operation, the only gaussians remaining are eitherinside the box [�Lint; Lint℄N , or inside the box [�(Lint + w); (Lint + w)℄N butmoving towards [�Lint; Lint℄N . We then repeat the proess, and propagate withperiodi boundaries until 2Tstep, and �lter again at this time.This desription is vague, and we will make it more preise later. In partiu-lar, we explain what we mean by \�", and also provide theoretial justi�ationof the method.In partiular, we prove rigorous error bounds, subjet to some relativelygeneral assumptions (most of whih an be estimated apriori or veri�ed apos-teriori). That is, for t 2 [0; Tmax℄ (where Tmax is some maximal time interval of5



interest) we show that:supt2[0;Tmax℄ �[�Lint;Lint℄N (x) ( (~x; t)�	(~x; t))Hs � �where 	(~x; t) is our approximate solution, � is some presribed error, and Hsb =Hs([�Lint; Lint℄N ) a Sobolev spae, with s = 0; 1. We believe that similar resultsan be proved for s > 1 without muh diÆulty, although ertain alulationswill be di�erent (most notably remark 4.6 and the exat alulations in setion4.2, see also remark 4.8 for a more preise explanation of the modi�ationsneessary for higher Sobolev spaes).1.0.2 Error BoundsWe alulate the error made at eah step in the above analysis and then add itall up to get the global error bound.For a general time-stepping algorithm (with periodi boundaries and no�ltering), the error bound would take the following form:supt2[0;Tmax℄ kU(t) 0(x) �	(x; t)kHsb � BoundaryError(Tmax)+ HighFrequeny(Tmax) + LowFrequeny(Tmax)+ NonloalNonlinearity(Tmax) + Instability(Tmax) (1.2)The term BoundaryError(Tmax) enompasses errors due to waves wrap-ping/reeting from the boundaries of the box. For many problems, this is thedominant error term. It is diretly proportional to the mass whih would have(if we were solving the problem on RN ) radiated outside the box [�Lint; Lint℄N .The HighFrequeny(Tmax) part stems from waves with momenta too high tobe resolved by the disretization. The term LowFrequeny(Tmax) enompasseserrors due to waves with wavelength that is long in omparison to the box. Theterm NonloalNonlinearity(Tmax) stems from that fration of the nonlinearityitself whih is loated outside the box. The Instability(Tmax) stems from thepossibility that the dynamis of the solution itself might amplify the other errorsdramatially (e.g. in strongly nonlinear problems).Our algorithm redues the term BoundaryError(Tmax) only. We show, by adisrete variant of the gaussian beam method, that if we �lter o� the outgoingwaves in the manner desribed previously, the boundary error term an be madearbitrarily small. The ost is inreasing the width of the region in whih �lteringtakes plae.The main drawbak of our algorithm is that it does not provide us theability to �lter low frequeny outgoing waves, that is to say waves for whih thewavelength is longer than the bu�er region. This is preisely what we wouldexpet from the Heisenberg unertainty priniple.Sine the goal of this work is to redue the error due to boundary reetion,all the error terms besides the boundary error term are made small by assump-6



tion. We provide no bounds on them, sine these bound would depend verystrongly on the spei� form of g(t; ~x;  (~x; t)) (~x; t).Remark 1.1 At �rst glane, it would appear that an absorbing boundary layer(either omplex potential or PML) would redue the boundary error nearly tozero, with the error being nothing more than those waves whih it fails to absorb.This intuition is false, and a ounterexample is provided in setion 9.2.The reason is as follows. Suppose we add an absorbing boundary layer(denoted by A) term to (1.1). Let  a(x; t) solve:i�t a(x; t) = (�(1=2)�+A) a(x; t) + g(t; ~x;  a;b(~x; t)) a;b(~x; t)Let  a;b(x; t) solve the orresponding periodi problem:i�t a;b(x; t) = (�(1=2)�b +A) a;b(x; t) + g(t; ~x;  a;b(~x; t)) a;b(~x; t)It is true that k a(x; t)�  a;b(x; t)kHsb is small (that is, the box problem withan absorber approximates the RN problem with an absorber). However, it is notneessarily true that k (x; t)�  a(x; t)kHsb is small, beause the RN problemwith an absorber may not aurately approximate the RN problem with noabsorber.The TDPSF algorithm sidesteps this issue by diretly approximating thesolution on RN , and only using the box propagator on regions of phase spaewhere it is guaranteed to be aurate.1.0.3 Strong PointsOur method is versatile and general, in the sense that it is merely a numerialappliation of the gaussian beam method. Extensions and modi�ations to othersorts of equations are likely to be straightforward, although one might prefer todeompose  (~x; t) into some other funtions di�erent than gaussians2.In partiular, we believe this an be extended without muh diÆulty to thefree wave equation, replaing gaussians by urvelets [7, 6℄.In addition, if the dynamis on the boundary are non-free, we believe ourmethod an be modi�ed to treat these dynamis eÆtively. Suppose that insteadof propagating along the trajetory ~ax0 +~bk0t, a typial gaussian propagatedalong the trajetory (~a;~b; t) instead. We ould still apply our method, exeptnow we would attempt to determine whether (~a; vb; t) is leaving the box ratherthan ~ax0+~bk0t when determining whih gaussians to �lter. We have no rigorouserror bounds on this method at this time, however we believe they ould beonstruted by methods similar to what we do in this work.Another advantage to our method is that when it does fail, it fails graefully.The main mode of failure is for too many gaussian's to fall into the region where2More preisely, for a given equation, one should use a family of oherent states whih isalso a frame. In addition, the family of oherent states should not make omputations tooomplex. 7



we annot determine whether they are inoming or outgoing3. However, if thisours, the algorithm is aware of it and an exeption is raised. In addition, ifone an determine what to do with these gaussians, one an ath the exeptionand do that. We are urrently developing a novel multisale algorithm that anbe used [37℄.We expet proofs of the error bound in ases like this to be simple (albeitlong) variations on the proof we give here.1.0.4 Our Weak SpotsOur method is based strongly on two main assumptions, whih will not hold forevery equation or every initial ondition.The most important assumption is that the solution behaves like a free waveoutside of a ertain box [�LF ; LF ℄N , and we demand that the omputationalregion enompass this box. If this does not hold, the error bound we provide isno longer valid. An example of this is the ase of a moving soliton whih leavesthe box4. The dynamis near the boundary are no longer free, sine the freeequation has no soliton solutions.We also assume the existene of some frequeny kmin, whih has the followingproperty. Outside a ertain box [�Lmin; Lmin℄N , the majority of the solution isomprised of gaussians with the property that if ~ajx0 � Lmin, then ~bjk0 � kmin(respetively if ~ajx0 � �Lmin, then ~bjk0 � �kmin). This implies that anypart of the solution whih has moved outside the box [�Lmin; Lmin℄N is movingoutward.Roughly, what this means is that anything whih has already reahed theboundary must be moving in the diretion of the boundary.Another diÆulty of our method is that it requires a bu�er region in whihwe �lter outgoing waves. This bu�er region needs to have width O(k�1min), andshould enompass many data points (in our examples we typially use approxi-mately 128-512 data points). For omparison, most Dirihlet-to-Neumann basedapproahes will use far fewer (just enough to numerially alulate a few deriva-tives). However, those approahes are typially nonloal in time, and insteadneed to use many data points in t rather than in x.Regardless, in both ases, the omputational ost on the boundary is ordersof magnitude smaller than the omputational ost simply to solve the problemon the interior region. See also [37℄.3The other mode of failure is spetral bloking in the frequeny domain, a ommon modeof failure for spetral methods. This problem ours when the lattie spaing Æx is too largeto resolve the high frequenies generated by the problem.4Numerial experiments suggest that our method an also �lter outgoing solitons in ertainases, with reasonable auray. This is, however, more a oinidene than anything else. Itwould not our if one applied this sheme to, e.g. the KdV equation.
8



1.1 De�nitions and NotationsFor the sake of preision, we give de�nitions of ertain well known objets(Sobolev spaes, Fourier transforms, et). We do this beause most onstants inthis paper are alulated expliitly, and the onstants will vary depending on,e.g., how the Sobolev spae is de�ned.Variables written in bold, e.g. Js (de�ned below), denote onstants whihvary only with the parameters indiated. For the onveniene of the reader, anindex of symbols is provided on page 103.We will solve (1.1) on the region [�Lomp; Lomp℄N , whih is a larger domainthan [�Lint; Lint℄N . The extra region [�Lomp; Lomp℄N n [�Lint; Lint℄N is abu�er region in whih we will �lter the outgoing waves.De�nition 1.2 We de�ne �b to be the Laplaian on the box [�Lomp; Lomp℄Nwith periodi boundary onditions.De�nition 1.3 We de�ne U(t) to be the propagator of (1.1) on RN . That is,U(t) is the map taking  0(x) 7!  (~x; t) where  (~x; t) solves (1.1) with initialondition  (~x; t) =  0(x).For an initial ondition  0, we de�ne U(tj 0(x)) to be the mapping  1(x) 7! 1(~x; t) where  1(~x; t) solves (1.3) with initial ondition  1(x; 0) =  1(x):�t 1(~x; t) = �(1=2)� 1(~x; t) + g(t; ~x;U(t) 0) 1(~x; t) (1.3)Similarly, Ub(t) is the propagator assoiated to (1.1), but with (1=2)�b replaing(1=2)� and [�Lomp; Lomp℄N replaing RN .De�nition 1.4 We make the following onventions regarding notation.j~xjp = 0� NXj=1 j~xj jp1A1=p for~x 2 RNWe let d(~x; ~y) denote the Eulidean metri on RN , i.e. d(~x; ~y) = j~x� ~yj2. Also,if A;B � RN , then: d(~x;A) = inf~y2A d(~x; ~y)d(A;B) = inf~x2A;~y2B d(~x; ~y)De�nition 1.5 We use the notation:hxi = (1 + jxj22)1=2We de�ne ertain onstants related to this notation:Js = sup~x2RNhxis=(1 + j~xjss)Jd = sup~x jrh~xijh~xi9



Thus: hxis � Js(1 + j~xjss)De�nition 1.6 We de�ne the Fourier transform by:f̂(~k) = (2�)�N=2 ZRN ei~k�~xd~xThe inverse Fourier transform is de�ned by:f(~x) = (2�)�N=2 ZRN e�i~k�~xd~kThus, the operator f(~x) 7! f̂(~k) is an isometry from L2(RN ; d~x)! L2(RN ; d~k),and kf(~x)kL2(RN;d~x) = f̂(~k)L2(RN;d~k).De�nition 1.7 We de�ne the Sobolev spaes Hs = Hs(RN ) by the norms:kfk2Hs = kfk2L2(RN) + NXj=1 �sxjf2L2(RN) (1.4)We make this partiular hoie of de�nition when we ompute the onstants.Similarly, we de�ne the Sobolev spaes Hsb by the norms:kfk2Hsb = kfk2L2([�Lomp;Lomp℄N ) + NXj=1 �sxjf2L2([�Lomp;Lomp℄N )We de�ne the onstanth�s = supf2Hs �kfkHs = h~kisf̂(~k)L2��1 = sup~k2Hs �(1 + ���~k���ss)=h~kis��1This allows us to relate the Sobolev spae we use to Sobolev spaes de�ned byusing h~ki.No matter whih Sobolev spae we work in, we always let h�j�i denote theinner produt in L2.De�nition 1.8 We make use of smoothed out harateristi funtions. Let Abe a losed set and let w be a positive number. Toward that end, we demandthat the funtion P sA;w(~x) have the following properties:1. P sA;w(~x) = 1 for ~x 2 A, and P sA;w(~x) = 0 if the eulidean distane between~x and A is greater than w.2. �kxjP sA;w(~x) exists and is ontinuous for j = 1::N , k = 1::s.3. P sA;w(~x) has minimal norm as an operator from Hs ! Hs.10



We adopt the onvention that P 0A;w(~x) = 1A(~x), that is, P 0A;w(~x) = 0 for ~x 62 Aregardless of w.De�nition 1.9 We de�ne m;s(�;N), mv;s(�;N) and m0;s(�;N),m0v;s(�;N)so that ZRNh~xise�j~y�~xj=�2d~y �m;s(�;N) +mv;s(�;N)j~xjs2ZRNh~xis ���re�j~y�~xj=�2 ��� d~y �m0;s(�;N) +m0v;s(�;N)j~xjs21.2 A Brief Disussion of FramesWe �rst disuss briey the onept of a frame, whih will be ruial to ouranalysis. A frame is basially an overomplete basis for a Hilbert spae, in ourase, L2(RN ). A framelet deomposition is the tool we use to break up thesolution  (~x; t) into inoming and outgoing omponents.De�nition 1.10 A frame is a ountable set of funtions (in some Hilbert spae,e.g. L2) f�j(x)gj2J (for some index set J) suh that 9AF ; BF suh that forany f 2 L2(RN ):AF kfkL2 � khf(x)j�j(x)ikl2(J) � BF kfkL2The framelet analysis operator F is the map f(x) 7! ~f 2 l2(J), where ~fj =hf j�j(x)i.The individual vetors �j(x) are referred to as framelets, and j 2 J arereferred to as framelet indies.De�nition 1.11 For a frame f�j(x)gj2J , the dual frame n~�j(x)oj2J is theunique frame suh that: ~�j(x) = (F ?F )�1�j(x)where F ? : l2(J) ! L2(RN ) is the adjoint of F . It is the \best" (see below foran explanation) set of vetors suh that for all f(x) 2 L2:f(~x) =Xj2J D~�j(x)jf(x)E �j(x)The dual frame is also a frame, with frame bounds B�1F and A�1F .The framelet oeÆients of a funtion f(x), are the \best" set of oeÆientssuh that: f(x) =Xj2J fj�j(x)11



The framelet oeÆients are not unique. By \best", we mean that ~fj is theolletion of framelet indies minimizingXj2J jfj j2 :They an be alulated by the formula:f(~a;~b) = D~�j(x)jf(~x)E (1.5)For a funtion f(x; t) depending on time, we denote by fj(t) the framelet oef-�ients of f(~x; t) at time t.1.2.1 Windowed Fourier TransformAs an example, we an let J = ZN�ZN and let the individual framelets �(~a;~b)(~x)be given by: �(~a;~b)(~x) = ��N=4��N=2eik0~b�~xe�j~x�~ax0j22=2�2For � 2 R+ and x0; k0 2 R+ suh that x0k0 � 2�, then the setn�(~a;~b)(~x)o(~a;~b)2ZN�ZNis a frame in L2(RN ). This is known as the windowed Fourier transform frame(with Gaussian window), abbreviated WFT frame. We will return to this spe-i� example later, in setion 3. This is the frame we use to build the outgoingwave �lter.Subjet to additional onditions on x0; k0 and �, the WFT an also form aframe in various Sobolev spaes (see Theorem 3.5, proved in [11℄, and orollary3.6).1.2.2 Phase Spae LoalizationFor the WFT �lter, we onsider the index set ZN � ZN to be a disrete repre-sentation of phase spae. That is, we onsider the point (~a;~b) to represent thepoint (~ax0;~bk0) in phase spae.For a frame that is well loalized in phase spae, it is simple to haraterizethe ow with respet to ei(1=2)�t. Under the free ow, individual frameletsbehave like lassial partiles. For instane, the Gaussian framelet �(~a;~b)(~x)travels along the trajetory ~ax0 + t~bk0 when propagated by ei(1=2)�t. Due tothe heisenberg unertainty priniple, the framelet also spreads out at the ratet=�. When ~bk0 � �, it is simple to determine whether the framelet is movinginward or outward, and delete it as is neessary. Of ourse, of ~bk0 is very loseto zero, then the spreading will be the dominant mode of transport. This is thelargest soure of error in our method. 12



Some other frames also provide good loalization in phase spae, althoughin di�erent ways. For instane, frames of wavelets travel onsistently alonglassial trajetories, but with the added ost that more slowly moving frameletsare spread out more in spae (as opposed to the Gaussian WFT, for whih allframelets have the same width).It appears very likely that one ould replae the WFT frame that we use bya frame of wavelets, or other frames, provided they have the appropriate phasespae loalization properties.In addition, we remark on one extremely promising possibility for extendingour analysis to hyperboli systems. It was proved reently by Demanet andCandes (.f. [7℄) that a urvelet frame allows for a sparse representation of wavepropagators in the high frequeny regime. We intend to investigate the possi-bility of using urvelets to onstrut a boundary �lter for dispersive hyperbolisystems, e.g. Maxwell's equations.1.2.3 Distinguished Sets of Framelets, Framelet FuntionalsWe now de�ne ertain distinguished sets of framelets, and also two relevantframelet funtionals. Namely, we de�ne the per-framelet error, and per-frameletrelevane funtions. The per framelet error funtional is a measure of the di�er-ene between the propagators ei(1=2)�t and U(t) when applied to that partiularframelet. Similarly, the per-framelet relevane funtional is a measure of howimportant a partiular framelet is to the solution inside the box.De�nition 1.12 For a frame f�jg, a Sobolev spae Hs and a distane Lint (tobe spei�ed later), we de�ne a family of funtions, the relevane funtions to be:ei(1=2)�t�jHs([�Lint;Lint℄N ) = Rsj(t) (1.6)We now de�ne the set of bad framelets, that is, those framelets whih ausemost of the short time error. Ideally, these are the ones we would like to �lter(although this will not be possible).De�nition 1.13 For a frame f�jg and a Sobolev spae Hsb , we de�ne a familyof funtions, the per-framelet error funtions to be a set of funtions Esj (t) suhthat: (ei(1=2)�t � ei(1=2)�bt)�j[�(Lint+w);(Lint+w)℄N 6 Esj (T ) (1.7)These will be omputed for the WFT frame later on.De�nition 1.14 For a frame f�jg, a Sobolev spae Hsb an error tolerane", and a time T (possibly 1), we de�ne the set of error ausing frameletsBAD("; s; T ) to be:BAD("; s; T ) = fj 2 J j9t < T suh that Esj (t) > "g (1.8)13



De�nition 1.15 The Big Box is de�ned by:BB(ÆBB)= ([�(Lint+w+Xs�(�; kmax; Lint+w)); (Lint+w+Xs�(�; kmax; Lint+w))℄N\x0ZN)� ([�kmax; kmax℄N \ k0ZN)We de�ne the omputational width, Lomp, by:Lomp = Lint + w +Xs�(�; kmax; Lint + w)The number Xs�(�; kmax; Lint + w) is an extra bu�er region needed due tothe widthe of the framelets. We de�ne it preisely.De�nition 1.16 Let BX = [�X;X ℄N , BK = [�K;K℄N for X;K < 1. ThenXs�(�;K;X) and Ks�(�;K)X are the smallest numbers for whih the followingestimate holds.Let X 0 = X �Xs�(�;K;X), K 0 = K �Ks�(�;K). Then:f(x)�PBX0�BK0 f(x)Hs � Hs+(~g(~x))H�s+ (e�x2=�2)� �(1� P sBX ;x0(~x))f(~x)Hs + (1� P 0BK ;k0(~k))f(~x)Hs + � kfkHs� (1.9)We provide a proof that this de�nition is not vauous in Theorem 3.19.We note that when we solve (1.1) with periodi boundary onditions, we willdo so on the box [�Lomp; Lomp℄N .The set NECC("; s; t) is the set of framelets whih have a nontrivial inomingomponent. That is, these are the framelets whih will return to the region ofinterest, at least partially. NECC("; s; T ) should be thought of as \inomingwaves", and annot be �ltered without ausing error.De�nition 1.17 For a frame f�jg, a Sobolev spae Hsb an error tolerane ",and a time T (possibly 1), we de�ne the set NECC("; s; T ) to be:NECC("; s; T ) = fj 2 J j9t < T suh thatRsj(t) > "g (1.10)2 Time Dependent Phase Spae FiltersWe now desribe the TDPSF (Time Dependent Phase Spae Filter) in moredetail. We �rst begin with a motivating example, namely the ase where weonsider the semilassial limit of (1.1).
14



2.1 The Motivating Example: Phase Spae Filters forClassial TransportConsider the following simple Shr�odinger equation, with V (x) a smooth, rapidlydeaying potential. �t (~x; t) = (�~2(1=2)� + V (x)) (~x; t) (2.1)In the limit when ~ ! 0, one an derive the following kineti equation for�(~x; t) = j (~x; t)j2:�t~�(~x;~k; t) = (~k � rx)~�(~x;~k; t) + (rV (~k) � rk)~�(~x;~k; t) (2.2a)�(~x; t) = Z ~�(~x;~k; t)d~k (2.2b)This equation is simple beause it an be solved by the method of harater-istis. The harateristi urve of (2.2) passing through the point (~x;~k) is thelassial trajetory of a partile at the point ~x with initial veloity ~k. Now, sup-pose that we are onsidering (2.2) on a box suÆiently large so that V (x) � 0near the edge of the box.In that ase, near the boundary, the harateristi urve at (~x;~k) is param-eterized loally by (~x+~kt;~k). Thus, it is easy to determine whether the ow isinoming or outgoing near the boundary. We merely hek whether (~x + ~kt;~k)is moving in or out of the box. The algorithm is, therefore, as follows.Surround the box [�Lint; Lint℄N with an extra region (in the ~x diretion)of width w. We let Lbu� = Lint + w. We assume that the problem is suhthat the veloity is bounded above by kmax. Then, inside the region [�(Lint +w); (Lint + w)℄N n [�Lint; Lint℄N , we �lter the outgoing trajetories every timeTstep = w=kmax. That is, letting ~�(~x;~k; t) be the density, we set ~�(~x;~k; t) = 0at the points (~x;~k) (with ~x 2 [�(Lint +w); (Lint +w)℄N n [�Lint; Lint℄N ) where(~x+ t~k;~k) is a trajetory whih is leaving the box in the time interval [0; Tstep℄.Thus, lassial trajetories whih are leaving the box are deleted before theyreah the boundary, while trajetories whih are not leaving the box are retained,and perfetly aurate propagation is ahieved.2.2 The TDPSFThe TDPSF algorithm is an attempt to perform this proedure for (1.1). Theprimary stiking point is the Heisenberg unertainty priniple. We an no longerloalize the solution preisely on outgoing positions and momenta. We an,however, ome lose. By expanding the solution  (~x; t) in a frame having goodphase spae loalization properties, we an ome reasonably lose toThus, by using a �lter with good phase spae loalization, we an ome loseto extending this proedure to Shr�odinger type equations. The only region ofphase spae where this works poorly is the region near ~k = 0, due to the inabilityto loalize a funtion only on outgoing trajetories.15



Therefore, the algorithm we propose is as follows.Suppose we have an initial ondition  0(x). The initial ondition must bewell loalized in [�(Lint + w); (Lint + w)℄N , measured in Hs.We deompose  0(x; 0) =Pj2J  0j�j(x). We then split  0 up into frameletsoming from the regions NECC\BB, NECCC and NECC\BBC .We remove all framelets outside the set NECC\BB.It turns out that for a frame with good phase spae loalization, NECCand BAD are nearly mutually exlusive. This ours beause framelets, whenpropagated under the free ow, almost ompletely retain their oherene, andmove either into the box or out of the box (but not both). Thus, by removingframelets outside NECC\BB, we have removed nearly all of the outgoing waves.Beause of this, it is now most likely safe to propagate the remainder underthe periodi ow, sine the remainder onsists of an initial ondition that willnot leave the box in the near future (with \near future" de�ned to be [0; Tstep℄).The only time this is not true for the WFT is if a signi�ant number ofslow waves have reahed the boundary. Every time Tstep, we hek if this hasourred. If so, we raise an exeption.When we reah time Tstep, we go bak to step one. That is, takingUb(Tstep) 0;modi�ed as the new initial ondition, we again �lter o� the outgoingwaves. We repeat for as long as neessary.We now write out the algorithm in the form of pseudoode.The variable grid is some numerial representation of  (~x; t) restrited tothe region [�Lomp; Lomp℄N with periodi boundaries. In our implementation,we store evenly spaed samples of  (~x; t), but other representations (e.g. �niteelement) an be used.The funtion box_propagator(grid,timestep)}is some numerial approx-imation to the propagator Ub(t), whih ats on grid. The exat method ofimplementation is unimportant for our purposes, provided it is suÆiently a-urate. We use the FFT/Split Step propagation algorithm, but other methods(e.g. some high order FDTD or �nite element sheme for rough problems) anbe substituted.The funtion bad_ne_framelet_oeffiients(grid) is a funtion whihomputes whether or not there are too many framelets in the regionBAD\NECC.The number Tstep is the time between �lterings. The parametersfrm_params are some parameters whih haraterize the frame. For instane,with the WFT, frm_params is a tuple (sdev,xs,ks,wb) ontaining the stan-dard deviation of the Gaussian, the lattie spaings x0; k0 in position and mo-mentum, and the width of the boundary w.Finally, the proedure plotter(grid,t) is some proedure whih reads thedata in grid and proesses it in some useful way (i.e. storing it to a �le, plottinga graph based on it, et). This must be determined by the appliation.Algorithm 2.1 Propagation algorithmexeption CannotFilterExeption(grid urrent_grid,16



number urrent_time)Tstep, frm_params, toleranedef propagate(psi0, Tmax, plotter)grid <- psi0for j = 0 ... Tmax / Tstep:foeffs <- ompute_framelet_oeffiients(grid,frm_params)if norm(bad_ne_framelet_oeffiients(grid)) > tolerange:raise CannotFilterExeptiongrid <- (grid - bad_framelets_projetion(foeffs))grid <- box_propagator(grid,Tstep)plotter(grid,j*Tstep)return ()Beause all framelets inside the box [�Lint; Lint℄N are not bad framelets, weatually do not need to ompute them when we apply the funtionompute_framelet_oeffiients(grid). Rather, we need only ompute theframelet oeÆients inside the bu�er region, [�Lomp; Lomp℄N n [�Lint; Lint℄N .2.2.1 Implementation: FFT/Split Step Propagation AlgorithmThe algorithm we have desribed is, to a great extend, independent of thepartiular method of implementation. However, we sketh out one possiblemethod of implementing it here, namely the FFT/Split Step algorithm.We �x a grid spaing Æx, and timestep DT. The objet grid will be an Ndimensional array of size [2Lomp=Æx℄N . This orresponds to a lattie spaing inmomentum of 2�=Lomp, with maximal momentum 2�=Æx. A ommon rule ofthumb is that if the problem has a maximal momentum kmax, then Æx = 4�=Æx(the extra fator of 2 being put there for the sake of safety).Let FFT be the Fast Fourier Transform algorithm, and iFFT be the inverseFFT. Let NLIN(grid) be the numerial implementation of the nonlinearity.This is the standard split step/Trotter-Kato formula spetral propagator.Algorithm 2.2 Split Step Propagation Algorithmdef box_propagator(grid,timestep):for j in 0 ... timestep / DT:grid <- grid * exp(i * NLIN(grid) * DT/2)grid <- FFT(grid)grid <- grid * exp(i * (1/2)k^2 * DT)grid <- iFFT(grid)grid <- grid * exp(i * NLIN(grid) * DT/2)return gridAlgorithm 2.2 is \spetrally aurate" in x, of order O(Æt2) in time (fornonlinear problems, for linear problems it inreases to O(Æt3)), and has ost17



