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Abstract

The asymptotic stability and asymptotic completeness of NLS solitons is proved, for small per-
turbations of arbitrary number of non-colliding solitons.

1 Introduction

The nonlinear Schrödinger equation has in general (exponentially) localized solutions in space, provided

the nonlinearity has a negative (attractive) part. This is due to a remarkable cancellation of the

dispersive effect of the linear part with the focusing caused by the attractive nonlinearity. To find such

solutions, we look for time periodic solutions:

i
∂ψ

∂t
= −4ψ + β(|ψ|2)ψ x ∈ Rn ψ ≡ eiωt ψω(x) .(NLS)

It follows that φω , if it exists, solves the equation

(ENLS) −ωψω = −4ψω + β(|ψω|2)ψω

In general, for ψω to be localized (at least as L2 function) we need ω > 0.

The general existence theory for this elliptic problem has been studied in great detail. In the case

β(s2) ≡ −λ|s|p−1 there are rather extensive results. The existence theory initiated in [Cof] and followed

in [Str] also implies in many cases that there is a range of ω for such solutions, that the lowest energy

(ω) family of solutions. We will refer to a positive radial lowest energy solution as a ground sate. In

[BL] Berestycki-Lions proved the existence of a ground state in three or more dimensions under the

conditions that g(s) ≡ β(s2)s is odd,

0 ≤ lim
s→+∞

g(s)

s
n+2
n−2

,

and such that there exists 0 < s0 <∞, with G(s0) > 0, for

G(s) ≡ −2

∫ s

0
g(s)ds
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The question of uniqueness of the ground state has been studied in [?], [Kw], [?]. It follows from the

results of McLeod that if the nonilnearity satisfies the condition

the ground state is unique.

The exponential decay usually follows from properties of eigenfunctions of Schrödinger operators.

Next, it is easy to see that if ψω(t, x) = eiωtφω(x) is a solution of (NLS), then for any vector ~a ∈ Rn

the function ψω(t, x−~a) is also a solution. More generally, the equation NLS is invariant under Galilean

transformations, and therefore we can construct solutions which are moving with arbitrary velocity ~v

from ψω. As a result we obtain a family of exact spatially exponentially localized solutions

ψ~v,γ,D,ω = ei~v·x− 1
2

(|v|2−ω)t+ıgaφω(x− ~vt −D)

parametrized by a constant 2n + 2 dimensional vector (~v, γ, D,ω). We shall call them solitons.

The natural question now is: can we construct solutions of N solitons moving away from each

other with some constant velocity. We give an affirmative answer to this question for a natural class

of NLS equations. The methods we use may be applied to other classes of equations with solitary type

solutions and other symmetry groups (e.g. Lorentz instead of Galilean), if and whenever certain linear

Lp decay estimates can be verified for the linearized operators around one such soliton. A detailed

analysis of such Lp estimates for NLS was recently given in [?].

To explain the method of proof, we need to explain the notion of asymptotic stability and complete-

ness for such equations. Suppose we take the initial data of NLS to be an exact ground state φω(x),

plus a small perturbation R0. What is then the expected behavior of the solution? If the solution ψ(t)

stays near the soliton ψω(t) = eiωtφω(x) up to a phase and translation for all times (in H1 norm) we

say that the soliton ψω is orbitally stable. If, as time goes to infinity, the solution in fact converges in

L2 to a nearby soliton we say that the solution is asymptotically stable.

Our goal is to show that the configurations of N -solitons moving away from such other are asymp-

totically stable under small perturbations. The asymptotic stability of one soliton solutions of NLS

and other equations has been the subject of much work in the last 10-15 years. It was first shown for

NLS with an extra attractive potential term in [SW1]- [?], [PW], for one NLS soliton in 1 dim in [?]

and in dimensions n ≥ 3 in [Cu],. . . ; for NLS-Hartree in [FTY], KdV ??

In cases where the soliton solution can have more than one manifestation (that is, can be excited)

asymptotic stability, was proved for NLS with attractive potential in [?], see also [?], [?]. The main

conditions we need on the solitons, besides being exponentially localized (and smooth) is linear stability

and spectral assumptions (related to Lp decay).

The notion of linear stability is borrowed here from dynamical systems: we linearize the equation

around a soliton. The resulting linear operator which generates the approximate linear glow around

the soliton should lead to a stable dynamics. This follows from spectral and L2 properties of the

corresponding linear operator.

In many cases it turns out that stability and linear stability are equivalent for solitons [Stu].

To appreciate the problem of linear stability (and spectral theory) notice that when we linearize

around a soliton ω, using ψ ≡ eiθω +R the resulting “linear” operator acting on R, has R contribution
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as well as time dependent phase contribution, coming for eiθ . We then complexify the space to (R, R)

and remove the eiθ dependence by some matrix time dependent unitary transformation. We are then

left with a matrix operator of the type

H =

(
L+ W
−W −L−

)

acting on L2 × L2, L+, L− self adjoint perturbations by exponentially localized functions of −4. W

is also exp. localized, but not small in general. Hence H is non-self adjoint. Therefore, linear stability

(LS) ‖ U(t)ψ ‖L2 ≡‖ eiHt ψ ‖L2 < ∞ for t

fails in general. Using general arguments [?] one can sometimes prove that σ(H) ⊂ R, but due to

the lack of self-adjointness we cannot conclude stability. Careful analysis of the spectrum of H on

R, shows that it consists of cont. spec., that we can find using Weyl’s criterion, and finitely many

eigenvalues and generalized eigenvalues (at zero). The detailed analysis of the spectrum is described

in Appendix A. It mostly reviews the known arguments and methods which are needed to imply the

spectral and stability assumption we need. It also includes some technical improvements of known

results and some generalizations. In particular, we show directly that the generalized eigenvectors at

zero, are exponentially decaying, without using the explicit formulas for them (which are not always

available).

Linear stability in the sense (LS) is then expected to hold only for initial states ψ which are

orthogonal to the space of eigenvectors and generalized eigenvectors of H. In this, linear stability has

been proved for certain classes of NLS; the most comprehensive results in this direction, based on

Liapunov theory are due to Weinstein [We1]- [We2]. See also [CaL], [?], [Sh], [?], [Gr], [SuSu], [Stu].

Clearly, stability is necessary to have, before proving asymptotic-stability. So among our assump-

tions it is included in the sense (LS). We also need further spectral assumptions on H, partly to insure

that [?] holds and imply the Lp estimates:

(LP 1) ‖ eiHt ψ ‖L∞ ≤ t−n/2 ‖ ψ ‖L1∩L2

for ψ ⊥ N , the space of e.values + gen.e.values, and

‖ U(t)ψ ‖L∞ ≤ t−u/2 ‖ ψ ‖L1∩L2

where U(t) is the solution of the linear equation with N solitons as potentials:

i∂tU =

(
N∑

i=2

Hi(t)

)
∪ +H0 U ∪ (0) = I .

H0 =

(
L1+ W1

−W 1 −L1
−

)
Hi =

(
Li

+ Wi(t)
−W i(t) Li

−

)

Hi - is the linearization around the i-soliton. It is t-dependent, since it is moving relative to others.
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Next, we need some nonlinear assumptions: the first condition is the following monotonicity con-

dition

∂ω (ψω, ψω) > 0

which is known to imply (nonlinear) stability in most cases [?], [Stu], and is sometimes equivalent to

(LS) [Stu]. The second important condition is required to prove asymptotic stability and scattering.

For this, we need that F (|ψ|) vanishes as |ψ| → 0 at least as fast as |ψ|1+ 2
n , n ≥ 3. Examples of F (|ψ|)

for which stability holds or expected to hold and satisfy this last condition are not of the monomial

type! This is because for such powers, the nonlinearity is supercritical (w.r.t. L2) and it is then known

[CaL], [ShSt], [?], [We2] that the monomial solitons are generally unstable.

Nonmonomials examples are of the type −|ψ|p−1g(|ψ|) and −|ψ|p−1 + α|ψ|q−1 with proper choice

of p, α, q, see [Sh]. In the first example, we choose g(|ψ|) to be approximately 1, except that it vanishes

near zero, fast enough.

A final few comments on the method of proof: similar to previous works [BP1], [Pe], [Cu] we

begin with an .... for the solution as a sum of modulated N -solitons plus a small perturbation Z. We

then impose orthogonality conditions Z = (R, R), relative to each soliton (in its reference frame). The

modulated parameters of the solitons are denoted by ~σ(t). We then construct solutions, via contraction

mapping in the space where ~σ(t) satisfies some decay, swellness, and asymptotic behavior. At each

stage of the analysis we linearize and orthogonalize relative to the solitons at t = ∞, that is around

the solitons determined by ~σ(∞). Our approach removes the need to estimate objects with powers of

x; we can then solve the problem in Lp spaces. In particular, our assumptions on R at the time zero

are in L1 ∩ L2 but not in weighted spaces as in previous works. We also get stronger decay estimates

onthe remainder terms, namely the optimal t−n/2 decay in L∞.

2 Statement of results

Consider

(2.1) i∂tψ +
1

2
4ψ + β(|ψ|2)ψ = 0

in Rn, n ≥ 3 [n = 3 or n ≥ 3??], with initial data ←−

(2.2) ψ0(x) =
k∑

j=1

wj(0, x) + R0(x).

