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A theory of time dependent nonlinear dispersive equations of the Schrödinger / Gross-Pitaevskii
and Hartree type is developed. The short, intermediate and large time behavior is found, by de-
riving nonlinear Master equations (NLME), governing the evolution of the mode powers, and by a
novel multi-time scale analysis of these equations. The scattering theory is developed and coherent
resonance phenomena and associated lifetimes are derived. Applications include BEC large time
dynamics and nonlinear optical systems. The theory reveals a nonlinear transition phenomenon,
“selection of the ground state”, and NLME predicts the decay of excited state, with half its en-
ergy transferred to the ground state and half to radiation modes. Our results predict the recent
experimental observations of Mandelik et. al. [11] in nonlinear optical waveguides.

Recent experimental [8–11] and theoretical [4–7, 13]
breakthroughs in the field of Bose-Einstein Conden-
sates (BEC) and the intense interest in nonlinear op-
tical devices [2] necessitates the detailed analysis of
time-dependent nonlinear dispersive equations, such as
the time-dependent Gross-Pitaevski (GP) and nonlinear
Schrödinger (NLS) equations in one or more spatial di-
mensions. Also, new coherent phenomena in soft con-
densed matter, such as macroscopic resonances [3, 24],
DNA-denaturation dynamics and macromolecule dynam-
ics, have rekindled the need to determine the large time
behavior of time-dependent Hartree - Fock (HF) type
equations. In contrast to linear scattering, where time-
independent methods are used to compute approximate
S-matrix for general multichannel processes, nonlinear
problems are not amenable to such theory, except in com-
pletely integrable cases. Thus, mainly large scale numer-
ical methods have been applied so far.

In this Letter we describe and apply a rigorous time-
dependent theory and approach developed in [18] to pro-
vide detailed explicit behavior for a class of nonlinear
dispersive partial differential equations, which include
NLS, GP and HF, on short, intermediate and infinite
time scales. We show, as a consequence of our analysis,
that in a multimode nonlinear dispersive systems which
has multiple nonlinear bound states, that nonlinear reso-
nant interactions lead to a crystallization of the coherent
and localized part of the solution on the nonlinear ground
state (selection of the ground state); the nonlinear excited
states are metastable and decay at a rate given by a non-
linear analogue of Fermi’s golden rule.

In very recent experimental work [11] on CW beams
centered at wavelength, λ = 2π/k0, propagating in mul-
timode nonlinear AlGaAs waveguides, the output distri-
bution of optical power is measured, and ground state
selection and the partition law (.4) have been demon-
strated. Our results predict these observations and can
be used to interpret the earlier work on photorefractive
waveguides [12].

For definiteness we consider the nonlinear Schrödinger

equation in three space dimensions:

i∂tφ = H0φ+ gF (|φ|2)φ. (.1)

F denotes the nonlinearity, here taken to be local,
F (|φ|2) = |φ|2, but more generally, of Hartree - Fock
type type F (|ψ|2) ≡

∫

G(x, y)|ψ(y)|2dy with, for exam-

ple, G(x, y) = |x − y|−αe−r|x−y|, r ≥ 0. g denotes the
coupling coefficient, related to the scattering length in
BEC and, in optics, to −n2, the nonlinear Kerr coeffi-
cient. H0 = −∆ + V (x), where V (x) denotes a poten-
tial which decays to zero sufficiently rapidly at infinity,
and for which H0 has two bound states (for simplicity);
H0ψj∗ = Ej∗ψj∗, j = 0, 1. Such equations appear in
many applications in which coherent soliton-like struc-
tures and their internal modes [22] interact with disper-
sive waves, e.g. [1–3, 6, 24, 26]. The effective equations
of an atom in a field or active media is also of this form
[24, 25]. The requirement on V (x) thatH0 have (at least)
two bound states, making the model of general interest
and the phenomena very rich.

