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Abstract

We consider quantum systems with variable but finite number of
particles. For such systems we develop geometric and commutator
techniques. We use these techniques to find the location of the spec-
trum, to prove absence of singular continuous spectrum and identify
accumulation points of the discrete spectrum. The fact that the total
number of particles is bounded allows us to give relatively elemen-
tary proofs of these basic results for an important class of many-body
systems with non-conserved number of particles.
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I Introduction

This paper is a contribution toward a geometrical theory of quantum systems

with variable number of particles. Such systems occur naturally in quantum

field theory, condensed matter physics and the theory of chemical reactions.

Though often, as in cases involving photons (see e.g. [1]), the number of

particles can take arbitrary large values, in other cases such as scattering of

spin waves on defects, scattering of massive particles and chemical reactions,

there are only few participants at any given time, though their number can

change. It is the situations of the second kind that are addressed in this

paper. Having the limitation on the total number of particles involved al-

lows us to apply more sophisticated geometrical and positive commutative

techniques than is usually the case (see e.g. [1]), while keeping the proof

rather simple and obtaining stronger results. In this paper we obtain some

basic results for systems described above by developing for them the method

of conjugate operators.

The conjugate operator method consists in obtaining diverse spectral prop-

erties of a self-adjoint operator H in the Hilbert H assuming the existence

of a self-adjoint operator A such that the commutator [iH,A] has a definite

sign when localized in a small spectral interval of H. More precisely, if τ is

a closed subset of R then A is called locally conjugate for H on R \ τ if and

only if for every λ ∈ R \ τ there is c > 0 and a compact operator K such
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that the Mourre estimate

E[λ−c,λ+c](H)[iH,A]E[λ−c,λ+c](H) ≥ cE[λ−c,λ+c](H) + K (1.1)

holds, where EZ(H) denotes the spectral projector of H on a Borel set Z ⊂ R

and the intersection of domains D(H)∩D(A) is assumed dense in H allowing

to understand the left hand side as a quadratic form.

The method has appeared to be a remarkably fruitful tool in many recent

investigations in spectral and scattering theory of many-body Hamiltonians

- cf. [2], [3] and [4] see also [5, 6]. If X is a finite-dimensional euclidean space

and HX is the Schrödinger operator in L2(X) of the form

HX = −∆X + VX , (1.2)

where ∆X is the Beltrami-Laplace operator on X and VX has a many-body

structure with interaction potentials satisfying some regularity and decay

hypotheses, then there exists a closed, countable set τ (HX) ⊂ R [called the

threshold set of HX ] such that the dilation generator

AX = x ·Dx + Dx · x (1.3)

is locally conjugate for HX in R\τ (HX). Moreover the eigenvalues of HX may

accumulate (with multiplicities) only at τ (HX) and the singular continuous

spectrum of HX is empty. It is also useful to adopt the convention that

HX = 0 in L2(X) = C in the case X = {0}.

The aim of this paper is to obtain similar results for a class of Hamiltonians
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acting in the Hilbert space

H =
⊕

1≤n≤N
L2(X(n)), (1.4)

where X = {X(n)}1≤n≤N is a family of configuration spaces which are finite

dimensional euclidean spaces. The Hamiltonians we consider,

HX = Hdiag
X + WX, (1.5)

are perturbations of the diagonal operator formed by many-body Schrödinger

operators in L2(X(n)),

Hdiag
X =

⊕

1≤n≤N
HX(n) =

⊕

1≤n≤N
(−∆X(n) + VX(n)), (1.6)

Such hamiltonians describe a quantum system of at most N particles and the

interaction terms can change the number of particles between 1 and N. Hence

HX acts on the Fock subspace H . In the second-quantized formulation

the above interaction can contain any power of creation and annihilation

operators leaving the above Fock subspace invariant:

WX = PNWXPN

where PN is the projection of the Fock subspace of at most N particles. The

locally conjugate operator for HX is the diagonal operator

AX =
⊕

1≤n≤N
AX(n), (1.7)

where AX(n) are dilation generators in X(n) (defined in (1.3)).
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The model is motivated by field theoretical and solid state systems, where

the particle number is not conserved. This type of problems has recently

attracted a great attention, see e.g. [7, 1, 8, 9, 10]. In [9] the two state atom

coupled to a massive free field was studied, spectral and scattering theory

was developed using conjugate operators and other N -body techniques.

Previously [7] considered a truncated model of the two state atom where like

in this work, the total number of particles is at most N <∞.

The work of [9] was then generalized to a general molecule in a bound state,

replacing the two-state atom in [8].