[comment on existence of solutions to NLS??] Here wj are solitons ←−
wj(t, x) = w(t, x; σj(0)) = eiθj(t,x)φ(x− xj(t), αj(0))(2.3)

θj(t, x) = vj(0) · x− 1

2
(|vj(0)|2− α2

j (0))t + γj(0)(2.4)

xj(t) = vj(0)t + Dj(0).(2.5)

It is well-known that if φ = φ(·, α) satisfies

(2.6)
1

2
4φ − α2

2
φ + β(|φ|2)φ = 0
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then wj as in (2.3) satisfies (2.1) with arbitrary constant parameters σj(0) = (vj(0), Dj(0), γj(0), αj(0)).

Solutions of (2.6) are known to exist under suitable conditions on β for certain α > 0 and 2 ≤ p ≤
1 + 4

n−2 [Need to introduce β, p, references to Sulem-Sulem or original references???]. Moreover, there ←−
exists a unique positive solution, called the ground state, which is the one that we choose. It decays

like e−α|x|. The solitons wj(σj(0)) can be generated from the particular solution eit
αj(0)2

2 φ(x; αj(0))

of (2.1) by means of the Galilean transformation

(2.7) gv,D(t) = e−i
|v|2

2
te−ix·vei(D+tv)p

where p = −i∇, followed by a modulation. Indeed,

(2.8) w(t, x; σj(0)) = eiγg−vj(0),−Dj(0)(t) eit
αj(0)2

2 φ(x; αj(0)).

Our goal is to prove asymptotic stability of noninteracting multi-soliton states. More precisely, we show

that provided R0 is sufficiently small in a suitable norm and provided the σj(0) satisfy the separation

and stability conditions (see below), there exist curves σj(t) = (vj(t), Dj(t), γj(t), αj(t)) in R2n+2 so

that

(2.9)
∥∥∥ψ(t)−

k∑

j=1

wj(t, x; σj(t))
∥∥∥
∞
. |t|−n2

where wj(t, x; σj(t)) denotes the soliton solution from (2.3) with parameters

θj(t, x) = vj(t) · x−
∫ t

0

1

2
(|vj |2 − α2

j )(s) ds + γj(t)(2.10)

xj(t) =

∫ t

0
vj(s) ds + Dj(t).(2.11)

In what follows, the notation wj(t, x; σj(t)) or simply wj(σj(t)), corresponds to the soliton moving

along the time-dependent curve σj(t) in the parameter space according to (2.10) and (2.11), while

wj(σ) denotes the true soliton moving along the straight line determined by an arbitrary constant σ

as in (2.4) and (2.5).

In order to ensure that the solitons do not interact we assume that their initial positions Dj(0) and

initial velocities vj(0) are such that for all t ≥ 0 one has the separation condition

(2.12) |Dj(0) + vj(0)t−D`(0)− v`(0)t| ≥ (L + ct), ∀j 6= ` = 1, .., k

with some sufficiently large constant L and a positive constant c. We also impose the nonlinear stability condition

(or convexity condition) (see [Sh], [?], [We1]). [need to explain the meaning of “stability” here?? more

background on this topic in general?? other references???] ←−

(2.13) 〈∂αφ(·; α), φ(·; α)〉> 0, ∀α : min
j=1,..,k

|α− αj(0)| < c

for some positive constant c. The condition that the L2 norm (alternatively the energy) of the ground

state is an increasing (decreasing) function of the parameter α is known to play the crucial role in
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the issue of the orbital stability of 1-soliton solutions of NLS and NKLG (nonlinear Klein-Gordon

equation), see [Sh], [?], [We1], and first appeared in the work of Shatah. Heuristically speaking, the

soliton is orbitally stable of condition (2.13) holds and unstable if instead the opposite strict inequality

is satisfied. The known examples of when the nonlinear stability condition can be verified are limited

to the case of a monomial subcritical nonlinearities

(2.14) β(s2) = sp−1, 1 < p < 1 +
4

n
, ∀α 6= 0

and the nonlinearity of the mixed type (see [Sh])

β(s2) = s2 − s4, α????

In our paper we find a new class of nonlinearities satisfying condition (2.13). These nonlinearities lie

”near” the subcritical monomials of (9.27) but vanish much faster near s = 0. More precisely we

consider functions

(2.15) βθ(s
2) = sp−1 s3−p

θ + s3−p

with a constant θ > 0 and prove that given a sufficiently small neighborhood U in the space of

parameter α there exists a sufficiently small value θ0 such that for all θ < θ0 and all α ∈ U the ground

state of βθ corresponding to α satisfies the nonlinear stability condition (see section ???).

We note that the higher rate of vanishing of β(s2) at s = 0 is important for asymptotic stability.

In particular, it should be mentioned that if the power p in the monomial example (9.27) is too low

(p < 1 + 2
n) even the scattering theory (asymptotic stability of a trivial solution) fails.

Let αmin = min1≤j≤k αj(0) − c. In our main theorem we will introduce a small constant ε which

measures the size of the initial perturbation. It will be understood henceforth that

(2.16) αminL ≥ | log ε|.

We collect the individual parameter curves σj(t) from above into a single curve σ(t) := (σ1(t), . . . , σk(t)).

Given the initial value σ(0) we introduce the set of admissible curves σ(t) as those C1 curves that remain

in a small neighborhood of σ(0) for all times and converge to their final value σ(∞) = limt→+∞ σ(t).

In particular, the separation and nonlinear stability conditions can be assumed to hold uniformly along

the admissible curve σ(t). We shall also impose the condition that for an admissible curve σ(t)

(2.17)

∫ ∞

0

∫ ∞

s
|v̇j(τ) · vj(τ)− α̇(τ)jαj(τ)| dτ ds <∞,

∫ ∞

0

∫ ∞

s
|v̇j(τ)| dτ ds <∞

for all 1 ≤ j ≤ k. We will write wj(σ(t)) = wj(t, x; σ(t)) = eiθj(σ(t)) φj(σ(t)) where φj(σ(t)) =

φ(t, x; σj(t)) = φ(x− xj(t); αj(t)). Linearizing the equation (2.1) around the state w =
∑k

j=1 wj, ψ =

w + R one obtains the following system of equations for Z =
(
R
R̄

)
:

i∂tZ + H(t, σ(t))Z = F.(2.18)
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Here H(t, σ(t)) is the time-dependent matrix Hamiltonian

H(t, σ(t)) = H0 +(2.19)
k∑

j=1

(
β(|wj(σ(t))|2) + β′(|wj(σ(t))|2)|wj(σ(t))|2 β′(|wj(σ(t))|2)w2

j (σ(t))

−β′(|wj(σ(t))|2)w̄2
j (σ(t)) −β(|wj(σ(t))|2)− β′(|wj(σ(t))|2)|wj(σ(t))|2

)

H0 =

(
1
24 0
0 −1

24

)

and the right-hand side F depends on σ̇, w, and nonlinearly on Z. For a given admissible path σ(t)

we shall introduce the reference Hamiltonian H(t, σ)

H(t, σ) = H0 +(2.20)
k∑

j=1

(
β(|wj(σ)|2) + β′(|wj(σ)|2)|wj(σ)|2 β′(|wj(σ)|2)w2

j (σ)

−β′(|wj(σ)|2)w̄2
j (σ) −β(|wj(σ)|2)− β′(|wj(σ)|2)|wj(σ)|2

)

where σ = (σ1, . . . , σk), σj = (vj , Dj, γj, αj) is a constant vector determined by the curve σ(t), see (3.7)

and (3.8) below. We refer to Hamiltonians of the form (2.20) as matrix charge transfer Hamiltonians.

They are discussed in more detail in Section 11, as well as in [RSS]. Recall that wj(σ) denotes the soliton

moving along the straight line determined by the constant parameters σj . The proof of our nonlinear

scattering theorem, see Theorem 2.2 below, relies on the dispersive estimates for matrix charge transfer

Hamiltonians that were obtained in [RSS], see also Section 11 below. For these estimates to hold, one

needs to impose certain spectral conditions on the stationary Hamiltonians

(2.21)

Hj(σ) :=

(
1
24− α2

2 + β(φj(σ)2) + β′(φj(σ)2)φj(σ)2 β′(φj(σ)2)φ2
j(σ)

−β′(φj(σ)2)φ2
j(σ) −1

24 + α2

2 − β(φj(σ)2)− β′(φj(σ)2)φj(σ)2

)

where φj(σ) = φ(x, αj), see (2.6). These Hamiltonians arise from the matrix charge transfer problem

by applying a Galilei transform to the jth matrix potential in (2.20) so that that potential becomes

stationary (strictly speaking, this also requires a modulation which leads to the spectral shift in (2.21)).

We impose the spectral assumption as described by the following definition.

Definition 2.1. We say that the spectral assumption holds, provided

• 0 is the only point of the discrete spectrum of Hj(σ),

• each of the Hj(σ) is admissible in the sense of Definition 11.1 below and the stability condi-

tion (11.3) holds.

While the second condition is known to hold generically in an appropriate sense, see Section 11, the

first condition is more restrictive and not believed to hold generically. Under these conditions our main

result is as follows.
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Theorem 2.2. Impose the separation and nonlinear stability conditions, see (2.12) and (2.13), as well

as the spectral assumption from above. Suppose ψ is the solution of (2.1) with initial condition (2.2).

