e t eory of resonances as its origins in attempts to explain t e existence
of metastable states in pysical systems. ese are states wic are local-
ized or coerent for some long time period, called te Iz fetime, and ten
disintegrate. Examples abound and include unstable atoms and particles.

e mat ematical analysis of resonance penomena naturally leads to

te study of perturbations of self-adjoint operators wic ave embed-
ded eigenvalues in teir continuous spectra. An example of tis is in te
quantum teory of teelium atom, in wic tere are long-lived Auger
states [RSim|. e mat ematical study of tis problem proceeds by view-
ing as te unperturbed self-adjoint operator, te Hamiltonian governing
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two decoupled electron-proton systems. is system as many embedded
eigenvalues. e perturbed Hamiltonian is t at wic includes te effect

of electron-electron repulsion. In Examples 3 and 4 of section 6, we discuss
a class of problems wit tis structure. Anot er pysical problem in wic
resonances play an important role is in te setting of an atom coupled to
t e poton-radiation field ([BFroSi |, [JPil,2], [Kil,2]); see also Example 7
of section 6. Altoug initially inspired by te study of quantum pe-
nomena, questions involving embedded eigenvalues ave been seen to arise,
quite naturally in spectral geometry and number teory [PS]. e sys -
tematic mat ematical study of te eff ects of perturbations on embedded
eigenvalues was initiated by Friedrics [F].

e met od of analyzing t e resonance problem we developere is re-
lated to our work on te large time beavior of nonlinear Scr™ odinger and
nonlinear wave equations [SoWei3-5]. In tese problems, certain states of
te system decay slowly as a result of resonant interactions generated by
nonlinearity in te e quations of motion. e met ods re quired are nec-
essarily time-dependent as te e quations are nonlinear and nonintegrable.

ey are based on a direct approac to te study of energy trans fer from
discrete to continuum modes.

We consider t e following general problem. Suppose H is a self-adjoint
operator in a Hilbert space H = L (R™),suc tat H as a simple eigen-
value, A , wic is embedded in its continuous spectrum, wit associated
eigenfunction, 1 :

Hy =24, ¢ =1.
We now consider te time-dependent Scr” odinger equation, for te per-
turbed self-adjoint Hamiltonian, H = H + W,

were W is a perturbation wic is small in a sense to be specified. e
coice of decomposition of H into an unperturbed part, H , and a pertur-

!Some of the results of this paper were presented in the proceedings article [SoWe2]
and in the preprint [SoWe3].

2Related to this is the observation that many nonlinear phenomena can be regarded as
(generic) instabilities of embedded eigenvalues for suitable linear operators. This point
of view is taken by I.M. Sigal in [Sil,2], who studies the non-existence of bifurcating
time-periodic and spatially localized solutions of certain nonlinear wave and Schrédinger
equations. The problem of absence of small amplitude breathers for Hamiltonian pertur-
bations of the Sine-Gordon equation (see, for example, [SeKr] and [BiMWe]) can also be
viewed in this context [Si2]. Other nonlinear wave phenomena, in which resonances have
been shown to play a role, are studied in [PWe], [CrHi].
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bation, W, depends on te problem at and; see, for example, [D]

PRrOBLEM. Suppose we specify initial data, ¢ for (1.1) which are spectrally
localized (relative to H ) in a small interval A about A . Describe the time-
dynamics for t € (—o0, 00).

We sall prove t at under quite general assumptions on H and W t at
for small perturbations W,

(i) Has absolutely continuous spectrum in an interval about A

(ii) te solution wit suc  data decays algebraically as ¢ — +oo. For
t e special case of initial conditions given by v , te solution is car -
acterized by transient exponential decay. e exponential rate, T’
(reciprocal of te lifetime), can be calculated.

On te more tecnical side, weave imposed fairly relaxedypot eses
on te regularity of te perturbation, W in particular we do not require
any condition on its commutators. is may be useful in problems like te
radiation problem and problems were Diriclet decoupling is used.

e decay of solutions due to resonant coupling to te continuum is
revealed by decomposing t e solution of (1.1), wit data spectrally localized
(relative to H) near A , in terms of te natural basis of te unperturbed
problem,

$(t) =a(t)y +o(t), (¥, (1) =0. (1.2)
After isolating t e key resonant contributions, te system of equations gov-
erning a(t) and ¢ is seen toave te  form
ia' = (A —il)a +C (a, )
10ip=H ¢+C (a,d), (1.3)
werete Cj, j = 1,2, denote terms wic couple t e dynamics of a and ,
and C lies in te continuous spectral part of H . If tese coupling terms
are neglected, ten it is clear tat a(t) is driven to zero provided I' > 0.
e quantity, T, is displayed in (2.7) and is always nonnegative. Its explicit
formula, (2.7), is often referred to as te Fermi golden rule. Generically,
I’ is strictly positive. e exponential beavior suggested by t eseeuris -
tics is, in general, only a transient; in general, e *#ot as dispersive wave
solutions, and coupling to t ese waves leads to (weaker) algebraic decay as
t — +oo. At tis stage, we wis to point out tat altoug presented in
te setting of a Scr” odinger type operator, acting in L (R™), our results
and te approac we develop below can be carried out in te setting of a
general Hilbert space, H, wit appropriate modifications made in tey-
pot eses. ese modifications are discussed in te remark following our
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main t eorem, eorem 2.1. eir implementation is discussed in several
of t e examples presented in section 6.

Historically, motivated by experimental observations, t e primary focus
of mat ematical analyses of t e resonance problemas been on establising
exponential decay at intermediate times. However, viewed as an infinite
dimensional Hamiltonian system, te asymptotic ({ — foo) beavior of
solutions is a fundamental question. Our met ods address tis question and
are adaptable to nonautonomous linear, and nonlinear problems [SoWei4,5].

e time decay of suc solutions implies t at t e spectrum of te per -
turbed Hamiltonian, in a neigborood of A | is absolutely continuous. is
implies t e instabilit y of te embedded eigenvalue. More precisely, under
perturbation t e embedded eigenvalue moves off t e real axis and becomes
a pole (“resonance pole” or “resonance energy”) of te resolvent analyt -
ically continued across te continuous spectrum onto a second Riemann
seet [Hu]. We will also sow tat in a neigborood of suc embedded
eigenvalues, t ere are no new embedded eigenvalues wic appear, and give
an estimate on te size of tis neigborood. Most importantly, we find
t e time beavior of solutions of te  associated Scrodinger type evolution
equation for sort, intermediate and long time scales. e Ii  fetime of te
resonant state naturally emerges from our analysis. ese  results are stated
precisely ineorem 2.1.

Many different approaces to te resonance problem in quantum me-
canics ave been developed over t e last 70 years and te various carac-
terizations of resonance energies are expected to be equivalent; see [HSj].

e first (formal) approac to t e resonance problem, due to Weisskopf ~ and
Wigner [WeiWi], was introduced in t eir study of t e penomena of spon-
taneous emission and te instabilit y of excited states; see also [L]. eir
approac plays a central role in today’ s pysics literature; see for example
[AlE], [LaLi]. It is time-dependent and our approac is close in spirit to
tis met od.

Anot er approac, used bot by pysicists and mat ematicians is based

on te analytic properties of te S-matrix in te energy variable; see
[LaxP]. Oter approaces concentrated on te beavior of a reduced
Green’s function, eiter by direct metods, or by studying its analytic
properties [Ho|,[O].

e most commonly used approac is tat of analytic dilation or, more
generally, analytic deformation [CyFKS], [HiSi].  is metod is very gen-
eral, but requires a coice of def ormation group adapted to te problem at
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and, as well as tecnical analyticit y conditions wic do not appear to be
necessary. In tis approac, te Hamiltonian of interest, H, is embedded
in a one-parameter family of unitarily equivalent operators, H(6), 8 € R.
Under analytic continuation in 8 te continuous spectrum of H is seen to
move and te eigenvalue, wic was embedded in te continuum for te
unperturbed operator, is now “uncovered” and isolated. us Rayleig-
Scr odinger perturbation teory for an isolated eigenvalue can be applied,
and used to conclude t at t e embedded eigenvalue generically perturbs to
a resonance. e nonvanising of te Fermi golden rule, (2.7), arises as a
nondegeneracy condition ensuring t at we can see te motion of te em-
bedded eigenvalue at second order in perturbation teory. In our work, it
arises as a condition, ensuring te “damping” of states wic are spectrally
localized (wit respect to H ) about A . Analytic deformation tecni ques do
not directly address t e time beavior, wic re quire a separate argument

[GeSi], [Hu], [Sk].

Additionally, “tresolds ” may not be “uncovered” and terefore te
met od of analytic deformation is unable to address te perturbation te-
ory of suc points. Our time-dependent metod can yield information
about tresolds, toug it may be problematic to ceck te local decay
assumptions in intervals containing suc points; seeowever Example 5 in
section 7, concerning t e instabilit y of a tres old eigenvalue of —A 4V (z).
Finally, in many cases, previous approacesave re quired te potential to
be dilation analytic, were we only re quire C' beavior; see t e concluding
remarks of Appendix D for a discussion of tis point.

e paper is structured as f ollows. In section 2 te mat ematical frame-
work is explained and t e main teorem (eorem 2.1) is stated. In section
3 t e solution is decomposed relative to t e unperturbed operator, te key
resonance is isolated and a dynamical system of te form (1.3) is derived.
Sections 4 and 5 contained t e detailed estimates of t e large time beavior
of solutions. In section 6 we outline examples and applications. Sections
7-11 are appendices. Section 7 (Appendix A) concerns te proof of te
“singular” local decay estimate of Proposition 2.1, and section 10 (Appen-
dix D) outlines a general approac to obtaining local decay estimates of te
type assumed in t eypotesis (H4). I  n section 9 (Appendix C) we present
te details of our expansion of te complex fre quency, w, (see (2.12) and
Proposition 3.3). In section 11 (Appendix E) we give results on bounded-
ness of functions of self-adjoint operators in weighted function spaces wic
may be of general interest.
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2 ahemaal Famewvk a aemefhe a
heem

In tis section we first introduce certain necessary terminology and no-
tation. We ten state teypoteses (H) and (W) on te unperturbed
Hamiltonian, H , and on te perturbation, W. e section ten concludes
wit statements of t e main results.

