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Abstract

We consider the dispersion properties in Lp spaces of Schrödinger hamiltonians
with a large number of obstacles modelled by rank one perturbations. We obtain
both for the dispersion an Strichartz estimates non perturbative results with respect
to the coupling constants.

1 Introduction

It is well known that the free Schrödinger group in Rd satisfies the dispersion estimate∥∥eit∆∥∥L(Lp;Lp
′ )
≤ Cpt

−d( 1
p
− 1

2
) for 1 ≤ p ≤ 2,

1

p
+

1

p′
= 1.

The Strichartz estimates∥∥eit∆f∥∥
LqtL

r
x
≤ Cq ‖f‖L2 for 2 ≤ q ≤ ∞, d

r
+

2

q
=
d

2
, d ≥ 3

can be viewed as a consequence of this (see [7] [9] and for the initial approach [14]). Note
that a local in time Strichartz estimate can hold while the dispersion estimate fails as
shows the analysis on riemannian manifold ([3][2], [4]). Motivated by nonlinear problems,
many efforts have been made to extend the dispersion or the Strichartz estimates to the
perturbed case H = −∆ + V (x). Two different approaches were developed to attack
this problem which mixes harmonic analysis and spectral theory: 1) a time dependent
approach developed by the second author with J.L. Journé and C.D. Sogge in [8] 2)
a stationary one developed by K. Yajima in [16][17][18] which consists in showing the
Lp-boundedness of the wave operators and reduces the perturbed case to the free one.
Recently, I. Rodnianski and W. Schlag in [11] have obtained results in dimension 3 which
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improve the previous ones and also hold for time-dependent potentials, with a method
which is close to the first one. In these two approaches the analysis is crucially dimension-
dependent in two points: a) an obvious one which can be summarized as the dimension
dependence of Sobolev embeddings; b) The analysis of low energies and especially the
influence of zero resonances and eigenvalues which requires Jensen-Kato theory and the
expression of the Green functions for −∆− k2.

These two approaches also require essentially the same type of assumptions on the
perturbation V : a) it is local i.e. V = V (x) is a multiplication operator; b) it has to
decay rather fast, as x goes to ∞.

The first assumption is used in some cancellation property for high frequencies which
appears in different forms in the two approaches. There is no doubt that this should work
also for some pseudo-differential perturbation but nothing is written on this subject.

The best results concerned with the second assumptions are the recent ones of I.
Rodnianski and W. Schlag in [11]. An aim of this article is to show that whatever
the improvement could be made in this direction, the theory would remain incomplete.
Another motivation is concerned with the analysis of ballistic transport in random media.

The situation is the following: Consider H = −∆+V (x−x1)+V (x−x2) where V is a
fast decaying potential with all the necessary assumptions. The physical intuition about
this hamiltonian is that as |x2 − x1| goes to infinity the two potentials are decoupled
and that the properties of the propagator e−itH should be the same as for e−itHk with
Hk = −∆ + V (x − xk), k = 1, 2. Contrary to what would suggest any weak decay
assumption the situation is better and better as |x2 − x1| is larger and larger.
Notations:

• For δ ∈ R, [δ] and δ+0 respectively denote the integer part of δ and any real number
greater than δ.

• For 1 ≤ p ≤ ∞, p′ denotes the dual exponent given by 1
p

+ 1
p′

= 1.

• For y ∈ Rd, τy is the x-translation: τyϕ(x) = ϕ(x− y) and 〈y〉 = (1 + |y|2)1/2.

• We use the notation D or Dx for 1
i
∂x on Rd and the Fourier transform is normalized

as

ϕ̂(ξ) = (Fϕ) (ξ) =

∫
Rd

e−iξ.xϕ(x) dx

ϕ(x) =
(
F−1ϕ̂

)
(x) =

∫
Rd

eix.ξϕ̂(ξ) d̄ξ, (d̄ξ =
dξ

(2π)d
).

We shall consider a situation where the spectral analysis can be carried over as explic-
itly as possible, namely the case of finite rank perturbations and more precisely the case
where each obstacle is described by a rank one perturbation. Namely, we shall study the
dispersion for hamiltonians of the form

H = H0 +
N∑
j=0

αjτxj |ψ〉〈ψ|τ−xj = H0 +
N∑
j=0

αj|τxjψ〉〈τxjψ| with H0 = −∆,
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where the function ψ and the distribution of obstacles satisfy the following assumptions.
Hypotheses:

0) Dimension: d ≥ 3.

1) Decay and smoothness: The function ψ is a normalized L2
(
R
d
)

function such that
〈x〉s〈D〉σψ ∈ L2

(
R
d
)

where s > 1/2 and σ ≥ 0 will be specified for every interme-
diate result.

2) Absence of pure point spectrum: The coefficients αj are all positive and the

Fourier transform ψ̂ satisfies:

∀λ ≥ 0,

(∫
Sd−1

∣∣∣ψ̂(
√
λω)

∣∣∣2 dω = 0

)
⇒
(∫

Rd

(|ξ|2 − λ)−1
∣∣∣ψ̂(ξ)

∣∣∣2 dξ ≥ 0

)
.

We will write α = maxj∈{0,...,N} αj.

3) Spreading of obstacles: There exists ε > 0 so that

∀i, j ∈ {0, . . . , N} , i 6= j, |xj − xi| ≥
1

ε
.

Here are our results.

Theorem 1.1. We assume Hypotheses 0)1)2)3) with s >
[
d
2

]
+2, σ > d

2
, α = max0≤j≤N αj

fixed. For 1 < p ≤ 2, 1 < r < min
(
p, 2d

d+2

)
and for (1/p−1/2)

(1/r−1/2
) < θ ≤ 1, there exist two

constant C = Cp,r,θ,α,ψ > 0 and C ′ = C ′p,r,θ,α,ψ > 0 so that(
N ≤ 1

Cεd(r−1)

)
⇒
(
∀t ∈ R \ {0} ,

∥∥e−itH∥∥L(Lp,Lp′) ≤ C ′(N + 1)θt−d( 1
p
− 1

2
)
)
.

Theorem 1.2. We assume Hypotheses 0)1)2)3) with s >
[
d
2

]
+2, σ > d

2
, α = max0≤j≤N αj

fixed. For 1 < p ≤ 2, 1 < r < min
(
p, 2d

d+2

)
and for s′ > d

2
, there exist two constants

C = Cp,r,α,ψ > 0 and C ′ = C ′s′,p,r,α,ψ > 0 so that

∀t ∈ R \ {0} ,∀u ∈ 〈x〉−s′L2(Rd),
∥∥e−itHu∥∥

Lp′
≤ C ′ min

x0∈Rd

∥∥∥〈x− x0〉s
′
u
∥∥∥
L2
t−d( 1

p
− 1

2
),

as soon as N ≤ 1
Cεd(r−1) .