The works of [1, 10] deal with the massless photon/boson field interacting

with a bound atom.Papers [1,8,9] use the dilation as conjugate operator;[7,

10] use dilations modified by terms depending on the interaction.

In this work we generalize some of the above models in that we allow the

“boson” system to be interacting. We also allow the interaction between the

atomic and boson field to be of general nature (In all of the above models

the interaction is linear in the boson fields).

Our construction of the conjugate operator is different from the above works

as it is more geometric in spirit. Our construction uses the geometry of

N -body systems as the guiding principle; in particular we can modify the

dilation generator using Graf’s construction to allow local singularities in

the interactions [11, 12]. Furthermore our interactions are of more general

nature, and so we can cover the case of pair annihilation in some cases,

e.g. the positronium system, when a bound electron and positron pair are
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annihilated when coupled to a field.

If X, X ′ are euclidean spaces then X ′ ⊆ X denotes the inclusion together

with the fact that the euclidean structure of X ′ is inherited from the structure

of X and X ′ ⊂ X denotes the strict inclusion, i.e. X ′ ⊂ X ⇐⇒ (X ′ ⊆

X and X ′ 6= X).

Further on we assume that euclidean spaces X(n) satisfy

X(N) ⊂ ... ⊂ X(2) ⊂ X(1). (1.8)

The configuration space of the system, X(1) is assumed to be an Euclidean

space, corresponds to N particles, of various types or masses; e.g:

X(1) = {x = (x1, · · ·xN)|xi ∈ Rm, i = 1, · · ·N}

endowed with the metric

x, y ∈ X(1), x · y =
N∑

i=1

mixiyi, mi > 0.

X ′ ⊆ X(1) then denotes a subspace of X(1) endowed with the induced metric

of X(1).

Then we take

X(j) to denote the subspace of X(1)

with the j − 1 particles xN to xn−j+1 removed (namely,the corresponding

coordinates are set to zero)

X(j) = {x = (x1, · · · xN−j+1)}.
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We then have subspaces X(j) such that

X(N) ⊂ X(N − 1) ⊂ · · ·X(2) ⊂ X(1).

This notation, while nonstandard will allow us to do the inductive proofs

in a standard way, and also emphasizes the generality of the N -body type

systems involved: the subspaces X(j) can be chosen more generally for X,

so we can cover the generalized N -body systems of Agmon[14].

To describe the many-body structure of the considered operators we assume

that Y0 is a finite subset of euclidean spaces contained in X(1) [with in-

herited euclidean structures] and for every Y ∈ Y0 the associated interac-

tion potential vY ∈ L2
loc(Y ) is real-valued and satisfies some regularity and

decay hypotheses [to be described later]. For every X ⊆ X(1) we define

VX : H2(X)→ L2(X) as the operator of multiplication by

VX(x) =
∑

Y ∈Y0, Y ⊆X
vY (πY x), (1.9)

where x ∈ X, πY is the orthogonal projection onto Y and H s(X) denotes

the Sobolev space on X.

To describe the perturbation WX we consider also operators W : H2(X ′)→

L2(X) with X ′ ⊂ X, saying that W is the operator of multiplication by

w ∈ L2
loc(X) if

(Wϕ)(x) = w(x)ϕ(πX
′
x). (1.10)

Such interaction terms allow quite general non-particle number conserving

terms.The decay assumptions on w(x) imply that the created particle by the
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interaction have localized wave-function.This is natural as local field theories

of massive particles satisfy this condition.It may be violated by massless

theories with (strong) infrared interactions.

The simplest case is when the interaction creates “one particle” (linear in

the creation/annihilation term):

w(x) = f(xα), xα ∈ R3, f ∈ L2(R3) ∩ L∞(R3)

X ′ = R3 ⊕ · · ·R3, n− times

X = X ′ ⊕ R3.

In this case

(Wϕ)(x) = f(xα)ϕ(ΠX ′x)

is the operator that creates a particle with wave function f(xα), acting on

the space of n particles into the space of n + 1 particles.

The construction (1.10) allows much more general type of interactions, for

example creating pairs of particles in some subspaces of other particles; this

can be achieved by choosing

w(x) = f(xα, xβ), xα, xβ ∈ R3,

which corresponds to a (sum of ) products of two creation operators.