For an operator, L, ||L|| denotes its norm as an operator from L to
itself. We interpret functions of a self adjoint operator as being defined by
te spectral teorem. I n te special case were t e operator is H , We omit
te argument, i.e. g(H )=g.

For an open interval A, we denote an appropriate smoot ed caracter -
istic function of A by ga(A). In particular, we sall take ga(A) to be a
nonnegative C'* function, wic is e qual to one on A and zero outside a
neigbor ood of A. e support of its derivative is f urt ermore cosen to
be small compared to te size of A, e.g. lesstan —|A|. We furter re quire
tat [g5° (W) <en [A]T 0> 1.

P denotes te projectionon ¢ ,ie. P f= (¢ ,f)Y.

P p denotes t e spectral projection on HppN {1 }*, te pure point spec-
tral part of H ortogonal to ¢ . atis, P projects onto te subspace
of H spanned by all eigenstates oter tan

In our treatment, a central role is played by t e subset of t e spectrum
of te operator H , T#, on wic a sufficiently rapid local decay estimate

olds. For a decay estimate toold for e ~*Ho! one must certainly project
out te bound states of H , but tere may be ot er obstructions to rapid
decay. In scattering teory tese are called threshold energies [CyFKS].
Examples of tresolds are : (i) points of stationary pase of a constant
coefficient principle symbol for two-body Hamiltonians; and (ii) for N-body
Hamiltonians, zero and te eigenvalues of subsystems. We will not give a
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precise definition of tresolds. For us it is sufficient to say t at away from
tresolds te favourable local decay estimates for H old.

Let A, be union of intervals, disjoint from A, containing all t res olds
of H , and a neigborood of infinity. We ten let

P =Py+ga,
were § A, = ga.(H ) is a smooted caracteristic f unction of te set A ,.

We also define
(z) =14]z[,
Q=I1-Q and
P¥=1-P —-P. (2.1)
us, P # is a smoot ed out spectral projection of te set T# defined as

T# = o(H ) — { eigenvalues, real neigbor oods

of tresolds and infinit y}. (2.2)

—iHpt

We expect e to satisfy good local decay estimates on t e range of P c#;

see (H4) below.
Next we state our hypotheses on H .

(H1) H is a self adjoint operator wit dense domain D, in L (R").

(H2) X is a simple embedded eigenvalue of H wit (normalized) eigen-
function v .

(H3) ere is an open interval A containing A and no oter eigenvalue

of H .
ere exists 0 > 0 suc tat
(H4) Local decay estimate: Let r >2+¢c ande > 0. If ()7 f€ L ten
() Hotp2 f| < cy||e) ]| | (2.3
(H5) By appropriate coice of a real number ¢, te L operator norm of
(2)?(H 4+ ¢)~ (z)~7 can be made sufficiently small.

REMARKS. (i) Weave assumed tat A is a simple eigenvalue to simplify
te presentation. Our met ods can be easily adapted to t e case of multiple
eigenvalues.

(ii) Note tat A does not ave to be small and tat A , can be cosen
as necessary, depending on H .

(iii) In certain cases, te above local decay conditions can be proved
even wen A is a tresold; see Ex ample 5 of section 6.

(iv) Regarding te verification of te local decayypot esis, one ap-
proac is to use tecni ques based on te Mourre estimate [JeMouPe], [SiSo].
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If A contains no tresold values ten, quite generally, te bound (2.3)
olds wit r arbitrary and positive. See Appendix D.

We sall re quire te f ollowing consequence of ypot esis (H4).
PROPOSITION 2.1. Let r > 2+ ¢ and € > 0. Assume p € T#. Then, for
t>0

(&)= (H —p—i0)” PEfI| <C@®)™ [@)f] .
(2.4)
For t < 0, estimate (2.4) holds with —i0 replaced by +:0.
e proof is given in Appendix A.

We now specify te conditions we re quire of te perturbation, W.

Conditions on W.
(W1) W is symmetricand H = H +W is self-adjoint on D and t ere exists
c € R (wic can be used in (H5)), suc tat c lies in te resolvent
sets of H and H.
(W2) For some o, wic can be cosen to be te same as in (H4) and (H5),
Wl = [[(z) “Wea(H )|+ [[(2) Wga(H ){z)||
+{@)W(H +e¢)” (2)77|| <oo, (25)

and
H(:c)"W(H +c)” <m>”|| < oo, (2.6)
(W3) Resonance condition — nonvanishing of the Fermi golden rule:
F=x(W¢ ,6(H —&)I—-P)We¢ ) #0 (2.7)
for @ near A , and
r>é[[[wll (2.8)

for some § > 0.
(W4) |||W]]|| < 8 |A| for some § > 0, sufficiently small, depending on te
properties of H , in particular te local decay constants, but not on

Al
REMARK. Let FHo denote te (generalized) Fourier transform wit re-
spect to t e continuous spectral part of H . e resonance condition (2.7),
can ten be expressed as

T =x|FHWwy J(A)] >0. (2.9)
We can now state t e main result :

Theorem 2.1. Let H satisfy the conditions (H) and the perturbation W
satisfy the conditions (W). Then
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(a) H=H + W has no eigenvalues in A.
(b) The spectrum of H in A is purely absolutely continuous; in particu-
Iar local decay estimates hold for e g (H). Namely, for ¢ with
()¢ €L ,ast— too,
H<m>_”e_’HtgA(H)¢ H = (’)((t)_r ) . (2.10)
(c) For ¢ in the range of ga(H) we have (for t > 0)
ety = (I+ Aw) (e7***a(0)y + e_’HthSd(O)) +R().
(2.11)
Here, ||Aw||g 2 < C|||W]||, a(0) is a complex number and ¢4(0) is
a complex function in the range of Pc#, which are determined by the
initial data; see (3.1)-(3.2).
The complex frequency, w,, is given by
wi=w—A—iL+O(|||W]]| ), were
w=A 4+, Wy),
A=Wy ,PV.(H —w)” Wi ), and
F=r(Wy ,6(H —w)(I-P)W¢ ).

We also have the estimates

[ "R@)| <Clwll], t>0 (2.16)
(&) R@)| <ClWIIF®™"
t>||W]l|~ ¢ ,6>0,e=¢(6)>0. (2.17)
REMARK. oug prased in te setting of te space L (R™), our ap-

proac is quite general and our resultsold wit L (R"™) replaced by a
Hilbert space, H. In tis general setting, te weigt  function, (z), is to be
replaced by a “weigting operator ”, A4, in teypoteses (H), (W) and in

te definition of te norm of W, |||W]|||. Additionally, P#* can be taken to
be a smoot ed out spectral projection onto te subspace of H were te
local decay estimate (H4) olds.

Given an eigenstate ¢ associated wit an embedded eigenvalue, A |
of t e unperturbed Hamiltonian, H , a quantity of pysical interest is te
lifetime of te state ¢y for te perturbed dynamics. o find te lif etime,
consider te quantum expectation value tat te system is in te resonant
state, ¥ ,

(¥, e y). (2.18)
Note t at
C_th’lp — e—thgA(H),‘l) ¥+ e—th(gA(H ) _ gA(H))'lp )
(2.19)
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eorem 2 .1 and te tecni ques used in te proof s of Propositions 3.1 and
3.2 yield t e following result concerning te lif etime of te state ¢ .

COROLLARY 2.1. Let
H, = H — Rew,I . (2.20)

Then, for any T > 0 there is a constant C'y > 0 such that for 0 < t <
T(|[wilI~

(% ety ) — e < Crl[[W]]], as [[IW]]]— 0.

(2.21)
3 e mps asla f esa ems
We begin wit te following decomposition of te solution of  (1.1):
ey = ¢(t) = a(t)y +4(1) (3-1)
(¥, () =0 —00<t< +400. (3.2)
Substitution into (1.1) yields
i0p=H ¢+ Wo— (ida— X a)p +aWe . (3.3)

Recallnowtat I = P + P + Pc#. aking t e inner product of (3.3) wit
1 gives te amplitude e quation,

ida=(A + @ ,We¢))a+ (¥ WP+ (¢ ,Wéa), (3.4)
were,
$a=PFo. (3.5)
e following e quation for ¢4 is obtained by applying P¥ to equation
(3.3):
i0upa = H ¢a+ PFW(P ¢+ ¢a) + aPI WY . (3.6)

Our goal is to derive a closed system for ¢4(t) and a(t). o acieve tis,
we now propose to obtain an expression for P ¢, to be used in equations

(3.4) and (3.6). Since ga(H)o(-,t) = ¢(-,t), we find
(I-ga()¢=(I-ga(H))lap +Po+PFP=0  (3.7)

or
(I-9a(H)gr(H))P ¢=—ga(H)lap + ¢d], (3.8)

were gr(A) is a smoot function, wic is identically e qual to one on te

support of P (A), and wicas support disjoint from A.  erefore,

P ¢ =—Bgs(H) (a¥ + ¢d) , (3.9)
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were
B = (I-ga(H)g:(H))
is computation is justified by te following result wic is proved in
Appendix B.

ProposITION 3.1. The operator B = (I — ga(H)g7(H ))~ is a bounded
operator on ‘H

From (3.9) we get

op(t)=at)y +¢a+P o
= ga(H)(a(®)y + ¢a(?)), (3.10)
wit
ga(H)=1— Bga(H)=Bga(H)(I —g1(H)). (3.11)

Altoug §(H) is not really defined as a function of H, we indulge in tis
mild abuse of notation to empasize its dependence on H. In fact, we sall
prove tat, in some sense, ga(H) ~ ga(H) ~ ga(H ).