Then there exists a positive ε such that for R0 satisfying the smallness assumption

(2.22)
s∑

k=0

‖∇kR0‖L1∩L2 < ε

for some integer s > n
2 , there exists an admissible path σ(t) such that

∥∥∥ψ(t)−
k∑

j=1

wj(t, x; σj(t))
∥∥∥
∞
. (1 + t)−

n
2

as t→ ∞. In particular, the soliton parameters σj(t) converge to limiting values as t→∞.

[describe results of Buslaev-Perelman, and Cuccagna??? Compare them to this?? Any other

historical background? Is this going to be the introduction?? ] ←−

3 Reduction to the matrix charge transfer model

For the sake of simplicity we consider the case of two solitons, i.e., k = 2. Setting w1(σ(t))+w2(σ(t)) =

w and ψ = w + R, (2.1) yields

i∂tR +
1

2
4R + (β(|w|2) + β′(|w|2)|w|2)R + β′(|w|2)w2 R̄(3.1)

= −(i∂tw +
1

2
4w + β(|w|2)w) + O(|w|p−2|R|2) + O(|R|p).

Observe that

i∂tw +
1

2
4w + β(|w|2)w = −

2∑

j=1

[(
v̇j(t) · x + γ̇j(t)

)
wj(σ(t)) + ieiθj(σ(t))∇φj(σ(t)) · Ḋj(t)

−ieiθj(σ(t))∂αφj(σ(t))α̇j(t)
]

+ O(w1w2).(3.2)

Similarly,

i∂tR +
1

2
4R + (β(|w|2) + β′(|w|2)|w|2)R + β′(|w|2)w2 R̄

= i∂tR +
1

2
4R +

2∑

j=1

[
β(|wj(σ(t))|2) + β′(|wj(σ(t))|2)|wj(σ(t))|2

]
R +

2∑

j=1

β′(|wj(σ(t))|2)wj(σ(t))2 R̄

+O(w1(σ(t))w2(σ(t)))R.

Rewriting the equation (3.1) as a system for Z = (R, R̄) therefore leads to

i∂tZ + H(σ(t))Z = Σ̇W (σ(t)) + O(w1w2)Z + O(w1w2) + O(|w|p−2|Z|2) + O(|Z|p).(3.3)
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Here H(σ(t)) is the time-dependent matrix Hamiltonian from (2.19) and

(3.4) Σ̇W (σ(t)) =

(
f
−f̄

)

where

(3.5) f =
2∑

j=1

[
(v̇j(t) · x + γ̇j(t))wj(σ(t)) + ieiθj(σ(t))∇φj(σ(t)) · Ḋj(t)− ieiθj(σ(t))∂αφj(σ(t))α̇j(t)

]

Given the admissible curve σ(t) we introduce the reference Hamiltonian H(t, σ) “at infinity”

H(t, σ) = H0 +
2∑

j=1

(
β(|wj(σ)|2) + β′(|wj(σ)|2)|wj(σ)|2 β′(|wj(σ)|2)w2

j (σ)

−β′(|wj(σ)|2)w̄2
j (σ) −β(|wj(σ)|2)− β′(|wj(σ)|2)|wj(σ)|2

)
(3.6)

where σ = (σ1, . . . , σk), σj = (vj , Dj, γj, αj) is the constant vector determined by the curve σ(t) in the

following fashion:

vj = vj(∞), Dj = Dj(∞)−
∫ ∞

0

∫ ∞

s

v̇j(τ) dτ ds,(3.7)

γj = γj(∞) +

∫ ∞

0

∫ ∞

s
(v̇j(τ) · vj(τ)− α̇j(τ)αj(τ)) dτ ds, αj = αj(∞).(3.8)

In view of the condition (2.17), σ is well-defined. Recall that wj(σ) is the soliton moving along the

straight line determined by the constant parameters σj .

For j = 1, . . . , k we introduce the Hamiltonians

(3.9) Hj(t, σ) = H0 +

(
β(|wj(σ)|2) + β′(|wj(σ)|2)|wj(σ)|2 β′(|wj(σ)|2)w2

j (σ)

−β′(|wj(σ)|2)w̄2
j (σ) −β(|wj(σ)|2)− β′(|wj(σ)|2)|wj(σ)|2

)

together with their stationary counterparts

Hj(σ) =

(
1
24− α2

2 + β(φj(σ)2) + β′(φj(σ)2)φj(σ)2 β′(φj(σ)2)φ2
j(σ)

−β′(φj(σ)2)φ2
j (σ) −1

24 + α2

2 − β(φj(σ)2)− β′(φj(σ)2)φj(σ)2

)

φj(σ) = φ(x, αj)(3.10)

The following lemma relates the evolutions corresponding to the Hamiltonians Hj(t, σ) and Hj(σ) by

means of a modified Gallilean transformation.

Lemma 3.1. Let Uj(t, σ) be the solution operator of the equation

i∂tUj(t, σ) + Hj(t, σ)Uj(t, σ) = 0,(3.11)

Uj(0, σ) = I

and eitHj(σ) be the corresponding propagator for the time-independent matrix Hamiltonian Hj(σ). Then

(3.12) Uj(t, σ) = G∗vj ,Dj
(t)M∗j(t, σ)eitHj(σ)Mj(0, σ)Gvj,Dj(0)
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where Gvj ,Dj(t) is the diagonal matrix Galilean transformation

(3.13) Gvj ,Dj(t)

(
f1

f2

)
=

(
gvj ,Dj(t)f1

gvj ,Dj(t)f̄2

)

and

(3.14) Mj(t, σ) =


 e−i

α2
j

2
t−i(vj ·Dj+γj) 0

0 ei
α2
j

2
t+i(vj ·Dj+γj)


 .

Proof. By definition,

iU̇j = iĠ∗vj ,Dj
(t)M∗j(t)eitHj(σ)Mj(0)Gvj ,Dj(0) + G∗vj ,Dj

(t)iṀ∗j(t)eitHj(σ)Mj(0)Gvj,Dj(0)

−G∗vj ,Dj
(t)M∗j(t)Hj(σ)eitHj(σ)Mj(0)Gvj ,Dj(0).(3.15)

Clearly,

iṀ∗j(t) =


−

α2
j

2 ei
α2
j

2
t+i(vj ·Dj+γj) 0

0
α2
j

2 e−i
α2
j
2

t−i(vj ·Dj+γj)


 ,

whereas one checks that

iĠ∗vj ,Dj
(t)

(
f1

f2

)
= i

(
ġ∗vj ,Dj

f1

ġ∗vj ,Dj
f̄2

)
=

(
−(v2

j /2− vj · p) g∗vj ,Dj
f1

(v2
j /2 + vj · p) g∗vj ,Dj

f̄2

)
.

Finally, we need to move Hj(σ) to the left in (3.15). We consider the differential operator separately

from the matrix potential, i.e.,

Hj(t, σ) = H0 +

(
Uj(x− xj(t)) e2iθj(t,x)Wj(x− xj(t))

−e−2iθj (t,x)Wj(x− xj(t)) −Uj(x− xj(t))

)

Hj(σ) = H0 +

(
−α2

j

2 0

0
α2
j

2

)
+

(
Uj Wj

−Wj −Uj

)
(3.16)

where xj(t), θj(t) are as in (2.5), (2.4), and Uj = β(φj(σ)2)+ β′(φj(σ)2)φj(σ)2, Wj = β′(φj(σ)2)φ2
j(σ).

Note that, on the one hand,Mj commutes with all matrices in (3.16) that do not involve Uj , Wj . On

the other hand, one has

H0G∗vj ,Dj
(t)

(
f1

f2

)
− G∗vj ,Dj

(t)

[
H0 +

(
−α2

j

2 0

0
α2
j

2

)](
f1

f2

)
=

(
1
2α2

j g∗vj ,Dj
(t)f1

−1
2α2

j g∗vj ,Dj
(t)f̄2

)

+
1

2




ei
v2
j
2

t4
(
eix·vj e−ivj ·(Dj+tvj) f1(x− tvj −Dj)

)
− ei

v2
j
2

t eix·vj e−ivj ·(Dj+tvj)4f1(x− tvj −Dj)

−e−i
v2
j
2

t4
(
e−ix·vj eivj ·(Dj+tvj) f2(x− tvj −Dj)

)
+ e−i

v2
j
2

t e−ix·vj eivj ·(Dj+tvj)4f2(x− tvj −Dj)




=

(
1
2(v2

j + α2
j ) g∗vj ,Dj

(t)f1 − vj · p g∗vj ,Dj
(t)f1

−1
2(v2

j + α2
j ) g∗vj ,Dj

(t)f̄2 − vj · p g∗vj,Dj
(t)f̄2

)
.
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Finally, we need to deal with the matrix potentials. Write M(t) := Mj(t, σ) =

(
e−iω(t)/2 0

0 eiω(t)/2

)

and set ρ = t|~vj |2 + 2x · ~vj . Then (omitting the index j for simplicity)

M(t)G~v,D(t)

(
U(· − ~vt−D) e2iθW (· − ~vt −D)

−e−2iθW (· − ~vt−D) −U(· − ~vt−D)

)(
f1

f2

)

=

(
e−iω(t)/2 0

0 eiω(t)/2

)(
g~v,D(t)U(· − ~vt −D)f1 + g~v,D(t)e2iθW (· − ~vt −D)f2

−g~v,D(t)e2iθW (· − ~vt −D)f1 − g~v,D(t)U(· − ~vt−D)f2

)

=

(
Ug~v,D(t)(e−iω(t)/2f1) + We−i(v2t+2x·~v)ei(2θ(t,·+t~v+D)−ω)g~v,D(t)eiω(t)/2f2

−Wei(v2 t+2x·~v)ei(ω−2θ(t,·+t~v+D)) g~v,D(t)(e−iω(t)/2f1)− U g~v,D(t)eiω(t)/2f2

)

=

(
U ei(2θ(t,·+t~v+D)−ω−ρ)W

−e−i(2θ(t,·+t~v+D)−ω−ρ)W −U

)(
e−iω(t)/2 0

0 eiω(t)/2

)(
g~v(t)f1

g~v,D(t)f2

)
.