For the Strichartz estimate, we have

Theorem 1.3. We assume Hypotheses 0)1)2)3) with s >
[
d
2

]
+ 2, σ > max

(
d−3

2
, d−2

4

)
and α = max0≤j≤N αj fixed. There exist a constant C = Cα,ψ > 0 and for any q ∈ [2,∞]
a constant C ′ = C ′q,α,ψ so that the Strichartz estimate

∀u ∈ L2(Rd),
∥∥eitHu∥∥

Lq(Rt;Lr(Rdx)
≤ C ′(N + 1)

2
q ‖u‖L2 with

d

r
+

2

q
=
d

2
,

holds as soon as N ≤ 1

Cε
d d−2
d+2

.
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Theorem 1.4. We assume Hypotheses 0)1)2)3) with s >
[
d
2

]
+ 2, σ ≥ d−2

2
and α =

max0≤j≤N αj fixed. There exist a constant C = Cα,ψ > 0 and for any s′ > d
2

a constant
C ′ = C ′s′,α,ψ so that the estimate(

N ≤ 1

Cεd
d−2
d+2

)
⇒

(
sup
x0∈Rd

∥∥∥〈x− x0〉−s
′
e−itH

∥∥∥
L(L2(Rd);L2(Rd+1))

≤ C ′

)
.

Those results are non perturbative in terms of the coupling constants αj. They can
be read in two ways: 1) For a fixed finite number N , uniform dispersion and Strichartz
estimates hold as ε → 0. 2) For ε> 0 it provides a sufficient conditions on N for the
dispersion and Strichartz estimates. Notice also that the Strichartz estimate holds for
larger N than what we are able to prove for the dispersion estimate. If these results are
optimal (which is suspected), they cannot be derived directly with a stationary approach
which would give the same condition on N for all the estimates.
The proof will be done in two steps: In Section 2 we will consider the case of one obstacle
and show that in the rank one case the wave operators are bounded in Lp (stationary
approach). The second one (Section 3) uses a bootstrap argument (time-dependent ap-
proach) and induction on N .

2 One obstacle

Rank one perturbations are known in spectral theory as basic perturbations for which
everything can be computed explicitly. It is not only a toy model: First, trace class
perturbations can be approximated by finite rank ones and the invariance principle for
wave operators allows to reduce (very) short-range perturbations to this case. Secondly,
any anti-Wick quantized operator is defined as a superposition of rank one perturbations.
Surprisingly, nothing seems to have been written on the dispersive properties of rank
one perturbed laplacian. One exception is the work of S.Albeverio, Z. Brzezniak and
L. Dabrowski [1] where the kernel of the propagator was explicitly computed for point
interaction potentials. In this special situation of local rank one potentials, the L∞ norm
decays like 1

t1/2
in dimension one (delta potentials) and like 1

t1/2
or 1

t3/2
in dimension three

depending on the presence or not of zero resonances (see formula 16 of [1]).
We shall study the question of dispersion for regular rank one perturbation by proving

that the wave operators are bounded in Lp spaces. We shall follow the techniques of K.
Yajima in [16] [17] [18] and this paragraph can be viewed as a simple introduction to his
very complete work. Here the case of local perturbations V (x) will be an intermediate
step (which seems necessary).

Let Hα denote the hamiltonian H0 + α|ψ〉〈ψ| on Rd with H0 = −∆ and d, α, ψ
according to Hypotheses 0) 1) 2).
We first recall the Aronszajn-Krein formulas which can be found in [12]: Let F (z) denote
the holomorphic function of z ∈ C \ R+ given by

F (z) = 〈ψ|(H0 − z)−1|ψ〉. (2.1)
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With the decay assumptions on ψ, the boundary values

F±(λ) = F (λ± i0) = 〈ψ|(H0 − λ∓ i0)−1|ψ〉, λ ∈ R (2.2)

are everywhere defined functions and coincide on (−∞, 0). If Fα(z) = 〈ψ|(Hα − z)−1|ψ〉,
we deduce from the second resolvent formula, the relations for z ∈ C \ R+:

Fα(z) =
F (z)

1 + αF (z)
, (2.3)

(Hα − z)−1 |ψ〉 =
1

1 + αF (z)
(H0 − z)−1|ψ〉 (2.4)

and (Hα − z)−1 = (H0 − z)−1 − α

1 + αF (z)
(H0 − z)−1 |ψ〉〈ψ| (H0 − z)−1 . (2.5)

From the stationary expression of the wave operators W± = W±(H0 + V,H0):

W± =
1

2iπ

∫
R

[
Id +(H0 − λ± i0)−1V

]−1 [
(H0 − λ− i0)−1 − (H0 − λ+ i0)−1

]
dλ

applied with V = α|ψ〉〈ψ| and relation (2.5) we get the explicit expression for the wave
operators W±(Hα, H0):

W±(Hα, H0) = Id− 1

2iπ

∫
R+

α

1 + αF∓(λ)
(H0 − λ± i0)−1|ψ〉〈ψ|[

(H0 − λ− i0)−1 − (H0 − λ+ i0)−1
]
dλ. (2.6)

Theorem 2.1. Under the Hypotheses 0) 1) and 2) with s >
[
d
2

]
+2 and σ ≥ max

(
d−3

2
, 1

2

[
d
2

])
,

the hamiltonian Hα has only absolute continuous spectrum and the wave operators are
bounded in Lp(Rd), for 1 < p <∞:

‖W±(Hα, H0)‖L(Lp) ≤ Cp,ψ,α.

Proof. We assumed α ≥ 0 so that σ(Hα) = R+. Moreover regular (ψ ∈ L2(R)) rank one
perturbations exclude singular continuous spectrum and ensure the existence of the wave
operators W±(Hα, H0). With hypothesis 2) we will show in Lemma 2.6 that the function
1 + αF±(λ) never vanishes so that Hα has no embedded eigenvalue.
For simplicity of notations, we focus on W+ (the treatment of W− is symmetric). We now
write the stationary formula (2.6) in the form:

W+(Hα, H0)− Id = G|ψ〉〈ψ| ◦
α

1 + αF−(H0)
,

where the operator GV equals

GV =
−1

2iπ

∫
R+

(H0 − λ+ i0)−1V
[
(H0 − λ− i0)−1 − (H0 − λ+ i0)−1

]
dλ
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and after changing the integration contour

GV =
−1

2iπ

∫
R

(H0 − λ+ i0)−1V (H0 − λ− i0)−1dλ. (2.7)

Hence the problem is reduced to: 1) the Lp-boundedness of the Fourier multiplier by
1

1+αF−(|ξ|2)
(Proposition 2.8); 2) the Lp-boundedness of G|ψ〉〈ψ| (Proposition 2.4 and Propo-

sition 2.5).

The previous result and the intertwinning relation

e−itHα = W+(Hα, H0)eit∆W+(Hα, H0)∗,

yield the estimates for the perturbed hamiltonian. Note that the maximum value for r in
the Strichartz estimates is 2d

d−2
<∞ for d ≥ 3.

Corollary 2.2. The dispersion and Strichartz estimates hold for Hα:∥∥e−itHα∥∥L(Lp;Lp
′
)
≤ Cp,α,ψt

−d( 1
p
− 1

2) for 1 < p ≤ 2, (2.8)

and
∥∥e−itHαf∥∥

LqtL
r
x
≤ Cq,α,ψ ‖f‖L2 for 2 ≤ q ≤ ∞, d

r
+

2

q
=
d

2
(d ≥ 3). (2.9)

We will also need the regular dispersion estimate which writes for H0∥∥e−itH0u
∥∥
Lp′
≤ Cp,s ‖〈D〉σ〈x〉su‖L2 〈t〉−d(

1
p
− 1

2), 1 ≤ p ≤ 2, s, σ >
d

2
.