Substitution of te above expression (3.9) for P ¢ into (3.6) gives

i0pa = H ¢a+aPIWia(H)Y +PFWia(H)pa  (3.12)
and
iOa= A + (¥ ,Wiga(H)Y )a+ (¥ ,Wga(H)¢a)
=wa+ (w —w)a+ (¥ ,Wga(H)da), (3.13)
were
w=X+(@ Wyp), (3.14)
w =X+ (¢ ,Wiga(H)y ). (3.15)

e decay of a(t) and ¢ 4 is driven by a resonance. From equation (3.13),
te second term on te rigt -and side of (3 .12) oscillates approximately
like e=**?, Since A lies in te continuous spectrum of H , tis term res -
onates wit te continuous spectrum of H . o make explicit t e effect of
tis resonance, we first write (3.12) as an equivalent integral equation.

al)) = 4(0) — i [ €0 = a(o)PEW A (H)y do

t
—i / e~ HHo 1m0 DEYW A (H)pads

= 6 (1) + breslt) + 6 (1) (3.16)
Our next goal is to obtain te leading order beavior of ¢ ,es(t). For
€ > 0 introduce te f ollowing regularization:

t
¢ (0)=—i / eHo 5 (o) PRWGA (H) ds.  (3.17)
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en, @ S..(t) = Pres(t). 0 extract te dominant oscillatory part of a(t)
we let

A(t) = e™“af(t) . (3.18)
We now expand ¢%,,(t) using integration by parts,

¢
res(t) = —i/ e tHotgl Ho—ic s (Y PFW g (H)9 ds
¢
= —z'/ e Hotpt Ho—ie—w s [ei‘“a(s)]Pc#WgA(H)dz ds

t
= iemio [ g tomienw s A P WG () d
= —e ot [(H —w— ie)” e Homie= s o) PFW g (H) '~

t

+ e_iHOt/ (H —w—ie)~ e Homic=w 25, A(s)PFWa (H)9 ds.

(3.19)

Wit a view toward taking € | 0 we first note tat byypotesis (H)
since |||W||| is assumed sufficiently small, weave tat w € A. e limit is
t erefore singular, and we ’ll find a resonant, purely imaginary, contribution
coming from te boundary term at s = t. Furtermore, to study te last
term in (3.19) we will use te e quation

O A = —ie™t (¢ ,Wia(H)a) +i(w —w )A. (3.20)
Now, taking € — 0, we get in L ((z)~ 7 dz),

]

ProrosIiTION 3.2. The following expansion for ¢res(t) holds:
bres(t) = —a(t)(H —w —i0)~ P¥Wga(H)Y
+a(0)e Y (H —w —40)~ P¥Wga(H)e

—i/te—“‘fo = (H —w—1i0)" P*WGa(H)Y - (¢ ,Wia(H)da(s))ds
+i(w —w )/t e"Ho = (H _w —40)" P¥Wga(H)Y -a(s)ds

= —a(t)(H —w—140)" P*Wia(H)¥ +¢ (t)+¢ (£)+ ¢ (t).
(3.21)
REMARK. oseetat te termsin (3.21) are well defined we refer to te
proof of Proposition 2.1 in Appendix A. Localizing near and away from te
energy w
(H—w—i0)" e *Htp# — (H —w —40)~ e HotpFg,

+ (H —w—10)~ e_iHOtﬁA
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=Ti +Sa .
In Appendix A it is proved tat, for € > 0,
TZ,E, StA,e : L ((:z:> ”d:z:) — L (<m>_ ”d:z:) , t>0.
Substitution of (3.16) and (3.21) into (3.13) yields te followingequation
for a(t):
i0sa(t) = wea(t) + (¥, Wia(H){¢ (1) + 6 () +¢ (1) +¢ () +¢ ()}).
(3.22)
Here,
Wy = A+ (¢' 7WgA(H)¢ )
— (¥ ,Wga(H)(H —w—i0)" P*Wga(H)y ). (3.23)
In order see te resonant decay we must first consider te beavior of te
complez frequency w, for small |||W]||. e next proposition contains  an

expression for w, wic depends explicitly on te “data ” of te resonance
problem, H and W, plus a controllable error.

ProprosiTION 3.3.
wi=A +( Wy )-A—-i'+ E(W), (3.24)
where
Fr=x(W¢ ,6(H —w)(I-P)Wy¢ ),
A=Wy ,PV.(H —w)” We ),
EW) <C W], (3.25)
where w is given by (2.13).

e term, I', in  (3.25) is te Fermi golden rule appearing in resonance
ypotesis (W3) (I' #0).
e proof of Proposition 3.3 is a lengt y computation wic we present
in Appendix C.
We conclude tis section wit a summary of te coupled e quations for

¢4(t) and a(t).
ProrosiTION 3.4.
ia=wat (Y ,Wia(H){¢ +6 +¢ +¢ +61}), (3.26)

() = 4(0) — i [ € = (o) PEW A (H)y ds

- z'/te—”fo =2 PEWga(H)da(s)ds, (3.27)
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where
¢ (t) = et P¥ 44(0) (3.28)
¢ (t)=—i / (i b=+ PRI G (H)dals)ds (3.29)
¢ (t) = —a(0)e o H —w—i0)” P¥Wia(H)y (3.30)
¢ (t) = —i/te—“‘fo " (H —w—1i0)" P¥Wja(H)p
(¢, Wga(H)da(s))ds (3.31)
¢ (t) =i(w—w) / i s (i) PEWGA(H)Y - a(s)ds
(3.32)

o prove te main teorem we estimate a(t) and ¢4(t) from (3.26)-
(3.32). Note tat since Im w, ~ —ImT is negative, it is evident tat tis
resonant contributionas te effect of driving a(t) to zero.

REMARK. Altoug weave te general result of eorem 2.1,in a given
example it may prove beneficial to analyze t e system (3.26)-(3.32) directly
in order to exploit special structure.

REMARK. Using te above expansion and definitions, weave
6(t) = e *'a(0)y +e NI~ P)gad
+ [ga(H) — ga(H )] [e7™**a(0)y + e 'PFg | + R(t), (3.33)

RO =30 | RO + 0@ +6 0] (630

See (4.10) and (4.8) for te definition of R;. e expansion in part (c)
of eorem 2.1 is obtained by estimates of te terms in (3.33) and (3.34).
ese estimates are carried out in sections 4 and 5.

In te next t wo sections we estimate te solution over various time
scales.

4 L al eayfl s

In tis section we begin our analysis of te large time beavior of solutions.
o prove local decay, we introduce te norms

@)(T) = sup ()7la(s)] and [galsn(T) = sup (5)°)|(@) "duls)] |
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for wic  we seek to obtain upper bounds tat are uni form in T € R.
Because of terms like ¢;(t), 7 = 2, 3,4 (see Proposition 3.4) and te singular
local decay estimate of Proposition 2.1, it is natural study t ese norms wit

a =7r—1. In tis section, it turns out tat we require te restriction on ¢,
1 < & < 3/2. us, trougout tis section we s all assume t e constraints

a=r—-1, 1<a<3/2.
In section 5 we relax te upper bound on a.

REMARK. In te estimates immediat ely below and in subsequent sections
we s all re quire bounds on te following quantities like ||(z)2W §a (H)(z)?||
wit a,b € {0,0}. at all tese can be controlled in terms of te norm

[||W]]|| is ensured by te following proposition, wic is proved in Appen-
dix B.
ProposITION 4.1. For a,b € {0,0},

(@)W ga(H)(z)"|| < CapllIWII|- (4.1)

We begin by estimating t e local decay norm of ¢4.

Local decay estimates for ¢4(t). From equation (3.27)
1@ =7¢a(®)]| < [[(=)=7e*a(0)

—I—/ ‘a(s)H‘(m)_”e_iH" t=s PfWgA(H)¢ H ds
+ [ eree o = pEWgA()su)] ds

C®)7"||(2)7¢a(0)|| +C|(=)Wia(H)¥ | / (t — s)""|a(s)|ds

e waane?] [ @ o7 le) 6] ds. 42
is implies, for 0 <& < T,
[{z)~"da(t)]| < C&)"[[(=)7¢a(0)]
+ Oty (Il(e )"WQA( ) || [al(T) + ||(2)°W ga(H)(2)" ||[$4]zD(T))

O |(2)76a(0)|| +C [[WI[()~>([a)(T) + [d]LD(T))- (4.3)

It follows t at
[¢d)zD(T) < C |[(2)74a(0)|| + C [[IW]]|([a](T) + [¢d]D(T)) , )
4.4

and teref ore
(1= C [IW|)[¢dLn(T) < C ||(2)7¢a(0)]| +C [|IW]||[al(T)- ws)
4.5
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An additional simple consequence of (4.2) and te ortogonalit y of te
decomposition (3.10), is

)~ ¢a(®)]| < CO[(2)7¢a(O)]| +ClUWIIg N - (4.6)

Estimation of a(t). We estimate a(t) using equation (3.26). is
equationas te form

i0ia = w*a+ZFj, (4.7)

“*’ref Fj(t) = (¥, Wia(H)¢;) - (4.8)
| a(t) = e*'a(0) + ; R;(?), (4.9)

. R;(t) = —i/te_i“’* =2 Fi(s)ds. (4.10)

We next estimate eac R;. In te course of carrying out te analysis
we s all fre quently apply te following :

LEmMMA 4.1. Let I',a and B denote real numbers such that I' > 0 and
B > 1. Define

I, g(t) = <t>°‘/ e Tt (5)7Pds. (4.11)
Then,
(i) Lp(t) < C((t)%e ™ + ()T ).
(4.12)
(ii) If o < B, we have
i1>1p Lty <CI>4+T" ). (4.13)

o prove tis lemma, note t at

taa = ([ 4 [ ) ae

t/ t
(£)e= 3Tt / (s)Pds + C(t)*P / eTts g
t/
Part (i) follows by explicitly carrying out te integrals, using tat 8 > 1,
and part (ii) follows by noting tat te supremum over ¢ > 0 of te expres -
sion obtained in (i).

IA
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Estimation of Rq(%).

t
R (t) = —i/ e~ 70 (¢, Wga(H)e o P¥ ¢4(0))ds

(4.14)
Estimation of t e integrand gives

(¥, Wga(H)e Ho*¢4(0))| = |((z)da(H)W , (z)Te H0294(0))]
S [CHEN H)W¢ | [[¢z)=7e o2 pa(0) |
< C|(=)"ga(H W¢ (K -’E>”¢d )| ()7
< C||W|l][{(z)"¢a(0)] ()7 (4.15)
Use of (4.15) in (4.14) yields

t
& ()] < ClIWI| @) a0 / T (s) s,

(4.16)
Multiplication of (4.16) by (t)*, use of Lemma 4.1 and te lower bound
for I', (2.8), yields te bound

WelR O] < WL~ @8] . ¢>0.  (417)
It also follows from (4.16), since r > 1, tat
B ()] < ClIWIIl(=z)" ¢a(0)]| - (4.18)

Estimation of R;(¢). We must bound te expression

t ]
R (t)=- / et e (¢ ,Wia(H) / ¢ tHo o7 PfWgA(H)qsd(T)dT)ds.
(4.19)
is can be rewritten as

R@= [ e ds(@raamwy,
/a<z>_”e_iH° T Pj*W@A(H)gbd(r)dT) . (4.20)

wic satisfies te bound

R @) <Ol@aammwy | [ e as

- / [(z) e~ == PEWga(H)ga(r)||dr. (4.21)

Use of te assumed local decay estimate (H4) gives tat R (t) is bounded
by

Cllerasmmws | @ Waamiey| [ e as

/ (s—T1)~ "H(m) T ba(T H dr, (4.22)
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and t eref ore

R @ <olwil [*er e ds (o m) i odrlodin(@).