Now 2θ(t, ·+ t~v + D)− ρ− ω = 2~v · x + (|~v |2 + α2)t + 2γ + 2~v ·D− t|~v |2− 2x · ~v− ω = 0 by definition

of ω, i.e., ω = α2t + 2γ + 2~v ·D. Adding these expressions shows that

iU̇j(t, σ) + Hj(t, σ)Uj(t, σ) = 0,

as claimed.

4 The nullspaces of Hj(σ) and H∗j (σ)

In view of Section 11 below (see in particular Definition 11.1 as well as (11.2)) we will need to understand

the generalized eigenspaces of the stationary operators Hj(σ) from (13.1). By our spectral assumption,

see Definition 2.1 above, only generalized eigenspaces at 0 are allowed. We denote these spaces by Nj(σ)

and refer to them as nullspaces. Thus, Nj(σ) = ker
(
Hj(σ)2

)
and by (11.2) one has the direct (but not

orthogonal) decomposition

L2(R3)× L2(R3) = N∗j (σ)⊥ + Nj(σ),

where N∗j (σ) = ker
(
H∗j (σ)2

)
. The (nonorthogonal) projection onto N ∗j (σ)⊥ associated with this de-

composition is denoted by Pj(σ). While the evolution eitHj(σ) is unbounded on L2 as t → ∞, it is

known in many cases that it remains bounded on Ran(Pj(σ)). In Section 11 this is referred to as

the linear stability assumption. The following results go back to Weinstein’s work on modulational

stability [We1]. [give a proof of this???? other references???] ←−

Proposition 4.1. Let Hj(σ) be as in (13.1) then

• The nullspace N∗j (σ) of H∗j (σ) is given by the the following vector valued 2n+2 functions ξm
j , m =

11



1, .., 2n + 2:

ξm
j =

(
um

j

ūm
j

)
,

u1
j = φj(·; σ), H∗j (σ)ξ1

j = 0,

u2
j = i

2

αj
∂αφj(·; σ), H∗j (σ)ξ2

j = −iξ1
j ,

um
j = i∂xm−2φj(·; σ), H∗j (σ)ξm

j = 0, m = 3, .., n + 2,

um
j = xm−n−2φj(·; σ), H∗j (σ)ξm

j = −2iξm−n
j , m = n + 3, .., 2n + 2

• Let

J =

(
0 1
−1 0

)
.

Then J is an isomorphism between the nullspaces of H∗j (σ) and Hj(σ). In particular, the nullspace

of Hj(σ) has a basis {Jξm
j | 1 ≤ m ≤ 2n + 2}.

• One has the stability property

sup
t

∥∥∥eitHj(σ)Pj(σ)
∥∥∥

2→2
<∞

where Pj(σ) is the projection onto N ∗j (σ)⊥ as introduced above.

5 Estimates for the linearized problem

In (3.3) we obtained the system

(5.1)

i∂tZ+H(t, σ)Z =
(
H(σ(t))−H(t, σ)

)
Z+Σ̇W (σ(t))+O(w1w2)Z+O(w1w2)+O(|w|p−2|Z|2)+O(|Z|p),

The point of rewriting (3.3) in this form is to be able to use the dispersive estimates that were obtained

in [RSS] for (perturbed) matrix charge transfer Hamiltonians, see also Sections 11. 12.

Theorem 5.1. Let Z(t, x) solve the equation

i∂tZ + H(t, σ)Z = F,(5.2)

Z(0, ·) = Z0(·)

where the matrix charge transfer Hamiltonian H(t, σ) satisfies the conditions of Definition 11.2. As-

sume that Z satisfies

(5.3) ‖(Id− Pj(σ))Mj(σ, t)Gvj ,Dj(t)Z(t, ·)‖L2 ≤ B(1 + t)−
n
2 , ∀j = 1, . . . , k,

with some positive constant B, whereMj(σ, t) and Gvj ,Dj(t) are as in Lemma 3.1. Then Z verifies the

following decay estimate

(5.4) ‖Z(·)‖L2+L∞ . (1 + t)−
n
2

(
‖Z0‖L1∩L2 + |||F |||+ B

)

12



for t > 0 with

|||F ||| := sup
t≥0

[∫ t

0
‖F (s)‖L1 ds + (1 + t)

n
2

+1‖F (t)‖L2

]
.

In addition, we also have the L2 estimate

(5.5) ‖Z(t)‖L2 . ‖Z0‖L1∩L2 + |||F |||+ B

For the proof see [RSS] and Section 11 below. In particular, note that (5.3) is related to the

characterization of scattering states in Definition 11.4.

In the applications the inhomogeneous term F is a nonlinear expression which depends Z. There-

fore, in addition to the estimates (5.4) and (5.5) we shall need corresponding estimates for the deriva-

tives of Z.

For an integer s ≥ 0 we define Banach spaces Xs and Ys of functions of (t, x)

‖ψ‖Xs = sup
t≥0

(
‖ψ(t, ·)‖Hs + (1 + t)

n
2

s∑

k=0

‖∇kψ(t, ·)‖L2+L∞

)
(5.6)

‖F‖Ys = sup
t≥0

s∑

k=0

( ∫ t

0

‖∇kF (τ, ·)‖L1 dτ + (1 + t)
n
2

+1‖∇kF (t, ·)‖L2

)
(5.7)

The generalization of the estimates of Theorem 5.1 is given by the following Theorem (see section 12,

in particular Proposition 12.3, for the proof).

Theorem 5.2. Under assumptions of Theorem 5.1 we have that for any integer s ≥ 0

(5.8) ‖Z‖Xs .
s∑

k=0

‖∇kZ(0, ·)‖L1∩L2 + ‖F‖Ys + B

We apply Theorem 5.2 to the equation (5.1). This will, in particular, lead to our main result, i.e.,

that ‖Z(t)‖∞ . t−
n
2 as t → ∞. We need to ensure that Z is a scattering solution relative to each of

the channels of the charge transfer Hamiltonian H(t, σ), in the sense of the estimate (5.3). Analogous

to Buslaev, Perelman [BP1] this will be accomplished by an appropriate choice of the path σ(t), to be

made in the following section.

6 Modulation equations

In their analysis of the stability relative to one soliton, Buslaev and Perelman [BP1], [BP2], and

Cuccagna [Cu] derive the equations for σ̇ by imposing an orthogonality condition on the perturbation Z

for all times. More precisely, they make the ansatz

(6.1) ψ = eiθ(t,σ(t))(w(σ(t)) + R)

where eiθ(t,σ(t))w(σ(t)) is a single soliton evolving along a nonlinear set of parameters. The removal of

the phase from the perturbation R leads to an equation which is simply the translation of the equation

13



involving the stationary Hamiltonian (2.21) to the point vt + D. This in turn makes it very easy to

formulate the orthogonality conditions: At time t, the function R(· + vt + D) in (6.1) needs to be

perpendicular to all elements of the generalized eigenspaces of all Hj(σ)∗ as in (2.21), where σ is equal

to the parameters σ(t) at time t.

In the multi-soliton case the removal of the phases by means of this ansatz is not available, since

distinct solitons carry distinct phases. As already indicated above, we work with the representation

ψ(t) =
k∑

j=1

wj(t, σ(t)) + R,

which forces us to formulate the orthogonality condition in terms of a set of functions that is moving

along with the solitons wj(t, σ(t)). We now define these functions.

Definition 6.1. Let σ(t) be an admissible path and define θj(t, x; σ) and xj(t; σ) as in (2.10) and (2.11).

Also, set φj(t, x; σ(t)) = φ(x− xj(t, σ(t)); αj(t)). Then we let

ξm
j (t, x; σ) =

(
um

j (t, x; σ(t))

ūm
j (t, x; σ(t))

)

with

u1
j (t, x; σ) = wj(t, x; σ) = eiθj(t,x;σ) φj(t, x; σ)

u2
j (t, x; σ) =

2i

αj
eiθj(t,x;σ) ∂αφj(t, x; σ)

um
j (t, x; σ) = ieiθj(t,x;σ) ∂xm−2φj(t, x; σ) for 3 ≤ m ≤ n + 2(6.2)

um
j (t, x; σ) = eiθj(t,x;σ) (xm−n−2 − xm−n−2

j (t; σ))φj(t, x; σ), for n + 3 ≤ m ≤ 2n + 2.

The following proposition should be thought of as a time-dependent version of Proposition 4.1.