By noticing that (1 +Hα)±[σ2 ]±1(1 +H0)∓[σ2 ]∓1 is bounded on L2(Rd) for 〈D〉σψ ∈ L2(Rd)
we get the

Corollary 2.3. We assume the Hypotheses 0)1)2) with s >
[
d
2

]
+ 2 and σ > d

2
. For

s′, σ′ > d
2
, there exist a constant Cs′,σ′,p,α,ψ so that

∀t ∈ R,
∥∥e−itHαu∥∥

Lp′
≤ Cs′,σ′,p,α,ψ

∥∥∥〈D〉σ′〈x〉s′u∥∥∥
L2
〈t〉−d(

1
p
− 1

2), 1 < p ≤ 2.

We next give the details of the proof of Theorem 2.1.

2.1 Lp-boundedness of G|ψ〉〈ψ|.

This part on the Lp-boundedness of the operator GV essentially relies on results by Yajima
in [16][17][18]. The case where V = V (x) is treated in the Proposition 2.13 of [17] which
we recall here:

Proposition 2.4. For V = V (x) with 〈D〉 d−3
2 〈x〉1/2+0V ∈ L2(Rd), we set for t ∈ R and

ω ∈ Sd−1

KV (t, ω) =
i

2(2π)d

∫ ∞
0

V̂ (rω)rd−2eitr/2 dr

and xω = x− 2(x.ω)ω denotes the reflection along the ω-axis of x ∈ Rd. Then:
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1) The operator GV given by (2.7) can be expressed as follows:

(GV u)(x) =

∫
Sd−1

∫ +∞

2x.ω

KV (t, ω)u(tω + xω) dt dω. (2.10)

2) For any p, 1 ≤ p ≤ ∞, the operator GV is bounded on Lp(Rd) and we have for σ > 1/2:

‖GV ‖L(Lp) ≤ ‖KV ‖L1(R×Sd−1) ≤
∥∥∥〈D〉 d−3

2 〈x〉σV
∥∥∥
L2
.

The translation invariance of the Laplace operator, allows to reduce the case V =
|ψ〉〈ψ| to the previous one and we have the

Proposition 2.5. Under Hypotheses 0),1),2) with s > d+1
2

and σ ≥ d−3
2

, the operator
G|ψ〉〈ψ| is bounded in Lp(Rd) for 1 ≤ p ≤ ∞:∥∥G|ψ〉〈ψ|∥∥L(Lp)

≤ Cp,s

∥∥∥〈D〉 d−3
2 〈x〉sψ

∥∥∥2

L2
.

Proof. We again follow Yajima in [18]-Lemma 4.4. For u ∈ S(Rd) and for λ ∈ R , we
have (

|ψ〉〈ψ|(H0 − λ− i0)−1|u〉
)

(x) = ψ(x)

∫
Rd

ψ(y)
[
(H0 − λ− i0)−1u

]
(y) dy.

The change of variable y → x− y in the integral and the translation invariance of (H0 −
λ− i0)−1 gives(

|ψ〉〈ψ|(H0 − λ− i0)−1|u〉
)

(x) =

∫
Rd

Vy(x)
[
(H0 − λ− i0)−1τyu

]
(x) dy

where Vy(x) = ψ(x)ψ(x− y). Integrating with respect to λ ∈ R leads to

G|ψ〉〈ψ|u =

∫
Rd

GVyτyu dy in S ′(Rd)

and to the estimate (the case p =∞ follows by duality)

‖GV ‖L(Lp) ≤
∫
Rd

∥∥GVy

∥∥
L(Lp)

dy ≤
∫
Rd

∥∥∥〈D〉 d−3
2 〈x〉s1ψ(x)ψ(x− y)

∥∥∥
L2
x

dy, (s1 > 1/2).

With 〈y〉s
〈x〉s ≤ Cs〈x− y〉s, s ≥ 0, we have∫

R2d

〈y〉d+2(s2−s1)〈x〉2s1 |ψ(x)|2 |ψ(x− y)|2 dxdy ≤ C
∥∥∥〈x〉 d2 +s2ψ

∥∥∥4

L2
(s2 > s1 > 1/2).

With Cauchy-Schwarz, we finally get∫
Rd

∥∥〈x〉s1ψ(x)ψ(x− y)
∥∥
L2
x
dy,≤ Cs2

∥∥∥〈x〉 d2 +s2ψ
∥∥∥2

L2
(s2 > s1 > 1/2).

The treatment of integer derivatives is similar and the final result is obtained via bilinear
complex interpolation (see [15] [5]).
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2.2 The Fourier multiplier 1
1+αF−(|ξ|2).

We first check what we announced in the proof of Theorem 2.1, namely the absolute
continuity of the spectrum of Hα.

Lemma 2.6. Under Hypotheses 0)1)2) with s > 3/2 and σ ≥ 0, the function 1 +αF−(λ)
is continuous on R ∪ {∞} and never vanishes. As a consequence, the spectrum of Hα is
absolutely continuous.

Proof. We first note that F− is the Fourier transform of the time-dependent function
−i.1R+(t)〈ψ|eitH0|ψ〉,

F−(λ) = 〈ψ|(H0 − λ+ i0)−1|ψ〉 = −i
∫ +∞

0

e−itλ〈ψ|eitH0|ψ〉 dt.

If 〈x〉1+0ψ belongs to L2(Rd), then ψ belongs to Lp(Rd) with 1
p
> 1

d
+ 1

2
. As a consequence

of the dispersion estimate for H0, the function 1R+(t)〈ψ|eitH0|ψ〉 belongs to L1(Rt) and
its Fourier transform F− is continuous on R and vanishes at infinity.

It remains to check that 1 + αF−(λ) never vanishes.

a) λ ≤ 0: For λ < 0, the real part of F−(λ) equals

Re(F−(λ)) =

∫
Rd

1

|ξ|2 − λ

∣∣∣ψ̂(ξ)
∣∣∣2 d̄ξ > 0.

Thus we have
∀λ ∈ (−∞, 0], Re(1 + αF−(λ)) ≥ 1.

b) λ > 0: The trace theorem with 〈x〉3/2+0ψ ∈ L2(Rd) ensures that ψ̂(
√
λ.) is a L2(Sd−1)-

valued C1 function of λ ∈ (0,+∞). Hence, whenever the imaginary part of F−(λ)
vanishes,

Im(F−(λ)) =
λ
d−1

2

(2π)d

∫
Sd−1

∣∣∣ψ̂(
√
λω)

∣∣∣2 dω = 0,

then its real part equals

Re(F−(λ)) = lim
ε→0

∫
Rd

(|ξ|2 − λ)

(|ξ|2 − λ)2 + ε2

∣∣∣ψ̂(ξ)
∣∣∣2 d̄ξ =

∫
Rd

1

(|ξ|2 − λ)

∣∣∣ψ̂(ξ)
∣∣∣2 d̄ξ.

The right-hand side is positive in such a case by Hypothesis 2) and therefore 1 +
αF−(λ) never vanishes on (0,+∞).