We define X̃ = {X̃(n)}2≤n≤N by the relation

X(n− 1) = X(n) ⊕ X̃(n) for 2 ≤ n ≤ N. (1.11)
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We assume that for 2 ≤ n ≤ N and Y ∈ Y0 such that Y ⊆ X(n) we have

wn−1,Y ∈ L2
loc(Y ⊕ X̃(n)) satisfying some regularity and decay hypotheses [to

be described later] and Wn−1 : H2(X(n))→ L2(X(n− 1)) is the operator of

multiplication by wn−1 ∈ L2
loc(X(n − 1)) of the form

wn−1(x(n), x̃(n)) =
∑

Y ∈Y0,{0}⊂Y⊆X(n)

wn−1,Y (πY x(n), x̃(n)), (1.12)

where (x(n), x̃(n)) ∈ X(n) ⊕ X̃(n) = X(n− 1). We assume that WX is the

self-adjoint operator in H defined by the quadratic form

WX[ϕ,ϕ] = (W+
Xϕ,ϕ) + (ϕ,W+

Xϕ) (1.13)

where W+
X(ϕ) = (W1ϕ2, ...,WN−1ϕN , 0) for ϕ = (ϕ1, ..., ϕN) ∈ H.

We shall prove

Theorem I.1 Let HX be defined as above, let µ > 0 and µ(n) > dimX̃(n)/2

for 2 ≤ n ≤ N . We assume that for all

Y ∈ Y0

,

〈y〉µ+|α|∂αy vY (y)(I −∆Y )−1 (1.14)

are compact operators on L2(Y ) for |α| ≤ 1 and

〈x̃(n)〉µ(n)+|α̃|〈y〉µ+|α|∂αy ∂α̃x̃(n)wn−1,Y (y, x̃(n))(I −∆Y⊕X̃(n))
−1 (1.15)

are compact operators on L2(Y ⊕ X̃(n)) for |α| + |α̃| ≤ 1, where we denote

〈x〉 = (1 + |x|2)1/2. Then there exists a closed, countable set τ (HX) ⊂ R
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such that AX is locally conjugate for HX in R \ τ (HX) and the eigenvalues

of HX may accumulate (with multiplicities) only at τ (HX).

Theorem I.2 We make the same hypotheses as in Theorem 1.1 and assume

moreover that the operators given by (1.14) are compact for |α| ≤ 2 and the

operators given by (1.15) are compact for |α| + |α̃| ≤ 2. Then the singular

continuous spectrum of HX is empty. Moreover,the point spectrum outside

the threshold set consists of discrete eigenvalues of finite multiplicities. The

operator HX satisfies the limiting absorption principle with respect to either

the operator AX or the operator < x >.

II Description of the lattice and associated

subhamiltonians

For Banach spaces X1, X2 we denote by B(X1,X2) and B∞(X1,X2) the

set of bounded and compact operators X1 → X2 respectively and B(X1) =

B(X1,X1), B∞(X1) = B∞(X1,X1).

For every X ⊆ X(1) we denote by X⊥ the orthogonal complement of X in

X(1), i.e.

X(1) = X ⊕X⊥. (2.1)

Without any loss of generality we may replace Y0 by Y being a larger finite

family of subspaces of X(1) [it suffices to set vY = 0, wn−1,Y = 0 identically

for Y ∈ Y \Y0]. Setting

Y1 = {Y1 + ... + Yn : n ∈ N and Y1, ..., Yn ∈ Y0 ∪X ∪ X̃ ∪ {0} },
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Y = {πX(1)Y1 + ... + πX(N)YN : Y1, ..., YN ∈ Y1}, (2.2)

we have the following properties

X(n) ∈ Y for 1 ≤ n ≤ N and X̃(n) ∈ Y for 2 ≤ n ≤ N, (2.3i)

Y1, Y2 ∈ Y ⇒ Y1 + Y2 ∈ Y, (2.3ii)

Y ∈ Y ⇒ πX(n)Y ∈ Y for 1 ≤ n ≤ N. (2.3iii)

If Y ⊆ X ⊆ X(1), Y ∈ Y, then we denote

]XY = max{n ∈ N : Y ⊆ Y1 ⊂ Y2 ⊂ ... ⊂ Yn ⊆ X for some Y1, ..., Yn ∈ Y}.

(2.4)

We denote by Sm
hg(X) the set of smooth functions which are homogeneous of

degree m outside a bounded region, i.e.