O(MN lnM) per timestep (where M is the number of data points in the grid,per dimension). For this reason it is a popular method of propagating dispersivewaves.We will defer a disussion on the implementation of the funtionsompute_framelet_oeffiients(grid) andbad_framelets_projetion(foeffs) until after we explain the WFT. Onepossible implementation of ompute_framelet_oeffiients(grid) isdesribed in setion 3.3.2.3 Why This Works: A Heuristi ArgumentThe framelets in in NECCC onsist of framelets whih are moving out of thebox under the free ow ei(1=2)�t. Thus, there is little error aused by removingthem.For the WFT frame, the framelets in NECC\BBC onsist of framelets whihare outside the box, but are moving inward under the free ow. If the initialondition  (x; 0) is well loalized, the only way suh framelets an exist is ifwaves moved out of the box, turned around and ame bak. This is extremelyunlikely. Thus, there is little error aused by removing these framelets.The remainder onsist of framelets in NECC\BB\BAD. In general, littlean be said about these framelets. But for the WFT, these onsist of frameletswhih are moving slowly, more slowly than a ertain veloity kmin. We makethis term small merely by assuming it to be true. In pratie, it may not be,although we outline (non-rigorously) methods of dealing with this.We now onsider the remaining framelets. Apart from the slowly movingones, the framelets in NECC\BB are not oming lose to the boundaries of[�Lomp; Lomp℄N . Thus, the boundary onditions we have hosen (periodi, inthis ase) are irrelevant. This is true for a short time, say a time Tstep.In the event that the slowly moving framelets in BAD\NECC do reah theboundary, then an exeption is raised.2.4 Possible ImprovementsOne obvious improvement to our algorithm is useful for dealing with Hamil-tonians of the form H = �(1=2)� + V (x) + f(j (~x; t)j) with V (x) a loalizedpotential (possibly of long range type). Instead of trying to determine whetherthe free trajetory of a given framelet, namely ~ax0+~bk0t is leaving the box suÆ-iently fast, we try to determine whether the interating trajetory (~ax0;~bk0; t)is leaving the box. The interating trajetory is the trajetory obeyed by a las-sial partile with veloity ~bk0, moving in the potential V (x). Intuitively, thisis the right thing to do, although we annot prove this at the moment.One potential unknown fator in our algorithm is kmin, the smallest relevantmomentum. If the problem we are given has an unknown kmin, all is not lost.We propose two methods, one simpler than the other, to deal with this ase.The problem will appear as follows. Suppose that at some time NTstep, we�nd that the mass sitting on the framelets in BAD\NECC is not small. We18



an redue kmin by inreasing �, the standard deviation of the Gaussian. Theonly ost to doing this is that it beomes neessary to inrease the width of thebu�er region w.We also are investigating a multisale algorithm, utilizing multiple ompu-tational grids whih aurately deal with the slower frequenies. More preisely,we use a tower of grids, having width Lint, 2Lint, et, with eah grid havinglattie spaing �x, 2�x, et (so that the omputational omplexity is linearin the number of grids). Then, if slow waves reah the boundary of the �rstbox, they are �ltered, and plaed on the interior of the 2'nd box. They are nowat the physial position L, and an propagate an additional distane L beforeleaving the seond box. If the reah the edge of the seond box, they an beplaed in the third, and so on.Numerial experiments suggest that this result an dramatially derease theerror due to slow waves (by a fator of 50 or more), and we plan to investigatethis further.2.5 A word on ExeptionsWe explain exeptions briey for readers unfamiliar with them.An exeption is merely a signal to the program to break out of the urrentsope, and move upwards through enlosing sopes until it �nds itself inside atry blok. At this point, ontrol is given over to the orresponding ath blok.A simple example:...Exeption DivByZeroExeption(num)def f(x,y):if x == 0:raise DivByZeroExeption(y)return y/x...try:print f(3,z)ath DivByZeroExeption e:print ``Cannot divide by zero''...In this ode, if z!=0, the output would be merely be 3/z. If z = 0, theprogram will merely print \Cannot divide by zero" and then ontinue.Consider now this ode....print f(3,z)...This program will terminate if z=0, and any ommands after printf(3,z) willnot be exeuted. 19



The purpose to using an exeption is to allow ontrol to move upwardthrough enough enlosing sopes until a sope is found whih is apable of deal-ing with the exeption. If none is found, the program terminates. This avoidsluttering the ode with many if then statements to handle error heking.3 Windowed Fourier Transforms and all that...In this setion, we review some basi results on frames and the windowed Fouriertransform. More detailed information an be found in [11, 12, 14℄, for example.3.1 Basi De�nitions and TheoremsThe disrete windowed Fourier transform frame is the standard frame of anon-ial oherent states. We use it beause of it's exellent time and frequenyloalization properties if a Gaussian window is used.De�nition 3.1 The Gaussian WFT frame is the set of funtionsn�(~a;~b)(~x) = ��N=4��N=2eik0~b�~xe�j~x�~ax0j22=2�2o(~a;~b)2ZN�ZNfor some x0; k0; �. To be a frame, x0k0 < 2�, otherwise there exist vetorsorthogonal to the span of the WFT frame. The dual frame to the GaussianWFT frame is also a WFT frame, given byneik0~b�~x~g(~x� ~ax0)o(~a;~b)2ZN�ZNfor a ertain ~g 2 L2(RN ) (lari�ed later).We will refer to �(~a;~b)(~x) as a framelet loalized at (~ax0;~bk0) in phase spae.When we refer to the position or veloity of a framelet, we are referring to ~ax0and ~bk0, respetively.The following theorem establishes that the WFT is a frame, in the speialase when x0k0 = 2�=M, for some M 2 N. The number M is alled theoversampling rate. It also expliitly provides the frame bounds.We remark here that throughout this paper, we will always take x0k0 =2�=M, with M an even integer. We do this in order to use both theorem 3.4and also theorem 3.11 (whih is stated later).We onjeture that a similar result holds for M 2 (1;1). The assumptionM 2 2Z is made for algebrai simpliity, and very likely is unneessary.De�nition 3.2 The Zak transform is the isometry Z : L2(RN )! L2([0; 1℄N �[0; 1℄N) de�ned by:(Zf)(~t; ~s) = xN=20 X~l2ZN e2�i(~t�~l)f(x0(~s�~l)) (3.1)20



and for �(~t; ~s) 2 L2([0; 1℄N � [0; 1℄N):Z�1'(~x) = xN=20 Z[0;1℄N e�2�i(~t�b~x=x0)� �~t; ~x=x0� dt (3.2)Note that (Zf)(~t; ~s) is 1-periodi ~t.The Zak transform will be used to diagonalize the operator F �F in theorem3.4. We �rst state some results onerning the �3(zj�), whih are neessary toproeed.De�nition 3.3 The ellipti funtion �3(zj�) is de�ned by:�3(zj�) = 1 + 2 1Xl=1 os(2�lz)ei��l2 (3.3)It has the equivalent de�nition:�3(zj�) = 1Yn=1(1� ei2�n� )(1 + e(2n�1)i��e2�iz)(1 + e(2n�1)i��e�2�iz) (3.4)It an be analytially ontinued in z by the reurrene relation:�3(z + �; �) = e��i(��2z)�3(z; �) (3.5)Using the Zak transform, we an now diagonalize the operator F �F . By om-puting the inf and sup of the diagonalized operator, we an obtain the framebounds.Theorem 3.4 (Daubehies and Grossman) Let F be the framelet analysisoperator for a windowed Fourier transform. Suppose that for some integer M �2, x0k0 = 2�=M. De�ne:S(x0;M;~t; ~s) = ���[Ze�x2=2℄(~s;~t)���2= � x0p��N X~r2f0;:::M�1gN ������X~l2ZN exp�2�i~l � (~t� ~r=M)� exp��x202 (~s�~l)2�������2= xN0 e�jsj2x20�N=2 X~r2f0;:::M�1gN NYj=1 �3 ~tj ~rjM + i x202�~sj����� ix202� !��3 ~tj � ~rjM � i x202�~sj����� ix202� ! (3.6)21



Then: [ZF �FZ�1f ℄(~t; ~s) = S(x0;M;~t; ~s)f(~t; ~s) (3.7)This implies that: AF = inf(~s;~t)2[0;1℄N+N ��S(x0;M;~t; ~s)�� (3.8a)BF = sup(~s;~t)2[0;1℄N+N ��S(x0;M;~t; ~s)�� (3.8b)Proof. This is proved in [13℄ for the one dimensional ase, where � = 1. Themultidimensional follows by noting that:S(x0;M;~t; ~s) = NYj=1S1d(x0;M;~tj ; ~sj)The ase when � 6= 1 is reovered by saling. �The next theorem is taken from [11℄. It shows that for a suÆiently over-sampled frame, the WFT is a frame in Sobolev spaes as well.Theorem 3.5 (Daubehies,[11℄) Reall the operator:F �Ff(x) = X(~a;~b)2Z�Zeibk0g(x� ax0) 
eibk0g(x� ax0)jf(x)�where g(x) is either e�x2=2 or the 1 dimensional dual window ~g(x). The operatorF �F is bounded above and below, in Hs and H�s, provided the onstants As(g)and Bs(g) (de�ned below) are stritly positive. This implies that if As(g) andBs(g) are stritly positive, then the GWFT is a frame in Hs(R) and H�s(R).As(g) h�xi�sf(x)L2 � h�xi�sF �Ff(x)L2 � Bs(g) h�xi�sf(x)L2We must �rst onstrut some auxiliary funtions. De�ne:m(ĝ; k0) = infx2RXb2Zjĝ(k + bk0)j2 (3.9a)M(ĝ; k0) = supx2RXb2Zjĝ(k + bk0)j2 (3.9b)De�ne, for s � 0:��s (k0) = supk "hki�shk + k0i�sXb2Zjĝ(k + bk0)j jĝ(k + bk0 + k0j#As(g) = 2�x0 24m(ĝ; k0)�Xa6=0 ��+s (2�a=x0)��s (�2�a=x0)�1=235 (3.10a)Bs(g) = 2�x0 24m(ĝ; k0) +Xa6=0 ��+s (2�a=x0)��s (�2�a=x0)�1=235 (3.10b)22



Corollary 3.6 In N dimensions, we �nd thatHs�(g) kf(~x)kH�s � kF �Ff(~x)kH�s �Hs+(g) kf(~x)kH�swhere Hs+(g) = NB0(g)N�1Bs(g) (3.11a)Hs�(g) = NA0(g)N�1As(g) (3.11b)Thus, in Hs(RN ) and H�s(RN ), the WFT is a frame with frame boundsHs�(g) and Hs+(g), provided they are both positive.Proof. We want to ompute upper and lower bounds on:kF �Fg(~x)kHs = NXj=1 (1 + (i�xj )s)F �Fg(~x)L2To the j'th term of the sum, we apply theorem 3.5 in the j0th diretion. Thispulls out a fator of As(g). In the diretions 1 : : : j � 1 and j + 1 : : :N , we dothe same thing, whih pulls out a fator of A0(g) (sine there are no derivativesin that diretion). We then add up over j = 1 : : :N . Thus we obtain the lowerbound. The upper bound is done identially. �Remark 3.7 As one an see from table 1, even for a frame whih is oversampledonly byM = 4, the WFT is a reasonably tight frame even in H3, where it di�ersfrom being tight by less than 10 perent. In pratie, for �ltering outgoing waves,we will often want a higher oversampling rate to ensure good deay of the dualwindow, so we expet this will not usually pose a problem.In fat, we believe this bound is suboptimal, and onjeture that the WFTis a frame in any Sobolev spae. But we do not know how to prove it, althoughthe result an probably be tightened using the Zak transform.s As Bs Bs=As0 3.853 4.147 1.0761 3.852 4.148 1.0772 3.849 4.151 1.0793 3.836 4.164 1.0864 3.787 4.213 1.1125 3.600 4.400 1.2226 2.865 5.135 1.793Table 1: Frame Bounds, as a funtion of s, for a partiular GWFT frame. Theparameters are � = 1, x0 = 1, k0 = �=2. For s = 7, the estimates break down.This table is taken from [11℄, where it is table VI-A.We make another observation, about the Sobolev norms of framelets.23



De�nition 3.8 We denote the per-framelet energy by:(Ms(~a;~b))2 = NXk=1 �sxj�(~a;~b)(~x)2L2(RN) (3.12)Also, M0(~a;~b) = 1.Note that M0(~a;~b) = 1. We have the relation �(~a;~b)(~x)2Hs = (M0(~a;~b))2 +(Ms(~a;~b))2 = 1 + (Ms(~a;~b))2.Proposition 3.9 The framelet energy is bounded by:Ms(~a;~b) � fs NXk=1(2�)�s(exps(p2�~bkk0))2!1=2 (3.13)fs = s!p2� �Z 2�0 e�2 os(�)d��1=2 (3.14)The funtion exps(z) is de�ned by:exps(z) = sXj=0 zjj! (3.15)Thus, (Ms(~a;~b))2 � (fs=s!) ���~bk0���ss +O����~bk0���s�1s � as ���~bk0���!1.Proof. We begin by omputing in 1 dimension. We neglet the spae transla-tions, whih will not e�et the mass.�sxeibk0xe�x2=2�2 = sXj=0�sj�(ibk0)jeibk0x�s�jx e�x2=2�2= eibk0x sXj=0�sj�(ibk0)j(�2�)�(s�j)=2Hs�j(x=p2�)e�x2=2�2 (3.16)We use the ontour integral representation of Hn(z) to write:(3.16) = eibk0x sXj=0�sj�(ibk0)j(�2�)�(s�j)=2(s� j)!� Zjzj=1 e�(x=p2��z)2z�(s�j)�1 dz2�iz= eibk0xs!(�2�)�s=2 Zjzj=1 exps(�p2�bk0z)e�(x=p2��z)2z�(s�1) dz2�iz (3.17)24



We multiply this by it's omplex onjugate, and integrate with respet to x:Z "(s!)2(2�)�s Zjzj=1 Zjtj=1 exps(�p2�bk0z) exps(�p2�bk0t)e�(x=p2��z)2e�(x=p2��t)2z�(s�1) dz2�iz t�(s�1) dt2�it#dx= Z "(s!)2(2�)�s Zjzj=1 Zjtj=1 exps(�p2�bk0z) exps(�p2�bk0t)e�(x=��(t+z))2e�2tzz�(s�1) dz2�iz t�(s�1) dt2�it#dx= Zjzj=1 Zjtj=1�Z e�(x=��(t+z))2dx�(s!)2(2�)�s exps(�p2�bk0z) exps(�p2�bk0t)e�2tzz�(s�1) dz2�iz t�(s�1) dt2�it(3.18)The integral in x is independent of the values of t and z. Thus:(3.18) = �Z e�x2=�2dx� (s!)2(2�)�s Zjzj=1 Zjtj=1exps(�p2�bk0z) exps(�p2�bk0t)e�2tzz�(s�1) dz2�iz t�(s�1) dt2�it (3.19)We bound the integral by the L1 � L1 duality, to obtain:j(3.19)j = Z (�sxeibk0xe�x2=2�2)(�sxe�ibk0xe�x2=2�2)dx� exps(�p2�bk0z) exps(�p2�bk0t)L1(ds=2�is;dt=2�it)� e�2tzz�(s�1)t�s�1L1(ds=2�is;dt=2�it)� (s!)2(2�)�s(exps(p2�bk0))2 �(2�)�1 Z 2�0 e�2os(�)d�� (3.20)We moved from the seond line to the third by omputing:Zjzj=1 Zjtj=1 ��e�2tzz�s�1t�s�1�� dt2�t dz2�t= (2�)�2 Z 2�0 Z 2�0 e�2 os(���)d�d� = (2�)�2 Z 2�0 Z 2�0 e�2 os(�)d�d�= (2�)�1 Z 2�0 e�2 os(�)d�25



To �nish, we ompute:(Ms(~a;~b))2 = NXk=1 �sxj�(~a;~b)(~x)2L2(RN)= NXk=1 ZRN ����sxj��N=4��N=2eik0~b�~xe�j~x�~ax0j22=2�2 ���2 d~x� NXk=1(s!)2(2�)�s�(2�)�1 Z 2�0 e�2 os(�)d�� (exps(p2�~bkk0))2 (3.21)This is what we wanted to prove. �In this subsetion, we desribe some properties of the WFT frame that weuse at various points.3.2 Dual WindowWe now haraterize the dual window. Reall that the dual window is theunique funtion suh thatf(~x) = X(~a;~b)2ZN�ZN Df(x)jeik0~b�~x~g(~x � ~ax0)E��N=4��N=2eik0~b�~xe�j~x�~ax0j22=2�2for f(~x) 2 L2(RN ).We show that the dual window is exponentially loalized in position andmomentum, and alulate the onstants expliitly (this is theorem 3.11). Ourresults only apply whenM 2 2N, but this is merely beause the algebra beomessimple in this ase. It appears highly likely that similar results will hold for Mnot an even integer.Our result implies that asM!1, the exponential deay rate of ~g(x) growswithout bound. This is to be expeted, sine the dual window is onverging toa Gaussian in this ase.The fat that ~g(x) deays exponentially is also argued in [12℄ but the preisedependene of the onstants on x0; k0; � is not pinned down there (and theargument there does not use the Zak transform).We state �rst a tehnial lemma.Lemma 3.10 Let M 2 2N. Then S(x0;M;~t; ~s) redues to:S(x0;M;~t; ~s) =�Mx0p� �N 0�X~l2ZN exp��x20[(~s�~l)2℄�1A NYj=1 �3(2�M~tj jix20M2=4�) (3.22)
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Proof. Consider the sum in (3.6). We an ompute:X~r2f0;:::M�1gN ������X~l2ZN exp�2�i~l � (~t� ~r=M)� exp��x202 (~s�~l)2�������2 == X~r2f0;:::M�1gN 24X~l2ZN exp�2�i~l � (~t� ~r=M)� exp��x202 (~s�~l)2�35�" X~n2ZN exp ��2�i~n � (~t� ~r=M)� exp��x202 (~s� ~n)2�#= X~r2f0;:::M�1gN X~l2ZN X~n2ZN exp�2�i(~l � ~n) � (~t� ~r=M)��exp��x202 ((~s�~l)2 + (~s� ~n)2)� (3.23)For simpliity, in this alulation, ~v2 = PNj=1 ~v2j . Note that we do not takeabsolute values or omplex onjugates anywhere, and thus our result is analyti.By passing the sum over ~r inside the other two sums, and noting the follow-ing: X~r2f0;:::M�1gN exp��2�i(~l� ~n) � (~r=M)� = ( 0; (~l� ~n) 62 (MZ)NMN ; (~l � ~n) 2 (MZ)NWe an then set ~n = ~l +M~k. We then �nd:(3.23) = X~l2ZN X~n2ZN X~r2f0;:::M�1gNexp�2�i(~l� ~n) � (~t� ~r=M)� exp��x202 ((~s�~l)2 + (~s� ~n)2)� =MN X~l2ZN X~k2ZNexp�2�i(M~k) � (~t� ~r=M)� exp��x202 ((~s�~l)2 + (~s�~l �M~k)2)� =MN X~k2ZN exp�2�iM~k � ~t� X~l2ZN exp��x20[(~s�~l �M~k=2)2 +M2~k2=4℄� (3.24)This is true whether M is odd or even.
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Now if M is even, then M=2 is an integer. Therefore:X~l2ZN exp��x20[(~s�~l �M~k=2)2 +M2~k2=4℄� =exp(�x20M2~k2=4) X~l2ZN exp��x20[(~s�~l)2℄�This follows sine the latter sum is merely an integer translate (in ~l) of theformer. But sine the sum is taken over all ZN , integer translates do not matter.Then we an simplify (3.24) even further to:(3.24)=MN 0�X~l2ZN exp(�x20[(~s�~l)2℄)1A X~k2ZN exp(2�iM~k � ~t) exp(�x20M2~k2=4)=MN 0�X~l2ZN exp��x20(~s�~l)2�1A NYj=1 �3(2�M~tj jix20M2~k2=4�)We now multiply by (x0=p�)N to reover S(x0;M; t; s), thus proving (3.22).�Theorem 3.11 Let x0k0 = 2�=M for M 2 2N. Let ~g(~x) be the dual windowto the GWFT. Then ~g(~x) satis�es the following bounds:k~g(~x)kL1 6 �x0� �N A�1F X~n2ZN exp��x20j~nj2�2 � = �x0� �N A�1F k�kL1(~t;~s)(3.25)Letting ~� = (�1; :::�N ) be a multi-index, we �nd that:���~�x ~g(~x)�� � g(x0; k0; N; ~�)e�r(x0;k0)j~xj1 (3.26)When s is a salar, we will let g(x0; k0; N; s) = g(x0; k0; N; (s; 0; ::; 0)).The deay rate r(x0; k0) is given by:r(x0; k0) = x0M=8�� (3.27)The onstant g(x0; k0; N; s) is de�ned below. We must �rst de�ne the fol-lowing auxiliary funtions:�(~t; ~s) = [Ze�x2 ℄(~t; ~s) = �x0� �N=2 X~l2ZN e2�i(~t�~l) exp(�x20j~s�~lj2l2=�2) (3.28)F (x0;M; t; x) = �(t� i; x=x0)Mx0��1=2 �Pl2Ze�(x�lx0)2=�2� �3(2�Mtjix20M2=4��2)(3.29)28



G(x0;M; t; x) = �(t� i; x=x0)�Pl2Ze�(x�lx0)2=�2� �3;z(2�Mtj jix20M2=4��2) (3.30)Here, �3(zj�) is one of Jaobi's theta funtions (desribed in the appendix). Thenotation �3;z signi�es �3;z(z0j�) = �z�3(zj�)jz=z0 .We an now de�ne the onstant term:g(x0; k0; N; ~�) = NYj=1 x1=20 ��1=2ex20M=8�2 �~�jx F (x0;M; t; x)L1+ �1=22M2x1=20 �1=2 b2�M� 1=2 �~�jx G(x0;M; t; x)L1 ! (3.31)Proof. In this theorem, we mainly do alulations on the dual window. Weperform the alulations in 1 dimension, and then note that:~g(~x) = NYj=1 ~g1D(~xj)In one dimension, we �nd that (dropping the 1D subsript) the dual windowan be omputed (realling that �(t; s) = Ze�x2=2:~g(x) = Z�1Z(F �F )�1e�x2=2 = Z�1S(x0;M; t; s)�1�(t; s)= x1=20 Z 10 e�i2�tbx=x0�(t; x=x0)S(x0;M; t; x=x0) dt (3.32)We also assume � = 1, for simpliity. To do the alulation when � 6= 1, wemerely sale the result.Bound in L1To bound ~g(x) in L1, we need only bound the integral. Note thatS(x0;M; t; x=x0)�1 is bounded by A�1F (by theorem 3.4). Thus, we obtain theL1 bound: k~g(x)kL1 � x1=20 A�1F k�(t; s)kL1([0;1℄2;dtds)Shifting the Integration ContourHere we work in 1 spae dimension. We then observe that the ~g(~x) =QNj=1 ~g1d(~xj).To determine the deay of the dual window, we move the ontour of inte-gration in (3.32) up from [0; 1℄ to [0; 1℄ � i (depending on the sign of x, forsimpliity we suppose x > 0). The onstant is hosen to be  = ix20M=8�2, dueto the fat that �3(zj�) obeys a reurrene relation with this period (see (3.5)).The endpoints do not ontribute to the integral, sine S(x0;M; t; s) and�(t; s) are 1-periodi in t. Thus, the integral in (3.32) beomes:e�2�bx=x0x1=20 Z 10 e�i2�tbx=x0�(t� i; x=x0)S(x0;M; t� i; x=x0) dt+Residues (3.33)29