The absolute continuity of the spectrum of Hα now follows from the fact that the boundary
values of the resolvent are locally uniformly bounded in weighted L2 spaces which excludes
the presence of embedded eigenvalues (see [6][10]).
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Remark 2.7. The condition of Hypothesis 2) allows low energy cut-off but not high-energy
cut-off. As an example, if ψ = χ(H0)ψ for some compactly supported function χ, then
for E larger than any λ ∈ supp(χ), one can find u ∈ L2(Rd) so that (H0 − E)|u〉 = |ψ〉.
Then we have

Hα|u〉 = E|u〉+ (1 + α〈ψ|u〉) |ψ〉

with 〈ψ|u〉 =

∫
Rd

(|ξ|2 − E)−1
∣∣∣ψ̂(ξ)

∣∣∣2 d̄ξ < 0

and Hα has the embedded eigenvalue E for α = −1
〈ψ|u〉 .

We recall the Marcinkiewicz Fourier multiplier theorem (see [13][15]) which says that
m(D) is bounded in Lp(Rd), 1 < p < ∞, provided that the function m is

[
d
2

]
+ 1-

times continuously differentiable on Rd \ {0} and that the derivatives satisfy the uniform
estimates

∀ξ ∈ Rd \ {0} ,
∣∣∣∂βξm(ξ)

∣∣∣ ≤ Cβ |ξ|−|β| , for 0 ≤ |β| ≤
[
d

2

]
+ 1.

For a function m(ξ) = g(|ξ|2), it becomes g ∈ C[
d
2 ]+1((0,+∞)) and

∀λ ∈ (0,+∞),
∣∣(λ∂λ)kg(λ)

∣∣ ≤ Ck, for 0 ≤ k ≤
[
d

2

]
+ 1.

We will prove the

Proposition 2.8. Under Hypotheses 0)1)2) with s >
[
d
2

]
+ 2 and σ ≥ 1

2

[
d
2

]
, the function

F− is [d
2
] + 1 times continuously differentiable on R∗ with the estimate

∀λ ∈ R∗,
∣∣(λ∂λ)kF−(λ)

∣∣ ≤ Cs,k

∥∥∥〈D〉 1
2 [ d2 ]〈x〉sψ

∥∥∥2

L2
, for 0 ≤ k ≤

[
d

2

]
+ 1.

Hence, the operator 1
1+αF−(H0)

is bounded on Lp(Rd) for 1 < p <∞.

Proof. The last assertion is a direct consequence of the first one with the non vanishing
of 1 + αF− on R ∪ {∞}. After taking the inverse Fourier transform, it suffices to check
for 0 ≤ k ≤

[
d
2

]
+ 1 the estimates

∥∥(∂tt)
k〈ψ|eitH0|ψ〉

∥∥
L1(R)

≤ Cs,k

∥∥∥〈D〉 1
2 [ d2 ]〈x〉sψ

∥∥∥2

L2
, (s >

[
d

2

]
+ 2).

with ψ ∈ S(Rd).
Let 1 = χ3

0(λ) +
∑∞

j=1 χ
3(2−jλ) be a dyadic partition of unity with χ0 ∈ C∞0 ([0, 2))

and χ ∈ C∞0 ((1/2, 3/2)). We write

〈ψ|eitH0|ψ〉 = 〈ψ|eitH0χ3
0(|D|)|ψ〉+

+∞∑
j=1

〈ψ|eitH0χ3(2−j |D|)|ψ〉

9



Thus, we have to consider two kinds of terms

I0(t) = 〈ψ0|eitH0χ0(|D|)|ψ0〉
and for j ≥ 1 Ij(t) = 〈ψj|eitH0χ(2−j |D|)|ψj〉,

where ψj equals χ0(|D|)ψ and χ(2−j |D|)ψ respectively for j = 0 and for j ≥ 1.
We notice that for ϕ ∈ S(Rd) we have

(∂tt)

∫
Rd

e−it|ξ|
2

ϕ(ξ) d̄ξ =

∫
Rd

(− i
2
ξ.∂ξ + 1)e−it|ξ|

2

ϕ(ξ) d̄ξ

=

∫
Rd

e−it|ξ|
2

(
i

2
ξ.∂ξ +

di

2
+ 1)ϕ(ξ) d̄ξ.

Ij(t), j ≥ 1: For 0 ≤ k ≤
[
d
2

]
+ 1, we write

(∂tt)
kIj(t) =

∫
Rd

e−it|ξ|
2

∑
|β|≤k

2|β|jθβ,k(2
−jξ)∂βξ

∣∣∣ψ̂j(ξ)∣∣∣2
 d̄ξ

where the functions θβ,k belong to C∞0 (Rd \ {0}). After using non stationary phase
(integration by part with ξ

t|ξ|2∂ξ) and interpolation we get

∀t ∈ R∗,
∣∣(∂tt)kIj(t)∣∣ ≤ Ck,s12jk min

(
1,

1

(2jt)s1

)
‖〈x〉s1ψj‖2

L2 , for s1 ≥ 0.

After time integration, we deduce the estimate:∥∥(∂tt)
kIj(t)

∥∥
L1(R)

≤ Ck,s22j(k−1)
∥∥〈x〉k+s2ψj

∥∥2

L2 for s2 > 1. (2.11)

I0(t): For 0 ≤ k ≤
[
d
2

]
+ 1, we write

(∂tt)
kI0(t) =

∫
Rd

e−it|ξ|
2

∑
|β|≤k

χβ,k(ξ)∂
β
ξ

∣∣∣ψ̂(ξ)
∣∣∣2
 d̄ξ

where the functions χβ,k belong to C∞0 (Rd). Since the operators χβ,k(D) are bounded
on Lp(Rd), 1 < p <∞, we deduce like in the proof of Lemma 2.6 the estimates∥∥(∂tt)

kI0(t)
∥∥
L1(R)

≤ Ck,s
∥∥〈x〉k+sψ

∥∥2

L2 for s > 1. (2.12)

We obtain the result for ψ ∈ S(Rd) after taking the sum of all the terms (2.11)(2.12) and
finally for all ψ by density.
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2.3 Two estimates for 〈τyψ|e−itHα|ψ〉.
The results of this section will be used further. The next one can be viewed as an extension
of Lemma 2.6 and Proposition 2.8.

Proposition 2.9. We assume Hypotheses 0)1)2) with s >
[
d
2

]
+ 2 and σ ≥ max

(
d−3

2
, d

4

)
.

For 1 < r ≤ 2, for 0 ≤ θ ≤ 1 and s′ > d
2
, there exists a constant Cs′,r,θ,α,ψ so that

∀y ∈ Rd,∀t ∈ R,
∣∣〈τyu|e−itHα |u〉∣∣ ≤ Cs′,r,θ,α,ψ

∥∥∥〈x〉s′〈D〉 d4u∥∥∥2

L2

(
〈t〉θ〈y〉1−θ

)−d( 1
r
− 1

2
)
.

Proof. For s′ > d
2

fixed, we take u in 〈x〉−s′〈D〉− d4L2(Rd). The Duhamel formula for Hα

gives

〈τyu|e−itHα |u〉 = 〈τyu|e−itH0|u〉 − iα
∫ t

0

〈τyu|e−i(t−t
′)H0|ψ〉〈ψ|e−it′Hα |u〉 dt′

Corollary 2.2 says that the dispersion estimate holds for Hα. Since our assumptions ensure
that both ψ and u belong to L2(Rd) ∩ L1(Rd), we have∣∣∣〈ψ|e−it′Hα |u〉∣∣∣ ≤ Cs′,r,α,ψ〈t〉−d( 1

r
− 1

2
)
∥∥∥〈x〉s′u∥∥∥

L2
for 1 < r ≤ 2. (2.13)

The next Lemma 2.10 states that the estimates hold with H0 instead of Hα. We now take
r close enough to 1 and the integrability of 〈t′〉−d( 1

r
− 1

2
) provides the estimate for θ = 0.