(4.23)
Using Lemma 4.1, weave
@R @) <C@Q+ Wl ~ *)dalep(T)- (4.24)
Furt ermore, use of (4.6 ) in (4.22) gives
R @) <CllWIll[[{z)7@ || , t>0. (4.25)

Estimation of R,(t).

t
R (t)= ia(O)/ e twn te
(¢, Wia(H)e o' (H —w —i0)” PFWga(H)y )ds. (4.26)
erefore, by Proposition 2.1,
t
R @ <Cla@IWll [T T ds g

A first simple consequence, since r > 2, is t at
R (t)] < Cla(o)[lIW]]] - (4.28)

Next, multiplication of (4.27) by (¢)*, taking supremum over te interval
0 <t < T and applying Lemma 4.1 yields te bound

B[R (&)] < C la@)|(L+1IIWI ~ %), (4.29)
Estimation of R3(¢). We begin by recalling
R (t)=—1i /t e 0 B (s)ds. (4.30)
erefore,
¢
R (1)) < C/ e T = |F (s)|ds (4.31)
F(t)= (¢ ,Wga(H)¢ (t)) is given explicitly by te expression
—i/s dr (¢ ,Wga(H)e o =" (H —w —i0)~ P¥Wga(H)y )
X (¥, Wga(H)da(r))
=—i /s dr ((2)7ga(H)YW , (z) e Ho =7 (H —w —i0)~ P¥(z)™°

A{2)Wga(H)p ) x ((2)7ga(H)WY ,(z)"¢a(r)) (4.32)
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Estimation of F' (t) yields te bound
IF (1)) < Cw / @) e T (H —w i) PF(a)"

”(m) “ba(T H dr, (4.33)
Cw = |(2)7ga(H)WY || - |[(2)"W3a(H)¢ | < Cl|IW]]] .
(4.34)
By Proposition 2.1 and (4.33)-(4.34),
FE <l [(-n @) st dr.
(4.35)

If we bound ||(z) “¢4(7)|| simply by ||¢ || we obtain, from (4.35) and
(4.31),

R @ <Cliwllle | - (4.36)

Onteoterand, bounding  ||(z) “¢q(7)|| by [¢dlep(T) (7)™ (a =r—1)
in (4.35) we obtain

|F (s)| < CHWIII {)"*[¢a)zD(T) - (4.37)
Finally, using (4.37) in (4.31) and applying Lemma 4.1 weave
@R @ < (Wl + 1wl = *)[daln(T) - (4.38)

Estimation of R,4(t).

R (t) = —i/t et (o Wga(H)o (s))ds
—w-w) [ (qatmwe,

/ a(t)e o =T PEFW A (H)e )dT
By Proposition 2.1,

RO <lo-w W [ e ds [(s=r)" Ja(r]dr
<lo—w Wl [ e (5) dslal(e).

We now estimate te |w —w |. By (3.14)-(3.15),

w —w= (¢ ,Wia(H)y ) - (¢ Wy )=4. (4.39)
An explicit expression, (9.6), is obtained for 8 in Appendix C,

B=—-(Wy ,Bga(H)(H-X) Wy ). (4.40)



TIME DEPENDENT RESONNCE THEORY

Fronmeorem 11. 1 of Appendix E and an argument along t e lines of te
proof of (4.1) weave |B] < C|||W||| . erefore, using Lemma 4.1, we
find
R &) <ClWII ~ *al(T). (4.41)
If < 3/2,ten
R (©)] < CllIWI|I[a)(T). (4.42)
Closing the estimates and completion of the proof. We can now
combine t e upper bounds (4. 17), (4.24), (4.29), (4.38) and (4.41) for te
R;(t),0 < j < 4 to obtain, via (4.9), te following upper bound for a(t)
provided |||W]|| < 1/2:
[a)(T) < e |a(O)[[IWIII= >+ [[[WII] ~ *|(z)7¢ ||

+e (L+IIWII = *)[galeo(T) -
Substitution of tis bound into (4.4) gives te f ollowing bound for ¢g4:

[6dlp(T) < C (1 +[[IWII| = %) (=) ¢a(0)]| +c [[WII = *[a(0)]

+C (W~ %) [dalzp(T) - (4.44)
Use of (4.44) as a bound for te last term in (4.43) yields a bound for
[a](T),
[a)(T) < e [a@)[[IIWIII= =+ [IIWII] = *[[(2)7 ¢a(0)] -
(4.45)
Finally, for |||WW||| sufficiently small and a < 3/2 weave

(6alin(T) < C(L+ W] ~ )2} @) +CIWII| ~ *|a(0)] .
(4.46)
aking T' — oo we conclude te decay of ¢(t), wit initial data ¢ in te
range of Pa(H), wit rate (t)™*, 0 < a < 3/2. It follows [RSim] tat te
interval A consists of absolutely continuous spectrum of H, as asserted in
parts (a) and (b) of  eorem 2.1.

5 L al eayfl sf Lager

In te preceding subsection we proved te decay of solutions, ¢(¢ ,z), in
te local decay sense, wit a slow rate of decay ()™ wit 1 < a < 3/2;
a =171 — 1. A consequence of tis result is t at, in t e interval A, te spec-
trum of H is absolutely continuous. Now if A contains no tresolds of H,
we expect decay as t — oo at a rate wic is f aster t an any polynomial.
(For example, tis is wat oneas for constant coefficient dispersive equa-
tions for energy intervals containing no points of stationary pase.) In tis
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section we sow tat tisresultolds in te sense of (2.17)in eorem 2.1.

is re quires some adaptation of te met ods of section 4. We sall indi-
cateere only te re quired modifications to te argument of te previous
section.

(1) e origin of t e restriction & < 3/2 can be traced to our application
of part (ii) of Lemma 4.1. In particular, in obtaining (4.13) we use t at
sup(t)*e Tt = O(I'™®). (5.1)
t>

It follows t at certain coefficients are f ound to be large for |||W||| small,
an obstruction to closing te system of estimates for [a] and [¢4]rp, unless
a < 3/2.is is remedied by taking te supremum in (5.1) over t in te
interval [[~ ~¢ T], were & > 0.

LEMMA 5.1. Let M =T~ ¢ ~ |||W]||~ ¢ ; see (W3). There exists
6. > 0 such that if |||W||| < 6. and t > M, then

(a) ()7 JleT 0 ()T ds <O (W] 2.
(b) (&) [fe Tt (s)"ds < CT~ .
(2) Assume r > 2 (o > 1). e analysis of section 4 yields a coupled
system of integral inequalities for te functions a(t) and

L(t) = [(2) " ¢a(®)]| - (5.2)
e precise form of t ese ine qualities can be seen as follows. Let
¢
LA{L}(#) = / (t —s) "L(s)ds. (5.3)

en, by (4.2 ), (4.9) and te estimates f or R;(t), j = 0,1,2,3,4, te in-
equalities for L(t) and a(t) take te form
L) <C )7+ C|[[Wl[L{lal}(#) + C [[[WI||[L{L}(?)
la(t)| < A e ™+ A [[[WI[|L{e " }(&) + A [|WII] I— {e "} ()

LA W) / e T+ I{L}(s)ds
LA W) / e T I, {L}(s)ds

LA W) / e Tt I, {lal}(s)ds, (5.4)

were te () and A; denote positive constants.

(3) e procedure is first to consider te functions L(t) and a(t) on
a large but finite time interval, 0 < t < T~ =% = M, were 4§ is positive
and suitably cosen. An explicit bound for L(t) and a(t) can be found by
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iteration of te ine qualities (5.4). For tis, we use te following estimate
of I.{e~T*}, wic is proved using integration by parts,

L{e™}<ce™+) e T ()7 % 4o I™ 72(1)"
k= (5.5)
were p > 0 is arbitrary.
(4) o sow  decay for arbitrary, in particular, large @« =r — 1, and te
estimates of R(t) of eorem 2.1, we introduce te norms

[a]F(T)E sup <t>°“a(t)‘ (5.6)
M<t<T
and
[¢dlLp(T) = sup (£)*||(z) " ¢a(t)| - (5.7)
M<t<T

We now reexpress te system (5.4) for L(t) and a(t) by breaking te time
integrals in (5.4) into a part over te interval [ 0, M| and a part over te
interval [M,t]. Using te estimate of part (3) above, te integrals over
[0, M] are estimated to be of order |||W|||*(t)~" for some € = £(4).

In tis way, t e resulting system for L(¢) and a(t) is now reduced to one
wic can be studied using Lemma 5. 1 and te approac of section 4. Using
tis approac estimates for te norms (5.6) and (5.7), and consequently of

R(t) can be obtained.

6 xamples a ppla s

In tis section we sketc examples and applications of eorem 2.1. Most
of t ese examples ave been previously studied, under more stringent y-
poteses on H and W, e.g. some type of analyticity: dilation analyticity
for te Helium atom, translation analyticity for t e Stark Hamiltonian; see
[CyFKS] and references cited t erein. eorem 2.1 enables us to relax tis
requirement and gives t e detailed time-beavior of solutions near te res -
onant energy at all time-scales. Example 5 concerns te instabilit y of an
eigenvalue embedded at a tresold, a result wic we believe is new and
not tractable by tecni ques of dilation analyticity.