Smhg(X) = {f ∈ C∞(X) : there is R > 0 such that

f(λx) = λmf(x) holds for λ > 1 and |x| > R}. (2.5)

For r > 0, r̃ > 0, X ′ ∈ Y, X ′ ⊂ X, we define

UX ′
X (r, r̃) = {x ∈ X : |πX ′x| < r|x| and

|πY x| > r̃|x| for all Y ∈ Y satisfying Y ⊆ X, Y 6⊆ X ′} (2.7)

if X ′ 6= {0} and U{0}X (r, r̃) = U{0}X (r̃) with

U{0}X (r̃) = {x ∈ X : |x| < 1}∪

{x ∈ X : |πY x| > r̃|x| for all Y ∈ Y satisfying Y ⊂ X}. (2.6′)
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If X ′ ∈ Y, X ′ ⊆ X then we may define the following self-adjoint operators

in L2(X) :

V X ′
X (x) =

∑

Y ∈Y, Y⊆X ′
vY (πY x), (2.8)

HX ′
X = −∆X + V X ′

X , (2.8′)

where in the case X ′ = {0} we adopt the convention that V X ′
X = 0 and

HX ′
X = −∆X.

Let JX
′

X ∈ S0
hg(X) be such that supp JX

′
X ⊂ UX ′

X (r, r̃) for certain r > 0, r̃ > 0.

Then

(V X
X − V X ′

X )JX
′

X ∈ B∞(H2(X), L2(X)). (2.9)

For X ′ ∈ Y, X ′ ⊆ X(n), 2 ≤ n ≤ N , we define WX ′
n−1 : H2(X(n)) →

L2(X(n− 1)) as the operators of multiplication by

wX ′
n−1(x(n), x̃(n)) =

∑

Y ∈Y,Y ⊆X ′
wn−1,Y (πY x(n), x̃(n)) (2.10)

and we adopt the convention that WX ′
n−1 = 0 if X ′ = {0}.

Let JX
′

X(n) ∈ S0
hg(X(n)) be such that supp JX

′
X(n) ⊂ UX ′

X(n)(r, r̃) for certain

r > 0, r̃ > 0. Then

(Wn−1 −WX ′
n−1)J

X ′
X(n) ∈ B∞(H2(X(n)), L2(X(n − 1))). (2.11)

For X ′ ∈ Y, X ′ ⊆ X(N) we denote X(X ′) = {X ′(n)}1≤n≤N taking X ′(N) =

X ′ and defining successively X ′(N − 1), X ′(N − 2),..., X ′(1) ∈ Y by the

relation

X ′(n− 1) = X ′(n)⊕ X̃(n) for 2 ≤ n ≤ N. (2.12)

12



Assume moreover X ′ 6= {0} and introduce

HX ′ diag
X =

⊕

1≤n≤N
HX ′(n)
X(n) . (2.13)

Still assuming X ′ 6= {0} we define WX ′
X as the self-adjoint operator in H

given by the quadratic form

WX ′
X [ϕ,ϕ] = (WX ′+

X ϕ,ϕ) + (ϕ,WX ′+
X ϕ) (2.14)

where for ϕ = (ϕ1, ..., ϕN) ∈ H we have

WX ′+
X (ϕ1, ..., ϕN) = (WX ′(2)

1 ϕ2, ...,W
X ′(N)
N−1 ϕN , 0)

and set

HX ′
X = HX ′ diag

X + WX ′
X . (2.15)

In the case X ′ 6= {0} we define H
{0}
X according to (2.15), where we set

H
{0} diag
X =

( ⊕

1≤n≤N−1

HX(n)

)
⊕ (−∆X(N)) (2.13′)

and W{0}
X defined by (2.14), where for ϕ = (ϕ1, ..., ϕN) ∈ H we take

W
{0}+
X (ϕ1, ..., ϕN) = (W

X ′(2)
1 ϕ2, ...,W

X ′(N−1)
N−2 ϕN−1, 0, 0).

The next aim is to construct a suitable partition of unity described in

Proposition II.1 There exists a family {JX ′X }X ′∈Y,X ′⊂X(N) of operators of

the form

JX
′

X =
⊕

1≤n≤N
JX

′
n , (2.16)
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where every JX
′

n is an operator of multiplication by real-valued JX ′
n ∈ S0

hg(X(n)),

satisfying
∑

X ′∈Y,X ′⊂X(N)

(JX
′

X )2 = I (2.17)

and such that for every X ′,X ′′ ∈ Y, X ′,X ′′ ⊂ X(N), the following operators

(i + HX)−1[JX
′

X ,HX ′′
X ], (2.18i)

(i + HX)−1(HX −HX ′
X )JX

′
X , (2.18ii)

(i + HX)−1[JX
′

X , [HX ′′
X ,AX]](i + HX)−1 (2.18iii)

(i + HX)−1[HX −HX ′
X ,AX]JX

′
X (i + HX)−1 (2.18iv)

are compact.