Meanwhile the estimate
∫ t

0
〈t− t′〉−s1〈t′〉−s1 dt′ ≤ Cs1〈t〉−s1 , for s1 > 1, gives the result for

θ = 1. The case of general θ ∈ [0, 1] and r ∈ (1, 2] follows by interpolation.

Lemma 2.10. For s > d/2, for 1 ≤ r ≤ 2 and for 0 ≤ θ ≤ 1, there exists a constant
Cr,θ,s > 0 so that

∀y ∈ Rd,∀t ∈ R
∣∣〈τyu|e−itH0|u〉

∣∣ ≤ Cr,θ,s

∥∥∥〈x〉s〈D〉 d4u∥∥∥2

L2

(
〈t〉θ〈y〉1−θ

)−d( 1
r
− 1

2
)
.

Proof. It relies on a combination of propagation estimates (given here by non stationary
phase) and dispersion estimates. The result for bounded y ∈ Rd is a consequence of
the dispersion estimate and we can assume |y| ≥ 1. We introduce like in the proof of
Proposition 2.8 the dyadic partition of unity on R: 1 = χ0(λ)3 +

∑∞
j=1 χ(2−jλ)3 with

χ0 ∈ C∞0 ([0, 2)) and χ ∈ C∞0 ((1/2, 3/2)). Here the terms with the factors χ0(λ) and
χ(2−jλ) are treated in the same way and we set for j ≥ 1 χj(λ) = χ(2−jλ). We write for
t ∈ R

〈τyu|e−itH0 |u〉 =
∞∑
j=0

aj(t)

with aj(t) = 〈τyu|e−itH0χj(|D|)3|u >=

∫
Rd

eit|ξ|
2

e−iy.ξχj(|ξ|) |ûj(ξ)|2 d̄ξ

where uj = χj(|D|)u. We split the analysis of aj(t) in two regimes
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|t| ≤ 1
10

2−j|y|: In this case the phase ϕ(x, ξ, t) = −y.ξ+ t|ξ|2 is not stationary and we use
integration by part with

1

1 + |∂ξϕ|2
∂ξϕ.∂ξ, ∂ξϕ = −y + 2tξ.

On the support of χj we have

|∂ξϕ(x, ξ, t)| = |−y + 2tξ| ≥ |y| − 2 |t| |ξ| ≥ |y|
(

1− 3

10

)
≥ |y|

2

and therefore

|∂ξ (∂ξϕ)| = |2t| ≤ 1

5
2−j|y| ≤ |∂ξϕ| .

For any k ∈ N (u ∈ S(Rd)), we get the estimate

∀j ∈ N, |aj(t)| ≤ Ck
∥∥〈x〉kuj∥∥2

L2 |y|
−k for |t| ≤ 1

10
2−j|y|

and after interpolation it holds for any k ∈ R+ and 〈x〉ku ∈ L2(Rd).

|t| ≥ 1
10

2−j|y|: We combine the dispersion estimate with the uniform boundedness of

χj(|D|) on Lr(Rd), 1 ≤ r ≤ ∞, and the inclusion 〈x〉−s′L2(Rd) ⊂ L1(Rd) ∩ L2(Rd)
(s′ > d/2). We thus obtain for 1 ≤ r ≤ 2 the estimate

∀j ∈ N, |aj(t)| ≤ Cr,s′
∥∥∥〈x〉s′uj∥∥∥2

L2
|t|−d(

1
r
− 1

2), for |t| ≥ 1

10
2−j|y|.

This estimate implies for 0 ≤ θ ≤ 1:

∀j ∈ N, |aj(t)| ≤ Cr,θ,s′2
jd/2

∥∥∥〈x〉s′uj∥∥∥2

L2

(
|t|θ |y|1−θ

)−d( 1
r
− 1

2)
, for |t| ≥ 1

10
2−j|y|.

For 1 ≤ r ≤ 2, s′ > d/2 and 0 ≤ θ ≤ 1, we have found a constant Cr,θ,s′ so that

∀j ∈ N,∀t ∈ R, |aj(t)| ≤ Cr,θ,s′2
jd/2

∥∥∥〈x〉s′uj∥∥∥2

L2

(
〈t〉θ |y|1−θ

)−d( 1
r
− 1

2)
.

Taking the sum with respect to j ∈ N yields the result.

The next result will be used in the analysis of the Strichartz estimate.

Proposition 2.11. We assume Hypotheses 0)1)2) with s >
[
d
2

]
+2 and σ ≥ max

(
d−3

2
, d−2

4

)
.

For s′ > d
2
, there exists a constant Cs′,α,ψ so that

∀y ∈ Rd,
∥∥〈τyu|e−itHα |u〉∥∥L1

t (R)
≤ Cs′,α,ψ

∥∥∥〈x〉s′〈D〉 d−2
4 u
∥∥∥2

L2
|y|−( d

2
−1) .
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Proof. Let u belong to 〈x〉−s′〈D〉− d−2
4 L2(R) with s′ > d

2
. Like in the proof of Proposition

2.9, our assumptions yield the estimate (2.13) and therefore∥∥〈ψ|e−itHα |u〉∥∥
L1
t (R)
≤ Cs′,α,ψ

∥∥∥〈x〉s′u∥∥∥
L2
.

Using again Duhamel formula the problem is reduced to the case α = 0 (bilinear version
with (u, u) and (u, ψ)). Like in Lemma 2.10 we write

〈τyu|e−itHα |u〉 =
∞∑
j=0

aj(t)

where the terms aj(t) satisfy

|aj(t)| ≤ Cs′
∥∥∥〈x〉s′uj∥∥∥2

L2
|y|−s

′
, for |t| ≤ 1

10
2−j |y|

and |aj(t)| ≤ Cs′
∥∥∥〈x〉s′uj∥∥∥2

L2
t−d/2 for |t| ≥ 1

10
2−j |y| .

After integration with respect to t ∈ R we get∫
R

|aj(t)| ≤ Cs′2
j(d/2−1) |y|−(d/2−1)

∥∥∥〈x〉s′uj∥∥∥2

L2
.

We conclude by summing with respect to j ∈ N.

Remark 2.12. a) Note that with the Lq norm in time, one can get the decay 〈y〉−( d
2
− 1
q

)

with q-dependent regularity assumptions.

b) The results of Proposition 2.9, Lemma 2.10 and Proposition 2.11 are optimal: An

explicit integration in the case α = 0 with the gaussian wave function u = 1
πd/4

e−
x2

2

gives ∣∣〈τyu|e−itH0u〉
∣∣ =

1

〈t〉d/2
e
− |y|

2

〈t〉2 .