We begin wit te remark tat in te examples below, one can often
replace te operator, —A by H = w(p), were p = —iV. e necessary
ypotesis on local decay, (H4), is reduced to its verification for H + V.
By te general discussion of local decay estimates of Appendix D (see also
[Si3]), weave
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Theorem 6.1. The operator H = H +V satisfies the required local decay
estimates of (H4) under the following hypotheses:
Hypotheses on w(p):
(i) w(p) is real valued and w(p) — oo as |p| — oo.
(ii) w(p) is C™ function, m > 4.
(iii) Vpw = 0 on at most finitely many points, in any compact domain.
Hypotheses on V (z): V(z) is real valued and such that
(V1) V(z),2-VV,(z-V) V, (z-V) V are all g(H ) bounded for g € C*.
(V2) |V(z)| =0((z)"¢), e > 0, || — oo.
(V3) xrV, xr(z-V)™V, m=1,2,3 are g(H )-compact, for xR=X[Rr,cc (|2])
with some R > 0.
e proof of tis result follows from te procedure outlined in Appen-
dix D were we use teypot eses on w(p) and V and te coice for te
operator A is
A= -(z-Vpw+ Vyw-z).
REMARK. Due to lack of assumptions on analyticity of w(p) or V(z) one
cannot simply apply te tecni que of analytic deformation used in oter
approaces.

EXAMPLE 1: Dispersive Hamiltonian. Wit te above assumptions on
w(p) and V(z), eorem 2.1 applies directly to te operator H = w(p) +
V(e).

EXAMPLE 2: Direct Sum. Let

"= <_0Am —Am(jrq(m))

actingon C ® L (R™), were g¢(z) is a well beaved potential aving some
positive discrete eigenvalues. An example of tis t ype is considered in [W].

Consider, for example, te case were ¢(z) = P(z), is a polynomial
wic is bounded below. I n tiscase, t e spectrum of —A,+P(z) is discrete
and consists of an infinite set of eigenvalues A < A ... wit corresponding
eigenfunctions ¢ ,4 ,.... e spectrum of H isten

{eigenvalues of — A, + P(z)} U [0, co)
and terefore H  as nonnegative eigenvalues embedded in its continuous
spectrum.

Let

wit W satisfying conditions (W).
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Theorem 6.2. For H and W as above, if for some strictly positive simple
eigenvalue A > 0 the resonance condition (Fermi golden rule) (2.7) holds,
then in an interval A around A, the spectrum of H is absolutely continuous
and the other conclusions of Theorem 2.1 hold. Furthermore, if n > 4,
Theorem 2.1 holds even when A = 0 is an eigenvalue.

Proof. In tis case local decay must be proved for —A,, wit r > 2. is
is well known. Wt is more, i f te spatial dimension is larger tan four,
n >4, ten A = 0 is also allowed, since in tis case we use

[(2) =5 e =" < [[()3 7| lle*="]loo
<oty -
Hence, for 9 € D((z) ™/ 6), and n > 4 weave te necessary decay,
H —€ 'LA t 23> ” < Ct—n/

wit r=mn/2> 2.

ExAMPLE 3: Tensor Products. Let H =1® A +h ®1 act on
L (R)® L (RE), wre

h =—-A; and h =-A, +4q(z). (6.1)
c(H)Y={A:A=X +X , X €0(—Az)and XA €0(-Az, +4q(z))}.
(6.2)

Let W(z ,z )acton L QL ,satisfying (W), wit (z) =1+[z | +|z | .
en weave

Theorem 6.3. The embedded eigenvalues of H are unstable and Theo-
rem 2.1 holds.

ExaMmPLE 4: Helium Type Hamiltonians [RSim|.  Consider H as in
Example 3 wit
h =-A; |z |7, h =-Ayp—|z| . (6.3)
Also, let W be of te f orm
W ,z)=W(E —=z).

In tiscasete weigt (z) =14z | +|z | . We now discuss teypot -
esis (W).

H  as infinitely many negative eigenvalues embedded in t e continuous

spectrum [CyFKS]. If A is a subinterval of t e negative real line containing
exactly one negative eigenvalue, F, ten g A is a sum of terms of t e form

ga_g(h )®P and PQga_g(h). (6.4)
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Here, g4 _g(h;) is a spectral projection onto te continuous spectral part
associated wit an interval A — F, te translate of A by —F, and P denotes
a (negative) bound state projection. us, g a localizes eiterte z orte
¢ variable, and so wile (z) “W is not bounded we doave t at
(z) "Wga(H )

is bounded provided, for example, W is s ort range.

In te case, were W is long range, i.e.

Wk -z )=0(z —z )" ) (6.5)

we first prove a minimal velocity bound and ten use it to get local decay.

Going back to (3.27) we estimate

(% <)o o0
using t e known propagation and minimal velocit y estimates for H [SiSo.

e problematic term, wic is te last term on te rigt -and side of
(3.27) is t en bounded by

e [ @ wasm)| (5 <n)outs

te /t<t—s>_ —e

1 - _1
(@7 Waa(H)F (= > q)| <l IWlli(s)2 4, (6.7)
we can close te ine qualities and obtain
@3 |P(2 < n)ga)]| < ¢ +e sup ()3 0a(s)] -
Ssst (6.8)
e above estimate, toget er wit te estimates for a(t) lead to local
decay wit arate (t)~ / ¢ . israte is not sufficient to preclude singular
continuous spectrum. However, t e Mourre estimateolds in tis interval

for H 4+ W wic implies local decay and absence of singular continuous
spectrum; seeeorem 10.1 and  eorem 10.2 in Appendix D.

EXAMPLE 5: Threshold Figenvalues. Let H = —A + V(z) in L (R"),
n > 4. Assume V' (z) is smoot and rapidly decaying for simplicit y. en,
under certain conditions on te spectrum of H , and te beavior of its
resolvent at zero energy, one can prove local decay and L™ decay wit a
rate » > 2; see [JeK], [JoSoSog].

In suc cases, it f ollows byeorem 2.1 tat a tresold eigenvalue at
A = 0, if it exists, is unstable wit respect to small and generic perturba-
tions, W.

ds

(2)% 5ng(H)F(@ > n) H | ¢a(s)|| ds.

Since
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EXAMPLE 6: Stark Effect - an atom in a uniform electric field. e Stark
Hamiltonian is given by

H=-A+V(@)+E- -z (6.9)

actingon I (R™). If V() is real valued and not too singular, ten for E # 0
t e continuous spectrum of H is (—o0, 00). o see tis apply eorem 9.1
wit A=E -p, p=—iV.us, if H as an eigenvalue, it is necessarily
embedded in te continuous spectrum.

Our results can be used to sow tat any embedded eigenvalue is gener -
ically unstable (i.e. provided te Fermi golden rule resonance condition
(W3) olds) and perturbs to a resonance.

o see tis, one can proceed by a decoupling argument; see [CHi]. is
reduces t e problem to a direct sum of Hamiltonians, as in Example 2, wit
Hamiltonians of te f orm

H = —A+E-m+V(z,—iV),
H = -A+ W),
W =W(z,—iV).
e strategy is ten to use te tecni ques of Appendix B to verifyy-

poteses (W) and te tecni ques of Appendix D to prove te necessary
local decay estimates in (H) for te te operator H = diag(H ,H ).

ExXAMPLE 7: The Radiation Problem. e radiation problem is te
fundamental problem wic motivated work on  quantum resonances. See
t e work of Weisskopf and Wigner [WeiWi], following Dirac [Di] and Landau
[L]. We present ere a very brief description of te  problem and t e relation
to our metods. For a more detailed discussion of te formulation see

[BFroSi].

e free Hamiltonian, H , is te direct sum operator acting on
Ha ® Hphoton- Here, H, is te Hilbert space associated wit an atom
or molecule. Hphpoton is te Fock space of free potons. H is ten te
Hamiltonian of a decoupled particle and free poton system

H = HQ®I+I®thOtOTL' (610)

e next step is to introduce te interaction term W tat couples te
poton-radiation field to te atom. In quantum electrodynamics, tis cou-
pling is given by te standard minimal coupling, but in general it is suf-
ficient to consider a simple approximation e.g. te dipole approximation
[AIE]. e goal is to sow t at all eigenvalues of t e original atom, except
t e ground state, are destabilized by t e coupling and become resonances.
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is is t e penomenon of spontaneous emission. One is also interested in
te computation of te Iz fetime and te transition probabilities.
A simplified Hamiltonian wic incorporates t e essential mat ematical
features of t e radiation problem is

H=H,®I+1Q Hphoton + AW, (6.11)
were H o = —A + V(z) acting on L (R™) describes te atom, and te
coupling is given by

W = / (9(k)e™eay + g(k)e *2at) dk. (6.12)
e Hamiltonian associated wit te poton field is given by
Hophoton = / w(k)atadk, (6.13)

—

tesecond quantization of multiplication in Fourier space by w(k) in L (R™).
Hence, Hphoton acts on te Fock space of bosons,

F= eam— ®sym (R )7 (614)

were Q7. denotes te m-fold symmetric tensor product of L (R ). e

operator a;[é is te creation operator on F and ag, its adjoint.

For realistic potons, we mustave ¢ = 1 and w(lg) ~ |E| for k near
zero. However, to make mat ematical sense of te above Hamiltonian we
need to introduce te wltraviolet cutoff;

g=0 for [E|>1. (6.15)

Vén t e coupling constant A is zero, and so H = H , it is fairly easy to ver-

ify our conditions (H) for H , even in te massless poton case, w(k) = ||
[BFroSi],[BFSS]. e conditions (W  )owever fail wen w(k) = |k| since
in tis case te interaction A W is not localized. On te oterand, in te

massive case (w(ié) —\/m + |k, m# 0), te interaction is localized for

quite general g(k); see [Ge]. In tis case, our conditions (W) can be verified
and teref ore te results of eorem 2.1 can be applied.

7 ppe x :ff L al eayps 2.