III Proof of Proposition 2.1

If r > 0, then F (· ≤ r) denotes a smoothed characteristic function of ]−∞, r],

i.e. λ → F (λ ≤ r) is a non-negative, smooth function on R which equals 1

on ]−∞, r/2] and equals 0 on [r,∞[.

Lemma III.1 Let X ′ ∈ Y, {0} ⊂ X ′ ⊂ X(N) and JX
′

N ∈ S0
hg(X(N)). If

r > 0 then the relation

JX
′

n−1(x(n), x̃(n)) = JX
′

n (x(n))F

( |x̃(n)|
|x(n− 1)| ≤ r

)
(3.1)

allows to define successively JX
′

N−1 ∈ S0
hg(X(N − 1)), JX

′
N−2 ∈ S0

hg(X(N −

2)),..., JX
′

1 ∈ S0
hg(X(1)). If moreover supp JX

′
N ⊂ UX ′

X(N)(rX ′, r̃X ′) and rX ′ >
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0, r > 0 are small enough, then

supp JX
′

n ⊂ U
X ′(n)

X(N) (rX ′ + (N − n)r, r̃X ′/(1 + N − n)) (3.2n)

holds for every 1 ≤ n ≤ N .

Proof . We assume (3.2.n) for a certain 2 ≤ n ≤ N and we show (3.2.n-1).

Due to (3.2n), for (x(n), x̃(n)) ∈ supp JX
′

n−1 we have

|x̃(n)| ≤ r|x(n)| and |πX ′(n)x(n)| < (rX ′ + (N − n)r)|x(n)|, (3.3)

which implies

|πX ′(n−1)x(n− 1)| ≤ |πX ′(n)x(n)|+ |x̃(n)| <

(rX ′ + (N − n)r + r)|x(n)| ≤ (rX ′ + (N − n + 1)r)|x(n− 1)|. (3.4)

Now we fix Y ∈ Y satisfying Y ⊂ X(n − 1), Y 6⊆ X ′(n− 1), and it remains

to show that

|πY x(n− 1)| > r̃X ′

2 + N − n
|x(n− 1)|. (3.5)

We define Y1 ∈ Y, Y1 ⊆ X(n) by

Y1 = πX(n)Y + X ′(n) (3.6)

and Y2 ⊆ X(n) by

X(n) = Y1 ⊕ Y2. (3.7)

We note that x ∈ X(n) ∩ Y ⊥ ⇐⇒ (0 = (x, y) = (x, πX(n)y) for all y ∈

Y ) ⇐⇒ x ∈ X(n) ∩ (πX(n)Y )⊥. Therefore

Y2 = Y ⊥1 ∩X(n) = (πX(n)Y )⊥ ∩X ′(n)⊥ ∩X(n) = Y ⊥ ∩X ′′(n) (3.8)
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with X ′′(n) = X ′(n)⊥ ∩X(n), i.e. with X ′′(n) satisfying the relation

X(n) = X ′(n)⊕X ′′(n). (3.9)

Clearly Y2 ⊆ X ′′(n) and we are going to check that the inclusion is strict.

Indeed, Y2 = X ′′(n) ⇒ Y1 = X ′(n) ⇒ πX(n)Y ⊆ X ′(n) ⇒ Y = πX(n)Y +

πX̃(n)Y ⊆ X ′(n) + X̃(n) ⊆ X ′(n − 1), which is in contradiction with the

assumption made on Y .

Thus we have Y2 ⊂ X ′′(n), which implies X ′(n) ⊂ Y1, hence Y1 6⊆ X ′(n) and

due to (3.2.n),

|πY1x(n)|2 >

(
r̃X ′

1 + N − n

)2

|x(n)|2 (3.10)

and since |πY1x(n)|2 + |πY2x(n)|2 = |x(n)|2, (3.10) is equivalent to

|πY2x(n)|2 <

(
1 −

(
r̃X ′

1 + N − n

)2
)
|x(n)|2. (3.11)

Therefore using (3.8), (3.11) and (3.3) we obtain

|πY ⊥x(n− 1)| ≤ |πY ⊥∩X ′′(n)x(n− 1)|+

|πY⊥∩X ′(n)x(n− 1)| + |πY⊥∩X̃(n)x(n− 1)| ≤

|πY2x(n)|+ |πX ′(n)x(n)|+ |x̃(n)| <


(

1 −
(

r̃X ′

1 + N − n

)2
)1/2

+ rX ′ + (N − n + 1)r


 |x(n)| (3.12)

and taking rX ′ > 0, r > 0 small enough, we have

(
1 −

(
r̃X ′

1 + N − n

)2
)1/2

+ rX ′ + (N − n + 1)r ≤
(

1−
(

r̃X ′

2 + N − n

)2
)1/2

.