More precisely, if σ is a fixed set of parameters, then one can define an alternate set of vectors, ξ̃m
j , say,

by applying appropriate Gallilei transforms to the stationary vectors in Proposition 4.1. For example,

take some ξm
j so that H∗j (σ)ξm

j = 0. Then the corresponding ξ̃m
j satisfies

i∂tξ̃
m
j + Hj(t, σ)ξ̃m

j = 0,

with Hj(t, σ) as in (3.9). Naturally, one would therefore expect that

i∂tξ
m
j + H(σ(t))ξm

j = O(σ̇j) + O(e−ct),

where H(σ(t)) is as in (2.19) (the exponentially decaying term appears because of interactions between

solitons). The following proposition shows that this indeed holds, but as in [Cu] we will work with a

modified set of parameters σ̃j(t) = (vj , Dj, αj, γ̃j) where

(6.3) ˙̃γj(t) = γ̇j(t) +
1

2

n∑

m=1

v̇m
j (t)xm

j (t, σ).
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The point of this modification is that the Σ̇W (σ(t)) term in (5.1) and (3.3) can be rewritten as

Σ̇W (σ(t)) =
k∑

j=1

[
˙̃γj(t)Jξ1

j (t, x; σ)− αj

2
α̇j(t)Jξ2

j (t, x; σ)
]
+

k∑

j=1

n∑

m=1

[
Ḋm

j (t)Jξm+2
j (t, x; σ) +

1

2
v̇m
j (t)Jξm+n+2

j (t, x; σ)
]
,(6.4)

where ξm
j are as in Definition 6.1. This is of course due to the fact that passing to γ̃j allows us to

change from x to x− xj(t; σ) in (3.5).

Proposition 6.2. Let σ(t) be an admissible path and define ξm
j (t, x; σ) as in Definition 6.1. Then

i∂tξ
1
j + H∗j (σ(t))ξ1

j = O
(
˙̃σ(|φj|+ |Dφj |)

)

i∂tξ
2
j + H∗j (σ(t))ξ2

j = iξ1
j + O

(
˙̃σ(|φj|+ |Dφj |+ |D2φj |)

)

i∂tξ
m
j + H∗j (σ(t))ξm

j = O
(
˙̃σ(|φj|+ |Dφj |+ |D2φj |)

)
for 3 ≤ m ≤ n + 2

i∂tξ
m
j + H∗j (σ(t))ξm

j = −2iξm−n−2
j + O

(
˙̃σ(|φj |+ |Dφj |+ |D2φj |)

)
for n + 3 ≤ m ≤ 2n + 2.

Here D refers to either spatial derivatives ∂x` or derivatives ∂α. Moreover, as in Definition 6.1, the

function φj needs to be evaluated at x− xj(t; σ), αj(t).

Proof. This is verified by direct differentiation of the functions in Definition 6.1.

The following proposition collects the modulation equations for the path σ(t) that are obtained by

taking scalar products of (2.19) with the basis elements ξm
j from the null space of H∗j (σ). This will of

course use (6.4).

Proposition 6.3. Let Z satisfy the system (3.3). Suppose that for all t ≥ 0,

(6.5) 〈Z(t), ξm
j (t)〉 = 0 for all j, m

where ξm
j is as in Definition 6.1. Then the path σ̃(t) := (vj(t), Dj(t), γ̃j(t), αj(t)), j = 1, .., n satisfies
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the following system of equations:

−2iα̇j(t)
〈
φj(σ), ∂αφj(σ)

〉
+O( ˙̃σ‖Z(t)‖L2+L∞) =

∑

r 6=j

〈
Vr(t, σ)Z, ξ1

j (t, ·; σ)
〉
+

〈(
O(w1w2)Z + O(w1w2) + O(|w|p−2|Z|2) + O(|Z|p)

)
, ξ1

j (t, ·; σ)
〉
,(6.6)

2i ˙̃γj(t)
〈
φj(σ), ∂αφj(σ)

〉
+O( ˙̃σ‖Z(t)‖L2+L∞) =

∑

r 6=j

〈
Vr(t, σ)Z, ξ2

j (t, ·; σ)
〉
+

〈(
O(w1w2)Z + O(w1w2) + O(|w|p−2|Z|2) + O(|Z|p)

)
, ξ2

j (t, ·; σ)
〉
,

v̇m
j (t)‖φj(σ)‖22+O( ˙̃σ‖Z(t)‖L2+L∞) =

∑

r 6=j

〈
Vr(t, σ)Z, ξm+2

j (t, ·; σ)
〉
+

〈(
O(w1w2)Z + O(w1w2) + O(|w|p−2|Z|2) + O(|Z|p)

)
, ξm+2

j (t, ·; σ)
〉
,

Ḋm
j (t)‖φj(σ)‖22+O( ˙̃σ‖Z(t)‖L2+L∞) =

∑

r 6=j

〈
Vr(t, σ)Z, ξn+m+2

j (t, ·; σ)
〉
+

〈(
O(w1w2)Z + O(w1w2) + O(|w|p−2|Z|2) + O(|Z|p)

)
, ξn+m+2

j (t, ·; σ)
〉
.

Proof. Differentiating (6.5) yields

〈i∂tZ, ξm
j (t)〉 = 〈Z, i∂tξ

m
j (t)〉.

Taking scalar products of (3.3) thus leads to

〈Z, i∂tξ
m
j 〉+〈Z, H∗(σ(t))ξm

j 〉 =
〈
Σ̇W (σ(t)), ξm

j

〉
+
〈
O(w1w2)Z+O(w1w2)+O(|w|p−2|Z|2)+O(|Z|p), ξm

j

〉
.

In view of the explicit expressions (6.2) one has

〈Jξ2
j (t, ·; σ), ξ1

j (t, ·; σ)〉 = −2i〈φj(σ), ∂αφj(σ)〉
〈Jξm

j (t, ·; σ), ξ1
j (t, ·; σ)〉 = 0 for m 6= 2

〈Jξm
j (t, ·; σ), ξ2

j (t, ·; σ)〉 = 0 for m 6= 1

〈Jξm+2
j (t, ·; σ), ξm+n+2

j (t, ·; σ)〉 = −2i‖φj(σ)‖22 for 3 ≤ m ≤ n + 2.

Therefore, the proposition follows by taking inner products in (6.4). Note that the terms containing
˙̃σ‖Z(t)‖L2+L∞ appear from Proposition 6.2.

7 Bootstrap assumptions

The proof of our main theorem relies on the bootstrap assumptions on the admissible path σ(t) and

the size of the perturbation Z(t, x) =
(R(t,x)
R̄(t,x)

)
. in the norms of the spaces Xs defined in (5.6).

Bootstrap assumptions
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There exists a small constant δ = δ(ε) dependent on the size of the initial data R0 and the initial

separation of the solitons wj(0, x; σ(0)), see (2.12), and a sufficiently large constant C0 such that for

some integer s > n
2

| ˙̃σ(t)| ≤ δ2(1 + t)−n , ∀t ≥ 0,(7.1)

‖Z‖Xs ≤ δC−1
0(7.2)

Remark 7.1. The bootstrap assumption (7.1) together with the definition (6.3) implies that

(7.3) |γ̇(t)| ≤ δ2(1 + t)−n+1

Remark 7.2. The bootsrtrap assumption (7.2) together with Lemma 9.4 implies that

‖Z(t)‖L∞ . δC−1
0 (1 + t)−

n
2 ,(7.4)

‖Z(t)‖Hs . δC−1
0(7.5)

The bootstrap assumption (7.1) strengthens the notion of the admissible path. In particular, it

allows us to estimate the deviation between the path xj(t, σ(t)) corresponding to the path σ(t) and

the straight line xj(t, σ) determined by the constant parameter σ which was defined from σ(t) in (3.7)

and (3.8). This estimate will play an important role in our analysis.

Lemma 7.3. Let σ(t) be an admissible path satisfying the bootstrap assumption (7.1) and let σ be a

constant parameter vector as in (3.7) and (3.8). Then

(7.6) |xj(t)− tvj −Dj | . δ2(1 + t)−n+2

Proof. By our choice of vj and Dj one has that

|xj(t)− tvj −Dj | .
∫ ∞

t

∫ ∞

s
|v̇j(τ)| dτ +

∫ ∞

t
|Ḋj(s)| ds

and the lemma follows from (7.1).

We then have the following corollary. To formulate it, we need the localizing functions

χ0(x) = exp
(
− 1

2
αmin(1 + |x|2) 1

2

)

χ(t, x; σ) =
k∑

j=1

χ0(x− xj(t, σ)).(7.7)

Here αmin > 0 satisfies inft≥0,1≤j≤k αj(t) > αmin for any admissible path σ(t) starting at σ0. The

exponent αmin arises because of the decay rate of the ground state of (2.6).

Corollary 7.4. Let σ(t) be an admissible path satisfying the bootstrap assumption (7.1). With the

parameters σ as in (3.7) and (3.8) one has

(7.8)
∣∣∣H(t, σ)−H(σ(t))

∣∣∣ . δ2(1 + t)2−n χ(t, x; σ),

where H(t, σ) and H(σ(t)) are the Hamiltonians from (3.6) and (2.19).
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Proof. The difference

H(t, σ)−H(σ(t))

is a sum of matrix valued potentials that are exponentially localized around the solitons wj(σ(t))

or wj(t, σ), respectively. By the previous lemma, we can assume that the potential is localized around

the union of the straight paths xj(t, σ). Since vj = vj(∞), αj = αj(∞),

∣∣∣[H(t, σ)−H(σ(t))]
∣∣∣.

k∑

j=1

∣∣∣tvj + Dj −
∫ t

0
vj(s) ds−Dj(t)

∣∣∣χ0(x− xj(t, σ))(7.9)

+
k∑

j=1

∣∣∣1
2

∫ ∞

t
v̇j(s) · x ds− 1

2

∫ t

0

∫ ∞

s
(v̇j(s) · vj(s)− α̇j(s)αj(s)) ds + γj − γj(t)

∣∣∣χ0(x− xj(t, σ)).(7.10)

The term (7.9) arises as the difference of two paths, whereas (7.10) is the difference of the phases, i.e.,

|eiθj(t,x;σ) − eiθj(t,x;σ(t))|.
In view of the definitions of Dj , γj from (3.7) and (3.8) one has

∣∣∣H(t, σ)−H(σ(t))
∣∣∣ .

k∑

j=1

(∫ ∞

t

∫ ∞

s
|v̇j(τ)| dτ +

∫ ∞

t
|Ḋj(s)| ds

)
χ0(x− xj(t, σ))

(7.11)

+
k∑

j=1

(∫ ∞

t

∫ ∞

s
|v̇j(τ) · vj(τ)− α̇j(s)αj(s)| dτ ds +

∫ ∞

t
|γ̇j(s)| ds +

∫ ∞

t
|v̇j(s)| ds|x|

)
χ0(x− xj(t, σ))

. δ2(1 + t)2−n χ(t, x; σ).