3 N obstacles.

For the final analysis, it is convenient to change the numbering of obstacles. For a subset
K of Zd with #K = N + 1 and a bijection j : K → {0, . . . , N} we write

H = H0 +
∑
k∈K

|ψk >< ψk|

with ψk = α
1/2
j(k)τxj(k)

ψ. Moreover with Hypothesis 3), this set K ⊂ Zd and the bijection

j : K → {0, . . . , N} can be chosen so that

K ⊂ Zd ∩B(0, CdN
1/d)

and ∀k, k′ ∈ K,
∣∣xj(k) − xj(k′)

∣∣ ≥ 1

Cdε
|k − k′| ,
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where the constant Cd > 1 only depends on the dimension d. For any subset K′ of K, the
hamiltonian HK′ will be given by

HK′ = H0 +
∑
k∈K′
|ψk >< ψk|.

For 1 < p < 2d
d+2

, we set Cd,p = 2d(
1
p
− 1

2)+1
∫∞

0
〈t〉−d(

1
p
− 1

2) dt.

3.1 Dispersion estimates

The bootstrap argument is performed in the next two Lemmas. The final proofs of
Theorem 1.1 and Theorem 1.2 simply gathers all the estimates.

For n ∈ {0, . . . , N − 1} and t ∈ R+ we introduce the quantity

Sn(t) = sup
#K′ = n+ 1
k0 ∈ K′

∑
k∈K\K′

∣∣〈ψk|e−itHK′ |ψk0〉
∣∣ . (3.1)

Lemma 3.1. We assume Hypotheses 0)1)2)3) with s >
[
d
2

]
+ 2, σ ≥ max

(
d−3

2
, d

4

)
and

α = maxk∈K αj(k) fixed. Then for 1 < r < p < 2d
d+2

, there exists a constant C = Cp,r,α,ψ > 0
so that the estimate

Sn(t) ≤ 2Cε
d
r′N

1
r 〈t〉−d(

1
p
− 1

2),

holds uniformly in t ∈ R+, n ∈ {0, . . . , N − 1}, as soon as

N ≤ 1

(4Cd,pC)rεd(r−1)
.

Proof. Let p and r satisfy 1 < r < p < 2d
d+2

. We study by induction on n ∈ {0, . . . , N − 1}
the boundedness of

Cn =
∥∥∥〈t〉d( 1

p
− 1

2
)Sn(t)

∥∥∥
L∞

.

n = 0 : In this case, HK′ = H0 + |ψk0〉〈ψk0| and the result follows from Proposition 2.9.

By replacing 1 < r < p by 1 < r1 < p and taking θ = 1/p−1/2
1/r1−1/2

, it gives the estimate∥∥∥〈t〉d( 1
p
− 1

2
)〈ψk|e−itHK′ |ψk0〉

∥∥∥
L∞
≤ Cp,r1,α,ψ

∣∣xj(k) − xj(k0)

∣∣−d( 1
r1
− 1
p

)

≤ Cp,r1,α,ψε
d
(

1
r1
− 1
p

)
|k − k0|

−d
(

1
r1
− 1
p

)
.

Then the sum with respect to k ∈ K \ {k0} is estimated by∥∥∥∥∥∑
k 6=k0

∣∣〈ψk|e−itHK′ |ψk0〉
∣∣∥∥∥∥∥
L∞

≤ Cp,r1,α,ψε
d
(

1
r1
− 1
p

)
N

1−
(

1
r1
− 1
p

)
.

We take r so that 1/r = 1 + 1/p− 1/r1 (symmetry on the interval (1/p, 1)) and we
obtain

C0 = Cp,r1,α,ψε
d/r′N1/r.
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n ≥ 1 : We assume that the constant Cm are known for m < n and we take K′ ⊂ K
with #K′ = n + 1 and k0 ∈ K′. The identity (A.3) of Lemma A.2 applied with
A0 = H0 + |ψk0〉〈ψk0 | and AK′\{k0} = HK′ and Lemma A.1 yields

〈t〉d(
1
p
− 1

2)

∥∥∥∥∥∥
∑

k∈K\K′

∣∣〈ψk|e−itHK′ |ψk0〉
∣∣∥∥∥∥∥∥
L∞

≤
n∑

m=0

Cm
d,pC0C1 . . . Cm.

We take the maximum with respect to (K′, k0) and multiply the relation by Cd,p.
Then by setting C ′m = Cd,pCm, we get the relation

C ′n =
n∑

m=0

C ′0 . . . C
′
m.

It is now a simple exercise to check the implication

(C ′0 ≤ 1/4)⇒ (∀n < N, C ′n ≤ 2C ′0)⇔ (∀n < N, Cn ≤ 2C0) .

The hypothesis gives the condition on N while the conclusion gives the estimate for all
n < N .

Before completing the proof of Theorem 1.1 we give a variant of the previous result
for the quantities S̃n,p(t) defined for 1 < p < 2d

d+2
, N ∈ N and t ∈ R:

S̃N(t) = sup
#K = N + 1
k0 ∈ K

∥∥e−itHKψk0

∥∥
Lp
′ . (3.2)

Lemma 3.2. We assume Hypotheses 0)1)2)3) with s >
[
d
2

]
+ 2, σ > d

2
, α = maxk∈K αj(k)

fixed, and we take 1 < r < p < 2d
d+2

. If C = Cp,r,α,ψ denotes the constant of Lemma 3.1,
there exists a constant C ′ = C ′p,α,ψ > 0 so that(

N ≤ 1

(8Cd,pC)rεd(r−1)

)
⇒
(
∀t ∈ R, S̃N,p(t) ≤ C ′〈t〉−d(

1
p
− 1

2).
)

Proof. Let r, p be fixed so that 1 < r < p < 2d
d+2

. For N ∈ N, N ≤ 1
(8Cd,pC)rεd(r−1) we have

according to Lemma 3.1

∀n < N, Cd,p

∥∥∥〈t〉d( 1
p
− 1

2)Sn(t)
∥∥∥
L∞
≤ 1

4
.

We set
EN =

∥∥∥〈t〉d( 1
p
− 1

2
)S̃N,p(t)

∥∥∥
L∞

.

N = 0: The Corollary 2.3 states E0 = Cp,ψ,α < +∞.
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N ≥ 1: We first fix k0 ∈ K and we apply again the identity (A.3) of Lemma A.2 with
A0 = H0 + |ψk0〉〈ψk0| and AK\{k0} = HK. With Lemma A.1, it leads to

EN ≤
N∑
n=0

EnC
n
d,p

n−1∏
m=0

∥∥∥〈t〉d( 1
p
− 1

2)Sm(t)
∥∥∥
L∞
≤

N∑
n=0

En

(
1

4

)n
after taking the maximum value with respect to k0 ∈ K, #K = N + 1.

In two steps, one easily deduces from the previous recurrence relation the estimate EN ≤
E0

(
4
3

)N
and consequently EN ≤ 3

2
E0.

End of the proof of Theorem 1.1. Let us fix p, r, p1 so that 1 < p ≤ 2, 1 < r < p1 <
min

(
p, 2d

d+2

)
. We set θ = (1/p−1/2)

(1/p1−1/2)
and we notice (1/p−1/2)

(1/r−1/2)
< θ < 1. According to Lemma

3.1 and Lemma 3.2 there exist two constants C = Cp1,r,α,ψ > 0 and C ′ = C ′p1,α,ψ
> 0 so

that for N ≤ 1
(8Cd,p1C)rεr−1 the quantities defined by (3.1) and (3.2) satisfy

∀n < N, Cd,p1

∥∥∥∥〈t〉d( 1
p1
− 1

2

)
Sn(t)

∥∥∥∥
L∞
≤ 1

4

and ∀n ≤ N, En :=

∥∥∥∥〈t〉d( 1
p1
− 1

2

)
S̃n,p1(t)

∥∥∥∥
L∞
≤ C ′.