(3.13)
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Now it is clear that (3.12) and (3.13) give

|πY ⊥x(n− 1)|2 <

(
1−

(
r̃X ′

2 + N − n

)2
)
|x(n− 1)|2, (3.14)

which gives (3.5) due to |πY x(n− 1)|2 + |πY⊥x(n− 1)|2 = |x(n− 1)|2. 4

Lemma III.2 Let X ′ ∈ Y, {0} ⊂ X ′ ⊂ X(N) and assume that {JX ′n }1≤n≤N

are as in Lemma 3.1 and (3.2n) holds for 1 ≤ n ≤ N. If JX
′

X is given by

(2.16), then the operators (2.18i,ii,iii,iv) are compact.

Proof . i) Clearly it suffices to consider HX instead of HX ′′
X in (2.18i). Since

the commutators [JX
′

n ,∆X(n)] are first order differential operator with coeffi-

cients in S−1
hg (X(n)), i.e. ∆X(n)-compact operators, it is clear that

[JX
′

X ,Hdiag
X ] =

⊕

1≤n≤N
[JX

′
n ,−∆X(n)] (3.15)

is HX-compact. In order to prove that [JX
′

X , WX] is HX-compact, it suffices

to show that for 2 ≤ n ≤ N one has

JX
′

n−1Wn−1 −Wn−1J
X ′
n ∈ B∞(H2(X(n)), L2(X(n− 1))). (3.16)

However JX
′

n−1Wn−1 −Wn−1JX
′

n is the operator of multiplication by

g(x(n), x̃(n)) =

(
F

( |x̃(n)|
|x(n− 1)| ≤ r

)
− 1

)
wn−1(x(n), x̃(n))JX

′
n (x(n))

(3.17)

and we may write g = g3g2g1 with

g1(x(n), x̃(n)) = 〈x̃(n)〉−µ(n)+εJX
′

n (x(n)), (3.18i)
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g2(x(n), x̃(n)) = 〈x(n)〉−ε〈x̃(n)〉µ(n)wn−1(x(n), x̃(n)), (3.18ii)

g3(x(n), x̃(n)) =

(
F

( |x̃(n)|
|x(n− 1)| ≤ r

)
− 1

)
〈x(n)〉ε〈x̃(n)〉−ε, (3.18iii)

where ε > 0 is chosen such that µ(n)−ε > dimX̃(n)/2, which implies that the

multiplication by g1 is a bounded operator H2(X(n)) → H2(X(n−1)). Next

the compactness hypotheses concerning the operators (1.15) guarantee that

the multiplication by g2 is a compact operator H2(X(n−1))→ L2(X(n−1))

and we complete the proof noting that the multiplication by g3 is a bounded

operator in L2(X(n − 1)) due to the definition of F .

ii) Clearly (2.9) implies that (Hdiag
X −HX ′ diag

X )JX
′

X is HX-compact. For 1 ≤

n ≤ N let J̃X
′

n ∈ S0
hg(X(n)) be such that J̃X

′
n = 1 on supp JX

′
n and supp

J̃X
′

n ⊂ UX ′(n)
X(n) (rX

′
n , r̃X

′
n ) for certain rX

′
n > 0, r̃X

′
n > 0. Setting

J̃X
′

X =
⊕

1≤n≤N
J̃X

′
n , (3.19)

it is clear that (2.11) implies the fact that J̃X
′

X (WX − WX ′
X )JX

′
X is HX-

compact. Since (I − J̃X
′

X )JX
′

X = 0, it suffices to note that the operator

(I − J̃X
′

X )(WX −WX ′
X )JX

′
X = (I − J̃X

′
X )[WX −WX ′

X ,JX
′

X ] (3.20)

is HX-compact due to i).

iii) and iv) We may define Ṽ X ′
X , H̃X ′

X , W̃X ′
n−1 according to (2.8), (2.10), where

vY , wn−1,Y are replaced by

ṽY (y) = −y · ∇yvY (y), (3.21)
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w̃n−1,Y (y, x̃(n)) = −
(

y · ∇y + x̃(n) · ∇x̃(n) +
dimX̃(n)

2

)
wn−1,Y (y, x̃(n)).