Nonlinear bound state solutions bifurcate from linear
bound states at for weakly nonlinear perturbations [14]
giving rise to nonlinear ground state family and nonlin-

ear excited state families (for two bound state hamilto-
nians). Specifically, for energies close to E0∗ and E1∗,
the eigenvalues of H0, there are nonlinear bound states:
e−iE0tψE0

, ψE1
e−iE1t, which solve (.1) with ψE0

, ψE1

are complex-valued (exponentially) localized solutions of:
(

H0 + gF (|ψEi
|2)

)

ψEi
= EiψEi

. When g = 0, E0 = E0∗

and E1 = E1∗ are values for which there are nontrivial
solutions. For g 6= 0 there is a solution for all E near
Ei∗. ψEj

can be thought of as pinned soliton, ground
(j = 0) or excited state (j = 1), within the support of
V (x). We assume ω∗ ≡ 2E1∗ − E0∗ > 0, ensuring cou-
pling of bound states to the continuum at second order;
analogous results with slower decay rates hold more gen-
erally.

The main results we establish is the behavior in time
of the solutions of (1.1) for all data (with small energy).
We show that the large time behavior is: For any ini-
tial data, with small energy the solution ψ(t) of (1.1) is
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asymptotically given by

ψ(t) → e−iθ±

0
(t)e−iE±

j
tψE±

j
+ ei∆tψ±, as t→ ±∞,

in L2. Generically, j = 0, corresponding to the ground
state, while there is a finite dimensional set of data for
which j = 1. Thus, for typical initial conditions we have
ground state selection. We analyze the detailed dynamics
by reduction of the NLS to a finite dimensional system,
which dominates the full dynamics.

The main second result concerns the transient, finite

time behavior of the system which is very rich: There
are three time scales, determined by the initial data. In
the first time interval, the dynamics is dominated by ra-
diative terms (formative stage); once the initial radiative
part propagates far enough from the support of V (x), the
soliton’s position, the second period (embryonic stage)
begins. This is marked by a monotonic increase in the
ground state amplitude, exponentially fast relative to
the excited state part. This stage proceeds as long as
the excited state part is larger than some fraction of
the ground state part. Once the ground state reaches
a size comparable with some (fixed) fraction of the ex-
cited state, the third and final stage begins (ground state

selection); the ground state amplitude increases mono-
tonically and the excited state decreases monotonically,
but at a polynomial rate up to time infinity. (This de-
scribes the generic case; the asymptotic state is given by
an excited state [20] whenever stage one persists to time
equal infinity.) A different approach, based on lineariza-
tion around the excited state for intermediate times and
around the ground state for large times, gives similar re-
sults (Soffer-Weinstein, unpublished notes, 1996).

This phenomena is quantified by our derivation of the
Nonlinear Master equations (NLME) that govern the dy-
namics of the coupled ground and excited state modes
(and the radiation modes . . .). If we denote by P0(t) and
P1(t), respectively, the (up to near identity transforma-
tions) squared projection of the system’s state onto the
ground state and excited states, at time t, we have

∂tP0 = 2ΓP0P
2
1 + ρ0(t)P0P

M0

1 + O(t−5/2)

∂tP1 = −4ΓP0P
2
1 + ρ1(t)

√

P0P
M1

1 + O(t−5/2), (.2)

where M0,M1 ≥ 3 and

Γ = πg2 | F [dF [ψ0∗ψ1∗]ψ1∗] (ω∗) |
2

dF [ψ0∗ψ1∗]ψ1∗ =

∫

G(x− y)ψ0∗(y)ψ1∗(y)dy ψ1∗(x).

(.3)

ρM0
(t) and ρM1

(t) are small oscillatory functions of time.
F [q](ω) denotes the projection of q onto the generalized
eigenfunction of H0 at frequency ω. The crucial number
Γ is (generically) positive and given explicitly in terms of
known eigenstates of H0. Γ 6= 0 is the nonlinear Fermi
Golden rule for such systems and it gives the rate of de-

coherence and relaxation [17, 23, 25–27]. The behavior of

these Master Equations (.2) reflects the three time scales
mentioned above, on which the behavior is very differ-
ent. For large enough time, in the third time domain,
the last two terms in (.2) can be ignored. In this latter
regime, it is easy to see that P1(t) → 0 as t → ∞ and
∂t (2P0 + P1) = 0. Therefore, 2P0(∞) = 2P0(t0)+P1(t0).
It follows that