Using (3.22) in one dimension, we �nd that:S(x0;M; t; s) =Mx0��1=2 Xl2Ze�x20(s�l)2! �3(2�Mtjix20M2=4�) (3.34)We now need to �nd the zeros of S(x0;M; t; s) in the region 0 � <t � 1,0 � =t � .The produt formula (3.4) for the funtion �3(zj�) implies that �3(zj�) = 0only when (2n � 1)i�� � 2�iz = ��i + 2�ni for some n 2 Z, and all zero's atthese points are of �rst order.Using this and (3.34), we �nd that the relevant zeros of S(x0;M; t; s) ourat 2�Mt = 1=2 + j � ix20M2=8�, with t 2 [0; 1℄. These aretj = (j + 1=2)=2�M+ ix20M=16�2with j = 0 : : : b2�M� 1=2.The residue term therefore takes the form:Residues = x1=20 e�(x20M=16�)bx=x0� b2�M�1=2Xj=0 e�i2�tjbx=x0�(tj ; x=x0)Mx0��1=2 �Pl2Ze�(x�lx0)2� 2�M�3;z(2�Mtj jix20M2=4�)(3.35)Here, �3;z(z0j�) = �z�3(zj�)jz=z0 .We ombine these two results, and note that �3(z+� j�) = e�i�(��2z)�3(z; �)to obtain the following expression for ~g(x):~g(x) = e�(x20M=8�)bx=x0x1=20 ex20M=8 Z 10 e�i2�tbx=x0�(t� i; x=x0)S(x0;M; t; x=x0)ei2�t dt+ ��1=2x�1=20 e�(x20M=16�)bx=x02M2 �Pl2Ze�(x�lx0)2� b2�M�1=2Xj=0 e�i2�<tjbx=x0�(tj ; x=x0)�3;z(2�Mtj jix20M2=4�) (3.36)Calulation of DerivativesLet us de�ne the following two funtions:F (x0;M; t; x) = �(t� i; x=x0)S(x0;M; t; x=x0)= �(t� i; x=x0)Mx0��1=2 �Pl2Ze�(x�lx0)2� �3(2�Mtjix20M2=4�)G(x0;M; t; x) = �(t� i; x=x0)�Pl2Ze�(x�lx0)2� �3;z(2�Mtj jix20M2=4�)30



Then we an rewrite (3.36) as follows:~g(x) = e�(x20M=8�)bx=x0x1=20 ex20M=8 Z 10 e�i2�tbx=x0F (x0;M; t; x)dt+ e�(x20M=16�)bx=x0 ��1=2x�1=202M2 b2�M�1=2Xj=0 G(x0;M; t; x) (3.37)Calulation of the Deay RateTaking (3.37) as a starting point, we an now alulate the deay rate of~g(x). We use the simple fat that:e��bx=x0 � e�e��x=x0 (3.38)The deay rate an be omputed simply enough, taking absolute values of (3.37)and using (3.38):j�nx ~g(x)j � e�(x0M=8�)x x1=20 ex20M=8 k�nxF (x0;M; t; x)kL1+ ��1=2x�1=202M2 b2�M� 1=2 k�nxG(x0;M; t; x)kL1 !This is what we wanted to prove. To obtain the result in N dimensions, we takeproduts. To obtain the result when � 6= 1, we sale. �Corollary 3.12 If we interhange ~x and ~k, x0 and k0, and � with ��1 every-where in the above theorem, then the onlusion still holds.Proof. The Fourier transform of the WFT is still a WFT. The Fourier trans-form of the window funtion e�j~xj2=2 is e�j~kj2=2. Therefore the same result holdswith ~x and ~k interhanged. �3.3 Computation of the WFT CoeÆients: A PratialAlgorithmNow that we have disussed the dual window, we present here an algorithm foromputing it (taken from [12℄). We also present the algorithm for omputingthe framelet oeÆients.The algorithm is basially nothing more than sanning the dual window overthe funtion, and Fourier transforming at eah point ~ax0 for ~a 2 ZN. However,due to the spatial deay of ~g(~x) (.f. theorem 3.11), we an trunate the domainto a small box surrounding ~ax0.Algorithm 3.1 Calulation of Windowed Fourier Transforms31



def wft_oeffiients(grid, arange, brange):NxN_grid wft_oeffiientsfor a in arange:xbuff = multiply(exp(-(x-a*xs)^2 / (2*sigma^2)), grid)kbuff = FFT(xbuff)wft_oeffiients[a℄[:℄ = kbuffreturn wft_oeffiients3.4 Phase Spae LoalizationThe WFT allow us to de�ne a onrete realization of phase spae. From hereonward, we will onsider ZN � ZN to be a disrete realization of phase spae.The vetor (~a;~b) 2 ZN�ZN will represent the point at ~ax0 in position, and ~bk0in momentum.With this in mind, we an now onstrut phase spae loalization operatorsvery simply.De�nition 3.13 For a set F 2 ZN�ZN, we de�ne the phase spae loalizationoperator: PF (x) = X(~a;~b)2F  (~a;~b)�(~a;~b)(~x) (3.39)Intuitively, one expets that phase spae loalization based on the WFTwill orrespond to the usual phase spae loalization based on position andmomentum projetions. Of ourse, the orrespondene is fuzzy, and we domake small errors (whih we quantify).Also, for onveniene of notation, here and later, we name the sets of highfrequeny framelets and low frequeny framelets.De�nition 3.14 For K 2 R+ , we de�ne the set of high frequeny and lowfrequeny framelets, respetively:HF(K) = n(~a;~b) 2 ZN �ZN : k0j~bj1 > Ko (3.40a)LF(K) = n(~a;~b) 2 ZN �ZN : k0j~bj1 � Ko (3.40b)First, we show a result onerning high pass �lters, namely that a high pass�lter onstruted from the WFT is very similar to a high pass �lter onstrutedfrom the Fourier transform.Remark 3.15 We remark at this time that we do not believe our estimatesare optimal. We have taken a number of shortuts in the proofs of the varioustheorems in this setion. We onjeture that these results an be improvedsigni�antly by a more areful analysis.32



Theorem 3.16 Let P 0BK0 ;k0(~k) be a projetion operator onto the set [�(K �ks(�));K � ks(�)℄N . Then:PHF(K)f(x)Hs� Hs+(~g(~x))H�s+ (e�x2=�2) (1� P 0BK0 ;k0(~k))f̂(~k)Hs + � kf(x)kHs (3.41)The onstant ks(�) is de�ned by:ks(�) = infM2N(Mk0 :ph�s g(k0; x0; N; s)h(1 + Jd)(x0=2�)�N(m;s(�;N) +m0;s(�;N)) + ((2 + Jd)(x0=2�)�N)i� Js 1 + ks0 NXi=1 �~zi dd~zi�s!aM;N (~z)�����~zj=e�r(k0 ;x0)k0 � �)= O(jln �j) (3.42)with the generating funtion aM;s(~z) de�ned below, in lemma 3.17.Before proeeding with the proof, we state a tehnial lemma whih we use.Lemma 3.17 We have the following bound for the disrete onvolution:X~a2ZNh~a2�=x0ise��2(~a2�=x0�~z)2� (1 + Jd)(x0=2�)�N(m;s(�;N) +m0;s(�;N))+ ((2 + Jd)(x0=2�)�N)h~zis = O(h~zis) (3.43a)supj~kj1<k0 Xj~k�~bk0j1�Mh~bk0 � ~kise�r(k0;x0)j~bk0�~kj1� Js 1 + ks0 NXi=1 �~zi dd~zi�s!aM;s(~z)�����~zj=e�r(k0 ;x0)k0= O(Mse�r(k0;x0)M ) (3.43b)The generating funtion aM;N (~z) is de�ned as:aM;N (~z) = 0� NYj=1 11� ~zj1A24 NX1�j�N ~zMj 0�1 + Xj<i�N ~zMi 1A35 (3.44)
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Proof of Theorem 3.16. We proeed in three steps.SetupWe begin by deomposing f(x) into high and low frequenies, and applyingthe high pass �lter:PHF(K)f(x)Hs= PHF(K)P 0BK0 ;0(~k)f(x)Hs + PHF(K)[1� P 0BK0 ;0(~k)℄f(x)HsThe �rst term is bounded by Hs+(~g(~x))H�s+ (e�x2=�2) P 0BK0 ;0(~k)f̂(~k)Hs , thusit remains to bound the seond. Let h(x) 2 H�s have norm 1. Then:Dh(x)jPHF(K)[1� P 0BK0 ;0(~k)℄f(x)E= X(~a;~b)2HF(K)Dh(x)j�(~a;~b)(~x)ED~�(~a;~b)(~x)j[1� P 0BK0 ;0(~k)℄f(x)E= X~a2ZN Xk0j~bj1>K Z Z ĥ(~k)��̂(~a;~b)(~k) ~̂�(~a;~b)(~k0)�[1� P 0BK0 ;0(~k0)℄f̂(~k0)d~k0d~k= Z Z �ĥ(~k)�[1� P 0BK0 ;0(~k + ~z)℄f̂(~k + ~z)� X~a2ZN ei~ax0�~z!�0B� Xk0j~bj1>K ~̂g(~k + ~z �~bk0)e��2(~k�~bk0)21CA d~zd~k (3.45)Between lines 3 and 4 we used the hange of variables, ~k0 = ~k + ~z. We use herethe fat that: X~a2ZN ei~ax0�~z = X~a2ZN Æ(~z � ~a2�=x0)Substituting this into (3.45) allows us to do the ~z integral relatively simply. We
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obtain:j(3.45)j2 = ����� Z ĥ(~k)� X~a2ZN Xk0j~bj1>K �~̂g(~k + ~a2�=x0 �~bk0)e��2(~k�~bk0)2� [1� P 0BK0 ;0(~k + ~a2�=x0)℄f̂(~k + ~a2�=x0)�d~k�����2� h~ki�sĥ(~k)2L2 Z ���[1� P 0BK0 ;0(~k)℄f̂(~k)� X~a2ZN Xk0j~bj1>K ~̂g(~k �~bk0)h~k � ~a2�=x0ise��2(~k�~a2�=x0�~bk0)2���2d~k� h�s kh(x)k2H�s kf(x)k2L2� supj~kj1�K�ks(�) ������� X~a2ZN Xk0j~bj1>K ~̂g(~k �~bk0)h~k � ~a2�=x0ise��2(~k�~a2�=x0�~bk0)2�������2(3.46)Thus it remains to bound the sup term in the last equation.Bounds on the SumWe onsider this term, dropping the j � j2 sine everything underneath ispositive. We obtain:supj~kj1�K�ks(�) X~a2ZN Xk0j~bj1>K ~̂g(~k �~bk0)h~k � ~a2�=x0ise��2(~k�~a2�=x0�~bk0)2= supj~kj1�K�ks(�) Xk0j~bj1>K ~̂g(~k �~bk0) X~a2ZNh~k � ~a2�=x0ise��2(~k�~a2�=x0�~bk0)2(3.47)Thus we �nd, after applying theorem 3.11 in order to bound the ~̂g( � ) terms:(3.47) � supj~kj1�K�ks(�)g(k0; x0; N; s) Xk0j~bj1>K e�r(k0;x0)j~bk0�~kj1� X~a2ZNh~k � ~a2�=x0ise��2(~k�~a2�=x0�~bk0)2 (3.48)We bound the sum over ~a term using lemma 3.17 (stated just after this proof),
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in partiular (3.43a). This yields:(3.48) � g(k0; x0; N; s)(1 + Jd)(x0=2�)�N(m;s(�;N) +m0;s(�;N))� supj~kj1<K�ks(�) Xk0j~bj1>K e�r(k0;x0)j~bk0�~kj1+ g(k0; x0; N; s)((2 + Jd)(x0=2�)�N )� supj~kj1<K�ks(�) Xk0j~bj1>Kh~bk0 � ~kise�r(k0;x0)j~bk0�~kj1 (3.49)We observe now that for j~kj1 � K � ks(�), we �nd that j~k �~bk0j1 � ks(�) ifk0j~bj1 � K. Thus, we an ontinue:(3.49) � g(k0; x0; N; s)(1 + Jd)(x0=2�)�N(m;s(�;N) +m0;s(�;N))� supj~kj1<K�ks(�) Xj~k�~bk0j1�ks(�) e�r(k0;x0)j~bk0�~kj1+ g(k0; x0; N; s)((2 + Jd)(x0=2�)�N )� supj~kj1<K�ks(�) Xj~k�~bk0j1�ks(�)h~bk0 � ~kise�r(k0;x0)j~bk0�~kj1� g(k0; x0; N; s)h(1 + Jd)(x0=2�)�N (m;s(�;N) +m0;s(�;N))+ ((2 + Jd)(x0=2�)�N )i� supj~kj1<k0 Xj~k�~bk0j1�ks(�)h~bk0 � ~kise�r(k0;x0)j~bk0�~kj1 (3.50)To get from the �rst inequality to the seond, we used the fat that h~bk0�~kis � 1to ombine the sums5. Then we used the fat that the sum is invariant undertranslations on the lattie k0ZN to redue the domain of the sup.We bound this (applying 3.17, in partiular (3.43b)) as follows:(3.50) � g(k0; x0; N; s)h(1 + Jd)(x0=2�)�N(m;s(�;N) +m0;s(�;N))+ ((2 + Jd)(x0=2�)�N )i� Js 1 + ks0 NXi=1 �~zi dd~zi�s!aks(�);s(~z)�����~zj=e�r(k0 ;x0)k0 (3.51)We note that the bound in (3.51) is O(ks(�)2e�r(k0;x0)ks(�)).Conlusion5This is a suboptimal result, but di�ers from the best result based on this proof strategyonly logarithmially. 36



We now �nish the argument. We observe that (by (3.45) and (3.46)):���Dh(x)jPHF(K)[1� P 0BK0 ;0(~k)℄f(x)E���2� h�s kh(x)k2H�s kf(x)k2L2 j(3.51)j2 (3.52)for any h(x) having norm 1 in H�s. Thus:PHF(K)[1� P 0BK0 ;0(~k)℄f(x)Hs �ph�s kf(x)kHs j(3.51)j=  ph�s g(k0; x0; N; s)h(1 + Jd)(x0=2�)�N (m;s(�;N) +m0;s(�;N))+ ((2 + Jd)(x0=2�)�N )i� Js 1 + ks0 NXi=1 �~zi dd~zi�s!aks(�);s(~z)�����~zj=e�r(k0 ;x0)k0! kf(x)kHs= O(ks(�)2e�r(k0;x0)ks(�)) kf(x)kHsBut ks(�) is de�ned preisely so that this is less than � kf(x)kHs . Hene we are�nished. �Proof of lemma 3.17. Divide and onquer.Equation (3.43a)We interpret this as a Riemann sum, approximating an integral, and alu-late.X~a2ZNh~a2�=x0ise��2(~a2�=x0�~z)2� (x0=2�)�N �ZRNh~aise��2(~a�~z)2 + ���rh~aise��2(~a�~z)2 ���1 d~a�� (x0=2�)�N ZRNh~aise��2(~a�~z)2d~a+ (x0=2�)�N ZRN jrh~aisj e��2(~a�~z)2d~a+ ZRNh~ais ���re��2(~a�~z)2��� d~a� (1 + Jd)(x0=2�)�N ZRNh~aise��2(~a�~z)2d~a+ (x0=2�)�N ZRNh~ais ���re��2(~a�~z)2��� d~a� (1 + Jd)(x0=2�)�N (m;s(�;N) +m0;s(�;N)) + ((2 + Jd)(x0=2�)�N)h~zisEquation (3.43b) 37



First, we onsider the sum over ~bj � 0 only, and pull out a fator of 2N :Xj~k�~bk0j1�Mh~bk0 � ~kise�r(k0;x0)j~bk0�~kj1� 2N Xj~k�~bk0j1�M~bj�0 h~bk0 � ~kise�r(k0;x0)j~bk0�~kj1� 2N Xj~bk0j1�M�k0~bj�0 Js(1 + j~bk0jss)e�r(k0;x0)j~bk0j1 (3.53)The last line follows beause j~kj1 � k0. We will now represent the sum bya generating funtion, analyti jointly in the variable ~z. We will evaluate thegenerating funtion at ~zj = e�r(k0;x0)k0 to obtain the bound.Note that:Xj~bj1>M~bj�0 ~z~b = X~bj�0 ~z~b � Xj~bj1�M~bj>0 ~z~b = NYj=1 11� ~zj � NYj=1 1� ~zMj1� ~zj != 0� NYj=1 11� ~zj1A24 X1�j�N ~zMj 0�1 + Xj<i�N ~zMi 1A35 = aM;s(~z)Then observe that multiplying under the sum by ~ksi is equivalent to applyingthe operator ~zi dd~zi to the generating funtion. Thus:Xj~bj1>K~bj�0 h~bk0ise�r(k0;x0)j~bk0j1 � Xj~bj1>K~bj�0 Js 1 + ks0 NXi=1~bsi!)e�r(k0;x0)j~bk0j1= Js 1 + ks0 NXi=1 �~zi dd~zi�s!aM;s(~z)�����~zj=e�r(k0 ;x0)k0= O(Mse�r(k0;x0)M )Thus we obtain the bound we seek. �Remark 3.18 Later on, we will make ertain demands on the framelet oeÆ-ients of the wavefuntion  (~x; t). One assumption will demand thatPHF(K)f(x)Hs be small. The assumption is formulated in that way merelyfor tehnial simpliity. Theorem 3.16 will allow us to use the simpler statementthat P 0j~kj1>K;k0(~k)f(x)Hs to verify this assumption.38



We now state a theorem regarding the phase spae loalization of the Gaus-sian WFT. The theorem says that if funtion f(x) is small outside the box[�X;X ℄N � [�K;K℄N (in phase spae), then f(~a;~b) are small outside a some-what larger box[�X �Xs(�;K); X +Xs(�;K)℄� [�K �Ks(�;K);K +Ks(�;K)℄(with Xs(�;K) and Ks(�;K) given below).This result is an extension of theorem 3.5.2 from [12℄. We extend that resultto N dimensions, and an arbitrary Sobolev spae, while also pinning downthe onstants preisely. However, we use the gaussian WFT frame spei�ally(with even integer oversampling), while the aforementioned result works withan arbitrary window.Theorem 3.19 Let BX = [�X;X ℄N , BK = [�K;K℄N for X;K < 1. Thenletting X 0 = X �Xs�(�;K;X), K 0 = K �Ks�(�;K), we �nd that:f(x)�PBX0�BK0 f(x)Hs � Hs+(~g(~x))H�s+ (e�x2=�2)� �(1� P sBX ;x0(~x))f(~x)Hs + (1� P 0BK ;k0(~k))f(~x)Hs + � kfkHs� (3.54)The onstants are given by:Xs�(�;K;X) = inf (t 2 R+ :e�r(x0;k0)t 1Xj=0 2N(2j + 2d(X + t=x0e+ 1)N�1e�r(x0;k0)j� (�=2)� "g(x0; k0; N; 0)2(N+2)=2(X + x0)(N�1)=2� Xj~bj1�K0=k0 1 + f2s  NXk=1(2�)�s(exps(p2�~bkk0))2!!1=2 #�1)Ks�(�;K) = ks(�=2) (3.55a)Proof.Setup
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To begin, we separate this into two separate problems:f(x)�PBX0�BK0Hsb = (PHF(K0) + PLF(K0)\BCX0 )f(x)Hsb� PHF(K0)f(x)Hsb + PLF(K0)\BCX0 f(x)Hsb� PHF(K0)f(x)Hsb+ PLF(K0)\BCX0 (1� P sBX ;x0(~x))f(x)Hsb PLF(K0)\BCX0P sBX ;x0(~x)f(x)HsbWe apply theorem 3.16 to PHF(K0)f(x)Hsb , and boundPLF(K0)\BCX0 (1� P sBX ;x0(~x))f(x)Hsb�Hs+(~g(~x))H�s+ (e�x2=�2 ) (1� P sBX ;x0(~x))f(x)Hsb ;obtaining:f(x)�PBX0�BK0Hsb� Hs+(~g(~x))H�s+ (e�x2=�2) (1� P 0BK ;k0(~k))f̂(~k)Hs + (�=2) kf(x)kHs+Hs+(~g(~x))H�s+ (e�x2=�2) (1� P sBX ;x0(~x))f(x)Hsb+ PLF(K0)\BCX0 f(x)HsbThus, to omplete the proof, we must bound the last term by (�=2) kf(x)kHsb .We write:PLF(K0)\BCX0P sBX ;x0(~x)f(x)= Xj~aj1>X0=x0 Xj~bj1�K0=k0 D~�(~a;~b)(~x)jP sBX ;x0(~x)f(x)E �(~a;~b)(~x)= Xj~aj1>X0=x0 Xj~bj1�K0=k0 �(~a;~b)(~x) ZRN e�i~bk0�~x~g(~x � ~ax0)�P sBX ;x0(~x)f(~x)d~x(3.56)We will onstrut �rst a bound on the integral term, as a funtion of ~a;~b, andthen return to (3.56) to omplete the proof.Bounds per frameletFor ~b small, we do the following:����ZRN e�i~bk0�~x~g(~x� ~ax0)�P sBX ;x0(~x)f(~x)d~x����� ZRN g(x0; k0; N; 0) ���e�r(x0;k0)j~x�~ax0j1P sBX ;x0(~x)f(~x)��� d~x (3.57)40



Observe that D = [�(X + x0); (X + x0)℄N ontains the support of P sBX ;x0(~x),and apply Cauhy-Shwartz to obtain:j(3.57)j � g(x0; k0; N; 0) P 0D;0(~x)e�r(x0;k0)j~x�~ax0j1L2 kf(~x)kL2 (3.58)We now wish to bound P 0D;0(~x)e�r(x0;k0)j~x�~ax0j1L2 .We assume, without loss of generality, that ~aj � 0 for j = 1::N . We alsoobserve that j~ax0j1 � (X+x0), and let l be the (possibly not unique) dimensionin j~alx0j � j~xlj is maximized. Then:P 0D;0(~x)e�r(x0;k0)j~x�~ax0j1L2 =  Z[�(X+x0);X+x0℄N e�2r(x0;k0)j~x�~ax0j1d~x!1=2�  2N Z[0;X+x0℄N e�2r(x0;k0)j~x�~ax0j1d~x!1=2�  2N Z[0;X+x0℄N e�2r(x0;k0)j~x�~ax0j1d~x!1=2� 2N=2 Z[0;X+x0℄ Z[0;X+x0℄N�1 e�2r(x0;k0)(~al�~xl)d~x?d~xl!1=2= 2N=2(X + x0)(N�1)=2 �e�r(x0;k0)(~al�(X+x0)) � e�r(x0;k0)~al�� 2(N+2)=2(X + x0)(N�1)=2e�r(x0;k0)j~aj1(1 + er(x0;k0)(X+x0)) (3.59)Noting that (1 + er(x0;k0)(X+x0)) � 2er(x0;k0)(x+x0), we �nd:����ZRN e�i~bk0�~x~g(~x� ~ax0)�P sBX ;x0(~x)f(~x)d~x����� (g(x0; k0; N; 0)2(N+4)=2)� kf(~x)kL2 (X + x0)(N�1)=2e�r(x0;k0)j~aj1er(x0;k0)(X+x0) (3.60)ConlusionWe now return to (3.56).
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k(3.56)kHs � Xj~aj1>X0=x0 Xj~bj1�K0=k0�(~a;~b)(~x)Hs ����ZRN e�i~bk0�~x~g(~x � ~ax0)�P sBX ;x0(~x)f(~x)d~x����� Xj~aj1>X0=x0 Xj~bj1�K0=k0 " 1 + f2s  NXk=1(2�)�s(exps(p2�~bkk0))2!!1=2� kf(~x)kL2 g(x0; k0; N; 0)2(N+2)=2� (X + x0)(N�1)=2e�r(x0;k0)j~aj1er(x0;k0)(X+x0)# (3.61)To get from the seond line to the third line, we applied proposition 3.9 tobound �(~a;~b)(~x)Hs and (3.60) to bound the integral term in the seond line.We now do the sum over ~b �rst, pulling out the terms that depend only on~b: (3.61) � 0B� Xj~bj1�K0=k0 1 + f2s  NXk=1(2�)�s(exps(p2�~bkk0))2!!1=21CA� kf(~x)kL2 g(x0; k0; N; 0)2(N+2)=2(X + x0)(N�1)=2�0�er(x0;k0)(X+x0) Xj~aj1>X0=x0 e�r(x0;k0)j~aj11A (3.62)We observe that for a given integer j, the number of integer lattie pts~a with j~aj1 = j is bounded by 2N(2j + 1)N�1. We also note that X 0 =X +Xs�(�;K;X), to �nd:er(x0;k0)(X+x0) Xj~aj1>X0=x0 e�r(x0;k0)j~aj1= er(x0;k0)(X+x0) Xj>(X+Xs�(�;K;X))=x0 2N(2j + 1)N�1e�r(x0;k0)j= er(x0;k0)(X+x0)e�r(x0;k0)d(X+Xs�(�;K;X))=x0ex0� 1Xj=0 2N(2j + 2d(X +Xs�(�;K;X))=x0e+ 1)N�1e�r(x0;k0)j� e�r(x0;k0)Xs�(�;K;X) 1Xj=0 2N(2j+2d(X+Xs�(�;K;X))=x0e+1)N�1e�r(x0;k0)j42