Our aim is to prove local decay estimates for e *#o!(H — A — §0)~ P¥
using te given local decay estimates for e~ iHot p¥# ,were A € T#. e
proof is split into two parts: analysis near A and analysis away from A.
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Let A be a small interval about A and ga denote a smooted out car -
acteristic function of A and g =1 — ga. We write

e Hot (A —i0)” P¥ = e tHot(H — A —i0)” P¥(ga+74)
=Tk +S%.
We first estimate te operator T' §. Let € > 0 and set
Ty, =e tHo-A-iet(F _ A —ie)” P¥ga.
en, by (H4),

T,tA,szi/ —zHoAzssP#gAds
t
Let (z)h € L .  en,

[(z)°Tx Al < / N [(z) 7€ HomA=ie s PFgah|| ds

< /oo e c" H<m>—a-e—iHo.¢Pc#gAhH ds
t

< [Tem@@rn] ds
(

C(t) ~"|[(z)7n| .
erefore, takinge | 0, we get
t) " Tak|| < C() ~[¢=)7A] .
o estimate S4, we exploit tat te energy is localized away from A,
and so te resolvent (H — A)~ is bounded,
()77 Sk(z) " = () e T (H — A~ i0)" PFgale)
= (2) e P (2)™7 - (2)7(H — A~ i0)” gale)™”.
(7.1)
For te operator norm we tenave te bound
(=)= Sa (@)~ < [[(e)~7e™ o P () |
|2y (H — A—i0)~ galz)~7] .
We bound te first factor in (7.2) using te assumed local decay estlmate
(H4). e second factor is controlled as follows. Note t at

(2)7(H — A —10)" ga(2)™" = (2)°(H +¢)” gal2)™
+(A+)(@)°(H +¢)” (2)77 -(2)°(H — A —1i0)" ga(e)™. (7.3)
aking operator norms and usingypot esis (H5) andeorem 11.2 of
Appendix E we obtain te following bound on te second factor in (7.2)

(1= [A+cll{=)"(H +¢)7 (&)~7I)|[{@)"(H — A—i0)~ galz)™ || <
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[(2)7(H +¢)” galz)™|| < (1+1=)7galz)=l)) [(2)7(H +e)~ (=)~

is completes t e proof

8 ppe x B: peam smaes vlv g ga(H)

In t is section we prove Propositions 3.1 and 4.1. ese propositions require
some operator calculus.

Let A()) denote te Fourier trans form of te function g, wit te nor -
malization,

() = (2) [ P i)

Proof of Proposition 3.1. Recalltat A denotes an embedded eigenvalue of
t e unperturbed operator, H , ga is a smoot ed out caracteristic function
of te interval A, and I is an open set wic contains te support of P
and is disjoint from A.

We need to sow tat

B =(I-ga(H)gi(H))" (8.1)
is bounded and we do tis by sowing tat ||ga(H)gr(H )|| assmall norm.

We use tecni ques of [SiSo].
Let A be an interval wic contains and is sligtly larger t an A. en

9a(H)gr(H ) = ga(H)(I - gz (H ))g1(H )
=ga(H)ga(H )g1(H )
= ga(H)(9a'(H ) — gar(H))g1(H ), (8-2)
were A and A’ are disjoint.

We now obtain, an expression for te above difference, wic is easily
estimated. Using t e Fourier trans form weave t at

gar(H )~ g () = [[(9 = 2 )ga (). (8.3)

Furt ermore,
eiuHo _ eiuH — (I _ eiuHe—iuHo)eiuHo
# d _isH 18 H st H
= —/ ae“ e 0 dg ettt

B . .
— _/ CHH’IZ(H _H )e—stOds ezuHo

L , ,
= —i/ e HyyeisHo gg gtnHo (8.4)
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Substitution of (8.4) into (8.3) yields
. H© . .
gur(H ) ~ g (H) = =i [ quu)edy [ e eietods.
(8.5)
We now apply te operator ga(H) to te expression in (8.5) and estimate

l9a(H)(gar(H ) = gar(H)|| < / |94 (1) /“ |9a(H)W ||ds dp

< / (s (1) | 2| g g (DY WV |
<CIAI |oa(EyW| < CIAI- W] (8.6)

erefore,
lga(H)gr(H )| < ClA[~ [[|[W]]].
and (I — ga(H)gr(H ))~ is bounded provided |A|™ |[|W]|| < 8 is suffi-
ciently small; see (W4).
Proof of Proposition 4.1. We estimate te norm of te operator
G = (2)"W3ga(H)(z)" (8.7)

in terms of |||W]||, defined in (W2).

Recall tat by (3.1 1)

da(H)=ga(H)(I —ga(H)g1(H)) g1(H ). (8.8)
Using (8.8) we express G as te product of operators
(2)°Wga(H)(z)* =G -G -G

= (2)"Wya(H)(2)" - (2) ™7 [I — ga(H)gr(H )|~ ()7 - (2)~gz(H )(z)" .

(8.9)

eref ore it suffices to obtain upper bounds for ||G;||, s = 1,2,3. We

s all use some general operator calculus estimates of Appendix E, especially
eorem 11.1.

Bound on G3: is follows from eorem 11.1 of Appendix E, wit
A =H and ¢ = gy, a function wic is smoot and rapidly decaying at
infinity.

Bound on G,;: By ourypoteses and te proof of Proposition 3.1,
llga(H)gr(H )|| is small and
(I - ga(E)gr(H))™ = (9a(H)gi(H )" (8.10)
converges in te norm. We need to sow tisin te weigted norms. For
tis, we will sow tat te norm of g A(H)gr(H ) is small in te weigted
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(2)7g9a(H)gr(H ) (=)~ = O(|[IW]]]) . (8.11)
Since t e supports of g Ao and gy are disjoint
(2)7ga(H)gr(H )(z)™" = (2)° (9a(H) — 9a(H ))g1(H )(z)~°
= ()7 (9a(H) — ga(H )) (=)™ - (&) gr(H )(z)™ .
By parts (a) and (b), respectively, of  eorem 11.1 bot
H(m)“gI(H )<m)_”” < oo and
(2)7 (9a(H) — ga(H )) (=)™ = O([[IWII]) (8.12)
Bound on G;: Expanding about te unperturbed operator, H , we
G = (2)°Wya(H)(z)"
=(2)°W(H + )" (2)7 - (2)""(H + c)ga(H )(z) .
(8.13)

aking norms, we get

G I < &)W (H +¢) ()| - [[{2) =" (H + c)ga(H ){=)°|
(8.14)

Consider te first factor in (8.14). We sow tat it is of order |||W]|| as
|||W]|| — 0. Note tat
(@)°W(H +¢)” (2)° = (@)°W(H +c)” (2)” = (@)°W(H +¢)” ()™
(@)°W(H +¢)” (2)7.
aking norms we obtain
(L= () W(H +e)™ ()~} (=)W ( H+ ~ (@)
< (=)W (H +c)” (z)7||. (8.15)
erefore, if |||W]|| < 1/2 te first factor of (8.14) is bounded by 2|||W]||.
e second factor of ( 8.14) is bounded byeorem  11.1.

Finally, we note tat te above bounds on G, complete te proof of

Proposition 4.1.

9 ppe X :X pa s fhe mplex Feqey, w.

In tis section we prove Proposition 3.3, in wic an expansion of te
complex frequency, w,, is presented. In particular, our goal will be to obtain
an expansion of w, wic is explicit to  second order in te perturbation,
W, wit an error term of order |||W||| .
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Recall t at
Wy =A +wy —wg,

were

wa — (1[1 yWiga(H)y ) =w — A (see (3.15)),
and

wp = (W¢ ,ja(H)Ra,(w + i0) PFWia(H)Y ) .
Ezpansion of wy:

wa = (df Wia(H)Y )

=, W¢)+8.

In wat follows, we sall fre quently use te notation (H — A)~
interc angeably.

ProprosiTION 9.1.
[9a(H) —ga(H )|Y =—-ga(H—-X )~ Wo

Proof. Noting tat H — H = W, weave te expansion formula

9a(H) ~ ga(H) = [ 3a)( - Py

— /gA()\)CD‘H(]- _ e—iAHeiAHo)d)\

(9.4)

and T

(9.5)

A
:i/gA(/\)e”‘H/ e~ Hy et Hogs g .

We next apply tis expansion to 1 , were H 1 = A ¢ and obtain

. A . .
(9a(H) —ga(H )y =i / ga(n)e / e *HWe2oq) dsd)
A
i/gA(A)ezAH/ e—st “AOW’llJ ds d\

e iAo _q
- i/gA(,\)e“He—qu dA

—iH + X
iAo iIAH
= - gA;_)\ AW +/gA(,\)He_/\ W1 dA
1
=92 ) g5 H g3 "¢
=-(1 —gA(H)) (9a(x ) =1)
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is completes t e proof of t e proposition.
Substitution of (9.5) into te above expression f or 8 yields

B=—-(Wy ,Bga(H)H-X) Wy ). (9.6)
Let hA(A) be a function wic  is equal to one on te support of ga and

is zero outside a small neigborood of te support of ga.eref ore,
(H — X )~ h(H ) is bounded. A computation yields

ProrosITION 9.2.

wa= (¢ ,We )+
=@ Wy ) - ( Ia(H )(H - X))~ W) (9.7)
~ (W¢ ,ga(H)(H - X )~ (R(H)-1)W4 )
~ (W¢ ,ga(H )(H —X)~ [a(H) - h(H )WY )
+ (Wo ,[9a(H) — ga(H )A(H)(H - X )~ Wy)
+ (W4 ,ga(H )(H =X )~ W(H -X)" h(H)W9 )
— (W , Bga(H)g1(H )ga(H)(H - X )" Woy ). (9.8)

Note also tat te second term in (9.7) can be expressed as
(Wo ,ga(H )H - X)" Wy )= (Wy ,ga(H )(H —w)” W¢ )
-Wey ,¢)- W ,ga(H)H —X)” (H —w)” Wg ) (9.9)

Expansion of wp. Let Ryg(A) = (H — A)” . Recall tat wp is given
by te expression

wp = (W ,§a(H)Ra,(w + i0)PFWga(H)y ),
and ga(H) = Bga(H)(I — P ). We find after some computation
ProprosiTION 9.3.
wp = (W9 ,9a(H )R, (w +i0)PI W)
+ (W¢ ,[B - Ilga(H )Rp, (w + i0)P¥WBga(H)¢ )
+ (W, [9a(H) — ga(H )|Rg, (w + i0) PFWia(H)Y )
+ (Wo ,ga(H )Ra,(w + i0) PFWBlga (H) — ga(H )]9 )

+ Wy ,(B-1)[ga(H) — ga(H )]gi(H )Ra,(w +i0) P WBga(H)y ) .
(9.10)
Here, weave used tat Bty =1 . More generally, (B — I)ga(H ) =
Bga(H)g1(H )ga(H ) =0, and teref ore te second term in (9.10) is zero.
It follows from (9.4), (9.9) and (9.10) tat

Wy =X +wq —wp
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=X+ (¥, W) - (A+iT)+ ) _Ej, (9.11)

A+i0 = (Wv ,ga(H )(H —w)” Wi )
+ (Wo ,9a(H )(H —w—1i0)" P¥Wy ). (9.12)

and

E=W¢,¢) (We,gaH —2)" (H —w)” Wy)

E =Wy ,(H-X)" (h(H)-I)gal(H)W)

E =—(W¢ ,ga(H )(H —X)~ [h(H) - h(H )]We )

E = (W4 ,[ga(H) - ga(H )A(H)(H-X )" Wy )

E = (W ,ga(H)(H ~X)~ W(H-X)" h(H)WY)

E = (Wv ,Bga(H)gr(H )iga(H )

— 9a(H))g1(H )Ry, (w + i0)P¥W Bga (H)¢ )

Er= (W9 ,ga(H )R, (w + i0)P¥WB[ga(H ) — ga(H)J9 )

E = (W¢ ,[ga(H ) — ga(H)]Rm,(w + 0) P¥W Bga (H)y )

E =Wy ,Blga(H ) — ga(H)lgr(H )ga(H)(H - X )~ Wy )

We now claim tat te terms FEj;, j =1,...,9, are all of order |||W]|| .