P0(∞) = P0(t0) +
1

2
P1(t0); (.4)

half of the excited state energy flows to the ground
state (the other half goes to radiation), a kind of en-

ergy equipartition. (The factor 2 also appears in the
linear analysis, and is interpreted as the ratio of re-
laxation to decoherence time [23, 25].) Furthermore,
it follows that for any initial state (P0(t0), P1(t0)) with
P0(t0) 6= 0 the system converges to (P0(∞), 0) with a
rate ∼ (1 + 4ΓP0(∞)P1(t0)t)

−1 (selection of the ground
state). Combining the analysis of the NLME (.2) for
all time scales with the previous statements gives a com-
plete description of the solution for all time scales and, in
particular, the asymptotic behavior, relaxation and de-
coherence rates, the asymptotic profile and energy of the
soliton/ground state.

We sketch our method, for the special case of (.1)
with cubic nonlinearity, F (|φ|2)φ = |φ|2φ. Our ap-
proach makes use of ideas from [15–19]. We begin with
the Ansatz φ(t) ≡ e−iθ(t)[ψ0(t) + ψ1(t) + φ2(t)] where
ψ0(t) ≡ ψE0(t) is a solution of the ground state eigen-
value equation with energy E0(t), at time t. E0(t) will
be determined later by orthogonality conditions [16–18].
Similarly ψ1(t) is an excited state eigenvector with eigen-

value E1(t). θ(t) ≡ θ0(t)+ θ̃(t), θ0(t) =
∫ t

0 E0(s)ds. θ̃(t)
will be chosen appropriately; it includes (logarithmic) di-
vergent phase.

Plugging the above Ansatz for φ into (.1), and com-
plexifying the equations (φ2 → (φ2, φ̄2) ≡ Φ2(t), (ψj →
(ψj , ψ̄j) ≡ Ψj(t) etc.) we derive

i∂tΦ2(t) = H0(t)Φ2(t) − i∂tΨ0

−
[

((E0 − E1) + ∂tθ̃)σ3 + i∂t

]

Ψ1 + ~FNL, (.5)

where ~FNL is nonlinear in Φ2, Ψ0, Ψ1, θ̃ and H0(t) is
given by the matrix operator

σ3





H − E0(t) + 2g|ψ0(t)|
2 gψ2

0(t)

gψ̄2
0(t) H − E0(t) + 2g|ψ0(t)|

2



 ,

where σ3 is the Pauli matrix diag(1,−1). We consider
the spectrum of H0(t) for fixed t and |ψ0| ≡ |α0| small:
(a) The continuous spectrum extends from −µ to −∞,
and µ to ∞ where µ ≡ E1 − E0 + O(|α0|

2). The dis-
crete spectrum is {0,−µ, µ}, with 0 < |µ| < |E0| by
assumption. (b) Zero is a generalized eigenvalue of H0,
with generalized eigenspace. spanned by {σ3Ψ0, ∂E0

Ψ0}.
The discrete spectral subspace has dimension four.

Therefore, Φ2 which lies in the continuous spectral part
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of H0(t), is constrained by four orthogonality conditions.

Furthermore, ∂tθ̃ is chosen to remove divergent logarith-
mic phase contributions.

In the weakly nonlinear perturbative regime,
bound states have expansions ψEj

= αj(ψj∗(x) +

g|αj |
2ψ

(1)
j (x; 0) + O(g2|αj |

4)) and Eg = Ej∗ + O(|αj |
2).

The system for Φ2 and ~α = (~α0, ~α1) can be written in
the form: i∂t~α = A(t)~α+Fα, i∂tΦ2 = H(t)Φ2 +FΦ .

To study the energy exchange between α0 and α1,
it is important to express α1(t) as a slow amplitude
modulation of a rapidly varying phase. With this goal
in mind, we study the equation for α1, expressible as

i∂t~α1 = ~A(t)~α1 + ~F . Freezing t at some arbitrary large

time T in ~A(t), we solve i∂t~α1 = ~A(T )α1 which gives
a periodic Floquet solution matrix X̄(t). We use that

to eliminate this (fast) oscillation in ~α1 ≡ X(t)~β1. The

difference ~A(t) − ~A(T ) and other similar differences are
higher order corrections, uniformly in t, as t, T → ∞,
and therefore can be neglected.