By the de�nition of X 0, we �nd that:e�r(x0;k0)Xs�(�;K;X)� 1Xj=0 2N(2j + 2d(X +Xs�(�;K;X))=x0e+ 1)N�1e�r(x0;k0)j� (�=2)� "g(x0; k0; N; 0)2(N+2)=2(X + x0)(N�1)=2� Xj~bj1�K0=k0 1 + f2s  NXk=1(2�)�s(exps(p2�~bkk0))2!!1=2 #�1and therefore (3.62) � (�=2) kf(x)kL2 (3.63)Thus, we observe that:PLF(K0)\BCX0P sBX ;x0(~x)f(x)Hs = k(3.56)kHs � (3.61) � (3.62) � (3.63)� (�=2) kf(x)kL2 � (�=2) kf(x)kHsThis is what we wanted to prove (realling the disussion just before (3.56)).�Remark 3.20 One an tune this estimate more arefully, if neessary. For any� 2 (0; 1), the following hoies of Xs�(�;K;X) and Ks�(�;K)X are also valid:Xs�(�;K;X) = inf (t 2 R+ :e�r(x0;k0)t 1Xj=0 2N(2j + 2d(X + t=x0e+ 1)N�1e�r(x0;k0)j� ��"g(x0; k0; N; 0)2(N+2)=2(X + x0)(N�1)=2� Xj~bj1�K0=k0 1 + f2s  NXk=1(2�)�s(exps(p2�~bkk0))2!!1=2 #�1)Ks�(�;K) = ks(�(1� �)) (3.64a)We now state a slightly tehnial orollary that we will use.Corollary 3.21 Let f(x) 2 Hs. Let BX0 , BK0 be as in theorem 3.19. Then:PBX0�BK0nHF(K)f(x)Hs �Hs+(~g(~x))H�s+ (e�x2=�2 )� (k(1� PX(~x))f(~x)kHs + �) + PHF(K)f(x)Hs (3.65)43



Proof. Repeat the proof of Theorem 3.19. However, instead of boundingPHF(K)f(x)Hs using theorem 3.16 to bound this term, we simply leave it asit is. �4 Time Evolution of Gaussian FrameletsIn this setion we study the behavior of Gaussian framelets under the free ow,ei(1=2)�t. This is quite expliit, beause we an write ei(1=2)�t�(~a;~b)(~x) in losedform:ei(1=2)�t�(~a;~b)(~x) = ei(1=2)�t��N=4��N=2eik0~b�~xe�j~x�~ax0j22=2�2= exp�i~bk0 � (~x�~bk0t� ~ax0)��N=4�N=2(1 + it=�2)N=2 exp �j~x�~bk0t� ~ax0j222�2(1 + it=�2) ! (4.1)This allows us to ompute preisely most of our framelet funtions (error, rele-vane, et).We begin with a general result, whih allows us to ontrol the error assoiatedwith approximating Fourier multipliers on RN by restriting them to a box. Thisresult is suÆiently general to allow for the use of ertain kinds of low pass �lters(in frequeny) on the box, although we do not use it in this generality.Theorem 4.1 Let S(ir)'(~x) satisfy the hypothesis of the Poisson summationformula, that is jS(ir)'(x)j � ChxiN+� and ���S(i~k)'̂(k)��� � ChkiN+�. Let S(~k),Sb(~k) be ontinuous bounded Fourier multipliation operators whih are equalfor ~k 2 B (where B is some losed set).Then:S(ir)'(~x)�X~k2B ei�~k�~x=LSb(�~k=L)'̂(�~k=L)Hsb� kS(ir)'(~x+ 2L~n)kHs(([�L;L℄N)C) + '̂(~k)Hs(BC) sup~k2BC ���S(~k)� Sb(~k)���(4.2)Remark 4.2 We only use this theorem with S(ir) = Sb(ir); thus, the lastterm in (4.2) is zero for our purposes . The more general version might be usefulwhen studying the e�ets of low pass �lters on numerial shemes. For manyyears (sine, e.g. [30℄), low pass �lters have been applied to numerial shemesin order to preserve numerial stability. This result might be useful in provingerror bounds for suh shemes.Proof. The Poisson summation formula states that:Xn2Zd f(~x+ n2L) = Xk2Zd ei�~k�~x=Lf̂ (�k=L) (4.3)44



We let f̂(~k) = S(~k)'̂(~k). Then, by rearranging (4.3), we �nd:S(ir)'(~x)� X~k2ZN ei�~k�~x=LS(�~k=L)'̂(�~k=L) = � X~n2ZN~n6=0 S(ir)'(~x+ 2L~n) (4.4)Now, we observe that S(~k) and Sb(~k) are equal on B. We add and subtratX�~k=L2ZN ei�~k�~x=L(Sb(�~k=L)� S(�~k=L))'̂(�~k=L)to both sides of (4.4), to obtain:S(ir)'(~x)� X~k2ZN ei�~k�~x=LSb(�~k=L)'̂(�~k=L)= � X~n2ZN~n6=0 S(ir)'(~x+2L~n)+ X�~k=L2ZN ei�~k�~x=L(Sb(�~k=L)�S(�~k=L))'̂(�~k=L)We again apply (4.3), and observe that:X�~k=L2ZN ei�~k�~x=L(Sb(�~k=L)� S(�~k=L))'̂(�~k=L)= X~n2ZN(Sb(ir)� S(ir))'(~x + 2L~n)We now take norms and apply the triangle inequality. We �nd that:X~n2ZN~n6=0 kS(ir)'(~x + 2L~n)kHsb = kS(ir)'(~x+ 2L~n)kHs(([�L;L℄N)C)and that:X~n2ZN k(Sb(ir)� S(ir))'(~x + 2L~n)kHsb = k(Sb(ir)� S(ir))'(~x + 2L~n)kHs� '̂(~k)Hs(BC) sup~k2BC ���S(~k)� Sb(~k)���We put everything together to obtain the result we seek. �4.1 Error and Relevane funtionalsUsing theorem 4.1 and equation (4.1), we an ompute per-framelet error boundsin L2(R). Before we ontinue, we de�ne a funtion we will use a number of times.45



De�nition 4.3 We de�ne the Hermite Error Funtion, for x; k real and s > 0to be: Herfs(x; k) = 2p� Z x0 ��sweiwke�w2=2���swe�iwke�w2=2� dw (4.5)Note that Herf0(x; k) = erf(x). We also de�ne Her�s(x; k) to be the inversefuntion of Herfs( � ; k).Remark 4.4 We observe that to leading order in k (as k beomes large), thatHerfs(x; k) = jkj2s erf(x) +O(jkj2s�1)In L2 = H0, Herfs(x; k) = erf(x).In higher Sobolev spaes, they an be deter-mined by a symboli omputation utility, e.g. Maple.We will use the Herfs funtion when we need to ompute the L2 norm ofderivatives of gaussians.Proposition 4.5 In Hs, we an ompute the framelet funtionals:Rs(~a;~b)(t)2 = R0(~a;~b)(t)2 + 2�N (��1(1 + t2=�4)1=2)2s� NXj=1 "Herfs Lint +~bjk0t+ ~ajx0�p1 + t2=�4 ;~bjk0(��1(1 + t2=�4)�1=2!�Herfs �Lint +~bjk0t+ ~ajx0�p1 + t2=�4 ;~bjk0(��1(1 + t2=�4)�1=2)!#� NYk=1k 6=j " erf  Lint +~bkk0t+ ~akx0�p1 + t2=�4 !� erf  �Lint +~bkk0t+ ~ajx0�p1 + t2=�4 !#! (4.6a)Es(~a;~b)(t)2 = E0(~a;~b)(t)2 + (Ms(~a;~b))2 � 2�N(��1(1 + t2=�4)1=2)2s� NXj=1 "Herfs Lbu� +~bjk0t+ ~ajx0�p1 + t2=�4 ;~bjk0(��1(1 + t2=�4)�1=2!�Herfs �Lbu� +~bjk0t+ ~ajx0�p1 + t2=�4 ;~bjk0(��1(1 + t2=�4)�1=2!#� NYk=1k 6=j " erf  Lbu� +~bkk0t+ ~akx0�p1 + t2=�4 !� erf  �Lbu� +~bkk0t+ ~akx0�p1 + t2=�4 !#!(4.6b)46



Proof. By theorem 4.1, to alulate Es(~a;~b)(t), we need only ompute the massoutside the box B = [�(Lint+w); (Lint+w)℄N . We observe that �(~a;~b)(~x)Hs =1 +Ms(~a;~b), so therefore:ei(1=2)�t�(~a;~b)(~x)Hs(RNn[�(Lint+w);(Lint+w)℄N )= 1 +Ms(~a;~b) � ei(1=2)�t�(~a;~b)(~x)Hs([�(Lint+w);(Lint+w)℄N )We need to ompute�sxjei(1=2)�t�(~a;~b)(~x)L2([�Lint;Lint℄N )for j = 1 : : :N , and also for s = 0. We ompute as follows:�sxjei(1=2)�t�(~a;~b)(~x)2L2([�Lint;Lint℄N )= Z[�Lint;Lint℄N �������sxj exp�i~bk0 � (~x�~bk0t� ~ax0)��N=4�N=2(1 + it=�2)N=2 exp �j~x�~bk0t� ~ax0j222�2(1 + it=�2) !������2 d~x= 1�N=2�Np1 + t2=�4 Z[�Lint;Lint℄N ��������sxjei~bk0�~x exp0B�� ���~x�~bk0t� ~ax0���22�2(1 + it�2) 1CA�������2 d~x(4.7)We hange variables to ~yj = ��1(1 + t2=�4)�1=2(~xj � ~bjk0t � ~ajx0), then�p1 + t2=�4d~yj = d~xj .(4.7) = " Y1�k�Nk 6=j Z (Lint+~bjk0t+~ajx0)=�p1+t2=�4(�Lint+~bjk0t+~ajx0)=�p1+t2=�4 e�~y2j d~yj#" Z ��1(1+t2=�4)�1=2(Lint�~bk0t�~ax0)��1(1+t2=�4)�1=2(�Lint�~bk0t�~ax0)���(��1(1 + t2=�4)�s=2)�syjei~bjk0�+1(1+t2=�4)1=2~yje�y2j=2���2 dxj# (4.8)Evaluating the integrals yields:
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(4.8) = (��1(1 + t2=�4)1=2)2s� Herfs Lint +~bjk0t+ ~ajx0�p1 + t2=�4 ;~bjk0(��1(1 + t2=�4)�1=2)!�Herfs Lint +~bjk0t+ ~ajx0�p1 + t2=�4 ;~bjk0(��1(1 + t2=�4)�1=2)!!2�N Y1�i�Ni6=j " erf  Lint +~bik0t+ ~aix0�p1 + t2=�4 !� erf  �Lint +~bik0t+ ~aix0�p1 + t2=�4 !#(4.9)We add this up for j = 1::N (sine we take derivatives in eah omponentof ~x) and add a term with s = 0. This yields the result we seek. A similaromputation allows us to ompute Es(~a;~b)(t). �Remark 4.6 For the spei� ases of L2 and H1, we inlude simpler formu-las. We single out these ases beause they are suÆient to enompass mostsimulations of pratial interest.In L2, we obtain:E0(~a;~b)(t) = 1� 2�N=2 NYj=1" erf  (L+ w) +~bjk0t+ ~ajx0�p1 + t2=�4 !�erf  �(L+ w) +~bjk0t+ ~ajx0�p1 + t2=�4 !#1=2 (4.10a)R0(~a;~b)(t)= 2�N=2 NYj=1 "erf  L+~bjk0t+ ~ajx0�p1 + t2=�4 !� erf  �L+~bjk0t+ ~ajx0�p1 + t2=�4 !#1=2(4.10b)
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In H1(R), we �nd that R1(~a;~b)(t) is given by:���R1(~a;~b)(t)���2 = ���R0(~a;~b)(t)���2+ 2�N NXk=1( (2bk0t� 2Lint � 2ax0)8p�(1 + t2)� he�(Lint+~akx0+~bkk0t)2=(1+t2) � e�(Lint�~akx0�~bkk0t)2=(1+t2)i+ 8�1 �1 + 2b2k20� �erf �Lb+ ax0 + bk0tp1 + t2 �+ erf �Lb� ax0 � bk0tp1 + t2 ��!� NYj=1;j 6=k "erf  Lint +~bjk0t+ ~ajx0�p1 + t2=�4 !� erf  �Lint +~bjk0t+ ~ajx0�p1 + t2=�4 !#)(4.11a)���E1(~a;~b)(t)���2 = ���E0(~a;~b)(t)���2 + (Ms(~a;~b))2� 2�N NXk=1( (2bk0t� 2(Lint + w)� 2ax0)8p�(1 + t2)� he�((Lint+w)+~akx0+~bkk0t)2=(1+t2) � e�((Lint+w)�~akx0�~bkk0t)2=(1+t2)i+ 8�1 �1 + 2b2k20� " erf � (Lint + w) + ax0 + bk0tp1 + t2 �+ erf � (Lint + w) � ax0 � bk0tp1 + t2 �#!� NYj=1;j 6=k " erf  (Lint + w) +~bjk0t+ ~ajx0�p1 + t2=�4 !� erf  �(Lint + w) +~bjk0t+ ~ajx0�p1 + t2=�4 !#) (4.11b)These formulas were found by a Maple omputation. Similar formulas notinvolving Herfs an be found for s � 2 by maple as well, but there is no needto list them here.4.2 Bounding BoxesWe now introdue the bounding box, whih we use to pinpoint the loation ofeah framelet after it is propagated under the free ow, ei(1=2)�t. Intuitively, we49



are treating eah framelet as a lassial partile whih has a �nite radius whihvaries with time.De�nition 4.7 The olletion of sets fBB(~a;~b;�)("; t)g (indexed by (~a;~b) 2 ZN�ZN, � 2 R+ , t 2 R) is a family of bounding boxes if:ei(1=2)�t�(~a;~b)(~x)Hs(BB(~a;~b;�)(";t)C) � " (4.12)In partiular, if BB(~a;~b;�)("; t) is a olletion of balls having radii whih do notvary with ~a, we let Ws(~b; �; t) denote the radius.We also let wsi (~b; �), wsv(~b; �) denote the initial radius and the rate of disper-sion, respetively, so that:Ws(~b; �; t) � wsi (~b; �) +wsv(~b; �)t (4.13a)limt!1 Ws(~b; �; t)wsv(~b; �)t = 1 (4.13b)Remark 4.8 We only prove that the numberswsi (~b; �),wsv(~b; �) satisfying (4.13)exist for s = 0; 1 (.f. proposition 4.12). However, we believe it is intuitivelylear that they will exist for any s 2 N, and that they ould be found by doingalulations similar to those used in the proof of proposition 4.12.We now state a pair of Lemmas whih demonstrate the usefulness of bound-ing boxes. This results show that to determine whether a given framelet is inBAD or NECC, it suÆes to trak it's bounding box. They are eah formulatedin somewhat tehnial terms. But the basi idea is this: if the distane betweenthe lassial enter of mass of the framelet and the interior box is greater thanthe spreading of the framelet, the framelet is not relevant. Similarly, if the dis-tane between the lassial enter of mass and the exterior of the omputationalboxx is less than the spreading of the framelet, the framelet is not bad.Lemma 4.9 Fix T > 0. Then the following two impliations hold:a. Suppose, for t 2 [0; T ℄, that BB(~a;~b;�)("; t) \ [�Lint; Lint℄N = ; (orBB(~a;~b;�)("; t) \ [�Lint; Lint℄N has measure 0). Then (~a;~b) 62 NECC(�; s; T ).b. Suppose, for t 2 [0; T ℄, that BB(~a;~b;�)("; t) � [�(Lint + w); (Lint + w)℄N (orBB(~a;~b;�)("; t) \ ([�(Lint +w); (Lint +w)℄N )C has measure 0). Then (~a;~b) 62BAD(�; s; T ).Proof.
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a. If BB(~a;~b;�)("; t)\ [�Lint; Lint℄N = ; (after possibly ignoring a set of measure0), then [�Lint; Lint℄N � BB(~a;~b;�)("; t)C . Therefore:Rs(~a;~b)(t) = ei(1=2)�t�(~a;~b)(~x)Hs([�Lint;Lint℄N )� ei(1=2)�t�(~a;~b)(~x)Hs(BB(~a;~b;�)(";t)C) � �where the last step follows by the de�nition of BB(~a;~b;�)("; t). Thus,Rs(~a;~b)(t) � � for t 2 [0; T ℄ and (~a;~b) 62 NECC(�; s; T ).b. If BB(~a;~b;�)("; t) � [�(Lint + w); (Lint + w)℄N , then ([�(Lint + w); (Lint +w)℄N )C � BB(~a;~b;�)("; t)C . By theorem 4.1, we �nd that:Es(~a;~b)(t) � ei(1=2)�t�(~a;~b)(~x)Hs(([�(Lint+w);(Lint+w)℄N )C)� ei(1=2)�t�(~a;~b)(~x)Hs(BB(~a;~b;�)(";t)C) � �Again, the last step follows by the de�nition of BB(~a;~b;�)("; t). Thus (~a;~b) 62BAD(�; s; T ). �Lemma 4.10 Fix T > 0. Then the following two impliations hold.a. Suppose, for t 2 [0; T ℄, that d(~ax0+~bk0t; [�Lint; Lint℄N ) � wsi (~b; �)+wsv(~b; �)t.Then (~a;~b) 62 NECC(�; s; T ).b. Suppose, for t 2 [0; T ℄, that j~ax0 + ~bk0tj1 � wsi (~b; �) + wsv(~b; �)t. Then(~a;~b) 62 BAD(�; s; T ).Proof.a. If d(~ax0 +~bk0t; [�Lint; Lint℄N ) � wsi (~b; �) +wsv(~b; �)t, theninteriorfBB(~a;~b;�)("; t)g \ [�Lint; Lint℄N = ;Sine the boundary of BB(~a;~b;�)("; t) has measure 0, we �nd that (~a;~b) satis�eslemma 4.9, part (a).b. The same idea applis, exept now:interiorfBB(~a;~b;�)("; t)g \ ([�(Lint + w); (Lint + w)℄N )C = ;This, ombined with lemma 4.9, part (b) yields the result we seek.51



�We now alulate preisely a bounding box in the spaes L2 and H1. We re-all �rst the omplementary inomplete Gamma funtion, and de�ne it's partialinverse.De�nition 4.11 The omplementary inomplete Gamma funtion, �(a; x) isde�ned by: �(a; x) = Z 1x e�tta�1dt (4.14)It has the asymptoti behavior:�(a; x) � xa�1e�x 1Xj=0 (a� 1)(a� 2) : : : (a� j)xj (4.15)Moreover, if n � a� 1, we �nd that:�������(a; x)� xa�1e�x nXj=0 (a� 1)(a� 2) : : : (a� j)xj ������� xa�1e�x (a� 1)(a� 2) : : : (a� (n+ 1))xn+1 (4.16)We de�ne the partial inverse of the omplementary inomplete Gamma fun-tion, ��1(a; x) to be the inverse of the funtion R+ 3 x 7! �(a; x) for �xed a,so that �(a;��1(a; x)) = x.Note that beause �(a; x) is monotone dereasing in x for a real, ��1(a; �)is monotonially inreasing as � ! 0. The rate of inrease is slower than ��tfor any t > 0.Proposition 4.12 The following family forms a olletion of bounding boxes:BB(~a;~b;�)("; t) = BWs(~b;�;t)(~ax0 +~bk0t) (4.17)For s = 0; 1, Ws(~b; �; t) is given by:W0(~b; �; t) =p�2 + t2=�2(��1(N=2; 2�2�N=2= ��SN�1��))1=2 (4.18a)W1(~b; �; t) =p�2 + t2=�2max("��1 N=2; �2�N=22 jSN�1j (1 + j~bk0j22)!#1=2 ;���1�(N + 2)=2; �2�2�N=22 jSN�1j ��1=2) (4.18b)Here, ��SN�1�� is the angular measure of the unit ball. We also �nd that:w0i (~b; �) = �(��1(N=2; 2�2�N=2= ��SN�1��))1=252



w0v(~b; �) = ��1(��1(N=2; 2�2�N=2= ��SN�1��))1=2 (4.19a)w1i (~b; �) = �max("��1 N=2; �2�N=22 jSN�1j (1 + j~bk0j22)!#1=2 ;���1�(N + 2)=2; �2�2�N=22 jSN�1j ��1=2)w1v(~b; �) = ��1max("��1 N=2; �2�N=22 jSN�1j (1 + j~bk0j22)!#1=2 ;���1�(N + 2)=2; �2�2�N=22 jSN�1j ��1=2) (4.19b)Proof. A straightforward omputation, similar to the previous results. Themain di�erene is that we work in spherial, rather than retangular oordinates.To begin, hange variables to ~z(t) = (~x �~bk0t � ~ax0)=p�2 + t2=�2. We notethat d~x = (�2 + t2=�2)N=2d~z. In this new oordinate system, we �nd that:���ei(1=2)�t�(~a;~b)(~x)���2 = ��N=2(�2 + t2=�2)�N=2e�z2 (4.20)Thus:Z ���ei(1=2)�t�(~a;~b)(~x)���2 d~x= Z ������exp�i~bk0 � (~x�~bk0t� ~ax0)��N=4�N=2(1 + it=�2)N=2 exp �j~x�~bk0t� ~ax0j222�2(1 + it=�2) !������2 d~x= Z ��N=2e�j~zj22d~z (4.21)Note that the domain of integration also needs to be altered, but we sup-pressed this to simplify (4.21).Bounding Boxes in L2We swith to polar oordinates about the enter of mass of the framelet,~z = r~
, where 
 2 SN�1.Thus, if we integrate outside a ball of radius R around the point ~z(t), weobtain:ZSN�1 Z 1R ��N=2e�r2rN�1drd~
 = ��N=2 ��SN�1�� Z 1R2 u(N�1)=2e�u du2pu= (1=2)��N=2 ��SN�1�� Z 1R2 uN=2�1e�udu= (1=2)��N=2 ��SN�1���(N=2; R2) (4.22)53



where �(a; x) is the inomplete Gamma funtion (.f. [1℄).Therefore, if R = (��1(N=2; 2�2�N=2= ��SN�1��))1=2, then we �nd that(4.22) � �2. Baktraking, this implies that in the ~z(t) oordinate system,the bounding box is a ball of radius (��1(N=2; 2�2�N=2= ��SN�1��))1=2. In the~x oordinate system, this implies that the bounding box is a ball of radiusp�2 + t2=�2(��1(N=2; 2�2�N=2= ��SN�1��))1=2 around the point ~ax0 +~bk0t.Bounding Boxes in H1The main di�erene between L2 and H1 is that in H1, we need to ompute:Z ���ei(1=2)�t�(~a;~b)(~x)���2 + NXj=1 ����xjei(1=2)�t�(~a;~b)(~x)���2 d~xWe begin by omputing �xjei(1=2)�t�(~a;~b)(~x).�xj exp�i~bk0 � (~x�~bk0t� ~ax0)��N=4�N=2(1 + it=�2)N=2 exp �j~x�~bk0t� ~ax0j222�2(1 + it=�2) !=  i~bjk0 � j~xj �~bjk0t� ~ajx0j�2(1 + it=�2) !� exp�i~bk0 � (~x�~bk0t� ~ax0)��N=4�N=2(1 + it=�2)N=2 exp �j~x�~bk0t� ~ax0j222�2(1 + it=�2) ! (4.23)We take the absolute square of this, to obtain: j~bjk0j2 + j~xj �~bjk0t� ~ajx0j2�4(1 + t2=�4) + antisymmetri terms!� ��N=2(�2 + t2=�2)�N exp j~x�~bk0t� ~ax0j22�2(1 + t2=�4) ! (4.24)The antisymmetri terms are antisymmetri about the point ~x = ~ajx0 +~bjk0t.Thus, upon integration in ~x, these terms will vanish.
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We then add this up for j = 1 : : :N , and add a onstant term. This impliesthat:��N=2(�2 + t2=�2)�N exp j~x�~bk0t� ~ax0j22�2(1 + t2=�4) !+ NXj=1 j~bjk0j2 + j~xj �~bjk0t� ~ajx0j2�4(1 + t2=�4) + antisymmetri terms!� ��N=2(�2 + t2=�2)�N exp j~x�~bk0t� ~ax0j22�2(1 + t2=�4) != ��N=2(�2 + t2=�2)�N (1 + j~bk0j22) exp j~x�~bk0t� ~ax0j22�2(1 + t2=�4) !+ j~x�~bk0t� ~ax0j22�4(1 + t2=�4) exp j~x�~bk0t� ~ax0j22�2(1 + t2=�4) ! (4.25)Swithing to the ~z oordinate system yields:(4.25) = ��N=2(�2 + t2=�2)�N (1 + j~bk0j22)e�j~zj22+ ��N=2(�2 + t2=�2)�N��2j~zj22e�j~zj22 (4.26)Swithing again to polar oordinates and integrating out the angular part yields:Z 1R (4.26)d~z= ��N=2 ��SN�1�� �(1 + j~bk0j22) Z 1R e�r2rN�1dr + ��2 Z 1R r2e�r2rN�1dr�= (1=2)��N=2 ��SN�1�� �(1 + j~bk0j22)�(N=2; R2) + ��2�(N=2 + 1; R2)� (4.27)If R2 satis�esR2 � max(��1 N=2; �2�N=22 jSN�1j (1 + j~bk0j22)! ;��1�(N + 2)=2; �2�2�N=22 jSN�1j �) (4.28)then: (1=2)��N=2 ��SN�1�� (1 + j~bk0j22)�(N=2; R2) � �2=2(1=2)��N=2 ��SN�1���(N=2 + 1; R2)��2 � �2=2and thus (4.27) � �2. 55