We also note that with s >
[
d
2

]
+ 2 > d

2
and σ > d

2
, there exists a constant Cp1,α,ψ so that

∀t ∈ R, sup
k∈K

∥∥eit0H0ψk
∥∥
Lp
′
1
≤ Cp1,α,ψ〈t0〉

−d
(

1
p1
− 1

2

)
.

Then the identity (A.3) of Lemma A.2 applied with A0 = H0 and AK = HK and the
estimate yields∥∥e−itHK∥∥L(Lp1 ,Lp

′
1 )
≤

∥∥e−itH0
∥∥
L(Lp1 ,Lp

′
1 )

+
N∑
n=1

EnC
n
d,p1

(
n−1∏
m=0

∥∥∥∥〈t〉d( 1
p1
− 1

2

)
Sn(t)

∥∥∥∥
L∞

)
Cd,p1Cp1,α,ψ(N + 1)

≤ Cp1t
−d
(

1
p1
− 1

2

)
+

(
N∑
n=1

(
1

4

)n)
Cd,p1(C ′)2(N + 1)〈t〉−d

(
1
p1
− 1

2

)

≤ Cp1,r,α,ψ(N + 1)t
−d
(

1
p1
− 1

2

)
.

We conclude by interpolating with
∥∥e−itHK∥∥L(L2)

= 1 and 1
p

= θ 1
p1

+ (1− θ)1
2
.

End of the proof of Theorem 1.2. The proof is basically the same as the previous one. It
suffices to notice that with 〈x− x0〉s

′
u ∈ L2(R), s′ > d

2
, and σ > d

2
the factor

〈t0〉
d
(

1
p1
− 1

2

) ∑
k0∈K

∣∣〈ψk0 , e
−itH0u〉

∣∣ = 〈t0〉
d
(

1
p1
− 1

2

) ∑
k0∈K

∣∣〈ψk0〈D〉σ/2, e−itH0〈D〉−σ/2u〉
∣∣

can be estimated by Cp1,α,ψ + 1
4Cd,p1

instead of Cp1,α,ψ(N + 1) by referring to Lemma

2.10.

16



3.2 Strichartz estimates.

The strategy for the Strichartz estimate is the same as the one for the dispersion estimate.
A curiosity is that it crucially relies on the endpoint Strichartz estimate of Keel and Tao
([9]) for which q = q′ = 2.

For n ∈ {0, . . . , N − 1} we introduce the quantity

Fn = sup
#K′ = n+ 1
k0 ∈ K′

∑
k∈K\K′

∥∥〈ψk0|e−itHK′ |ψk〉
∥∥
L1
t (R+)

. (3.3)

Lemma 3.3. We assume Hypotheses 0)1)2)3) with s >
[
d
2

]
+ 2, σ ≥ max

(
d−3

2
, d−2

4

)
and

α = maxk∈K αj(k) fixed. Then there exists a constant C = Cα,ψ so that(
N ≤ 1

(4C)
2d
d+2 εd

d−2
d+2

)
⇒
(
∀n ∈ {0, . . . , N − 1} , Fn ≤ 2Cε

d−2
2 N

d+2
2d ≤ 1

2

)
.

Proof. Our induction now relies on the second identity (A.4) of Lemma A.2.

n = 0: For HK′ = H0 + |ψk0〉〈ψk0|, Proposition 2.11 gives the estimate

∑
k 6=k0

∥∥〈ψk0|e−itHK′ |ψk〉
∥∥
L1
t (R+)

≤ Cα,ψ ≤
∑
k 6=k0

ε
d
2
−1

|k − k0|
d
2
−1
≤ Cα,ψε

d−2
2 N

d+2
2d = F0.

n ≥ 1: We assume that the constants Fm are known for m < n and we take K′ ⊂ K with
#K′ = n and k0 ∈ K′. We apply the identity (A.4) with A0 = H0 + |ψk0〉〈ψk0 | and
AK′\{k0} = HK′ . The L1-estimates of convolutions on R+ yields

∑
k∈K\K′

∥∥〈ψk0|e−itHK′ |ψk〉
∥∥
L1
t (R+)

≤
n∑

m=0

F0F1 . . . Fm.

After taking the maximum with respect to k0 ∈ K′, we get the same estimate as in
Lemma 3.1

Fn ≤
n∑

m=0

F0 . . . Fm

which implies Fn ≤ 2F0 if F0 ≤ 1
4
.

We now introduce for N ∈ N and u ∈ L2(Rd) the quantity

F̃N(u) = sup
#K = N + 1
k0 ∈ K

∥∥〈ψk0|e−itHK|u〉
∥∥
L2
t (R+)

. (3.4)
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Lemma 3.4. We assume Hypotheses 0)1)2)3) with s >
[
d
2

]
+ 2, σ ≥ max

(
d−3

2
, d−2

4

)
and

α = maxk∈K αj(k) fixed. If C = Cα,ψ denotes the constant of Lemma 3.3, there exists a
constant C ′ = C ′α,ψ > 0 so that(

N ≤ 1

(8C)
2d
d+2 εd

d−2
d+2

)
⇒
(
∀u ∈ L2(Rd), F̃N(u) ≤ C ′ ‖u‖L2

)
.

Proof. For N ∈ N, N ≤ 1

(8C)
2d
d+2 ε

d d−2
d+2

, Lemma 3.3 gives

∀n < N, Fn ≤
1

4
.

N = 0: The Strichartz estimate (2.9) for H{k0} = H0 + |ψk0〉〈ψk0|, with q = 2 and r = 2d
d−2

,

combined with ψk0 ∈ L2(Rd) ∩ L1(Rd) gives F̃0(u) ≤ C ′′α,ψ ‖u‖L2 .

N ≥ 1: We first fix k0 ∈ K and we use again the identity (A.4) with A0 = H0 + |ψk0〉〈ψk0|
and AK\{k0} = HK. After taking the maximum with respect to k0 ∈ K, it yields

F̃N(u) ≤
N∑
n=0

F0 . . . Fn−1F̃n(u) ≤
N∑
n=0

F̃n(u)

(
1

4

)n
which implies F̃N(u) ≤ 3

2
F̃0(u) ≤ 3

2
C ′′α,ψ ‖u‖L2 .

End of the proof of Theorem 1.3. It is sufficient to prove the result for q = 2 and r = 2d
d−2

.

The general result then follows by interpolation. For u ∈ L2(Rd), the identity (A.4) of
Lemma (A.3) applied with A0 = H0 and AK = HK gives

e−itHK = e−itH0 +

∫ t

0

e−i(t−t
′)H0Φ(t′) dt′

with

Φ(t′) =
N∑
n=0

in+1
∑

#{k0,...,kn}=n+1

∫
|ψk0〉〈ψk0|e−it0H{k0}|ψk1〉〈ψk1| . . .

. . . |ψkn〉〈ψkn|e−itnH{k0,...,kn}|u〉 Dt′(t0, . . . , tn).

Since ψ ∈ L2(Rd) ∩ L1(Rd), the set of functions ψk0 is uniformly bounded in L
2d
d+2 (Rd).