To proceed further we decompose Φ2 into its continu-
ous spectral (dispersive) part, η, relative to H0(T ), and
its components along the discrete modes. The latter are
higher order and controllable. Thus NLS, at low energy
is equivalent to a system of the form:

i∂tη = H0(T )η + Fη(t;α0, β1, η)

i∂tβ1 = 2g〈ψ0∗, ψ
3
1∗〉|β1|

2α0e
i(E1∗−E0∗)t

+2g〈ψ0∗ψ
2
1∗, π1Φ2〉β̄1α0e

2i(E1∗−E0∗)t + R0

i∂tα0 = g〈ψ2
0∗, ψ

2
1∗〉e

−2i(E1∗−E0∗)tβ2
1 ᾱ0

+ g〈ψ0∗ψ
2
1∗,Φ2〉β

2
1e

−2i(E1∗−E0∗)t + R1,

where Rj denotes corrections of a similar form and higher
order.

The above system can be viewed as an infinite dimen-
sional Hamiltonian system consisting of two subsystems:
a finite dimensional subsystem governing “oscillators”,
(α0, β1), and an infinite dimensional subsystem governing
the field, η. Although this system has time-rapidly vary-
ing coefficients and no evident direction of energy flow, we
claim we have now made explicit the key aspects, which
give rise to resonant energy exchange. This is made ex-
plicit via a detailed analysis of non-resonant and resonant
terms Non-resonant oscillatory dependence contributions
can be transformed by successive near-identity changes
of variables, (α0, β1) 7→ (α̃0, β̃1), to higher order order
in the energy of the data (assumed small) and perturba-
tively controlled. Resonant oscillatory terms cannot be
transformed to higher order and contribute to the finite
dimensional reduction.

To arrive at the reduction, we solve the η equation,
making explicit all terms through second order in g, using
the Green’s function G(t, t′) = e−iH0(T )(t−t′). We focus
on the key terms coming from the sources in Fη or the

type αi
0α

j
1, 0 ≤ i, j ≤ 2 and having oscillatory phases

eimijt. Their contribution to η is of the form

∼

∫ t

0

e−iH0(T )(t−t′)|χ〉eimij(t′)αi
0(t

′)αj
1(t

′)dt′ (.6)

where α0, α1 is a component of either ~α0 or ~α1, where
|χ〉 is an (exponentially localized) function of position,
expressible in terms of ψ0 and ψ1. We insert this solu-
tion into the α0, α1 equations, in place of Φ2. We obtain
integro-differential equations for α0, α1, (β1). Terms of
the form (.6) are solutions to a forced linear system and
among the forcing terms made explicit in (.6) are oscilla-
tory terms with the frequency ω∗, which is resonant with
the continuous spectrum. Internal dissipation resulting
in resonant energy transfer from the nonlinear excited
state to the ground state and dispersive radiation phe-
nomena is derived from these resonant terms. They give
rise to dissipation in both linear and nonlinear resonance
theory recently developed by us [15, 17, 26, 27]. They
also determine Γ , the rate of decoherence and relax-
ation. The above described scheme gives i∂tα̃0 = (−Λ +

iΓ)|β̃1|
4α̃0+R̃0(t), i∂tβ̃1 = 2(Λ−iΓ)|α̃0|

2|β̃1|
2β1+R̃1(t).

Introducing the squared projections of the system’s
state onto the ground state and excited states, P0 ≡
|α̃0|

2, P1 ≡ |β̃1|
2 we obtain NLME, (.2). The system

(.2) is analyzed in terms of renormalized powers, Q0

and Q1, for which it is shown that there exist transi-
tion times t0 and t1, such that: Q0(t) decays rapidly on
[0, t0], Q0(t)/Q1(t) grows rapidly on [t0, t1] and the fi-
nally on [t1,∞) the following system governs: ∂tQ0 =
2ΓQ0Q

2
1, ∂tQ1 = −4ΓQ0Q

2
1. This gives Q0 ↑ Q0(∞)

and Q1 ↓ 0 at rates discussed above.
The decay of the nonlinear excited state can also be

understood as a linear instability. Let H1 denote the lin-
earization about the excited state, the operator in (.5)
with ψ0 replaced by the excited state ψ1. Since ω∗ > 0,
in the zero amplitude limit H1 has an embedded discrete
eigenvalue in the continuous spectrum. Perturbation the-
ory of embedded eigenvalues (see, for example, the time-
dependent approach in [15] ), can be applied to show that
this embedded eigenvalue perturbs to a linear exponen-
tial instability with exponential rate ∼ Γ associated with
the linear propagator exp(−iH1τ).