Swithing from polar oordinates to ~z oordinates implies that the boundingbox onsists of BR(0)C with R satisfying (4.28). Changing oordinates onemore to ~x yields the result we seek.To obtain (4.19), we simply observe that p�2 + t2=�2 � � + t=� for t > 0,and apply this to (4.18). �Similar omputations an be done in Hs for s > 1, but we neglet to dothem here.We now state one more result, whih we will use later.Proposition 4.13 Let s = 0; 1. Then:sup~b2LF(K)W�(~b; 0; t) =p�2 + t2=�2(��1(N=2; 2�2�N=2= ��SN�1��))1=2 (4.29a)sup~b2LF(K)W�(~b; 1; t) =p�2 + t2=�2�max(���1�N=2; �2�N=22 jSN�1j (1 +NK2)��1=2 ;���1�(N + 2)=2; �2�2�N=22 jSN�1j ��1=2) (4.29b)Note the result is independent of K for s = 0.Proof. If s = 0, W�(~b; 0; t) does not vary with ~b. This proves (4.29a).We now prove (4.29b). This follows simply beause if t < t0, ��1(a; t) ���1(a; t0) for any a 2 R+ . Applying this to (4.18b), we �nd that the sup on theleft side of (4.29b) is maximized when j~bk0j2 is maximized. This ours when~bjk0 = bK. Thus, j~bk0j2 � pNK, and we obtain the bound we seek. �5 Algorithm, Assumptions, and error boundsIn this setion, we prove the auray of our method, subjet to some assump-tions on the equation.We do not prove a omplete error bound. Let  (~x; t) be the solution to (1.1)on RN and let 	(~x; t) be the approximate solution generated by our algorithm(de�ned on [�Lomp; Lomp℄N ).To obtain omplete ontrol on the error (letting 	d(~x; t) be the disretizedversion of 	(~x; t)), we need to ontrol:k (~x; t)�	d(~x; t)kHsb � k (~x; t)�	(~x; t)kHsb + k	(~x; t)�	d(~x; t)kHsbWe only prove a bound on the �rst term, k (~x; t)�  b(~x; t)kHsb .56



Bounds on the seond term depend ruially on many details of the imple-mentation. That is, they will vary depending on whether one hooses a �niteelement, �nite di�erene or spetral method. They will vary with the timestep,spae disretization and also oating point (or other roundo�) error. We assumethis is known and is also suÆiently small as to be negligable.Our goal, is to redue the error aused by k (~x; t)�	(~x; t)kHsb to the sameorder of magnitude as the disretization error, k	(~x; t)�	d(~x; t)kHsb .5.1 AssumptionsLet us assume we wish to solve (1.1) on a time interval [0; Tmax℄ with error "measured in a Sobolev spaeHs([�Lint; Lint℄N ). We now state our assumptions.Assumption 1 We assume the solution to (1:1) exists and is unique on RNfor t 2 [0; Tmax℄. We denote by U(t) the propagator on RN .In partiular, we assume that there exists a funtion L(t) and a large numberM suh that for all  0(x) with k 0(x)kHs �M :kU(t) 0(x) � U(t) 1(x)kL(Hs;Hs) � L(t) k 0(x)�  1(x)kHs (5.1)Assumption 2 There exists a maximal momentum kmax = kmax( 0) in thefollowing sense. For all t 2 [0; Tmax℄, Æmax > 0, we an ompute a kmax(Æmax)suh that: supt2[0;Tmax℄ PHF(kmax) (~x; t) < Æmax (5.2)Assumption 3 The nonlinearity is Lipshitz in Hs. That is, there exists aonstant G suh that for u; v 2 Hs:kg(t; ~x; u)u� g(t; ~x; v)vkHs � G ku� vkHs (5.3)Although many ommon nonlinearities are not Lipshitz, they are typiallyloally Lipshitz, .f. [8, setion 3.2℄. Therefore most nonlinearities of interestan be modi�ed appropriately to satisfy these assumptions.Assumption 4 The nonlinearity g(t; ~x;  ) is well loalized in phase spae.That is, for any ÆNL > 0, there exist onstants LNL = LNL(ÆNL) and kmax;NL =kmax;NL(ÆNL) (uniform on t 2 [0; T ℄) suh that:kPNLCg(t; ~x;  (~x; t)) (~x; t)kHs < ÆNL k (~x; t)kHs (5.4a)NL = f(~a;~b) 2 ZN � ZN : j~aj1 � LNL(ÆNL) and ���~b���1 � kmax;NL(ÆNL)g (5.4b)
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Assumption 5 We assume that for eah ÆF > 0, we an �nd an � = �(ÆF),LF = LF (ÆF), so that the following impliation holds:Let F � ZN �ZN be a set for whih,8(~a;~b) 2 F supt2[0;Tmax℄ ei(1=2)�t�(~a;~b)(~t)Hs(�[LF ;LF ℄N ) < ":Then PF propagates essentially freely, in the following sense:supt2[0;Tmax℄ U(tj 0)PF (x) � ei(1=2)�tPF (x)Hsb � ÆF kPF (x)kHsb (5.5a)supt2[0;Tmax℄ kU(tj 0)PFC 0(x)� U(tjPFC 0)PFC 0(x)kHsb� Lext(t) kPF (x)kHsb (5.5b)The funtion Lext(t) must satisfy Lext(0) = 0 and supt2[0;Tmax℄ Lext(t) = ÆF.Remark 5.1 This proposition says that outside of a ertain box in phase spae,the problem is essentially linear, and therefore the free propagator is suÆientlyaurate. This assumption will be the most diÆult assumption to verify in thenonlinear ase.We note that we an, in priniple, use L(t) as a bound on Lext(t). However,this is far from optimal. Lext(t) should be small for relatively long times, whileL(t) may not be. In the linear ase, as an example, measuring error in H0 = L2,L(t) = 1 and Lext(t) = 0 (identially).Assumption 6 We assume that mass does not pile up on tangential, slowwaves or returning waves in the following sense. We assume there exists akmin = kmin(Æmin), Lmin = Lmin(Æmin) suh that:supt2[0;Tmax℄ kPS (~x; t)kHsb < Æmin (5.6)with S a set satisfying:8(~a;~b) 2 S; !(9j; j~ajx0j � Lmin and~bjk0(~aj= j~aj j) > kmin)and j~ax0j1 � Lmin (5.7)Essentially, what assumption 6 is saying is that most of the waves outsidethe box [�Lmin; Lmin℄N are moving faster than some small veloity kmin, andare moving outward (away from [�Lmin; Lmin℄N ).
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5.1.1 Remarks on the assumptionsIt is simple to observe that Gronwall's lemma ombined with assumption 3 im-plies assumption 1 with L(t) =GeGt. However, if better estimates are available,they should be used, sine the error estimates we give will be given in terms ofL(t).Although we state our assumptions in terms of WFT oeÆients, they areatually just rephrased versions of more standard assumptions. We provide heresome suÆient onditions for verifying the more tehnial assumptions.Proposition 5.2 (SuÆient onditions for Assumption 2) Suppose thatthere exists a maximal momentum kmax = kmax( 0) in the following sense. Forall t 2 [0; Tmax℄, Æmax > 0, we an ompute a kmax(Æmax) suh that:P 0[�K0;K0℄N ;0(k) (~x; t)Hs < Æmax=(2Hs+(~g(~x))H�s+ (e�x2=�2 )) (5.8)with K 0 = kmax � ks(K). Then assumption 2 holds.Proof. Merely apply theorem 3.16. �Proposition 5.3 (SuÆient onditions for Assumption 4) Suppose thattThe nonlinearity g(t; ~x;  ) is well loalized in phase spae in the traditionalsense. That is, for any ÆNL > 0, there exist onstants L0NL = L0NL(ÆNL) andk0max;NL = k0max;NL(ÆNL) (uniform on t 2 [0; T ℄) suh that:P s[�k0max;NL;k0max;NL℄N ;k0(~x)g(t; ~x;  (~x; t)) (~x; t)Hs< ÆNL k (~x; t)kHs(4Hs+(~g(~x))H�s+ (e�x2=�2)) (5.9a)P s[�L0NL;L0NL℄N ;x0(~x)g(t; ~x;  (~x; t)) (~x; t)Hs< ÆNL k (~x; t)kHs(4Hs+(~g(~x))H�s+ (e�x2=�2)) (5.9b)The onstants L0NL and k0max;NL are related to those in assumption 4 by therelationsL0NL = LNL �Xs�(ÆNL=4Hs+(~g(~x))H�s+ (e�x2=�2 ); kmax;NL; LNL)(5.10)k0max;NL = kmax;NL �Ks�(ÆNL=4Hs+(~g(~x))H�s+ (e�x2=�2); kmax;NL) (5.11)Then assumption 4 holds.Proof. Merely apply theorem 3.19. �59



We now disuss assumption 5. This assumption says that framelets whihare propagated out of the box under the free ow are also propagated outwardsunder the full ow. We show that this an be veri�ed by an Enss type ondition6.Proposition 5.4 (SuÆient ondition for Assumption 5) Let F be asin assumption 5. Assume the right side of (5.12) is bounded, for all  (x) withk (x)kHs �M (the same M as in assumption 1).Assume further that g(t; ~x;  (~x; t)) (~x; t) is a real valued potential (possibletime dependent), that isg(t; ~x;  (~x; t)) (~x; t) = V (~x; t) (~x; t):Then Lext(t) = 0 and ÆF is bounded:ÆF � Z Tmax0 ei(1=2)�(t�t0)V (~x; t)U(t0)PF (x)Hsb dt0 (5.12)Supposing additionally that ÆF an be made arbitrarily small by inreasing LF ,then assumption 5 holds.Proof. The fat that Lext(t) = 0 follows beause the propagators U(t) andUb(t) do not vary depending on the initial ondition. That is to say:U(tj 0) = U(tjPFC ) = U(t)Now let us onstrut the bound on ÆF. Let u(x; 0) = PF (~x; t). Let u(~x; t)solve: i�tu(~x; t) = �(1=2)�u(~x; t) + g(t; ~x;U(s) (x))u(x; s)Then setting up Duhamel's equation, we �nd:u(~x; t) = ei(1=2)�tu(x; 0) + i Z t0 Uf(t� s)g(t; ~x;U(s) (x))u(x; s)Subtrating ei(1=2)�tu(x; 0) from both sides and taking norms proves (5.12). �Note that assumption 5 is stritly weaker than the onditions given in prop-sition 5.4. The reason for his is as follows. Proposition 5.4 requires that thefree ow and the full ow are almost the same on framelets whih don't interatwith the nonlinearity. Assumption 5 requires only that they are equal inside thebox. Assumption 5 will be satis�ed even if the free ow and full ow divergefrom eah other ompletely, provided the divergene remains outside the box.Assumption 6 is two statements. First, it assumes that the mass of the so-lution below some veloity kmin is small. Seond, it assumes that the solutionstays on the \propagation set", that is the solution remains restrited to tra-jetories where ~x k ~k. This assumption is really just a rephrasing of standardpropagation estimates into the language of framelets.A stronger assumption than assumption 6 would be the following:6The Enss ondition is a ommon method used to prove asymptoti ompleteness and othersuh results in sattering theory. See, e.g. hapter 5 (in partiular 5.3) from [9℄ for details onthis method. 60



Proposition 5.5 (SuÆient ondition for Assumption 6) Let PS(L; kmin)(the propagation set) be de�ned by:PS(L; kmin) = f(~a;~b) 2 ZN �ZN : j~bk0j2 > 2pNkmin;j~bk0 � (j~aj�12 ~a) �~bk0j2 � j~bk0j2=(4pN)gSuppose that for any Æmin, 9kmin; Lmin so that if S is a set satisfyingS \ PS(Lmin; kmin) = ; (5.13a)S � f(~a;~b) 2 ZN �ZN : j~ax0j2 � Lming; (5.13b)then: supt2[0;Tmax℄ kPS (~x; t)kHsb < Æmin (5.14)Then assumption 6 holds.Proof. We must show that any set S satisfying (5.7) also satis�es (5.13). Thiswill show that the onditions of proposition 5.5 imply assumption 6.Toward that end, let S be suh a set. Sine for any (~a;~b) 2 S, j~ax0j1 � Lmin,we �nd that (5.13b) is satis�ed. We must now show that:8(~a;~b) 2 S; !(9j; j~ajx0j � Lmin and~bjk0(~aj= j~aj j) > kmin)Equivalently: 8(~a;~b) 2 S;8j; j~ajx0j � Lmin or~bjk0(~aj= j~aj j) � kminNow �x (~a;~b) 2 S. We must show that (~a;~b) 62 PS(Lmin; kmin). We proeed byontradition.Suppose (~a;~b) 2 PS(Lmin; kmin) \ S. De�ne ~z = j~aj�12 ~a �~bk0. Then:j~zj2 � j~bk0j2 � j~bk0 � ~zj2 � j~bk0j2 � j~bk0j2=(4pN) (5.15)Sine ~z is a vetor in the diretion of ~a, we �nd that 9j 2 1 : : : N so thatj~zj j � j~zj2=pN , and in addition, for this same j, j~ajx0j � j~ax0j2=pN . Ifj is hosen to be the omponent for whih j~aj j is largest, then in additionj~ajx0j � Lmin.This implies that: j~zj j � j~bk0j2=pN � j~bk0j2=(4pN)j~ajx0j � LminIn addition, the signs of ~aj and ~zj are the same. Now, observe that:j~bjk0 � ~zj j � j~bk0 � ~zj2 � j~bk0j2=(4pN)61



so:j~bjk0j � j~zj j � j~bk0j2=(4pN) � j~bk0j2=pN � 2[j~bk0j2=(4pN)℄� j~bk0j2=(2pN) > kminBut this ontradits (5.7), and also (5.15). Therefore there does not exist (~a;~b) 2PS(Lmin; kmin) \ S, and we are done. �Remark 5.6 Without using framelets, statements suh as those assumed inproposition 5.5 are ommon if we ignore low frequenies. The following estimateholds when g(t; ~x;  (x; t)) (x; t) = 0 (in whih ase C = k~x (x; t)kL2), and alsofor the ase when g(t; ~x;  (~x; t)) (~x; t) = j (~x; t)j�  (~x; t) (for ertain �7, [8,proposition 7.3.4℄): supt2[0;1℄ k(~x + itr) (~x; t)kL2 � C (5.16)We now make a heuristi argument suggesting that this estimate implies theonditions of proposition 5.5. Suppose we have, for some large time, a gaussianat a position ~ax0 (far from the origin, say L units) where ���~ax0 �~bk0t��� � L=2(where L=2 is hosen simply for onreteness). Then supposing j~bk0j2 � 0:(~x+ itr)�(~a;~b)(~x) � (~ax0 � it~bk0)�(~a;~b)(~x)But then: (~x+ itr)�(~a;~b)(~x)L2 � (L=2)Therefore, if  (x; t) =  (~a;~b)(t)�(~a;~b)(~x) + rest, then either ��� (~a;~b)��� � 2C=L orelse  (x; t) will violate (5.16).5.2 The AlgorithmWe now desribe how to onstrut the approximate solution, 	(~x; t). First, weassume that the various parameters we have desribed satisfy the onstraintsgiven in setion 5.2.1.The preise mathematial de�nition of 	(~x; t) is as follows:	(x; nTstep + t0) = Ub(t0)PNECC\BB	(~x; nTstep) (5.17a)	(x; (n+ 1)Tstep) = Ub(Tstep)PNECC\BB	(~x; nTstep) (5.17b)	(x; 0) = PNECC\BB (~x; 0) (5.17)Here, 0 < t0 � Tstep and n 2 N. Note that 	(~x; t) is not ontinuous in t att = nTstep, due to the �ltering.The ritially important part of the algorithm is satisfying the onstraintswe have desribed. This ensures that the framelets whih we delete from thesolution are, in fat, outgoing framelets.7In partiular � � (2�N +pN2 + 12N + 4)=(2N).62



5.2.1 Choosing the ParametersThere are a number of onstraitns on the parameters whih need to be satis�edin order for the algorithm to work. One onstraint demands that outside theinterior box, waves must move freely. That is:Lint � LF (5.18)This result is needed to prove Theorem 5.10.Theorem 5.12 imposes a number of onditions on the parameters, nearly allof whih are there in order to make sure ertain sets of framelets stay inside thebox for time Tstep.8~b 2 HF(kmin); j~bk0j1 � wsv(~b; �) (5.19a)w � 3 sup~b2LF(kmax)wsi (~b; �) (5.19b)Tstep � w3(kmax +wsv(~b; �)) (5.19)Lint � Lmin (5.19d)Tstep � infj~bk0j2�kmax;NL Lint + w=2� LNLkmax;NL +wsv(~b; �) (5.19e)LNL � Lint (5.19f)supj~bk0j2�kmax;NLwsi (~b; �) � w=2 (5.19g)Lint + w=3 � Lmin (5.19h)This list of onstraints is deeptively short. In addition to these onstraints,one also needs to determine the relation between, e.g. Æmin and Lmin, andthe various other parameters desribed in the assumptions. These are modeldependent, and an not be treated at this level of generality.5.3 Statement and Proof of the Error BoundWe make some demands on the parameters (Lint; Tstep, et), whih are summa-rized in setion 5.2.1.We will �rst ompute the error between NTstep and (N + 1)Tstep.De�nition 5.7 We de�ne the auxiliary funtions:bE(t) = A�1F 0� X(~a;~b)2BADC \NECC\BB ���Es(~a;~b)(t)���21A1=2 (5.20a)bR(t) = A�1F 0� X(~a;~b)2NECCC \BB ���Es(~a;~b)(t)���21A1=2 (5.20b)63



bQ(t) = tA�1F 0� X(~a;~b)2NL ���Es(~a;~b)(t)���21A1=2 (5.20)We now state a simple upper bound on bE(t) and bR(t). In pratie, it shouldnot be used. bE(t) and bR(t) are �nite sums of known quantities, and thus theyshould be omputed preisely. But it is onvenient to demonstrate the order ofmagnitude of bE(t) and bR(t).Proposition 5.8 The following inequalities hold for 0 � t � Tstep.supt2[0;Tstep℄ bE(t)� A�1F (2LWFT=x0)N=2(2kmax=k0)N=2 sup(~a;~b)2BADC \NECC\BB ���Es(~a;~b)(t)���� �A�1F (2LWFT=x0)N=2(2kmax=k0)N=2 (5.21)supt2[0;Tmax℄ bR(t)� A�1F (2LWFT=x0)N=2(2kmax=k0)N=2 sup(~a;~b)2NECCC \BB ���Es(~a;~b)(t)���� �A�1F (2LWFT=x0)N=2(2kmax=k0)N=2 (5.22)supt2[0;Tmax℄ bQ(t)� A�1F (2LNL=x0)N=2(2kmax;NL=k0)N=2 sup(~a;~b)2NECCC \BB ���Es(~a;~b)(t)���� �A�1F (2LNL=x0)N=2(2kmax;NL=k0)N=2 (5.23)Proof. A simple alulation. Just ount the number of elements in the sums.Then observe that for t 2 [0; Tstep℄, sup(~a;~b)2BADC \NECC\BB ���Es(~a;~b)(t)��� � � bythe de�nition of BAD = BAD(�; s; Tstep) (and similarly for the other equation).The bound for bQ(t) is proven by similarly, exept by ounting the number ofelements in LNL (a region in phase spae of width LNL in position and kmax;NLin momentum, see assumption 4). �Remark 5.9 In pratie, proposition 5.8 should not be used. Rather, one analulate bE(t), bR(t) and bQ(t) preisely. This should be done in pratie tohoose the parameters. However, we provide these rude upper bounds in orderto demonstrate the validity of the method, and to provide rough guidelines asto the hoies of the parameters. 64



5.3.1 Loal (1 step) ErrorWe �rst ompute the error we make over short time intervals (time [0; Tstep℄).We will later string together a number of these short time errors, and alulatethe global in time error.Suppose we are given an initial ondition f(x), and an initial error e(x) (theerror aumulated from previous timesteps).We want to ompute a bound on:supt2[0;Tstep℄ kU(t)f(x) � Ub(t)PNECC\BB[f(x) + e(x)℄kHsb (5.24)We �rst add and subtrat U(tjf(x))PNECCCf(x) under the norm, and apply thetriangle inequality. Thus, we �nd:kU(t)f(x) � Ub(t)PNECC\BB[f(x) + e(x)℄kHsb� kU(tjf)f(x)� U(tjf)PNECCf(x)kHsb+ kU(tjf)PNECCf(x)� Ub(t)PNECC\BB[f(x) + e(x)℄kHsb (5.25)We state our �rst result.Theorem 5.10 (Outgoing waves) Suppose the following onstraints are sat-is�ed: LF � Lint (5.26a)�(ÆF) � � (5.26b)with �(ÆF) de�ned as in assumption 5. Then the following holds:kU(tjf)f(x) � U(tjf)PNECCf(x)kHsb = kU(tjf(x))PNECCCf(x)kHsb� ÆF kPNECCCf(x)kHsb + bR(t) kf(x)kL2+Hs+(~g(~x))H�s+ (e�x2=�2)� hbE(Tstep) kf(x) + e(x)kL2 +( bQ(Tstep)G+ tÆNL) supt02[0;t℄ kU(t0)(f(x) + e(x))kHs + �i+ Æmax� OUT(t) (5.27)This is proved in setion 7.1 on page 86. Applying this result, yields:(5.25) � OUT(t)+ kU(tjf)PNECCf(x)� Ub(t)PNECC\BB[f(x) + e(x)℄kHsb (5.28)We now add and subtrat U(tjPNECCf)PNECCf(x) inside the norm, to ob-tain:(5.28) � OUT(t)+ kU(tjf)PNECCf(x)� U(tjPNECCf)PNECCf(x)kHsb+ kU(tjPNECCf)PNECCf(x)� Ub(t)PNECC\BB[f(x) + e(x)℄kHsb (5.29)65