Consider first E = E® - Eb. Estimation of te first factor gives

|E*| < CllIWI, (9-13)

by Proposition 4.1.
Estimation of t e second factor gives

|E®| = |(Wga(H )Y ,ga(H )(H - X)" (H —w)” Wga(H )y )|

< (=) Waa(H ) || [[(2)"ga(H )H - A )" (H -w)™ ()77

<ClIWIIl [(=)""ga(H )H =X )~ (H -w)” (&)~ <ClWI||
byeorem  11.1. erefore, |E | < C|||W]|| .

eterm E is zero; (h — 1)ga = 0 since h = 1 on te support of ga.

e term FE can be treated by te same type of estimates as F . e
remaining terms are E;, j = 2,3,4,6,7,8,9. Eac of t ese expressions as
two explicit occurrences of te perturbation, W, as well as a difference of
operators: ga(H) — ga(H ) or h(H) — h(H ). By (8.12), tese differences
are O(|||W]|]), so we expect eac of tese terms to be O(|||W]|| ). We

carry tis argument out f or te term FEr. e oter terms are similarly
estimated.
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Consider E7. Let A be an interval properly containing A so restricted
to teinterval A, g 1 =1 and ga = gagj. en,

|Br| = |(()79a(H)W , (2) 795 (H)R (w + i0) P¥(z)™"
(2)"WBlga(H ) — ga(H)]Y )|
< (@) ga(H)W4 , (2)""gx (H )R (w + i0) P¥ (z)~°
(2)°WBlga(H ) — ga(H)]Y )|
+ (=) ga(H)W , (2) g5 (H) — g5 (H )|(2)"(2) "R (w +i0)P¥ (z)~"
()" WBlga(H ) — ga(H)]4)|. (9.14)
Using Proposition 4.1, eorem  11.1 and (8.12) weave tat

|E7| < CIIWII| (2) " (H —w—i0)" P¥(z)~]|. (9.15)
at te term  [[(z) 7(H — w — i0)” (z)~ 7| is finite is a consequence of
Proposition 2.1 wit ¢ = 0. us weave te f ollowing proposition from

wic  Proposition 3.4 follows.

ProprosITION 9.4.

(1) A+il'= Wy ,P.V.(H —w)” Wy¢)
+in(We ,6(H —w)(I-P)Wy ),

(2) Bl <Cliwlll, 1<5<9,
(8) we=XA + (¥, W) —A—iT+EW), wre |EW) <ClWI .
(9.16)
It remains to verify part (1). is follows from an application of te

well-known distributional identity

(z F1:0)" = lirr}F(:z::Fie)_ =PV.z" + indé(z) (9.17)
e—>

to te second term in equation (9.12) and te identity ga(H )P¥ =I1-P .

0 ppe x : Geeal pp ah L al eay
smae s

Hypotesis (H4) for our main teorem is one requiring tat our unper -
turbed operator, H , satisfy a suitable local decay estimate, (2.3). In tis
section we give an outline to a very general approac to obtaining suc

estimates based on a tecni que originating in te work of Mourre [Mou];
see also [PeSiSim]|. In te following general discussion we sall let H de-
note self-adjoint operator on a Hilbert space, H, keeping in mind t at our

application is to t e unperturbed operator H . Let E € o(H), and assume



TIME DEPENDENT RESONNCE THEORY

tat an operator A can be found suc tat A is self-adjoint and D(A)NH
is dense in H. Let A denote an open interval wit compact closure. We
sall use te notation

adj(H)=[---[H, A], A4, 4], (10.1)
for te mn-fold commutator.
Assume te t wo conditions
(M1) e operators
ga(H)ad}(H)ga(H), 1<n<N (10.2)
can all be extended to a bounded operator on H.
(M2) Mourre estimate:

ga(H)ilH, Alga(H) > 0ga(H) +K (10.3)
for some 6 > 0 and compact operator, K.

Theorem 10.1 (Mourre; see [CyFKS, eorem  4.9]). Assume conditions
(M1)-(M2), with N = 2. Then, in the interval A, H can only have abso-

lutely continuous spectrum with finitely many eigenvalues of finite multi-
plicity. Moreover, the operator

(4)” 9a(H)(H - 2)~ (A)~ (10.4)
is uniformly bounded in z, as an operator on ‘H. If K = 0, then there are

no eigenvalues in the interval A.

Theorem 10.2 (Sigal-Soffer; see [SiSo],[GeSi], [HuSi|). Assume conditions
(M1)-(M2) with N > 2 and K = 0. Then, for alle > 0

|4 < 0)etgatmu|| <cw* “laifyl
10.5)
and therefore
[(A)y e Higa (H)p| <Oy~ ||AN 9| , (10.6)
for 0 < N/2. Here, F is a smoothed out characteristic function, and
F(]A|/t < 0) is defined by the spectral theorem.

Let A denote an open interval containing t e closure of A.

CoroLLARY 10.1. Assume that ()~ “ga,(H)(A)? is bounded. Then, in
the above theorems we can replace the weight (A)™ by (z)™7

e strategy for using te above results to prove local decay estimates
like t at in (H4) is as follows. en

(=)~  ga ()| = [[(2) "9, (H)e™ g (H)¥|
= ()™ ga, (H)(4)" - <A>“’e‘thgA(H)¢H
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< (=)~ ga, (H)(A)7]| - [[(4) =7 e ga (H) ¥
< C|(A) e ga (H)|

< (i <d)iareeaim

+C HF(';‘;' > 0) <A>—“e—thgA(H)¢H .

(10.7)

eorem 10.2 is used to obtain t e decay of te first term on terigt -and
side of (10.7), wile we can replace |A| by 8t in te second term.

REMARK. Here we return to our comment in te introduction on te
relation between our assumption (H4) (local decay for e~*°?) and tey-
pot esis of dilation analyticit y, used in previous works. Dilation analyticity
or its generalization, analytic deformation, is t e re quirement t at t e map,
d(8): 0 — (e4H e Af §), (10.8)
as analytic continuation to a strip, for f in a dense subset of #. Since te
nth derivative of d(6) at § = 0 is (ad (H )f, f), by te above local decay
result, te assumption (H4) is te re quirement tat te mapping, d() be

of class C .

ppe x : Weghem smaes f F S
f pea s

In Appendices A, B and C we frequently require facts and estimates of
functions of a self-adjoint operator. In tis section we give some basic
definitions and provide te statements and proofs of suc estimates. We

s all refer to certain known results and our basic references are [RSim| and

[AmMoG].

Let A denote a self-adjoint operator wit domain D wic is dense in a
Hilbert space H. en weave t at for any bounded continuous complex-
valued function, ¢ € L (R),

p(A) = weak — liJI,nﬂ-_ /(p(/\)SRA()\ +1i€)” dA, (11.1)

were R4(A) = (A — A)” denotes te resolvent of A. Here and troug-
out tis section all regions of integration are assumed to be over R unless
explicitly stated ot erwise.

Theorem 11.1. Let A and B denote bounded self-adjoint operators, and
let T' be a contour in the complex plane, not passing through the origin,

surrounding o(A) U o(B) and lying in the strip |3¢| < 1.
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(a) Let 9 : R — C be a W » function. Suppose
n; = ()7 A(z)~?|| < - min [distance(T', 0),1] .

(11.2)
Then, there exists a positive number C = C (||%||w=21,n,) such that
|@e(d) @] < . (11.3)

(b) Let v be as in part (a). Assume that A and B both satisfy condition
(11.2). Then, there is a constant C = C (||9||w2.1,714,1mp) such that
|@) () - #(B)e)7| < C |@)°(4 - B)a)~7]|.
(11.4)
e following result sows t at te case of unbounded self-adjoint op-
erators is reducible toeorem 11.1.
Theorem 11.2. Suppose that Theorem 11.1 holds, and let ' and ¢ be
as in Theorem 11.1. Furthermore, assume that ¢ ¢"(z) and z¢'(z) are L
functions. Let A and B be densely defined self-adjoint operators for which
(A4 ¢)” and (B+ c¢)” are bounded for some real number ¢ and satisfy
the estimate (11.2). Then,
|@)e(A)@) || < C (). (11.5)
and
[(2)7[p(4) — @(B)(z) || < C (¥)||(2)7 (A~ B)(z)~|,

11.6)
where the constants C' (1) and C (1) are as in Theorem 11.1, with ¢(z) =
p(z” —c).

Proof. Let A = (A4 c¢)~ and note tat (4) = (A~ —c) = ¥(A).
It suffices to sow tat ¢(z) = @(z~ - c) satisfies teypoteses of
eorem 11.1. It is simple to ceck tat d 2¢(z) € L, for j = 0,1,2.
is proves eorem 11.2.
We now embark on t e proof of eorem 11.1. A key tool is an expan-
sion formula for ¢(A); see Proposition 6.1.4 on page 239 of [AmMoG].