(3.21′)

It is clear we still have

(Ṽ X
X − Ṽ X ′

X )JX
′

X ∈ B∞(H2(X), L2(X)), (3.22)

(W̃n−1 − W̃X ′
n−1)J

X ′
X(n) ∈ B∞(H2(X(n)), L2(X(n− 1)), (3.23)

where ṼX = Ṽ X
X , W̃n−1 = W̃X

n−1.

Thus it suffices to follow the proof of i) and ii) noting that

i

2
[HX ′

X ,AX] = H̃X ′
X = H̃X ′ diag

X + W̃X ′
X , (3.24)

where H̃X ′ diag
X and W̃X ′

X are defined according to (2.13), (2.14) with H
X ′(n)
X(n) ,

WX ′(n)
n−1 replaced by H̃X ′(n)

X(n) , W̃X ′(n)
n−1 . 4

Proof of Proposition 2.1. Fix 0 < r̃2 < 1, set r̃X ′ = r̃2 for every

X ′ such that ]X(N)X
′ = 2 and choose r2 = r2(r̃2) > 0 small enough to

guarantee (3.2n) for 1 ≤ n ≤ N with rX ′ = r2. Assuming that we have

chosen rX ′ = r]X(N)X ′ > 0, r̃X ′ = r̃]X(N)X ′ > 0 for every X ′ such that

]X(N)X
′ ≤ k, we choose sufficiently small r̃k+1 = r̃k+1(r̃2, r2, ..., r̃k, rk) > 0

and rk+1 = rk+1(r̃2, r2, ..., r̃k, rk, r̃k+1) > 0 small enough to guarantee (3.2n)

for 1 ≤ n ≤ N with r̃X ′ = r̃k+1, rX ′ = rk+1 for every X ′ such that

]X(N)X
′ = k + 1. A simple geometric reasoning based on the fact that

for X ′ ⊂ X and r > 0 small, {x ∈ X : |πX ′x| < r|x|} is a small conical

neighbourhood of X ′⊥ ∩ (X \ {0}) in X \ {0}, allows to find r̃{0} = r{0} > 0
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such that {UX ′
X(N)(rX ′, r̃X ′)}X ′∈Y,X ′⊂X(N), is a covering of X(N). Therefore

there exists a partition of unity

∑

X ′∈Y,X ′⊂X(N)

J̃X
′

N = 1 (3.25)

composed of J̃X
′

N ∈ S0
hg(X(N)) such that supp J̃X

′
N ⊂ UX ′

X(N)(rX ′, r̃X ′) and

J̃X
′

N ≥ 0.

For X ′ 6= {0} we define successively J̃X
′

N−1 ∈ S0
hg(X(N−1)), J̃X

′
N−2 ∈ S0

hg(X(N−

2)),...,J̃X
′

1 ∈ S0
hg(X(1)), using the relation (3.1) with J̃X

′
n instead of JX

′
n and

let J̃X
′

X be defined as in (3.19). Due to the assertion of Lemma 2.1 we may

assume that (3.2n) holds for 1 ≤ n ≤ N with J̃X
′

n instead of JX
′

n and due to

Lemma 3.2 the commutator [J̃X
′

X ,HX] is HX-compact.

Defining J̃
{0}
X by the relation

∑

X ′∈Y,{0}⊂X ′⊂X(N)

J̃X
′

X = I − J̃{0}X , (3.26)

it is clear that [J̃
{0}
X ,HX] is still HX-compact and

J̃{0}X =
⊕

1≤n≤N
J̃{0}n , (3.27)

with J̃{0}n ∈ S0
hg(X(n)) for 1 ≤ n ≤ N and supp J̃{0}N ⊂ U{0}X(N)(r̃{0}), hence

the operators (2.18ii), (2.18iv) are compact for X ′ = {0} as well.

It is clear that (3.26) implies existence of a constant c0 > 0 such that

SX =
∑

X ′∈Y,X ′⊂X(N)

(
J̃X
′

X

)2

≥ c0I (3.28)
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and then clearly [SX,HX] is HX-compact. Hence

[f(SX),HX](i + HX)−1 ∈ B∞(H) (3.29)

if f(λ) = (λ ± i)−1 and Stone-Weierstrass theorem (cf. e.g. [4]) allows to

affirm that (3.26) still holds for every f ∈ C(R) such that f(λ) → 0 when

λ→∞. We complete the proof noting that all assertions of Proposition 2.1

are satisfied if we set JX
′

X = J̃X
′

X S
−1/2
X . 4

IV Proofs of Theorems 1.1 and 1.2

Let X = {X(n)}1≤n≤N be as before a finite family of euclidean spaces satis-

fying (1.8) and let X′ = {X ′(n)}1≤n≤N ′ be another finite family of euclidean

spaces satisfying

X ′(N ′) ⊂ ... ⊂ X ′(2) ⊂ X ′(1). (4.1)