Observing that kU(tjf)PNECCf(x)� U(tjPNECCf)PNECCf(x)kHsb is boundedby Lext(t) kPNECCf(x)kHsb (by assumption 5), we �nd:(5.29) � OUT(t) + Lext(t) kPNECCf(x)kHsb+ kU(tjPNECCf)PNECCf(x)� Ub(t)PNECC\BB[f(x) + e(x)℄kHsb (5.30)We add and subtrat U(t)PNECC\BBf(x) next, yielding:(5.30) � OUT(t) + Lext(t) kPNECCf(x)kHsb+ kU(tjPNECCf)PNECCf(x)� U(tjPNECC\BB)PNECC\BBf(x)kHsb+ kU(tjPNECC\BBf)PNECC\BBf(x)� Ub(t)PNECC\BB[f(x) + e(x)℄kHsb(5.31)We state another result:Theorem 5.11 (Residual Waves) The residual waves satisfy the followingestimate:kU(tjPNECCf)PNECCf(x)� U(tjPNECC\BB)PNECC\BBf(x)kHsb� L(t) Hs+(~g(~x))H�s+ (e�x2=�2)hbE(Tstep) kf(x) + e(x)kL2+ ( bQ(Tstep)G+ tÆNL) supt02[0;t℄ kU(t0)(f(x) + e(x))kHs + �i+ Æmin! � RES(t) (5.32)This is proved in setion 7.2 on page 87.Applying this yields:(5.31) � OUT(t) + Lext(t) kPNECCf(x)kHsb+RES(t)+ kU(t)PNECC\BBf(x)� Ub(t)PNECC\BB[f(x) + e(x)℄kHsb (5.33)We now add and subtrat U(tjPNECC\BB(f + e))PNECC\BB(f(x) + e(x)),and bound this by L(t) ke(x)kHsb :(5.33) � OUT(t) + Lext(t) kPNECCf(x)kHsb+RES(t)+ ke(x)kHsb L(t)+ kU(t)PNECC\BB[f(x) + e(x)℄� Ub(t)PNECC\BB[f(x) + e(x)℄kHsb (5.34)Finally, we bound the last term as follows.66



Theorem 5.12 (Lingering Waves) Let the nonlinearity satisfy assumption3. Let the following onditions on the parameters be satis�ed:8~b 2 HF(kmin); j~bk0j1 � wsv(~b; �) (5.35a)w � 3 sup~b2LF(kmax)wsi (~b; �) (5.35b)Tstep � w3(kmax +wsv(~b; �)) (5.35)Lint � Lmin (5.35d)Tstep � infj~bk0j2�kmax;NL Lint + w=2� LNLkmax;NL +wsv(~b; �) (5.35e)LNL � Lint (5.35f)supj~bk0j2�kmax;NLwsi (~b; �) � w=2 (5.35g)Lint + w=3 � Lmin (5.35h)Let  (x; t = 0) = PNECC\BB 0(x). Then the following estimate holds:k(U(t) � Ub(t))PNECC\BB 0(x)kHsb� (E(t) +Q(t)) +GeGt ? (E(t) +Q(t)) (5.36a)k(U(t) � Ub(t))PNECC\BB 0(x)kHsb� (E(t) +Qb(t)) +GeGt ? (E(t) +Qb(t)) (5.36b)The free error and interation error are given by:E(t) � bE(t) k kL2 + 2Æmin (5.37a)Q(t) � ( bQ(t)G+ tÆNL) k kHs (5.37b)A similar estimate holds for Qb(t) but with  (~x; t) replaed by  b(~x; t). Thefuntions bE(t) and bQ(t) are de�ned in 5.7 on page 63.This result is proved in setion 6. Applying this result shows that:(5.34) � OUT(t) + Lext(t) kPNECCf(x)kHsb +RES(t)+ ke(x)kHsb L(t)+ (1 +GeGt?)(bE(t) k kL2 + 2Æmin + ( bQ(t)G+ tÆNL) k kHs) (5.38)Remark 5.13 This analysis an be extended to enompass disretization er-rors. Assuming one has ontrol of disretization errors on the box, one ansimply inlude these errors in e(x). We do not do this here, sine it is wellbeyond the sope of this paper. 67



5.3.2 Global ErrorGiven the above result on the one timestep error, we now ompute the global-in-time error.At time t = 0, we let f(x) =  0(x) and e(x) = 0. At time nTstep (n =1; : : : ; N), we let f(x) = 	(x; nTstep) ande(x) = U(Tstep)PNECC\BB	(x; (n�1)Tstep)�Ub(Tstep)PNECC\BB	(x; (n�1)Tstep)Putting this all together, for n = 0 : : :M , with M = Tmax=Tstep, we �nd:kU(MTstep) 0(x)�	(x;MTstep)kHsb� MXn=0 OUT((M � n)Tstep) + Lext((M � n)Tstep) kPNECCf(x)kHsb+ L((M � n)Tstep) RES(nTstep) + L((M � n)Tstep) BoxError(nTstep)! (5.39)The term BoxError(nTstep) is bounded by (5.36) with  0(x) = 	(x; nTstep).Remark 5.14 This result is essentially what one would expet. The termRES(nTstep) represents the main soure of error. This is the error aused bywaves we annot �lter with our algorithm. The error bound says that at tinenTstep, we make an error of size RES(nTstep). After that, the error grows at arate L(t� nTstep).BoxError(nTstep) represents the error due to �ltering at time nTstep, andthis also grows at the rate L(t� nTstep) after that.We now wish to make sense of (5.39). We �rst substitute everything in orderto get a omplete piture. We will then rearrange and simplify signi�antly.
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kU(NTstep) 0(x) �	(x;NTstep)kHsb� MXn=0 ÆF kPNECCC	(x; nTstep)kHsb + bR((M � n)Tstep) k	(x; nTstep)kL2+Hs+(~g(~x))H�s+ (e�x2=�2)"bE(Tstep) k	(x; (n� 1)Tstep)kL2+ ( bQ(Tstep) + tÆNL) supt02[0;t℄ kU(t0)	(x; (n� 1)Tstep)kHs + �#+ Æmax+ Lext((M � n)Tstep) kPNECC	(x; nTstep)kHsL((M � n)Tstep) Hs+(~g(~x))H�s+ (e�x2=�2)�bE(Tstep) k	(x; (n� 1)Tstep)kL2+ ( bQ(Tstep) + tÆNL) supt02[0;t℄ kU(t0)	(x; (n� 1)Tstep)kHs + ��+ Æmin!L((M � n)Tstep)(1 + TstepGeGTstep)hbE(Tstep) k	(x; nTstep)kL2 + Æmin+ ( bQ(Tstep) + TstepÆNL) supt2[0;Tstep℄ k	(x; nTstep + t)kL2 i (5.40)We now take this and ollet all the terms ontaininghbE(Tstep) k	(x; nTstep)kL2 + bQ(Tstep) supt2[0;Tstep℄ k	(x; nTstep + t)kL2 ias well as Æmin, ÆF, Lext(t), et. We also replae the terms kPF	(~x; t)kL2 bypBF =AF k	(~x; t)kL2 and kPF	(~x; t)kHs byHs+(~g(~x))H�s+ (e�x2=�2) k	(~x; t)kHs .We thus arrive at our main theorem.Theorem 5.15 (Global Error Bound) We have the following bound on the
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error:supt2[0;Tmax℄ kU(t) 0(x) �	(x; t)kHsb � (5.40) � supt2[0;Tmax℄ k	(~x; t)kHs "bE(Tstep) h(1 + TstepGeGTstep) + 2Hs+(~g(~x))H�s+ (e�x2=�2)i MXn=0L((M � n)Tstep)!+ MXn=0 bR((M � n)Tstep)!+ bQ(Tstep)"(2 + TstepGeGTstep) MXn=0L((M � n)Tstep)!+ (Tmax=Tstep)Hs+(~g(~x))H�s+ (e�x2=�2)#+ ÆNLTstep MXn=0 bR((M � n)Tstep)! (2 + TstepGeGTstep)+ ÆF(Tmax=Tstep) + MXn=0Lext((M � n)Tstep)!#+ Æmin(2 + TstepGeGTstep) MXn=0L((M � n)Tstep)!+ Æmax(Tmax=Tstep)(5.41)Although the error bound looks ompliated, eah term has a simple mean-ing.The term ÆNL(: : :) is similar. This term measures how muh of the nonlinear-ity atually outside the omputational domain. In order to aurately omputethe e�et of the nonlinearity, it must be ontained inside the omputationaldomain. Thus, whatever mass exists outside the omputational region (namely[�LNL; LNL℄N � [�kmax;NL; kmax;NL℄N in phase spae) will also ause an error.The term ÆF(Tmax=Tstep) measures how muh of the solution whih wethought was outgoing atually wasn't. That is, we examined eah gaussian,and determined that under the free ow, that partiular gaussian was leaviningthe omputational domain. But although the ow is nearly free on the bound-ary, it is possible that some small fration of the waves we believe are outgoingare returning. That is measured by ÆF.The next piee,  MXn=0Lext((M � n)Tstep)! ;70



is a little bit trikier to desribe. This part of the error measures how thenonlinearity hanges in response to the small errors made when we �lter o� theoutgoing waves. In the event the \nonlinearity" is linear, this term is identiallyzero. But in other ases, it may grow rather large with t.It is best illustrated by an example. Consider the NLS:i�t (x; t) = (�(1=2)�b + V (x)) (x; t) + f(j (x; t)j2) (x; t)with V (x) an even, real valued potential having two (nonlinear) bound states,and (j (x; t)j) a monotone real-positive funtion satisfying ertain other on-straints (see [39℄). It is known that this system exhibits ground state sele-tion [39℄. That is, if  (x; 0) is an odd funtion, then  (x; t) remains situ-ated on the odd (exited) bound state for all time. If, however, we replae (x; 0) = odd(x) + � even(x), then half the mass of  (x; t) will radiate o� toin�nity, while the other half will be trapped in the ground state.The funtion Lext(t) measures the apaity of the system to behave nonlin-early in response to perturbations, in a manner like that whih we just desribed.The last term, Æmax(Tmax=Tstep), is essentially the amount of mass at fre-quenies higher than kmax. Although kmax (as used in assumption 2) is slightlydi�erent from the usual de�nition of kmax (namely kmax = �=�x, with �x thelattie spaing in position on the grid), it is a very similar objet, namely thelargest frequeny we an resolve.Finally, we ome to the term ontaining kmin(: : :). This term ontains waveswith frequeny suÆiently low so that it is very diÆult to tell if they areentering the box or leaving. This is basially due to the fat that for funtionsloalized in the �lter region, the Heisenberg unertainty priniple says that weannot determine whether low frequeny waves are inoming or outgoing. Inmost of our experiments, this was the dominant term in the error.We now prove a orollary to theorem 5.15, whih states that under the as-sumptions given in setion 5.1, we an make the error due to boundary reetionsvanish by making ertain expliit hoies of the parameters.Corollary 5.16 (Convergene to Zero) We an hoose the parametersTstep, Lint and w in suh a way that for any � > 0 and Tmax <1,supt2[0;Tmax℄ kU(t) 0(x) �	(x; t)kHsb � � (5.42)The proof is deferred to the end of this setion, after we have disussed thesoures of the error.Proof of Corollary 5.16. We show here how we an make the error bound(5.41) arbitrarily small.We begin by onsidering the terms Æmin, Æmax ÆNL, ÆF and Lext(t) found in thelast four lines of (5.41). Aording to assumptions 6, 2, 4 and 5 (respetively),we an hoose the parameters kmin, kmax, LNL, kmax;NL and LF in suh a way71



that Æmin, Æmax ÆNL, ÆF and Lext(t)8 are all arbitrarily small. Therefore, it ispossible to hoose these parameters in suh a way that:ÆNL supt2[0;Tmax℄ k	(~x; t)kHs Tstep MXn=0 bR((M � n)Tstep)! (2 + TstepGeGTstep)+ ÆF supt2[0;Tmax℄ k	(~x; t)kHs (Tmax=Tstep)+ MXn=0Lext((M � n)Tstep)! supt2[0;Tmax℄ k	(~x; t)kHs+ Æmin(2 + TstepGeGTstep) MXn=0L((M � n)Tstep)!+ Æmax(Tmax=Tstep)� �=2 (5.43)The exat manner in whih this will be done is highly model dependent. Lateron (in remark 5.17) we will disuss briey the obvious way to make this small,and why this may not be the best way to satisfy (5.43).We now take kmin, kmax, LNL, kmax;NL and LF to be �xed quantities.One these terms are hosen, we must hoose Lint,w satisfying the variousonstraints. After this is done, Proposition 5.8 provides a bound on bE(Tstep),bR(Tstep) and bQ(Tstep) { in partiular eah is bounded by onst� � (with onsta funtion of the various parameters).More preisely, we do the following. We now need to obtain the followingbound:supt2[0;Tmax℄ k	(~x; t)kHs "bE(Tstep) h(1 + TstepGeGTstep) + 2Hs+(~g(~x))H�s+ (e�x2=�2)i MXn=0L((M � n)Tstep)!+ MXn=0 bR((M � n)Tstep)!+ bQ(Tstep)"(2 + TstepGeGTstep) MXn=0L((M � n)Tstep)!+ (Tmax=Tstep)Hs+(~g(~x))H�s+ (e�x2=�2)## � �=2 (5.44)We reall the bounds omputed in Proposition 5.8, and substitute them in8Reall that supt2[0;Tmax℄ Lext(t) � ÆF. In priniple, one ould simply use this bound.However, in pratie, we expet that PMn=0 Lext((M � n)Tstep)�MÆF, so this would be anineÆient hoie. 72



to obtain:(5.44) � supt2[0;Tmax℄ k	(~x; t)kHs "�A�1F (2LWFT=x0)N=2(2kmax=k0)N=2� h(1 + TstepGeGTstep) + 2Hs+(~g(~x))H�s+ (e�x2=�2)i MXn=0L((M � n)Tstep)!+ �A�1F (2LWFT=x0)N=2(2kmax=k0)N=2(Tmax=Tstep)+ �A�1F (2LNL=x0)N=2(2kmax;NL=k0)N=2� "(2 + TstepGeGTstep) MXn=0L((M � n)Tstep)!+ (Tmax=Tstep)Hs+(~g(~x))H�s+ (e�x2=�2)## (5.45)We observe that this is linear in �. Thus, by making the hoie:��1 = 2��1 supt2[0;Tmax℄ k	(~x; t)kHs "A�1F (2LWFT=x0)N=2(2kmax=k0)N=2� h(1 + TstepGeGTstep) + 2Hs+(~g(~x))H�s+ (e�x2=�2)i MXn=0L((M � n)Tstep)!+A�1F (2LWFT=x0)N=2(2kmax=k0)N=2(Tmax=Tstep)+A�1F (2LNL=x0)N=2(2kmax;NL=k0)N=2� "(2 + TstepGeGTstep) MXn=0L((M � n)Tstep)!+ (Tmax=Tstep)Hs+(~g(~x))H�s+ (e�x2=�2)##we �nd that (5.44) � (5.45) � �=2. This holds only of � � �(ÆF), with �(ÆF)de�ned in assumption 5.Thus, by this hoie of parameters, we have made the error smaller than � .�Remark 5.17 The obvious way to make (5.43) small is to make the following
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hoies for kmin, kmax, LNL, kmax;NL and LF :LNL = LNL �10 supt2[0;Tmax℄ k	(~x; t)kHs� 1Tstep �PMn=0 bR((M � n)Tstep)� (2 + TstepGeGTstep)! (5.46a)kmax;NL = kmax;NL �10 supt2[0;Tmax℄ k	(~x; t)kHs� 1Tstep �PMn=0 bR((M � n)Tstep)� (2 + TstepGeGTstep)! (5.46b)LF = LF  �Tstep20Tmax supt2[0;Tmax℄ k	(~x; t)kHs! (5.46)kmin = kmin �10(2 + TstepGeGTstep)�PMn=0 L((M � n)Tstep)�! (5.46d)kmax = kmax� �Tstep10Tmax� (5.46e)This partiular hoie ensures that eah term on the right hand side of (5.43)is smaller than �=10. Sine there are 5 terms on the right, the whole thing isless than �=2.Although obvious and learly e�etive, this hoie is likely to be ineÆient.Supposing one term to be signi�antly more expensive than the others (e.g. oneterm being polynomial in ��1, the rest being logarithmi), it makes more senseto make the expensive term only smaller than, e.g. (1� Æ)�=2, and make eahof the others smaller than Æ�=2 (with Æ � 1=2).Thus, although we illustrate that this an be done with (5.46), we emphasizethat the exat method of satisfying (5.43) is strongly dependent on the partiularmodel hosen.Remark 5.18 To get from (5.44) to (5.45), we made use of the the weak form ofproposition 5.8. That is to say, in the bounds on bE(t), bR(t) and bQ(t), we had anintermediate estimate whih appeared unwieldy. Nevertheless, the intermediateestimate is far sharper, and is the one that should be used in pratie. Weused the less sharp estimate simply to demonstrate that bE(t), bR(t) and bQ(t) arequantities whih we an make arbitrarily small.
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5.4 Comments5.4.1 Near Optimality of the EstimatesThe estimates we give here are rude at some points, and an probably beimproved signi�antly. However, in priniple, we believe that a result of theform (5.39) is the best possible result one an hope for with our method, or anyother method based on time stepping.The reason for this is the following. Consider any numerial method basedon time integration. Suppose that it makes an error (however small) at timest0. This error has now been made, and it is highly unlikely that further errorswill ompletely anel it. Suppose after t0, we have the ability to propagatefurther with no error (but we need to take the inorret result 	(x; t0) as aninitial ondition). Then kU(t) (x; t0)� U(t)	(x; t0)kHsb is only bounded byL(t) k (x; t0)�	(x; t0)kHs . Repeating this argument every time an error ismade leads to a bound very similar to ours.5.4.2 No Hierarhy of BoundariesUnlike the Dirihlet-to-Neumann approah, the TDPSF is not embedded in ahierarhy of inreasingly aurate boundary onditions. The reason for this isthat we are not attempting to onstrut the exat solution on the boundary.Rather, we are merely assuming the wave behaves freely and semilassially onthe boundary, and �ltering it based on this. Thus, apart from inreasing w,we have little reourse to inrease the auray of this method. So althoughour method is highly aurate, we an not inrease the auray without boundwhile leaving the size of the box �xed.5.4.3 Bourgain's PhenomenonOne potential diÆulty in solving time dependent problems is that a problemwhih is stable on RN may exhibit long time instability on a periodi boxes.Given a box [�Lomp; Lomp℄N with periodi boundaries, Bourgain (.f. [5℄) hasproven the existene of a time dependent potential V (~x; t) whih is smooth andwell loalized in ~x having the property that kUb(t) 0kHsb grows logarithmiallyin time. This ours beause the time dependent potential essentially plays aquantum mehanial variant of \ping pong".This suggests that some numerial methods might exhibit this long timeinstability if one attempt to solve (1.1) on RN with suh a potential. However,our method prevents this from ourring. We do this by periodially removingall framelets whih move faster than kmax (sine we �lter o� waves whih areoutside of NECC\BB, and BB has no framelets with ~bk0 � kmax).5.4.4 Lak of Bounds on kminAnother potential diÆulty omes from the fat that in general, one has nobounds on kmin. We desribe here a situation with a simple linear (time-75



dependent) potential for whih kmin an be arbitrarily small while leaving thepotential bounded and smooth in any reasonable norm.Consider a nonlinearity of the form g(t; ~x;  (~x; t)) (~x; t) = V (~x; t) (~x; t).We suppose that V (~x; t) takes the form V0(x� (e=!2) os(!t)) for some smooth,rapidly deaying potential V0(x).This system is equivalent, by a unitary gauge transformation, to the timedependent system with Hamiltonian H(t) = �(1=2)�+V0(x)+e os(!t) �x (.f.[9℄, hapter 7).Now, suppose further that the referene Hamiltonian H0 = �(1=2)�+V0(x)has a single bound state, having energy �E0.Consider an initial ondition initially loalized in this bound state.In this ase, Fermi's golden rule suggests that for e small and ! > jE0j,mass will be ejeted from the bound state into the ontinuum9, and will haveenergy ! � E0 after ejetion. Thus, energy transitions from the bound stateinto frequenies loalized near p! �E0. By making ! suÆiently lose to E0,we an make this as small as possible.Thus, in this senario, kmin � p! �E0, i.e. kmin an be made as small asdesired.6 Lingering Waves (proof of theorem 5.12)In this setion, we onstrut a bound on the di�erene between the free propa-gator and the box propagator ating on waves whih are not outgoing:k(U(t) � Ub(t)PNECC\BB 0(x)kHsWe do this by Duhamel's priniple and Gronwall, and use the fat that thenonlinearity is loally Lipshitz (assumption 3). The bound on this term issummarized in theorem 5.12 in the next setion.We �rst de�ne three funtions, E(t), Q(t) and Qb(t) whih we will use toonstrut error bounds.De�nition 6.1 Let  (~x; t) be a solution to (1.1) on RN , and  b(~x; t) be asolution to (1.1) on [�Lint; Lint℄N . Suppose that (~x; 0) =  b(~x; 0) = PNECC\BB 0(x)for some  0(x).We de�ne the free error funtion to be some funtion E(t) for whih:(ei(1=2)�t � ei(1=2)�bt) (x; 0)Hsb 6 E(t) (6.1)9This happens only generially. More preisely, it happens if hu0(x)je � xu(x;! � E0)i 6= 0,where u0(x) is the bound state and u(x; ! � E0) is the generalized eigenfuntion at energy! �E0. 76



We de�ne the interation error to be funtions Q(t) (or Qb(t)) for whih:Z t0 (ei(1=2)�(t�t0) � ei(1=2)�b(t�t0))g(t0; ~x;  (x; t0)) (x; t0)dt0Hsb � Q(t) (6.2a)Z t0 (ei(1=2)�(t�t0) � ei(1=2)�b(t�t0))g(t0; ~x;  b(x; t0)) b(x; t0)dt0Hsb � Qb(t)(6.2b)We will write our estimates in terms of these funtions. We show that (5.37)is onsistent with de�nition 6.1.The rest of setion 6 is devoted to proving various piees of theorem 5.12.We prove (5.36) in setion 6.1. The estimate (5.37a) is done in in setion 6.2(proposition 6.9) while (5.37b) is proved in setion 6.3 (proposition 6.13).6.1 Estimates in terms of E(t), Q(t)Here, we prove the estimates (5.36a) and (5.36b) assuming that E(t) and Q(t)are known.We state the result in a more general manner, whih we believe will also beuseful for proving short time error bounds for other types of absorbing boundaryonditions.Theorem 6.2 Let  0(x) 2 Hs. Let g(t; ~x; �) satisfy assumption 3. Let E(t) bede�ned by (6.1), and Q(t); Qb(t) by (6.2). Then the following holds:k(U(t)� Ub(t)) 0(x)kHsb � (E(t)+Q(t))+GeGt?(E(t)+Q(t)) (apriori) (6.3a)k(U(t) � Ub(t)) 0(x)kHsb � (E(t) +Qb(t)) +GeGt ? (E(t) +Qb(t)) (aposteriori)(6.3b)Lemma 6.3 (Gronwall) Let y(t) satisfy the inequality:y(t) � p(t) + C Z t0 y(t)dt (6.4)y(t) satis�es the bound:y(t) � p(t) + CeCt Z t0 e�Csp(s)ds (6.5)Proof of Theorem 6.2. We use Duhamel. We observe the following equality: (t)�  b(t) = ei(1=2)�t'(x)� ei(1=2)�bt'(x)+ i Z t0 [ei(1=2)�(t�s)g(s; ~x;  (s)) (s) � ei(1=2)�bt�sg(s; ~x;  b(s)) b(s)℄ds77