For the final inequality one uses (7.3) and the fact that

|x|χ0(x− xj(t, σ)) . t.

The corollary follows.

8 Solving the modulation equations

Our goal is to show that the system in Proposition 6.3 has a solution ˙̃σ(t) that satisfies the bootstrap

assumptions (7.1). This requires some care, as the right-hand side in Proposition 6.3 involves the

perturbation Z. We will therefore first verify that the system of modulation equations is consistent

with the bootstrap assumptions (7.1) and (7.2). In what follows, we will use both paths σ̃(t) and σ(t).

By definition, see (6.3),

γ̃j(t) = −
∫ ∞

t

[
γ̇j(s) +

1

2

n∑

m=1

v̇m
j (s)xm

j (s, σ)
]
ds.

The integration is well-defined provided σ̃ satisfies the bootstrap assumption. Indeed, in that case

|vj(t)| . (1 + t)−n and since |xj(t)| . 1 + t, the integral is absolutely convergent. Finally, recall the

property (7.3) of the derivatives.
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Lemma 8.1. Suppose the separation and nonlinear stability conditions hold, see (2.12) and (2.13).

Let σ̃, Z be any choice of functions that satisfy the bootstrap assumptions for sufficiently small δ > 0. If

the inhomogeneous terms of the system (6.6) are defined by means of these functions, then this system

has a solution ˙̃σ that satisfies (7.1) with δ/2 for all times.

Proof. By the nonlinear stability condition (2.13), the left-hand side of (6.6) is of the form Bj(t) ˙̃σj(t)

with an invertible matrix Bj(t). The O-term is a harmless perturbation of the matrix given by the

main terms on the left-hand side, provided δ is chosen sufficiently small. This easily follows from the

smallness of Z given by (7.2). We need to verify that the right-hand side of (6.6) decays like δ2(1+t)−n.

We consider only the first equation in (6.6), the others being the same. The terms 〈Vr(t, σ)Z, ξ1
j(t, ·; σ)〉

for r 6= j and w1w2 are governed by the interaction of two different solitons. In view of the separation

condition (2.12) and the exponential localization of the solitons, we have

|α̇j(t)| .e−αmin(L+ct)(1 + ‖Z(t)‖L2+L∞) + ‖Z(t)‖2L2+L∞ + ‖Z(t)‖p
L2+L∞(8.1)

.δC−1
0 (1 + t)−n

(
ε + δC−1

0 + δp−1C
−(p−1)
0

)
≤
(δ

2

)2
(1 + t)−n(8.2)

where we have used the estimate (7.4), the condition (2.16), Lαmin ≥ | log ε|, and that p ≥ 2.

9 Solving the Z equation

In this section we verify the bootstrap assumptions (7.2) for the perturbation Z. This together with the

already verified bootstrap estimates for ˙̃σ will also lead to the existence of the function Z(t) asserted

in our main result. At this point we recall the imposed orthogonality conditions (6.5)

(9.1) 〈Z(t), ξm
j (t)〉 = 0 for all j, m

with ξm
j (t, x, σ) is as in Definition 6.1. We next rewrite the equation (3.3) for Z in the form

i∂tZ + H(t, σ)Z = F,(9.2)

F =
(
H(t, σ)−H(σ(t))

)
Z + Σ̇W (σ(t)) + O(w1w2)Z + O(w1w2) + O(|w|p−2|Z|2) + O(|Z|p)(9.3)

with the reference hamiltonian H(t, σ) as defined in (3.6). To verify the bootstrap assumption (7.2) we

apply the the dispersive estimate for the inhomogeneous charge transfer problem stated in Theorem

5.2. The following lemma shows that the orthogonality conditions (6.5) imply that Z is asymptotically

orthogonal to the bound states of H∗j (σ), as required in Theorem 5.2.

Lemma 9.1. Let Z be a solution of (9.2) satisfying the orthogonality conditions (9.1). Then Z is

asymptotically orthogonal to the null spaces of the hamiltonians H∗j (σ) in the sense of (5.3). In fact,

(9.4) ‖PNj(σ)Gvj,Dj (t)Z(t, ·)‖L2 . δ3(1 + t)−
n
2
−1, ∀j = 1, .., k

Proof. By the assumption Z(t) is orthogonal to the vectors ξm
j (t, x; σ) = G∗vj(t),Dj(t)

(t)ξm
j (αj(t)), while

(9.4) is equivalent to the estimates

|〈G∗vj ,Dj
(t)ξm

j (αj), Z(t)〉| . δ3(1 + t)−
n
2
−1, ∀j, m
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Here ξm
j (αj(t)) and ξm

j (α) refers to the elements of the null spaces Nj(σ(t)) and Nj(σ) of the respec-

tive stationary hamiltonians H∗j (σ(t)) and H∗j (σ). The desired estimate would then follow from the

bootstrap assumption (7.2), in particular (7.4), and the inequality

(9.5) ‖G∗vj ,Dj
(t)ξm

j (αj)− G∗vj(t),Dj(t)
(t)ξm

j (αj(t))‖L1 . δ2(1 + t)−1

The vectors ξm
j are composed of the functions derived from the bound state φ. In particular, ξ1

j =
(φ
φ

)
.

Therefore,

|G∗vj ,Dj
(t)ξ1

j (αj)− G∗vj(t),Dj(t)
ξ1
j (αj(t))| =2|ei( 1

2
vj ·x− 1

4
(|vj |2−α2

j )t+γj)φ(x− vj t−Dj)−

e
i( 1

2
vj(t)·x− 1

4

t�

0

(|vj(τ)|2−αj(τ)2) dτ+γj(t))
φ(x− xj(t))|(9.6)

According to Lemma 7.3, |xj(t) − vjt − Dj | . δ2(1 + t)−n+2. Similarly, (7.10) of Corollary 7.4 gives

the estimate for the difference of the phases appearing in (9.6)

|eiθj(t,x;σ) − eiθj(t,x;σ(t)| . δ2(1 + t)−n+2

The estimate (9.5) follows immediately since n ≥ 3.

We now in the position to aplly Theorem 5.2 to establish the improved Xs estimates for Z(t).

Lemma 9.2. Let Z be a solution of the equation (9.2) satisfying the bootstrap assumption (7.2) with

some sufficiently small constants δ and C−1
0 . We also assume (due to Lemma 8.1) that the admissible

path σ(t) obeys the estimate (7.1). Then we have the following estimate

(9.7) ‖Z(t)‖Xs ≤
δ

2
C−1

0

Proof. Perturbation Z is a solution of the inhomogeneous charge transfer problem (9.2)

i∂tZ + H(t, σ)Z = F,

F :=
(
H(t, σ)−H(σ(t))

)
Z + Σ̇W (σ(t)) + O(w1w2)Z + O(w1w2) + O(|w|p−2|Z|2) + O(|Z|p)(9.8)

Lemma 9.1 shows that Z is asymptotically orthogonal (with the constant δ3) to the null spaces of the

hamiltonians H∗j (σ). Therefore, Theorem 5.2 gives the estimate

(9.9) ‖Z(·)‖Xs .
s∑

k=0

‖∇kZ0‖L1∩L2 + ‖F‖Ys + δ3

with

(9.10) ‖F‖Ys = sup
t≥0

( s∑

k=0

∫ t

0
‖∇kF (τ, ·)‖L1 dτ + (1 + t)

n
2

+1‖F (t, ·)‖Hs

)

By the assumptions on the initial data
∑s

k=0 ‖∇kZ0‖L1∩L2 ≤ ε << δ. Therefore. to obtain the

conclusion of Lemma 9.2 it would suffice to verify that

(9.11) ‖F‖Ys . δ2

with F defined as in (9.8). The next two sections are devoted to verifying that (9.11) holds.
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9.1 Algebra estimates

In this section we establish several simple lemmas designed to ease the task of estimating the Ys norm

of F = F (Z, w, σ) in terms of the Xs norms of Z.

We begin with the following characterization of the space Lq + L∞.

Lemma 9.3. If function f belongs to the space Lq + L∞ for some 1 ≤ q < ∞ then there exists a

measurable set K and the functions fq , f∞ such that

f = fq + f∞,(9.12)

fq = χKf, f∞ = χcKf,(9.13)

‖fq‖L2 ≤ 3

2
‖f‖L2+L∞ , ‖f∞‖L∞ ≤ 3‖f‖L2+L∞(9.14)

In addition, the measure of the set K, m(K) ≤ 1/2q.