We shall write X′ ≤ X if and only if the following three conditions hold

i) N ′ ≤ N,

ii) X ′(1) ⊆ X(1),

iii) X̃ ′(n) = X̃(n) for 2 ≤ n ≤ N ′,

where X̃(n) is given by (1.11) and X̃ ′(n) by

X ′(n− 1) = X ′(n)⊕ X̃ ′(n) for 2 ≤ n ≤ N ′. (4.2)

Moreover we shall write X′ < X ⇐⇒ (X′ ≤ X and X′ 6= X).
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The idea of the proof of Theorem 1.1 is to show the assertion for HX with

τ (HX) =
⋃

X′<X

σpp(HX′) (4.3)

[where σpp(H) denotes the set of eigenvalues of H], assuming that the ana-

logical statement holds for every HX′ with X′ < X. We note first that

Proposition 2.1 has the following

Corollary 4.1. Assume that JX
′

X satisfies the assertions of Proposition 2.1.

If f ∈ C∞0 (R) then for every X ′,X ′′ ∈ Y, X ′,X ′′ ⊂ X(N), the operators

(i + HX)[JX
′

X , f(HX ′′
X )], (4.4)

(i + HX)(f(HX)− f(HX ′
X ))JX

′
X , (4.4′)

are compact. Moreover there exist compact operators K1, K2, such that

f(HX) =
∑

X ′∈Y,X ′⊂X(N)

JX
′

X f(HX ′
X )JX

′
X + K1, (4.5)

f(HX)[iHX,AX]f(HX) =

∑

X ′∈Y,X ′⊂X(N)

JX
′

X f(HX ′
X )[iHX ′

X ,AX]f(HX ′
X )JX

′
X + K2, (4.6)

Indeed, Proposition 2.1 allows to get the compactness of operators (4.4-4’) for

f(λ) = (λ± i)−1 and the general case follows as before via Stone-Weierstrass

theorem (cf. [4]). Using (2.18) and (4.4-4’) we get (4.5-6) as in [4]. We note

first that the assertion of Theorem 1.1 holds in the case N=1 corresponding

to the case of a standard scalar many-body operator treated in [3] or [4],

where

τ (HX) =
⋃

X ′⊂X
σpp(HX ′) (4.7)
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Consider now the case N ≥ 2 and assume that the assertion of Theorem 1.1

with (4.3) holds for all X′ such that X′ < X. Clearly we may exclude the

case X(N) = {0}, because the corresponding operator may be replaced by

HX(N−1) with

X(N − 1) = {X(n)}1≤n≤N−1 < X (4.8)

for which the assertion of Theorem 1.1 holds due to our induction hypothesis.

It remains to consider the case X(N) 6= {0} applying Corollary 4.1 similarly

as in [4]. Then for every X ′ ∈ Y, {0} ⊂ X ′ ⊂ X(N), we use the direct

decomposition

HX ′
X =

⊕∫

ξ∈X ′′

HX(X ′)(ξ) dξ, (4.9)

where X ′′ is such that X(N) = X ′ ⊕X ′′ and

HX(X ′)(ξ) = ξ2 + HX(X ′), (4.9′)

where HX(X ′) is the Hamiltonian associated with the family of euclidean

subspaces X(X ′) defined by (2.12) with X ′(N) = X ′. Thus for X ′ ∈ Y,

{0} ⊂ X ′ ⊂ X(N) we have X(X ′) < X and the assertion of Theorem 1.1

holds for HX(X ′) due to our induction hypothesis. It remains to note that in

the case X ′ = {0},

H{0}X = HX(N−1) ⊕ (−∆X(N)), (4.10)

with X(N − 1) given by (4.8), hence satisfies the assertion of Theorem 1.1.

Therefore we may complete the proof similarly as in the reasoning described

in [4]. Here we point out that compactness is(in general) used in the Fock
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space with differing number of particles.So compactness of the relevant con-

rtibution from the

W

terms is between two spaces.Smallness of the remainder terms,after fibra-

tion,follows as in the usual case. The assertion of Theorem 1.2 follows from

Theorem 1 and from the boundedness of [[HX,AX],AX](i + HX)−1 (cf. [2],

[13]).
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