Our analysis is applicable in Hamiltonian systems
which can be decomposed into a lower dimensional dy-
namical system (oscillators) coupled to an infinite dimen-
sional dynamical system (wave-field), acting as a disper-
sive “heat bath”, e.g. how an open quantum system is
effected by its environment. Γ is related to the rate of
energy transfer or decoherence.

In the context of nonlinear optical waveguide experi-
ments, e.g. [11], our analysis gives the distance, Ltransf ,
over which nonlinear resonant energy transfer occurs as:
L−1

transf = 4ΓP0(∞)P1(0). Here g = −n2/n̄0, n2 [m2/W ]
the Kerr nonlinear coefficient, Pj [V 2/m2] the square of
the electric field projection onto state j. Γ is obtained
from (.3), where the states ψj∗ are those derived from

the Hamiltonian, H0 = −2k−2
0 ∆x + V (x), with potential

V (x) = (1/2)(1 − (n0(x)/n̄0)
2), with x, the transverse
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coordinate. n0(x) and n̄0 are, respectively, the linear
refractive index and its value at infinity. This implies

L−1
transf ∼

(

4πk0

(

2n2

εcn0
2

)2

·
(

Pwr
Aeff

)2

·
∣

∣F [ψ0∗ψ
2
1∗](ω∗)

∣

∣

2
)

.

For parameter values at wavelengths ∼ 1.5µm and peak
power levels at 103 W , Ltransf of device size dimensions
(100 µm to 1 mm) can be attained. The factor F [·](ω∗),
which can be approximated by WKB, depends on the
density of states of H0 near ω∗, and can be tuned by
varying the waveguide material and geometric parame-
ters.

A second application to optical devices is the use of
periodic photonic microstructures with appropriately de-
signed defects to trap coherent light pulses. For exam-
ple, it has been shown theoretically that (Kerr) nonlinear
and periodic structures support gap solitons [29] and trap
pulses [30] traveling at any speed less than the speed of
light. Experiments have demonstrated soliton propaga-
tion at about 50%c [28] and theoretical studies [21] show
that gap solitons can be trapped with appropriately de-
signed defects. This has potential applications to optical
buffering, high-density storage and optical gates. The
light stopping mechanism, is based on the transfer of
energy from incoming solitons to the pinned nonlinear
modes of the defect. The ground state selection phe-
nomenon and the partition of excited state energy into
pinned nonlinear ground state and radiation modes (.4),
described by NLME, quantify the rate of transfer and
efficiency of trapping. For systems of BEC droplets in
a potential well, the relaxation time to the ground state

and the decoherence time due to the presence external
perturbations, e.g. other droplets, are measurable and
of fundamental importance related to Γ. For example,
they are relevant to the construction and feasibility of
quantum gates and memories.

In general, when a mean-field type approximation to
the interaction with the environment describes the sys-
tem, the above analysis can be used, e.g. to study wave
function collapse in various systems.

To summarize, we have derived the behavior on all
short, intermediate and infinite time scales of NLS type
equations, in which general solutions involve an inter-
action among two families of nonlinear bound states
(soliton-type) and dispersive radiation. We have derived
Nonlinear Master equations, which govern the dynamics.
The phenomena of ground state selection was demon-
strated, the rate of decay/relaxation was computed, and
the energy distribution of the asymptotic state of the
system was derived. These phenomena which were re-
cently observed experimentally in [11]. We have shown
the applicability of our theoretical results to nonlinear
optical devices and to BEC dynamics and decoherence
phenomena.

We thank D. Mandelik, Y. Lahini and Y. Silberberg, who
shared their manuscript on their experimental work [11]
before publication and C-W Wong for very informative
discussions. A.S. and M.I.W. were supported, in part, by
grants from the US National Science Foundation.
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