Proof. Define the set

K = {x : |f(x)| ≥ 3‖f‖Lq+L∞}
Clearly,

‖f∞‖L∞ = ‖χcKf‖L∞ ≤ 3‖f‖L2+L∞

Since f ∈ Lq + L∞ so is the the function fq = χKf . Moreover,

(9.15) ‖fq‖Lq+L∞ ≤ ‖f‖Lq+L∞

According to the defintion of Lq + L∞ there exist functions h, g such that

fq = h + g,

‖h‖Lq ≤ ‖fq‖Lq+L∞ , ‖g‖L∞ ≤ ‖fq‖Lq+L∞(9.16)

On the support of fq we have that |fq(x)| ≥ 3‖f‖Lq+L∞ . On the other hand, in view of (9.15) and

(9.16), |g(x)| ≤ ‖f‖Lq+L∞ . It then follows that |h(x)| ≥ 2‖f‖Lq+L∞ . Furthemore,

‖h‖Lq ≥ 2m(K)
1
q ‖f‖Lq+L∞ ≥ 2‖g‖Lq

The first inequality together with (9.15) and (9.16) implies that m(K) ≤ 1/2q. In addition, it also

follows that

‖fq‖Lq ≤ ‖h‖Lq + ‖g‖Lq ≤
3

2
‖h‖Lq ≤

3

2
‖f‖Lq+L∞

as desired.

We now formulate a version of the Sobolev estimate tailored to the use of the space L2 + L∞.
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Lemma 9.4. Let s be a positive ninteger. Then for any nonnegative integer k ≤ s and any q ∈ [2, qk],

where

1

qk
=

1

2
− s− k

n
, if k > s− n

2
(9.17)

qk =∞, if k < s − n

2

and q ∈ [2,∞) if k = s− n
2 the following estimates hold true

(9.18) ‖∇kf‖Lq+L∞ .
s∑

l=0

‖∇lf‖L2+L∞ ≤ (1 + t)−
n
2 ‖f‖Xs

In particular, if s > n
2

(9.19) ‖f‖L∞ . (1 + t)−
n
2 ‖f‖Xs

Proof. By duality and density it suffices to show that

‖f‖L1∩L2 .
s−k∑

l=0

‖∇lf‖L1∩Lq′

The L1 estimate is trivial while the the estimate for the L2 norm follows from the standard Sobolev

embedding W k−l,q′ ⊂ L2, which holds for the range of parameters (k, l, q) described in the Lemma.

Next are the estimates of the nonlinear quantities arising in (9.8) in terms of the Xs norm.

Lemma 9.5. Let γ(τ) be a smooth function whcih obeys the estimates

(9.20) |γ(l)(τ)| . τ ( p−1
2
−l)+

for some p ≥ 2 + 2
n and all non-negative integer l. Here r+ = r if r ≥ 0 and r+ = 0 if r < 0. Then for

any s > n
2 and any non-negative integer k ≤ s

‖∇k
(
γ(|f |2)f

)
‖L1 . (1 + t)−1(‖f‖pXs + ‖f‖2k+1+(p−1−2k)+

Xs ),(9.21)

‖∇k
(
γ(|f |2)f

)
‖L2 . (1 + t)−

n
2
−1(‖f‖pXs + ‖f‖2k+1+(p−1−2k)+

Xs )(9.22)

In addition, if γ is a smooth function obeying (9.20) for some p ≥ 2 and ζ(x) is an exponentially

localized smooth function then for any q ∈ [1, 2]

(9.23) ‖∇k
(
ζ γ(|f |2)f

)
‖Lq . (1 + t)−n(‖f‖pXs + ‖f‖2k+1+(p−1−2k)+

Xs )
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Remark 9.6. It will become clear from the proof below that if the function γ satisfies (9.20) for some

p > 2 + 2
n then the estimate (9.21) holds with a better rate of decay in t. In particular,

(9.24)

∫ ∞

0
‖∇k

(
γ(|f |2)f

)
‖L1dt . ‖f‖pXs + ‖f‖2k+1

Xs

Proof. According to the Leibnitz rule

∇k
(
γ(|f |2)f

)
=

k∑

l=0

∑

m1+...+m2l+1=k

Cl ~mγ(l)(|f |2)∇m1f∇m2f . . .∇m2l+1f

with some positive integer constants Cl ~m and non-negative vectors ~m = (m1, . . . , m2l+1). We may

assume that m2l+1 ≥ m2l ≥ . . . ≥ m1. Define

(9.25) qmr = (
1

2
− s−mr

n
)−1

for mr ≥ s − n
2 and qmr = ∞ otherwise. With the above definition the Sobolev embeddings H s ⊂

Wmr ,qmr and W s,2 + W s,∞ ⊂ Wmr ,qmr + Wmr ,∞ hold true 1 by Lemma 9.4. Then

‖∇k
(
γ(|f |2)f

)
‖L1 . ‖γ(|f |2)|∇kf |1− 2

n ‖
L1∩L

n
n−1
‖∇kf‖

2
n

L2+L∞+

k∑

l=1

∑

m1+...+m2l+1=k

‖γ(l)(|f |2)∇m1f . . .∇m2lf‖
L1∩L

q′m2l+1

(
‖f‖L2+L∞ + ‖∇sf‖L2+L∞

)
(9.26)

We claim for l > 0 that there exist 2 sets of parameters q1
mr

and q2
mr

for r = 1, .., 2l + 1 such that

2 ≤ q1,2
mr
≤ qmr , ∀r = 1, . . . , 2l + 1,(9.27)

2l∑

r=1

1

q1
mr

= 1,
2l∑

r=1

1

q2
mr

=
1

q′m2l+1

To prove the claim we let τ be the number of mr for r = 1, .., 2l such that mr ≥ s− n
2 . Observe that

2l∑

r=1:mr≥s−n
2

mr ≤ k −m2l+1

Therefore,

2l∑

r=1

1

qmr

≤ τ

2
− τs− k + m2l+1

n
≤ −τ(

s

n
− 1

2
) +

k −m2l+1

n

≤ −τ(
s

n
− 1

2
)− s − k

n
+

1

2
≤ 1

2
≤ 1

q′m2l+1

1In the case of mr = s − n
2 the value of qmr can be set arbitrarily large but different from ∞. However, since it does

not affect the following argument, we set qmr =∞ for simplicity.
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The inequality in the second line above follows since m2l+1 ≥ s− n
2 , which holds if τ > 0. On the other

hand
2l∑

r=1

1

2
= l ≥ 1

and the claim immediately follows,provided that l > 0. Thus using the sequence q1
mr

to handle the L1

norm in (9.26) and q2
mr

for the L
q′m2l+1 norm, we obtain

‖∇k
(
γ(|f |2)f

)
‖L1 .‖γ(|f |2)|∇kf |1− 2

n ‖
L1∩L

n
n−1
‖∇kf‖

2
n

L2+L∞+

k∑

l=1

∑

m1+...+m2l+1=k

‖γ(l)(|f |2)‖L∞‖∇m1f‖
L
q1m1∩L

q2m1
. . .‖∇m2lf‖

L
q1m2l∩L

q2m2l
‖∇sf‖L2+L∞

By Hölder inequality

‖γ(|f |2)|∇kf |1− 2
n ‖

L1∩L
n
n−1
. ‖∇kf‖1−

2
n

L2 ‖f‖
L

(p−1) 2n
n+2 ∩L2(p−1)

. ‖f‖p−
2
n

Hs

provided that p ≥ 2 + 2
n , which is dictated by the condition that (p − 1) 2n

n+2 ≥ 2. Finally, using the

property (9.27) together with the estimate (9.20) we obtain

‖∇k
(
γ(|f |2)f

)
‖L1 . ‖f‖p−

2
n

Hs ‖∇kf‖
2
n

L2+L∞ + (‖f‖p−1
Hs + ‖f‖2k+(p−1−2k)+

Hs )‖∇sf‖L2+L∞

. t−1(‖f‖pXs + ‖f‖2k+1−(p−1−2k)+

Xs )+

Similarly, we estimate

‖∇k
(
γ(|f |2)f

)
‖L2 . ‖γ(|f |2)‖L2∩L∞‖∇kf‖L2+L∞+(9.28)

k∑

l=1

∑

m1+...+m2l+1=k

‖γ(l)(|f |2)∇m1f . . .∇m2lf‖
L2∩L

2qm2l+1
qm2l+1

−2

(
‖f‖L2+L∞ + ‖∇sf‖L2+L∞

)

To estimate the first term in (9.28) we note that

‖γ(|f |2‖L2∩L∞ ≤ ‖f‖p−1

L∞∩L2(p−1) ≤ ‖f‖p−2
L∞ ‖f‖L2∩L∞ . (1 + t)−

n
2

(p−2)‖f‖p−1
Xs ,

where the second inequality gollows from interpolating L2(p−1) between L2 and L∞ and the last in-

equality is a consequence of Lemma 9.4 and definition of the space Xs. Thus

(9.29) ‖γ(|f |2)‖L2∩L∞‖∇kf‖L2+L∞ . (1 + t)−
n
2

(p−1)‖f‖pXs
Furthermore, using definition (9.25) we have that

2qm2l+1

qm2l+1
− 2

=
n

s−m2l+1
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Then

‖γ(l)(|f |2)∇m1f . . .∇m2lf‖
L2∩L

n
s−m2l+1

. ‖∇m1f‖Lqm1 +L∞×(9.30)