Theorem 11.3. Let A be a densely defined self-adjoint operator and ¢ be
as in the statement of Theorem 11.1. Then,

o(A) = ;/go(/\)SRA()\—l—i)d)\—l— ;/p'(,\)%iRA(AH)dA

/ TdT/ )8t Ra(A+47)dA

=p +¢ +p . (11.7)
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where all integrals exist in the norm of the space of bounded operators
onH.

o proveeorem  11.1 we first obtain a simple expression for te tird
summand in (11.7) by intercanging order of integration. We begin wit a
calculation of te t-integral

/ TdrS$(i RA(/\—I—Z'T)):—/ 7= (Ra(A+i1) — Ra(A —i7))

:—/ dr T [(A—)\) +T ]_
— f(AA) - 1

were

FEN == [T du. (11.8)

For eac A in te support of ¢, te function f(z;A) is analytic in te strip
|$z| < 1; tis corresponds to coice an appropriate branc of te function
z+— (z — A)arctan (z — A)~ . By (11.7)

o (4)=; [ @OV N)ar. (11.9)
e strategy is as f ollows:

First, we observe tat (z)7p;(A)(z)~7 is bounded for j = 1,2. isis
true because ¢, ¢’ € L and (11.2) can be used to bound t e weigted norm
of t e resolvent by a convergent geometric series. erefore, it remains to
bound te operator ¢ (A), were ¢ is given explicitly (11.9).

LEMMA 11.1. Let A and B denote bounded self-adjoint operators and
f(¢) be a function which is defined and analytic in a neighborhood of
o(A) U g(B). Let T be a smooth contour in the domain of analyticity
of f, surrounding o(A) U o(B), not passing through the origin and such
that the estimate,

()M (&) < -minld], (11.10)

holds with M = A and M = B. Then, there exist positive constants C
and C' such that
(=) f(A)(=)~°|| < C (11.11)
[(2)7[F(A) - F(B)] -"3> 7| < C |[{=)7 (A - B) (=)~ ||
(11.12)
Proof. By te Caucy integral f ormula weave

£A) = i)™ [ £ ac. (11.13)
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Part (a) follows by use of (11.10) to expand t e resolvent in a geometric
series and by termwise estimation in te weigted norm.

Part (b) follows by te same metod; by (11.13) applied to B and
computation of te difference, we get

F(A) - £(B) = (2mi) /F HOIA-¢D™ — (B¢ |d¢
— (2mi)” /F FOIA- ¢ (A-BY(B-¢D) dc.

Estimation in te weigted space yields (11.12 ). is completes te proof
of te lemma .

o complete t e proof s ofeorems 1 1.1 and eorem 11.2, we need to
estimate t e operator (z)?¢ (A)(z)~7, were A iste bounded sel f-adjoint
operator defined by A = (A+c¢)~ . We accomplis tis by applying te
previous lemma to te function f({;A) defined in (11.8), were A isin te
support of . e function f(¢;A) is analytic in te strip |S¢| < 1, and T’
is, byypot esis, a contour in its domain of analyticit y, surrounding 0'(;1)
(respectively, o(A) U ¢(B),) and so tat (1 1.10) olds. en, by Lemma
11.1 weave tat  f(A;)) and f(B; ) satisfy (11.11) and (11.12). Finally,
using t e representation f ormula for ¢ , (11.9), weave

=)0 (A)@)l < C l1¢"llzs

(@)% (A) — ¢ (B)(2)~°|| < C [|¢"|I2]|(=) [A - Bl(=)~7| -
(11.14)

is completes t e proof

efeee S

[ S] S. Aemon, 1. HERBST, E. SKIBSTED

z CM 122
1989411438
[ C] J. AguiLar, J.M. CoMBES
S CM221971 269-
279
[] L. Avan, J.H. EBERLEYR L
D 1987
[ M3] W.O. AMREIN, A.B. DE MoONVEL, V. GEORGEscUCoG
“CM SB’
M 135B" 1996235-242

[BF§ V. Bach, J. FR™ o=xLICH, I.M. SiGALM
LM 34:31995183-201



SOERND M IWE INSTEIN

[BFSS] V. BacH, J. FrROHLICH, I.M. S1GAL, A. SOFFER
Q D
[BC] E. BarsLev, J.M. CoMBEs S
s M
221971280-294
[B] B. BI RNIR, H.P. McKEAN, A. WEINSTEING
CMiT19941043-1051

(¢ J.M. ComBes, P. HisLoprS~ “Q
MM B”B SL
403199216-46
(¢ J.D. CrawrorD, P.D. HisLopP
V1891989265
317
[CFKS] H.L. CycoN, R.G. Froesg, W . KirscH, B. SIMONS”
Q MGG
S VB Y1987
[D] M. DEMUTH
Mb541974345-356
[D] P.A.M. Dirac Q MU
L1947
[F] K.O. FriepricHs C
M1948361-406
[H R. Froesg, I. HERBST
N ST CMBT7
1982429447
G C. GERARD
£1995
(€] C. GERARD, [.M. S1GALS
ML 451992281-328
[ Sj] B. HELFFER, J. STOSTRANDR~ M’
SMWF S #24 251986
[9 P. HisLop, I.M. SiGgaLI S
s MV
11351996
[] J.S. HOWLAND S
I M J281979471-494

[] W. HuNzikER R
CM1321990 177-
188
[ 9 W. HUNZIKER, [.M. SIGAL Nq
“M Q II: S
V1993 "JFR F MR



TIME DEPENDENT RESONNCE THEORY 7

M5 RI1995
[J 1] V. Jaksi¢, C.-A. PiLLET gqIF
z1’
76219954768
[12] V. Jaksi¢, C.-A. PILLET q P
M
1761996 619-644
[JK] A. JenseEN, T. KaToS §”
D Mi461979583-611
[JM ] A. JENSEN, E. Mourgrg, P. PERrRy MC
q I
’ ’ 411984207225
[JSS] J.L. JoURNE, A. SoFFER, C. SoGGEL? — LP'
S qBM S 23:21990519-524
(K] C. KINGS @
LMR5199217-28
K 2] C. KingR
@ (ML651994
569-594
[L] L. Lanbau D D" ZS§
451927430-441
[LY L.D. LanDAu, E.M. LIFSHITZ Q M -
2 Y1965
[L] P.D. Lax, R.S. PHILLIPS S
Y1967
M MAbfp f B
jperators, Commun. Math. Phys. 78 (1981) 391
[0] A. OrTH, Quantum mechanical resonance and limiting absorption-the
many body problem, Comm. Math. Phys. 126 (1990), 559-573.
[PWe] R.L. PEGo, M.I. WEINSTEIN, Asymptotic stability of solitary waves,

Commun. Math. Phys. 164 (1994), 305-349.

[PeSiSim] P. PERRY, I.M. SicaL, B. SIMON, Spectral analysis of N-body

[PhS]
[PySi]
[RSim]
[SeKi]

[Sk]

Schrédinger operators, Ann. Math. 114 (1981), 519-567.

R.S. PHILLIPS, P. SARNAK, Automorphic spectrum and Fermi’s golden
rule, J. D’Anal. Math. 59 (1992), 179-187.

R. PYKE, .M. SicAL, Instability of time periodic and quasiperiodic
solutions to sine-Gordon equation, preprint 1996.

M. REeED, B. SiMON, Modern Methods of Mathematical Physics IV.
Analysis of Operators, Academic Press, New York, 1978.

H. SEGUR, M.D. KRUSKAL, Nonexistence of small amplitude breather
solutions in ¢* theory, Phys. Rev. Lett. 58 (1986), 747-750.

E. SKI1BSTED, Truncated Gamow functions, @ decay and the exponential



1128 A. SOFFER AND M.I. WEINSTEIN GAFA
law, Commun. Math. Phys. 104 (1986), 591-604.

[Si1] I.M. SicAL, Nonlinear wave and Schrodinger equations, Comm. Math.
Phys. 153 (1993), 297-320.

[Si2] I.M. SicAL, General characteristics of nonlinear dynamics, in “Spec-
tral and Scattering Theory”, Proceedings of the Taniguchi International
Workshop (M. Ikawa, ed) Marcel Dekker Inc., New York-Basel-Hong
Kong (1994), 197-217.

[Si3] I.M. SiGAL, On long range scattering, Duke J. Math. 60 (1990), 307-
315.

[SiSo] I.M. SicaL, A. SOFFER, Local decay and velocity bounds for quan-
tum propagation, (1988) preprint, ftp: // www.math.rutgers.edu /pub/
soffer

[SoWel] A. SorfFer, M.I. WEINSTEIN, Multichannel nonlinear scattering for
nonintegrable equations, I,II, Comm. Math. Phys. 133 (1990), 119-146;
J. Diff. Eqgs. 98 (1992), 376-390.

[SoWe2] A. SorFER, M.I. WEINSTEIN, Time dependent resonance theory and
the perturbations of embedded eigenvalues, Proceedings of Conference
on Partial Differential Equations and Applications (P. Greiner, V. Ivrii,
L. Seco, C. Sulem, eds.), Toronto, June 1995, CRM Lecture Notes 12,
Amer. Math. Soc., Providence (1997), 277-282.

[SoWe3] A. SorFreEr, M.I. WEINSTEIN, Time dependent resonance theory,
preprint, 1995.

[SoWe4] A. SoFFER, M.I. WEINSTEIN, The large time behavior of the nonlinear
Schrodinger equation: selection of the ground state and instability of
excited states, in preparation.

[SoWe5] A. SorFFeER, M.I. WEINSTEIN, Resonances, radiation damping and in-
stability in Hamiltonian nonlinear wave equations, Inventiones Mathe-
maticae, to appear.

[W] R. WAXLER, The time evolution of metastable states, Commun. Math.
Phys. 172 (1995), 535-549.

[WeiWi] V. WEIsskoPF, E. WIGNER, Berechnung der natiirlichen Linienbreite
auf Grund der Diracschen Lichttheorie, Z. Phys. 63 (1930), 54-73.

A. Soffer M.I. Weinstein M.I.W. Current address:

Dept. of Math. Dept. of Math. Math. Sci. Research

Rutgers University University of Michigan Bell Laboratories 2C-358

New Brunswick, NJ 08903  Ann Arbor, MI 48109 600 Mountain Ave.

USA USA Murray Hill, NJ 07974

USA

E-mails:

soffer@math.rutgers.edu miw@research.bell-labs.com

Submitted: September 1997