We then add and subtrat ei(1=2)�(t�s)g(s; ~x;  b(s)) b(s) under the integral sign,and take norms in Hs to obtain:k (t)�  b(t)kHsb 6 Es(t)+ Z t0 [ei(1=2)�(t�s) � ei(1=2)�bt�s℄g(s; ~x;  b(s)) b(s)dsHsb +Z t0 ei(1=2)�(t�s)[g(s; ~x;  (s)) (s) � g(s; ~x;  b(s)) b(s)℄dsHsbWe then observe thatkg(s; ~x;  (s)) (s)� g(s; ~x;  b(s)) b(s)kHs � G k (s)�  b(s)kHsand also that the �rst term is Qb(t). Gronwall's Lemma (6.3) gives us (6.3b).Estimate (6.3a) follows in muh the same way, exept that we add and subtratei(1=2)�bt�sg(s; ~x;  (s)) (s) instead. �Proof of Lemma 6.3. In the ase of equality, we have:y(t) = p(t) + C Z t0 y(t)dtLaplae transformation yields:Y (z) = P (z)� CY (z)zOr equivalently: Y (z) = �1 + Cz + C�P (z)Inverting the Laplae transform and olleting residues yields the result we seek:y(t) = eCt Z t0 e�Cs dp(s)ds ds = p(t) + CeCt Z t0 e�Csp(s)ds �In the event that g(t; ~x;  ) = V (x; t) (x) a sharper estimate holds. Thisan not be shown to hold in the nonlinear ase { indeed, ounterexamples exist.Theorem 6.4 Let  (x; t = 0) 2 Hs be an initial ondition of (1.1), whereg(t; ~x;  ) = V (x; t) (x) (that is, a \linear nonlinearity"). Suppose that theequation i�t b(~x; t) = (�(1=2)�b + V (~x; t)) b(~x; t)satis�es the energy onservation law k b(x; t)kHs 6 �(t) k b(x; 0)kHs . Then we�nd:k (~x; t)�  b(~x; t)kHsb� �(t) k (x; 0)�  b(x; 0)kHsb + Z t0 �(t� t0) kS(~x; t)kHsb dt0 (6.6)78



where:S(x; t) = h(ei(1=2)�bt � ei(1=2)�t) (x; 0)+ i Z t0 �ei(1=2)�b(t�t0) � ei(1=2)�(t�t0)�V (x; t0) (x; t0)dti (6.7a)s(x; t) = i�tS(x; t) (6.7b)In partiular, observe that kS(x; t)kHs 6 E(t) +Q(t), so to bound the error, itis suÆient to onstrut E(t) and Q(t).Proof. We write  b(x; t) =  (x; t) + e(x; t) where e(x; t) is the error. Wethen subtrat the Duhamel equation for  b(x; t) from the Duhamel equation for (x; t) to obtain:e(x; t) = ei(1=2)�b(t�t0)e(x; 0) + i Z t0 ei(1=2)�b(t�t0)V (x; t0)e(x; t0)dt0+ (ei(1=2)�bt � ei(1=2)�t) (x; 0)+ i Z t0 �ei(1=2)�b(t�t0) � ei(1=2)�(t�t0)�V (x; t0) (x; t0)dt0If we apply i�t to this equation, we observe that:i�te(x; t) = (�(1=2)�b + V (x; t)) e(x; t) + S(x; t)Taking norms and bringing them under the integral sign gives us the result weseek. �6.2 Bounds on E(t)Here, the bound (5.37a) on E(t) is onstruted from the framelet deomposi-tion and the fat that  (x; 0) is given by framelets whih are in NECC\BB.We further split this up into framelets whih are in BADC \NECC\BB andBAD\NECC\BB. We then add the results together to obtain the estimate.Lemma 6.5 Let f�jg be a frame with frame bounds AF ; BF and with per-framelet error bounds fEsj (t)g. Suppose J is a �nite set of framelet indies.Then:(ei(1=2)�t � ei(1=2)�bt)Xj2J  j�j(x)Hs �Xj2J j j j Esj (t)� A�1F sXj2J ��Esj (t)��2 k kL2 � A�1F pjJ j supj2J Esj (t) k kL2 (6.8)Here, jJ j represents the ardinality of J . The same result holds if we replae(ei(1=2)�t � ei(1=2)�bt) by �[�Lint;Lint℄N ei(1=2)�t and Esj (t) by Rsj(t).79



Proof. The triangle inequality yields:(ei(1=2)�t � ei(1=2)�bt)Xj2J  j�j(x)Hs 6Xj2J j j j Esj (t)We have a sharp bound:6Xj2J j j j Esj (t) �sXj2J j j j2sXj2J ��Esj (t)��2 � A�1F k kL2sXj2J ��Esj (t)��2We obtain a suboptimal (although still reasonably useful) bound:sXj2J ��Esj (t)��2 �pjJ j supj2J Esj (t)This yields the result we seek. The proof with Rsj(t) instead of Esj (t) is idential,but with ei(1=2)�t replaing (ei(1=2)�t � ei(1=2)�bt). �Remark 6.6 For pratial purposes, the estimate qPj2J ��Esj (t)��2 should beused rather than A�1F pjJ j supj2J Esj (t) k kL2 . For any given set of parametersit is simple to ompute, and gives a preise estimate (whih does not growwith L). The ruder estimate is inluded to demonstrate that the estimate isnontrivial.We now apply lemma 6.5 to obtain the following result dealing with frameletsin NECC\BB\BADC .Proposition 6.7 Let  0(x) satisfy assumption 2. Then we �nd:(ei(1=2)�t � ei(1=2)�bt)PBADC \NECC\BB 0(x)Hsb � bE(t) k kL2 (6.9)Proof. Compute:(ei(1=2)�t � ei(1=2)�bt) X(~a;~b)2BADC \NECC\BB 0(~a;~b)�(~a;~b)(~x)Hsb� X(~a;~b)2BADC \NECC\BB ��� 0(~a;~b)��� (ei(1=2)�t � ei(1=2)�bt)�(~a;~b)(~x)Hsb�s X(~a;~b)2BADC \NECC\BB E(~a;~b)(t)2�vuut X(~a;~b)2BADC \NECC\BB ��� 0(~a;~b)���2 � bE(t) k 0kL280



Here we used the fat thatvuut X(~a;~b)2BADC \NECC\BB ��� 0(~a;~b)���2 � A�1F k 0kL2and the de�nition of bE(t) (de�nition 5.7 on page 63). �Proposition 6.8 Let the parameters kmin, w and Tstep satisfy (5.35). Let  0(x)satisfy assumption 6. Then the following estimate holds:(ei(1=2)�t � ei(1=2)�bt)PBAD\NECC\BB 0(x)Hsb � 2Æmin (6.10)This result is slightly trikier, and subsubsetion 6.2.1 is devoted to theproof. We now arrive at the bound on E(t):Proposition 6.9 Let  0(x) satisfy assumption 6, and let Lint, Tstep and wsatisfy (5.35). Then:(ei(1=2)�t � ei(1=2)�bt)PBB\NECC 0(x)Hsb� bE(t) k 0(x)kL2 + 2Æmin = E(t) (6.11)Proof. Observe thatPBB\NECC 0(x) = PBAD\BB\NECC 0(x) + PBADC \BB\NECC 0(x) (6.12)We therefore apply (ei(1=2)�t � ei(1=2)�bt) to (6.12), then take the norm in Hsband use the triangle inequality, to obtain:(ei(1=2)�t � ei(1=2)�bt)PBB\NECC 0(x)Hsb� (ei(1=2)�t � ei(1=2)�bt)PBAD\BB\NECC 0(x)Hsb+ (ei(1=2)�t � ei(1=2)�bt)PBADC \BB\NECC 0(x)Hsb (6.13)Then apply proposition 6.7 to the last term and proposition 6.8 to the �rst termon the right side of (6.13). �6.2.1 Slowly Moving WavesWe now prove proposition 6.8.The idea of the proof is to show that for any (~a;~b) 2 BAD\NECC\BB,(~a;~b) satis�es (5.7). This, ombined with BAD\NECC\BB implies that:kPBAD\NECC\BB 0(x)kHsb � Æmin81



Thus we need only prove that (~a;~b) 2 BAD\NECC\BB satis�es (5.7).We prove �rst a tehnial lemma, showing that a given framelet is eitherinoming or outgoing (not both) if it has veloity suÆiently fast.Lemma 6.10 Assume that w, Tstep satisfy (5.35b) and (5.35). Then for(~ax0;~bk0) 2 [�(Lint + w=3); (Lint + w=3)℄N � [�kmax; kmax℄N ;we �nd that (~a;~b) 62 BAD(�; s; Tstep).Proof. By lemma 4.9, it suÆes to show that BB(~a;~b;�)("; t) � [�(Lint +w); (Lint + w)℄N .Note that:~ax0 +~bk0t 2 [�(Lint + w=3 + kmaxt); (Lint + w=3 + kmaxt)℄N� [�(Lint + w=3 + kmaxTstep); (Lint + w=3 + kmaxTstep)℄NConsider ~x 2 BB(~a;~b;�)("; t). By de�nition 4.7 (the de�nition of BB(~a;~b;�)("; t)),we �nd that: j~x� ~ax0 +~bk0tj2 � wsi (~b; �) +wsv(~b; �)tThus, sine ~ax0+~bk0t 2 [�(Lint+w=3+kmaxTstep); (Lint+w=3+kmaxTstep)℄N ,and BB(~a;~b;�)("; t) is ontained in a ball of radius wsi (~b; �) +wsv(~b; �)Tstep about~ax0 +~bk0t, we �nd that:BB(~a;~b;�)("; t) � [�(Lint + w=3 + kmaxTstep +wsi (~b; �) +wsv(~b; �)Tstep);(Lint + w=3 + kmaxTstep +wsi (~b; �) +wsv(~b; �)Tstep)℄NThen applying (5.35b) and (5.35), we �nd that:[�(Lint + w=3 + kmaxTstep +wsi (~b; �) +wsv(~b; �)Tstep);(Lint+w=3+kmaxTstep+wsi (~b; �)+wsv(~b; �)Tstep)℄N � [�(Lint+w); (Lint+w)℄NLemma 4.9 implies the result we seek. �Lemma 6.11 Assume w and Tstep satisfy (5.35b) and (5.35).Fix (~a;~b) 2 ZN �ZN. Suppose that (~a;~b) satis�es:9j 2 1 : : :N; j~ajx0j � Lmin and~bjk0(~aj= j~aj j) > kmin (6.14)Suppose also that Lint, w and Lmin satisfy (5.35h), that is Lmin � Lint + w=3.Then (~a;~b) 62 NECC(�; s;1). 82



Proof. For the duration of this proof, let j denote the (possibly nonunique)index j for whih (6.14) holds.Note that by (5.35b) and (5.35h), we �nd that j~ajx0j � Lint + w=3. Forsimpliity, suppose that ~aj > 0, and therefore that ~bj > 0.Then note that: ~ajx0 +~bk0t � (Lint + w=3) +wsv(~b; �)tThe onstant term was obtained by using (5.35h) while the t term was obtainedusing (5.35a).Thus, we �nd that:d(~ax0 +~bk0t; [�Lint; Lint℄N ) � w=3 +wsv(~b; �)t � wsi (vb; �) +wsv(~b; �)tThe last inequality follows by applying (5.35b). Applying lemma 4.10 impliesthat (~a;~b) 62 NECC. �Proof of proposition 6.8. We now wish to show that:(ei(1=2)�t � ei(1=2)�bt)PBAD\NECC\BB 0(x)Hsb � 2Æmin (6.15)We do this by showing that BAD\NECC\BB is a set whih satis�es (5.7).Fix (~a;~b) 2 BAD\NECC\BB. Note that sine (~a;~b) 2 BB, we �nd thatj~bk0j1 � kmax.Applying the onverse of lemma 6.10, we �nd that j~ax0j1 � Lint + w=3.Now suppose (~a;~b) satis�es (6.14). Then:(~a;~b) 62 NECC(�; s;1) � BAD\NECC\BBThus, if (~a;~b) 2 BAD\NECC\BB, we �nd that:!(9j 2 1 : : :N; j~ajx0j � Lmin and~bjk0(~aj= j~aj j) > kmin)This implies that BAD\NECC\BB is a set satisfying (5.7). Hene:(ei(1=2)�t � ei(1=2)�bt)PBAD\NECC\BB 0(x)Hsb� 2 kPBAD\NECC\BB 0(x)kHsb � 2ÆminThus, we have proved proposition 6.8. �6.3 Bounds on Q(t)We now attempt to determine bounds on Q(t) and Qb(t) based on apriori andaposteriori knowledge of  (x; t) and g(t; ~x; �). This is where we use assumption4. 83



The main tool is phase spae loalization based on the WFT and assumption4. In partiular, we wish to treat g(t; ~x;  (t)) (t) as a soure term and then�gure out how muh of it's mass an leave [�Lint; Lint℄N . We will deomposeZN�ZN = NL[NLC (with the set NL de�ned as in assumption 4), and write:g(t; ~x;  ) = X(~a;~b)2NL g(~a;~b)(t)�(~a;~b)(~x) + X(~a;~b)2NLC g(~a;~b)(t)�(~a;~b)(~x)The last term is small by assumption 4. We now ome up with suÆientonditions on Lint and Tstep (depending on kmax;NL and LNL) so that frameletsin NL are not bad.Proposition 6.12 Let Tstep, Lint satisfy (5.35e), (5.35f) and (5.35g). ThenNL\BAD(�; s; Tstep) = ;.Proof. Fix (~a;~b) 2 NL.Note that BB(~a;~b;�)("; t) is a ball of radius wsi (~b; �) + wsv(~b; �)t around thepoint ~ax0 +~bk0t. Thus, if ~x 2 BB(~a;~b;�)("; t), then:j~xj1 � j~ax0j1 + j~bk0j1t+wsi (~b; �) +wsv(~b; �)t� Lint + kmax;NLTstep + w=2 +wsv(~b; �)Tstep� Lint + w=2 + (Lint + w=2� LNL)This alulation follows by applying (5.35e) to (kmax;NL + wsv(~b; �))Tstep and(5.35g) to wsi (~b; �).Note that (5.35f) is needed only to insure that (5.35e) is possible to satisfy,i.e. that Lint � LNL > 0.This implies that ~x 2 [�(Lint + w); (Lint + w)℄N , heneBB(~a;~b;�)("; t) � [�(Lint + w); (Lint + w)℄NApplying lemma 4.9 implies that (~a;~b) 62 BAD(�; s; Tstep). The only assumptionon (~a;~b) was (~a;~b) 2 NL, hene NL\BAD(�; s; Tstep) = ;. �We an now ompute a bound on Q(t) for Q(t) satisfying assumption 4.Proposition 6.13 Let g(t; ~x;  ) satisfy assumption 4. Suppose that Lint andTstep satisfy (5.35e), (5.35f) and (5.35g). Then Q(t) satis�es:Q(t) � ( bQ(t)G+ tÆNL) supt02[0;t℄ k (x; t0)kHs (6.16)
84



Proof. We note that:Z t0 (ei(1=2)�(t�t0) � ei(1=2)�b(t�t0))g(t; ~x;  (~x; t0)) (~x; t0)dt0Hsb� Z t0 (ei(1=2)�(t�t0) � ei(1=2)�b(t�t0)) X(~a;~b)2NL g(~a;~b)(t)t0)�(~a;~b)(~x)Hsb dt0+ Z t0 (ei(1=2)�(t�t0) � ei(1=2)�b(t�t0)) X(~a;~b)2NLC g(~a;~b)(t)t0)�(~a;~b)(~x)Hsb dt0By assumption 4, for any �xed t, the last term satis�es:(ei(1=2)�(t�t0) � ei(1=2)�b(t�t0)) X(~a;~b)2NLC g(~a;~b)(t)t0)�(~a;~b)(~x)Hsb� 2ÆNLt supt02[0;t℄ k (x; t0)kHs (6.17)The �rst term satis�es (at eah �xed t � Tstep):(ei(1=2)�(t�t0) � ei(1=2)�b(t�t0)) X(~a;~b)2NL g(~a;~b)(t)t0)�(~a;~b)(~x)Hsb� kg(t; ~x;  (~x; t)) (~x; t)kL2 A�1F vuut X(~a;~b)2NL ���E(~a;~b)(t)���2� G k (~x; t)kHs A�1F vuut X(~a;~b)2NL ���E(~a;~b)(t)���2We then integrate this result over time:Z t0 G k (~x; t)kHs A�1F vuut X(~a;~b)2NL ���E(~a;~b)(t)���2�Gt supt02[0;t℄ k (~x; t)kHs A�1F vuut X(~a;~b)2NL ���E(~a;~b)(t)���2 = G k (~x; t)kHs bQ(t) (6.18)Adding (6.17) and (6.18) yields the result we seek. �85



7 Exterior WavesIn this setion, we prove theorems 5.10 and 5.11.We �rst prove a tehnial result, that the waves outside [�(Lint+w); (Lint+w)℄N and also the waves of high frequeny are small. We will use this result inthe proof of both theorem 5.10 and 5.11.Now we will show that f(x) is loalized. We assume throughout this setionthat f(x) = U(Tstep)PNECC\BBh(x) for some h(x) 2 Hs.Proposition 7.1 The following inequality holds.kf(x)kHs(RNn[�Lomp;Lomp℄N ) � bE(Tstep) kh(x)kL2 + bQ(Tstep) (7.1)where E(t) and Q(t) are given by (5.37a) and (5.37b) with h(x) replaing  (x).Proof. Reall that the per-framelet error funtions, used to onstrutbE(t) kh(x)kL2 and bQ(t) are nothing more than the mass (in Hs) outside[�(Lint + w); (Lint + w)℄N . Thus, the proofs of propositions 6.9 and 6.13 applywithout hange, and we an merely add bE(Tstep) kh(x)kL2 and bQ(Tstep) to getour bound. �Proposition 7.2 The framelet oeÆients of f(x) satisfy:kPBBCf(x)kHs � Hs+(~g(~x))H�s+ (e�x2=�2)[bE(Tstep) kh(x)kL2+ bQ(Tstep)+�℄+Æmax(7.2)Proof. Note that BBC Consists of framelets moving faster than kmax, oroutside the region [�Lomp; Lomp℄N . We apply orollary 3.21.Assumption 2 an be invoked to bound PHF(kmax)f(x)Hs by Æmax. Tobound the spatial omponent, we apply proposition 7.1.kPBBf(x)kHs � Hs+(~g(~x))H�s+ (e�x2=�2)[E(Tstep) +Q(Tstep) + �℄+ PHF(kmax)f(x)Hs (7.3)�7.1 Outgoing Waves (Proof of theorem 5.10)In this setion we prove theorem 5.10, onerning the outgoing wave term:kU(tjf)PNECCCf(x)kHsbOur goal is to show that beause the waves are outgoing, this term remainssmall for a long time. The funtion f(x) will be assumed to satisfy assumptions2, and also satisfy the assumption that f(x) = U(t)PNECC\BBh(x).This is where we use assumption 5. Assumption 5 states that:kU(tjf)PNECCCf(x)kHsb � ÆF kPNECCCf(x)kHsb86



We �rst add and subtrat ei(1=2)�tPNECCf under the norm, and apply thetriangle inequality:kU(tjf)PNECCCf(x)kHsb� U(t)PNECCCf(x)� ei(1=2)�tPNECCCf(x)Hsb+ ei(1=2)�tPNECCCf(x)Hsb (7.4)The �rst term is bounded by ÆF kPNECCCf(x)kHs , by assumption 5. This istrue provided Lint � LF , sine in this aseei(1=2)�t�(~a;~b)(~x)Hs([�LF ;LF ℄N ) � ei(1=2)�t�(~a;~b)(~x)Hs([�Lint;Lint℄N ) � "for any (~a;~b) 2 NECCC .Thus we need only ompute a bound on ei(1=2)�tPNECCCf(x)Hsb .We breakup PNECCCf(x) further:PNECCCf(x) = PNECCC \HF(kmax)[Bf(x) + PNECCC \(HF(kmax)[B)Cf(x)Proposition 7.2 provides a bound on the �rst term. To bound the seond,we need merely ount the framelets in (HF(kmax) [B)C and apply lemma 6.5.We observe that BC onsists only of framelets with j~aj1 x0 � Lomp +Xs(�; kmax) , while HF(kmax)C onsists only of framelets with ���~b���1 x0 � kmax.It is easy to see that there are only (2kmax=k0)N (2[Lomp +Xs(�; kmax)℄=x0)Nsuh framelets. Thus, we obtain the result of theorem 5.10:kU(tjf)PNECCCf(x)kHsb � ÆF kPNECCCf(x)kHsb+Hs+(~g(~x))H�s+ (e�x2=�2 )[E(Tstep) +Q(Tstep) + �℄ + Æmax+A�1F 0� X(~a;~b)2NECCC \(HF(kmax)[B)C ���R(~a;~b)(s)t���21A1=2 kf(x)kL2= ÆF kPNECCCf(x)kHsb + bR(t) kf(x)kL2+Hs+(~g(~x))H�s+ (e�x2=�2)[bE(Tstep) kh(x)kL2 + bQ(Tstep) + �℄ + Æmax (7.5)Here, we used de�nition of bR(t) to simplify the inequality.7.2 Residual WavesIn this setion, we wish to show thatkU(t)PNECCf(x)� U(t)PNECC\BBf(x)kHsb = U(t)PNECC nBBf(x)Hsb87



is small, provided f(x) = 	(x; nTstep) for some n.The residual waves onsist of waves whih are loated outside the box, butare moving in a diretion that will take them into the box at some future point.They an be thought of as outgoing waves that have turned around outside thebox, and are returning.Remark 7.3 This proof does not use the fat that the waves are o� the prop-agation set. It merely uses the fat that BBC onsists of framelets whih areloalized outside the box, and it takes a moderate amount of time to reah them.Proof of theorem 5.11. By proposition 7.2, and the observation thatNECC nBB � BBCwe observe that:PNECC nBBf(x)Hs� Hs+(~g(~x))H�s+ (e�x2=�2)[E(Tstep) +Q(Tstep) + �℄+ PHF(kmax)f(x)HsWe then observe that:kU(tjPNECCf)PNECCf(x)� U(tjPNECC\BB)PNECC\BBf(x)kHsb� L(t) kPNECCf(x)�PNECC\BBf(x)kHsb� L(t)�Hs+(~g(~x))H�s+ (e�x2=�2)[E(Tstep) +Q(Tstep) + �℄+ PHF(kmax)f(x)Hs �This is the result we seek, after substituting the de�nitions of E(Tstep) andQ(Tstep) in. �8 Validation of the Assumptions: Some SimpleExamplesIn this setion we verify that the assumptions hold for ertain ommon examples.8.1 Time Independent PotentialsIn this setion, we onsider the ase where g(t; ~x;  (~x; t)) (~x; t) is merely a timeindependent linear potential. That is, g(t; ~x;  (~x; t)) (~x; t) = V (x) (~x; t) forV (x) an analyti, short range potential whih is real-valued. More preisely, wedemand the following: ���jxV (x)�� � CV hxi�(1+�) (8.1a)88



V̂ (k) � C 0V e��j~kj (8.1b)Assumption 1This follows trivially from standard funtional analysis. The operator H =�(1=2)� + V (x) is self adjoint and bounded below, so eiHt is an isometrisemigroup on L2. Thus, the solution exists and is unique. This also impliesthat L(t) = 1.Assumption 2This assumption holds due to onservation of energy, whih allows us toprove that k (~x; t)kH1 is bounded.Lemma 8.1 We have the following bound on k (~x; t)kH1 :k (~x; t)kH1 � p2qjE0j+ k (x; 0)k2L2 (kV (x)kL1 + 1=2) (8.2)E0 is the energy of the system, i.e. E0 = h (x; 0)jH0 (x; 0)i.Proof. Sine V (x) is real valued, (1.1) beomes a Hamiltonian system. Thus,h (~x; t)jH (~x; t)i is a onserved quantity. Therefore:h (~x; t)j � (1=2)� (~x; t)i = h (x; 0)jH (x; 0)i � h (~x; t)jV (x) (~x; t)iMultiplying by 2, adding k (x; 0)k2L2 to both sides and then taking absolutevalues yields:k (~x; t)k2H1 � 2 h (x; 0)jH (x; 0)i+ 2 k (~x; t)k2L2 kV (x)k2L1 + k (~x; t)kL2Applying onservation of mass to the  (~x; t) terms on the right, and then takingsquare roots yields the result we seek. �We note that [1� P 0[�K;K℄N ;0(k)℄f(x)L2 � hKi�1 kf(x)kH1 . Combiningthis with proposition 5.2 on page 59, we have veri�ed assumption 2. Thus:[1� P 0[�K;K℄N ;0(k)℄ (~x; t)L2� K�1p2qjE0j+ k (x; 0)k2L2 (kV (x)kL1 + 1=2) (8.3)Now, given Æmax, we letkmax � ks(kmax)= Æ�1max23=2Hs+(~g(~x))H�s+ (e�x2=�2)qjE0j+ k (x; 0)k2L2 (kV (x)kL1 + 1=2)Substituting this de�nition of kmax into (8.3), we �nd that proposition 5.2 issatis�ed and therefore assumption 2 is also satis�ed.One an, of ourse, use energy estimates (based on the fat thath (~x; t)jHs (~x; t)i is onserved) in higher order Sobolev spaes to bound kmaxas well. In general, one an show that kmax � Æs�tmax where s is the sobolev89



spae in whih we measure the error, and t > s is some higher Sobolev spae.However, the onstants are diÆult to ontrol, due to the need to estimate manyommutators, e.g. [�(1=2)�a; V (x)b℄ (and the like).Assumption 3Sine V (x) is a bounded linear operator, we �nd that G = kV (x)kL(Hs;Hs).But kV (x)kL(Hs;Hs) is given merely by kV (x)kL(Hs;Hs) = kV (x)kW s;1 . In thease when s = 0, we �nd simply that kV (x)kL(L2;L2) = kV (x)kL1 .Assumption 4This follows from assumption 2 ombined with the fat that the potentialis smooth and deays rapidly in spae. We use the alternative assumption toassumption 4 found on page 59. We need to verify (5.9a) and (5.9b).Bounds in MomentumTo verify (5.9a), we need to ompute a bound on:(1� P s[�M;M ℄N ;k0(~x))V (x) (~x; t)L2We do this by using the fat that V̂ (k) deays rapidly, ombined with (8.3). Wewrite:(1� P 0[�M;M ℄N ;k0(~x))V (x) (~x; t)L2� (1� P 0[�M;M ℄N ;k0(~x))[V̂ (k) ? P 0[�K;K℄N ;k0(~x) ̂(k; t)℄L2+ (1� P 0[�M;M ℄N ;k0(~x))[V̂ (k) ? (1� P 0[�K;K℄N ;k0(~x)) ̂(k; t)℄L2� (1� P 0[�M;M ℄N ;k0(~x))[V̂ (k) ? P 0[�K;K℄N ;k0(~x) ̂(k; t)℄L2+ kV (x)kL1 (1� P 0[�K;K℄N ;k0(~x)) ̂(k; t)L2� (1� P 0[�M;M ℄N ;k0(~x))[V̂ (k) ? P 0[�K;K℄N ;k0(~x) ̂(k; t)℄L2+ kV (x)kL1 K�1p2qjE0j+ k (x; 0)k2L2 (kV (x)kL1 + 1=2) (8.4)The last term an be made as small as neessary by making K large, whih wewill do shortly. We an alulate this by:(1� P 0[�M;M ℄N ;k0(~x))[V̂ (k) ? P 0[�K;K℄N ;k0(~x) ̂(k; t)℄2L2� Z([�(M+k0);(M+k0)℄N )C �����Z[�(K+k0);(K+k0)℄N C 0V e��j~k�~k0j ̂(~k0; t)d~k0�����2 d~k(8.5)The inner integral is the onvolution of a ompatly supported funtion withan exponentially deaying one. The result is exponentially deaying. The outerintegral is then integrated over the tail of this exponentially deaying funtion,and is therefore exponentially small. 90