Then Lemma 3.3 and Lemma 3.4 state that

‖Φ‖
L2
tL

2d
d+2
x

≤
N∑
n=0

(N + 1)F0 . . . Fn−1F̃n(u) ≤ (N + 1)
N∑
n=0

(
1

4

)n
C ′α,ψ ‖u‖L2 ,
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if N ≤ 1

(8Cαψ)
2d
d+2 ε

d d−2
d+2

. We conclude with the standard consequence of the Strichartz

estimate ∥∥∥∥∫ t

0

e−i(t−t
′)H0Φ(t′) dt′

∥∥∥∥
L2
tL

2d
d−2

≤ C ‖Φ‖
Lq̃
′
t L

r̃′
x

applied here with q̃′ = 2 and r̃′ = 2d
d+2

.

End of the proof of Theorem 1.4. It is the same as the previous one if one notices that
Proposition 2.11 and σ > d−2

2
provides the uniform estimate

∀ϕ ∈ L2(Rd),
∑
k0∈K

∥∥∥〈ϕ|〈x〉−s′e−itH0|ψk0〉
∥∥∥
L1
t (R+)

≤ Cs′,α,ψ

(
1 + ε

d−2
2 N

d+2
2d

)
‖ϕ‖L2

x
.

For N ≤ 1

(8C)
2d
d+2 ε

d d−2
d+2

the same application of identity (A.4) as above leads to

∀ϕ ∈ L2(Rd),
∥∥∥〈ϕ|〈x〉−s′e−itHK|u〉∥∥∥

L2
t

≤ C ′s′,α,ψ ‖ϕ‖L2 ‖u‖L2 .

A A variant of the Dyson expansion.

We introduce the notation Dt(tn, tn−1, . . . , t0) for the measure on Rn+1

Dt(tn, tn−1, . . . , t0) =

(
n∏
k=0

1R+(tk)

)
δ(tn + · · ·+ t0 = t).

We note the simplicial associativity relations

Dt(tn+1, . . . , t0) = Dt′n(tn+1, tn)Dt(t
′
n, tn−1, . . . , t0) (A.1)

and Dt(tn, . . . , t0) = Dt(tn, t
′)Dt′(tn−1, . . . , t0), (A.2)

which is another way of writing the associativity of the convolution product on R+. Then
the Dyson expansion (the iteration of Duhamel formula) writes for A = A0 + V , with A0

self-adjoint and V ∈ L(L2), and t ≥ 0

e−itA =
∞∑
n=0

(−i)n
∫
e−itnA0V e−itn−1A0V . . . V e−it0A0Dt(tn, tn−1, . . . , t0).

Remind also with this notation the standard estimate:

Lemma A.1. For σ > 1, the estimate

∀n ∈ N,∀t ≥ 0,

∫
〈tn〉−σ . . . 〈t0〉−σ Dt(tn, tn−1, . . . , t0) ≤ Cn

σ 〈t〉−σ,

holds with the constant Cσ = 2σ+1
∫∞

0
〈t′〉−σ dt′.
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Proof. It is a direct consequence of∫ t

0

〈t− t′〉−σ〈t′〉−σ dt′ = 2

∫ t/2

0

〈t− t′〉−σ〈t′〉−σ dt′ ≤ 2

(∫ ∞
0

〈t′〉−σ dt′
)
〈t/2〉−σ

and of the simplicial associativity (A.1)(A.2).

We shall consider the case where the perturbations Vk, k ∈ K, #K ∈ N, are bounded
operators and A0 is a given self-adjoint operator. We set

AK = A0 +
∑
k∈K

Vk

and for k1, . . . , kn all distinct in K (n ≤ N = #K)

A{k1,...,kn} = A0 +
n∑
l=1

Vkl .

Lemma A.2. With the above notations and assumptions we have for all t ≥ 0 the iden-
tities:

e−itAK =

#K∑
n=0

(−i)n
∑

#{k1,...,kn}=n

∫
e−itnA{k1,...,kn}Vkne

−itn−1A{k1,...,kn−1}Vkn−1 . . .

. . . e−it1A{k1}Vk1e
−it0A0Dt(tn, tn−1, . . . , t0) (A.3)

e−itAK =

#K∑
n=0

in
∑

#{k1,...,kn}=n

∫
e−it0A0Vk1e

−it1A{k1}Vk2e
−it1A{k1,k2} . . .

. . . Vkne
−itnA{k1,...,kn}Dt(tn, tn−1, . . . , t0). (A.4)

Proof. For t ≥ 0 we set N = #K and

B(t) =
(
e−itAKeitA0 − Id

)
−
∑
k∈K

(
e−itA{k}eitA0 − Id

)
.

We have B(0) = 0 and the derivative equals

i∂tB(t) = e−itAK

(∑
k∈K

Vk

)
eitA0 −

(∑
k∈K

e−itA{k}Vk

)
eitA0

=
∑
k∈K

(
e−itAK − e−itA{k}

)
Vke

itA0 .
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Hence, we have by taking k1 = k

e−itAK − e−itA0 =
∑
k1∈K

[ (
e−itA{k1} − e−itA0

)
− i
∫ (

e−it1A − e−it1A{k1}
)
Vk1e

−it0A0 Dt(t1, t0)

]
.

We iterate after noticing that the factor
(
e−it1AK − e−it1A{k1}

)
is the same as the left-hand

side with AK = A{k1} +
∑

k 6=k1
Vk. We obtain for all M ≤ N

e−itAK − e−itA0 =
M∑
n=1

(−i)n−1
∑

#{k1,...,kn}=n

[ ∫ (
e−itnA{k1,...,kn} − e−itnA{k1,...,kn−1}

)
Vkn−1e

−itn−1A{k1,...,kn−2} . . .

. . . e−it1A{k1}Vk1e
−it0A0 Dt(tn−1, . . . , t0)

]
+ (−i)M

∑
#{k1,...,kM}=M

∫ (
e−itMAK − e−itMA{k1,...,kM}

)
VkM e

−itM−1A{k1,...,kM−1} . . .

. . . e−it1A{k1}Vk1e
−it0A0 Dt(tM−1, . . . , t0).

We conclude with the identity AK = A{k1,...,kN} (M = N) and the Duhamel formula
(n ≤ N)(

e−itA{k1,...,kn} − e−itA{k1,...,kn−1}
)

= −i
∫
e−it1A{k1,...,kn}Vkne

−it0A{k1,...,kn−1} Dt(t0, t1).

References

[1] S. Albeverio, Z. Brzezniak, and L. Dabrowski. Time-Dependent Propagator with
Point Interaction. J. Phys. A: Math. Gen., 27:4933–4943, 1994.

[2] J. Bourgain. Exponential Sums and Nonlinear Schrödinger Equations. Geom. Funct.
Anal., 3:157–178, 1993.

[3] J. Bourgain. Fourier Transform Restriction Phenomena for certain Lattice Subsets
and Application to Nonlinear Evolution Equations I. Schrödinger Equations. Geom.
and Funct. Anal., 3:107–156, 1993.

[4] N. Burq, P. Gérard, and N. Tzvetkov. Strichartz Inequalities and the Nonlinear
Schrödinger Equation on Compact Manifolds. preprint 2001-44 Université Paris-Sud.
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