Lemma 8.2 Suppose j~kj1 � (K+k0), in partiular suppose that j~kj j � K+k0with j 2 1 : : : N . We have the following bound on the inner integral:�����Z[�(K+k0);(K+k0)℄N C 0V e��j~k�~k0j ̂(~k0; t)d~k0�����2� (C 0V )22(K + k0)e�2�(j~kj1�K�k0) k (x; 0)k2L2 ��N+1Proof. Sine j~kj1 � (K + k0), there exists j so that ���~kj��� � K + k0. Suppose,without loss of generality, that ~kj � K + k0 (the ase when ~kj � �K � k0 isjust a hange of oordinates). We an then alulate:�����Z[�(K+k0);(K+k0)℄N (C 0V )2e��j~k�~k0j ̂(~k0; t)d~k0�����2 �Z[�(K+k0);(K+k0)℄N (C 0V )2e�2�j~k�~k0j  ̂(~k; t)2L2� 2(K + k0)e�2�(~kj�K�k0)  ̂(~k; t)2L2 Z[�(K+k0);(K+k0)℄N�1 e�2�j~k�~k0j1d~k0� 2(K + k0)e�2�(~kj�K�k0)  ̂(~k; t)2L2 ZRN�1 e�2�j~k�~k0j1d~k0� 2(K + k0)e�2�(~kj�K�k0)  ̂(~k; t)2L2 ��N+1Finally, note that  ̂(~k; t)L2 = k (x; 0)kL2 and we are done. �Lemma 8.3 The following equation holds.Z([�(M+k0);(M+k0)℄N )C e�2�(j~kj1�K�k0)d~k= 2N(2�)�Ne2�(K�k0)�(N; 2�(M + k0))�MNe�2�(M�K)2N(2�)�N (8.6)In partiular, (8.6) vanishes faster than e�(2��Æ)M for any Æ > 0.
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Proof. The set f~k : j~kj1 = ug has surfae area 2NuN�1. Thus, we �nd that:Z([�(M+k0);(M+k0)℄N )C e�2�(j~kj1�K�k0)d~k= Z 1M+k0 2NuN�1e�2�(u�K�k0)du = 2Ne2�(K�k0) Z 1M+k0 uN�1e�2�udu= 2Ne2�(K�k0) Z 12�(M+k0)(v=2�)N�1e�v dv2�= 2N(2�)�Ne2�(K�k0) Z 12�(M+k0) vN�1e�vdv= 2N(2�)�Ne2�(K�k0)�(N; 2�(M + k0))The asymptotis follow by applying (4.15) to �(N; 2�M). �We now apply lemma 8.2 to the inner integral of (8.5), and lemma 8.3 tothe outer integral. We thus �nd that:(8.5) � (C 0V )22��N+12N(2�)�N�  ̂(~k; t)2L2 (K + k0)e2�(K�k0)�(N; 2�(M + k0)) (8.7)Thus:(8.4) � C 0V 2��(N+1)=2N1=2(2�)�N=2� k (x; 0)kL2pK + k0e�(K�k0)p�(N; 2�(M + k0))+ kV (x)kL1 K�1p2qjE0j+ k (x; 0)k2L2 (kV (x)kL1 + 1=2) (8.8)We will now make K and M suÆiently large.We hoose K in order to obtain:kV (x)kL1K�1p2qjE0j+ k (x; 0)k2L2 (kV (x)kL1 + 1=2)� 12 ÆNL k (~x; t)kL2(4Hs+(~g(~x))H�s+ (e�x2=�2))This yields:K = 23=2(4Hs+(~g(~x))H�s+ (e�x2=�2))� kV (x)kL1qjE0j+ k (x; 0)k2L2 (kV (x)kL1 + 1=2)ÆNL k (x; 0)kL2
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We now selet M so that:C 0V 2��(N+1)=2N1=2(2�)�N=2� k (x; 0)kL2pK + k0e�(K�k0)p�(N; 2�(M + k0))� 12 ÆNL k (~x; t)kL2(4Hs+(~g(~x))H�s+ (e�x2=�2))This yields:M = k0max;NL = �k0+ (2�)�1��1 N; ÆNL2N�7�2N�1e�2�(K�k0)(C 0V )2N(K + k0)(Hs+(~g(~x))H�s+ (e�x2=�2))2! (8.9)In terms of asymptotis, we �nd thatK = O(Æ�1NL) andM = ��1(N; e�2�K=K) =��1(N; e�2�Æ�1NLÆNL), thus M = k0max;NL grows at most Æ�1�ÆNL for any Æ > 0.Thus we have satis�ed (5.9a).Bounds in SpaeTo verify (5.9b), we need to ompute a bound onP s[�LNL;LNL℄N ;x0(~x) (~x; t)L2 ;where we are free to hoose L0NL.We an bound this by (1� P s[�LNL;LNL℄N ;x0(~x))V (x)L1 k (~x; t)kL2 . Ob-serve that:(1� P s[�LNL;LNL℄N ;x0(~x))V (x)L1 �1� P s[�LNL;LNL℄N ;x0(~x)L1 CV hL0NLi�1�� � CV hL0NLi�1��Therefore, we �nd that in order to makeP s[�LNL;LNL℄N ;x0(~x) (~x; t)L2 � ÆNL k (~x; t)kL2(4Hs+(~g(~x))H�s+ (e�x2=�2)) ;we need only letLNL = hÆ�1NLCV (4Hs+(~g(~x))H�s+ (e�x2=�2))i 11+�Asymptotially, LNL = O((1=ÆNL) 11+� ).If V (x) deays exponentially, one an prove a similar estimate in whih LNLwill behave like O(ln(1=ÆNL)).Assumption 5Various propagation estimates an be used to verify assumption 5 (usingproposition 5.4) using propagation estimates, e.g. [27℄.93



We would break the non-neessary waves involved in assumption 5 into waveswhih are pointing away from ~x = 0, waves whih are pointing towards ~x butdo not have enough veloity to reah [�Lint; Lint℄N before t = Tmax, and thosewaves for whih ~x � ~k = 0 (waves moving in the angular diretion).The outgoing waves an be treated by using minimal veloity bounds on thepositive spetral subspae of the dilation generator (�i=2[~x � r+r � ~x℄).The waves whih are moving inward, but too slowly too reah the omputa-tional region, are ontrolled by maximal veloity bounds.The treatment of the third type of waves is more intriate, whih requires theuse of veloity bounds with modi�ed dilation operators and overing argumentsin phase spae. The idea is that they are ontained in regions of phase spaefor whih [�Lomp; Lomp℄N is outside the propagation set.It is our intent to alulate this all expliitly at some later point.Assumption 6This is, we believe, the most diÆult assumption to verify.Assumption 6 has two omponents whih need to be veri�ed. We only knowof a general argument whih is apable of dealing with one of them.The basi tool for verifying assumption 6 is proposition 5.5. Proposition 5.5says that all we need to do is verify that framelets whih are outside the boxhave j~bk0j2 � 2pNkmin, and for whih ~ax0 is loated one around ~bk0.This means that we need to show that framelets whih are far from this onehave small mass, and framelets below 2pNkmin have small mass.We believe the �rst an be veri�ed by using pseudoonformal-type estimates,whih we will sketh out below. We are unertain at this time how to show thatthe amount of mass below 2pNkmin is small. For this reason, we are developinga multisale algorithm apable of handling low frequeny waves [37℄.We now sketh an argument suggesting that waves luster on waves where~x k ~k. Reall that in remark 5.6, we provided an argument suggesting thatif k(~x � itr)f(~x)kL2 was bounded, then the mass of f(~x) sitting on frameletswith j~ax0 �~bk0tj2 � 0 is small.We now suppose that  (x; t) is loated stritly on positive energies, i.e.�[kmin;1)(H) (x; t) =  (x; t). Let us also suppose that h~xi2V (~x) deays rapidly.This suggests to us that j~xj22V (~x) (x; t)L2 � onst t�3=2.We an then deompose  (x; t) by Duhamel in the following way: (x; t) = ei(1=2)�t (x; 0) + Z (j+1)t=njt=n ei(1=2)�(t�t0)V (x) (x; t0)dt0We then observe that:(x� itr)ei(1=2)�t (x; 0)L2 = j~xj22 (x; 0)L2In addition, we �nd that:(x� i(t� t0)r)ei(1=2)�(t�t0)V (x) (x; t0)L2 = ei(1=2)�(t�t0)j~xj22V (x) (x; t0)L2= j~xj22V (x) (x; t0)L2 � onst(t0)�3=294



We then observe that this suggests that the framelet oeÆients of ei(1=2)�(t�t0)V (x) (x; t0)are also small when ~ax0 ? ~bk0.This indiates that:P~a?~b (x; t)L2 � small j~xj22 (x; 0)L2 + small Z t0 onst(t0)�3=2dt0 (8.10)This argument, whih we believe an be made rigorous, suggests why webelieve that all of our assumptions an be veri�ed for the ase of linear, timeindependent potentials.9 Numerial TestsIn this setion we disuss the results of our numerial tests.We built and implemented the algorithm in the program Kitty . Kittyis implemented in the Python programming language, with external libraries(written in C) handling the expensive numerial omputations. The external li-braries used are FFTW (Fastest Fourier Transform in the West), and Numarray(support for large arrays in Python, at C-like speeds). Kitty also alls the ex-ternal programs Gnuplot to generate graphs and ImageMagik/gifsile in orderto produe movies for 2-dimensional simulations.Kitty is liensed under the GPL. It is very muh a work in progress. Kittyomes with little doumentation and no warranty. Use it at your own risk.Various test ases, spanning many types of parameters, are also available fordownload from the author's webpage, http://math.rutgers.edu/~stuhio.9.1 T +R = E: Simple TestsThe standard method for testing absorbing boundaries is simply to throw o-herent states (whih are well loalized in frequeny) at the boundary. Afterthe ollision, the amount transmitted (if absorbing potentials are used { forDirihlet-to-Neumann and other boundaries nothing is transmitted) and theamount reeted are measured.This is a useful test, although it is by no means ompletely haraterizesthe errors. We explain why, and provide an example where this method fails insetion 9.2.9.2 T +R 6= E: A trikier testWe desribe in this setion a senario in whih omputing a bound on T + Rprovides no useful estimate.Consider the following linear Shr�odinger equation (with (~x; t) 2 R2+1 ):i�t (x; t) = ��(1=2)�� 150:05j~xj22 + 1� (x; t) (9.1) (x; 0) = ei7~x2e�j~xj22=20 + ei4~x1e�j~xj22=2095



Observe that the initial ondition onsists of two oherent states of equalmass, one with veloity 4 and one with veloity 7. The notable fat aboutthis partiular potential is that the fast gaussian has enough kineti energy to(mostly) esape from the binding potential. The slow gaussian does not. Theslow gaussian moves toward the boundary, turns around and returns.The problem with the absorbing potential approah is that the absorbing po-tential does not distinguish between inoming and outgoing waves. It dissipateseverything on the boundary inluding the waves that should have returned. Thiswill our even if one an onstrut a omplex potential for whih T +R = 0!We ran three simulations of (9.1). The �rst was performed using the TDPSFwith � = 2:0. The region of omputation was [�25:6; 25:6℄2 The seond wasperformed (on the same region) with an absorbing potentialV1(~x) = �20ie�(~x1�25:6)2=36 � 20ie�(~x2�25:6)2=36:The third was solved with periodi boundary onditions on the region[�102:4; 102:4℄2. This boundary is suÆiently distant so that the outgoing wavesannot return to the origin for a time 204:8=7:0 � 29. Thus, we will take thedistant boundaries simulation as our benhmark, at least for t � 29.After t = 29, we have some qualitative knowledge of the behavior. We expetthat the solution onsists of ontinuum and bound states. Over a short time,the ontinuum will disperse, leaving only the bound states. The bound stateswill remain forever.In all three ases, the quantity M(t) = k (x; t)kL2([�10;10℄2) was omputed.The simulation using the TDPSF agreed with the simulation on the larger regionto within 1:25% for t < 2910.The simulation using omplex potentials had anerror of 4% for t < 29, and the error appears to inrease after that.In fat, examining the graphs ofM(t) (see �gure 1) part of the bound statesappear to be dissipating. In fat, we believe that this dissipation will ontinueand the error will only get worse with time.The reason the TDPSF performs so muh better than the omplex potentialis that it distinguishes outgoing waves from inoming waves on the boundary.The TDPSF only removes waves whih sit on the boundary and are also outgoingwith suÆiently high veloity. The trapped waves, although they sit on theboundary, do not have high outgoing veloity, and thus are not removed.9.3 Violations of Assumption 4: Soliton FilteringNumerial experiments suggest that in some ases, assumption 4 an be re-laxed. Consider g(t; ~x;  (~x; t)) (~x; t) of the form f(j (~x; t)j2) (~x; t), wheref(j (~x; t)j2) (~x; t) is some nonlinearity that supports solitons.10In fat, the 1:25% is muh better than one might otherwise expet. A simple alulationshows that the potential is equal to �0:44 on the boundary. Therefore, assumption 4 is notsatis�ed, sine the \nonlinearity" is not ontained inside the box. Additional simulationsusing the domain [�51:2; 51:2℄2 yielded almost omplete agreement with the simulation usingdistant boundaries, and had the orret qualitative behavior after that.96
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Figure 1: A graph of M(t) = k (x; t)kL2([�10;10℄2) vs t. The distant boundarysimulation is invalid at time t = 29, due to the fat that the outgoing pulsereturns at this time.It turns out that solitons moving with suÆiently high veloity are �lteredby our boundary onditions as well. The reason is simply the fat that anoutgoing soliton is loalized in phase spae on outgoing waves. Consider asoliton, taking the form ei(vx�!t)�(x�vt), for some smooth, well loalized �(x)(e.g. �(x) = osh(x)�1).The Fourier transform of the soliton is also well loalized around frequenyv. If v is suÆiently large, then the framelet oeÆients of ei(vx�!t)�(x � vt)will luster around (x; v). When x is near the boundary, these framelets will allbe outgoing under the free ow ei(1=2)�t.The soliton is also leaving the box under the full ow U(t). Although ei(1=2)�tand U(t) move the soliton very di�erently (one dispersively, one oherently),they both move it out of the box and in nearly the same diretion.We ran numerial tests to demonstrate this as follows. We solved theShr�odinger equationi�t (x; t) = �(1=2)�� j (x; t)j2  (x; t)on the region [�51:2; 51:2℄. The TDPSF was plaed on the boundary. Theinitial ondition was taken to be  (x; 0) = 2�1=2eivx= osh(x�15) for v = 1::15.We then omputed:E(v) = supt<200=v k (x; t) �  ex(x; t)kL2([�10;10℄)k ex(x; 0)kL2(R) (9.2)97
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Figure 2: A plot of the error (de�ned as in (9.2)) as a funtion of veloity. Notethe exponential improvement in auray with veloity.The funtion  ex(x; t) is the exat solution. The result of this experiment isplotted in �gure 9.3. The time 200=v was hosen sine it is more than enoughtime for errors to return to the region [�10; 10℄.Remark 9.1 The paper [40℄ proposes an alternative method of absorbing bound-aries (namely the paradi�erential strategy), based on a novel method of ap-proximating the Dirihlet-to-Neumann operator. A similar numerial test wasperformed for those boundary onditions. For a soliton at veloity 15, Szeftelobtained E(15) = 0:08 at best. For omparison, we obtain E(v) = 2:86� 10�6for � = 1 and E(v) = 1:88 � 10�09 for � = 3. It is worth noting that themethodology we use di�ers somewhat from that of [40℄ (amoung other things,we used spetral methods to solve the interior problem rather than FTDT).It is somewhat surprising that this ours, sine the method desribed in [40℄atually takes the nonlinearity into aount. In ontrast, our method atuallyassumes the nonlinearity is nearly zero on the boundary. In spite of that, wehave an error whih is of order 10�6 � 10�7 as opposed to 0:08.9.3.1 A Coinidene, not a ConjetureThis is not a general phenomenon, however, as illustrated by the followingexample. Consider the KdV equation, and suppose a sheme similar to ourswere implemented. That is, we deompose the solution into gaussian framelets,and �lter them if they are leaving under the free ow. If a soliton exists, and is98



sitting near the right boundary, it too will be �ltered, sine it is leaving underthe free ow. But under the full ow, the soliton will not leave the box, sinesolitons propagate leftward while free waves propagate rightward.The fat that our method suesfully �lters outwardly moving solitons is aonsequene of the fat that fast-moving solitons have very little inoming waves.For some nonlinearities, a soliton or soliton-like objet at position (~ax0;~bk0) inphase spae atually propagates along the trajetory ~ax0 + t~bk0. However, notall solitons have this feature, and when they lak it, there is no reason to believeour method will be e�etive.9.3.2 Soliton FiltersOur motivation in onstruting the TDPSF was the following. Nonreetingboundary onditions are possible beause we understand the motion of wavesaway from the support of the nonlinearity. So we used that knowledge to deter-mine what to �lter, and what not to �lter.We propose that a pratial way to �lter outgoing solitons is simply to iden-tify them and remove them. That is, at a time Tstep, we determine whether (x; Tstep) might have a soliton loated near the boundary. If so, use the de-omposition  (x; Tstep) = S(x) + R(x), where S(x) is the soliton and R(x) isthe remainder. We then determine whether S(x) is outgoing. If it is, we thenset  (x; Tstep+) = R(x). Thus, the soliton has been �ltered.This does, of ourse, depend on an expliit knowledge of what solitons looklike. But that information is available in many ases, so assuming it to beavailable is not unreasonable.10 Comparison to Other MethodsA variety of other approahes have been proposed for open boundaries. Theyfall into two main ategories, and we disuss them both briey.10.1 Engquist-Majda type Boundaries, and Dirihlet-to-Neumann OperatorsThe losest approah to ours is the original Engquist-Majda boundary ondi-tions, found in [18, 16℄. The priniple that was guiding them was that nearthe boundary, the geometri optis approximation to wave ow is suÆientlyaurate to �lter o� the outgoing waves.Our result is a diret analogue of this - the gaussian framelet elements behave(under the free ow) like lassially free partiles. We use a di�erent method to�lter, but the guiding priniple is the same.In omparison, the approah that is farthest from ours are the various mod-ern extensions to [18℄. Modern approahes attempt to onstrut the exat solu-tion on the boundary, and then impose it as a boundary ondition. In priniple,99



this is the best possible approah. However, in pratie, this will be very diÆ-ult, beause if the exat solution were known, we would not need a simulation!In fat, this approah is suÆiently diÆult that we know of few aproahesfor the Shr�odinger equation. We desribe the two main approahes we areaware of, and remark that only the paradi�erential strategy of J. Szeftel evenattempts to deal with nonlinear equations.10.1.1 Exat Dirihlet-Neumann maps for the Shr�odinger EquationTo deal with the free Shr�odinger equation (no nonlinearity or potential),Lubihand Sh�adle [28, 34, 33℄ onstruted a novel method for using the exat boundaryonditions rather than an approximate one. Their method onsists of approxi-mating the integral kernel by using a pieewise exponential approximation (intime) and the fat that onvolution with an exponential an be done in linearrather than polynomial time. This approah appears to work niely for the freeShr�odinger equation, although it is unertain that it ould be applied to thefull Dirihlet-to-Neumann operator of a nonlinear equation.10.1.2 Paradi�erential StrategyThe only fully nonlinear Dirihlet-to-Neumann operator that we are aware of wasonstruted by J. Szeftel in [41℄. Szeftel onstruts the Dirihlet-to-Neumannoperator by a modi�ed version of the paradi�erential alulus (introdued in [4℄).His methodology is demonstrated in 1 spae dimension, with a nonlinearity thatis C1 in x,  (~x; t) and �x (~x; t). He proves loal well posedness of the boundaryoperator.However, extensions to RN appear highly nontrivial. The assumptions aresigni�antly stronger than ours, and there are no error bounds. However, thenumerial experiments look promising and the results appear aurate for ra-diative problems (see also remark 9.1).10.2 Absorbing Potentials/ PML10.2.1 Absorbing PotentialsAbsorbing (omplex) potentials, desribed in [29℄, are the urrent \industrystandard". The approah onsists of the following. Instead of solving (1.1) onthe box [�Lint; Lint℄N , we solvei�t	(~x; t) = �(1=2)�	(~x; t) + g(t; ~x;	(~x; t))	(~x; t) +�ia(x)	(~x; t)on the region [�(Lint + w); (Lint + w)℄N . The funtion a(x) is a positive fun-tion supported in [�(Lint + w); (Lint + w)℄N n [�Lint; Lint℄N . The term �ia(x)is a dissipative term whih is loalized on waves whih have left the region[�Lint; Lint℄N . Thus, it (partially) absorbs waves whih have left the domain ofinterest.This approah is the mainstay of absorbing boundaries, due to it's generalityand simpliity. One important reason for the attrativeness is that they are100



ompatible with the FFT/Split Step algorithm (algorithm 2.2), with minimaldiÆulty of programming.Of ourse, the potential a(x) must be tuned to the given problem. Givenkmin, kmax, one must selet the height and width of the absorber so that it killsmost of the wave between kmin and kmax, resulting in an error � .Waves with momentum lower than kmin are mostly reeted, and waveswith momentum higher than kmax are mostly transmitted (and therefore wraparound the omputational domain).Heuristi alulations and numerial experiments suggest that the absorbermust have width proportional to Ckmax ln(�)=kmin, with C depending on thepreise shape of the potential. In ontrast, our method works on a boundarylayer of width C ln(�)=kmin, whih is smaller by a fator of kmax.An additional problem with absorbing potentials is that they kill everythingon the boundary. They make no distintion between inoming and outgoingwaves, and thus they absorb some waves whih should return to the region ofinterest. This poses a fundamental limitation on their use, espeially in problemswhere the nonlinearity reates long range e�ets, whih was illustrated in setion9.2.10.2.2 Perfetly Mathed LayersPerfetly Mathed Layers (PML) are a variation on this approah, proposed in[24℄ for the Shr�odinger equation (see also [3℄, where they are �rst proposedfor Maxwell's equations). In [24℄, they are tested for the 1 dimensional freeShr�odinger equation, and the result appears reasonably aurate.To use a PML, instead of solving (10.2.1), we solve:i�t	(~x; t) = �(1 + ia(x))(1=2)�	(~x; t) + g(t; ~x;	(~x; t))	(~x; t)where a(x) is now a funtion hosen rather arefully (see below).The PML has two main advantages over omplex absorbing potentials. First,the fat that ia(x) is now in the oeÆient of � now means that high momentumwaves are dissipated more strongly than low momentum ones. Thus, fast wavesdo not pass through the absorbing potential without being dissipated.Seond, the funtion a(x) an be hosen preisely so that there is no re-etion at the interfae (the boundary of [�Lint; Lint℄N ). However, this doesnot eliminate all reetions, as some reetions will be reated in the region[�(Lint + w); (Lint + w)℄N n [�Lint; Lint℄N .The PML has the same problem as omplex absorbing potentials with re-gards to dissipating inoming waves on the boundary.Lastly, some PML methods are unstable. Numerial experiments in [32℄suggest that the PML for 2 dimensional Maxwell's Equations exhibit a long timeinstability. It is possible that this e�et ours for the Shr�odinger equation aswell.The PML method for the Shr�odinger equation is still very muh undevel-oped. This makes a more detailed omparison diÆult to make.101
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