‖γ(l)(|f |2)∇m2f . . .∇m2lf‖
L2∩L

n
s−m2l+1 ∩L

2qm1
qm1−2 ∩L

nqm1
qm1 (s−m2l+1)−n

Using the definition of qm1 from (9.25) and the assumption that m1 ≤ m2l+1 we infer that the last

norm reduces to the one of the space

L2 ∩ L
n

s−m2l+1 , for m1 ≤ s− n

2
,

L2 ∩ L
n

s−m2l+1+(s−m1−n2 ) , for m1 > s− n

2

We now let τ be the number of mr for r = 2, .., 2l such that mr ≥ s− n
2 . Observe that since s > n

2 and

s ≥ k

2l∑

r=2

1

qmr

≤ τ

2
− sτ − k + m2l+1 + m1

n

= −τ(
s

n
− 1

2
) +

k −m2l+1 −m1

n

≤ min{s−m2l+1

n
,
(s−m2l+1 −m1) + s− n

2

n
}

On the other hand
2l∑

r=2

1

2
= l − 1

2
≥ 1

2

It therefore follows that there exist 2 sets of parameters q1
mr

and q2
mr

for r = 1, . . . , 2l such that

2 ≤ q1,2
mr
≤ qmr , ∀r = 2, . . . , 2l(9.31)

2l∑

r=2

1

q1
mr

= 2,

2l∑

r=2

1

q2
mr

=
(s−m2l+1 −m1) + s − n

2

n
or

s −m2l+1

n

In either case, with the help of Lemma 9.4, we can estimate

‖γ(l)(|f |2)∇m2f . . .∇m2lf‖
L2∩L

n
s−m2l+1 ∩L

2qm1
qm1−2∩L

nqm1
qm1(s−m2l+1)−n

. ‖f‖(p−1−2l)++2l−1
Hs

It therefore follows that the second term in (9.28) is

(9.32) . (1 + t)−n
k∑

l=1

‖f‖(p−1−2l)++2l+1
Xs
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Now combining this with (9.29), and using the condition that p ≥ 2 + 2
n , we infer that

‖∇k
(
γ(|f |2)f

)
‖L2 . (1 + t)−

n
2
−1(‖f‖pXs + ‖f‖2k+1+(p−1−2k)+

Xs )

The proof of (9.23) proceeds along the lines of the argument for the L2 estimate (9.22). We first

observe that since ζ(x) is an exponentially localized function, the Lq estimate for 1 ≤ q ≤ 2 can be

reduced to the L2 estimate. We then note that the condition that p ≥ 2 + 2
n was only used in the

estimate (9.29) which now takes the form

‖γ(|f |2) ζ‖L2∩L∞‖∇kf‖L2+L∞ . ‖γ(|f |2)‖L∞‖∇kf‖L2+L∞

. ‖fp−1‖L∞‖∇kf‖L2+L∞

. (1 + t)−
n
2
p‖f‖pXs

The remaining estimates already have the desired form (9.32).

9.2 L1 estimates

In this section we verify that
s∑

k=0

∫ ∞

0
‖∇kF (t, ·)‖L1 dt . δ2

with F as in (9.8).

By Corollary 7.4 we have

(9.33)
∣∣∣H(t, σ)−H(σ(t))

∣∣∣ . δ2(1 + t)2−n χ(t, x; σ),

where χ(t, x; σ) is a smooth cut-off function localized around the union of the paths xj(t, σ) = vj t+Dj.

Moreover, the spatial derivatives of the above difference also satisfy the same estimates. Using the

bootstrap assumptions (7.2) we obtain

s∑

k=0

∫ ∞

0

‖∇k
([

H(τ, σ)−H(σ(τ))
]
Z(τ)

)
‖L1 dτ . δ2

s∑

k=0

∫ ∞

0

‖∇kZ(τ)‖L2+L∞(1 + τ)2−n dτ

. δ3C−1
0

∫ ∞

0
(1 + t)2−n−n

2 . δ3(9.34)

The term Σ̇W (σ(t)) obeys the pointwise bound

|Σ̇W (σ(t))| . max
j
| ˙̃σj(t)|χ(t, x; σ)

This can be easily seen from the equation (6.4) and Lemma 7.3. The same estimate also holds for the

spatial derivatives of the quantity above. Thus, with the help of the already verified estimate (7.1) we

infer that

(9.35)
s∑

k=0

∫ ∞

0
‖∇k

(
Σ̇W (σ(τ))

)
‖L1 dτ . δ2

∫ t

0
(1 + t)−n . δ2
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The estimates for the O(w1w2)Z and O(w1w2) terms in (9.8) are straightforward due to the separation

and the exponential localization of the solitons w1 and w2, e.g.

(9.36)
s∑

k=0

∫ ∞

0
‖O
(
∇k(w1w2)

)
‖L1 .

∫ t

0
e−αmin(L+τ) dτ ≤ e−αminL

αmin
≤ ε

αmin
≤ δ2

Here we have used the separation assumption (2.12) and the condition (2.16), αminL ≥ | log ε|.
The exponential localization of the multi-soliton state w, the bootstrap assumptions (7.2) and the

estimate (9.23) of Lemma 9.5 yield the estimate

(9.37)
s∑

k=0

∫ ∞

0
‖O
(
∇k(|w|p−2Z2)

)
‖L1 dτ . δ2C−2

0

∫ t

0
(1 + τ)−n dτ . δ2

Finally, with the help of (9.21) (more specifically using the improvement (9.24) of the Remark 9.6),

we obtain

(9.38)
s∑

k=0

∫ ∞

0
‖∇k(Zp(τ))‖L1 dτ . ‖Z‖pXs . δp

9.3 L2 estimates

In this subsection we establish the estimate

‖F (t, ·)‖Hs . δ2(1 + t)−
n
2
−1

The arguments follows closely those of the previous section. Using the estimates (9.33), (9.23) and the

bootstrap assumptions (7.2) we obtain

‖
(
H(τ, σ)−H(σ(τ))

)
Z(t)‖Hs . δ2(1 + t)2−n

s∑

k=0

‖∇kZ(t, ·)‖L2+L∞

. δ3(1 + t)2−n−n
2 . δ3(1 + t)−

n
2
−1(9.39)

where the last inequality follows since n ≥ 3. Similar to (9.35)

(9.40) ‖Σ̇W (σ(t))‖Hs . δ2(1 + t)−n . δ2(1 + t)−
n
2
−1

The estimates for the O(w1w2)Z and O(w1w2) terms again follow from the separation and the expo-

nential localization of the solitons w1 and w2,

(9.41) ‖O(w1w2)‖Hs . e−αmin(L+t) . δ2(1 + t)−
n
2
−1

The exponential localization of the multi-soliton state w together with the estimate (9.23) of Lemma

9.5 and the bootstrap assumption (7.2), also give the estimate

(9.42) ‖O(|w|p−2Z2)‖Hs . δ2(1 + t)−n . δ2(1 + t)−
n
2
−1

Finally, using the estimate (9.22) of Lemma 9.5, we obtain

(9.43) ‖Zp(t)‖Hs . (1 + t)−
n
2
−1‖Z‖pXs . (1 + t)−

n
2
−1δp

This completes the proof of Lemma 9.2.
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10 Existence

In Lemmas 8.1 and 9.2 we establsihed the estimates

(10.1) | ˙̃σ| ≤ 1

2
δ2(1 + t)−n

for the admissible path σ(t) and

(10.2) ‖Z‖Xs ≤ δ2

for the solution Z(t, x) of the noninear inhomogeneous matrix charge transfer problem (9.2), under the

bootstrap assumptions (7.1), (7.2)

| ˙̃σ| ≤ 1

2
δ2(1 + t)−n,(10.3)

‖Z‖Xs ≤ δC−1
0(10.4)

and the condition that Z is asymptotically orthogonal to the null spaces of the hamiltonians H ∗j (σ)

with the constant δ2. In this section we shall show that these are sufficient to establish the existence of

the desired admissible path and the perturbation R. We prove existence by iteration. We shall define

a sequence of admissble paths σ(n)(t) and approximate solutions Z(n)(t) for n = 1, . . . according to the

following rules. Set

σ(1)(t) = σ(0)

to be the constant path coinciding with the initial data σ(0) common to all admissible paths. We now

define functions Z1(t, x) and σ2(t) to be a solution of the following linear system

i∂tZ
(1) + H(t, σ(1))Z(1) = Σ̇(2)W (σ(1)(t)) + O(w

(1)
1 w

(1)
2 ),

Z(1)(0, x) = Z0(x),〈
Σ̇(2)W (σ(1)(t)), ξm

j

〉
=
〈
O(w

(n−1)
1 w

(n−1)
2 ), ξm

j

〉
+ O( ˙̃σ(1)ξm

j Z(1)).

In other words, in the nonlinear equation (9.2) we replace the dependence on the admissible path

σ(t) by the dependence on the already defined path σ(1)(t) and remove the terms containing Z from

the right hand side of the equation. The equation (??) determining σ(2)(t) essentially ensures that

〈Z(1)(t), ξm
j (t)〉 = 0.

In general, we define

i∂tZ
(n) + H(σ(n)(t))Z(n) = Σ̇(n+1)W (σ(n)(t)) + O(w

(n)
1 w

(n)
2 ) + O(w

(n)
1 w

(n)
2 )Z(n−1)(10.5)

+ O(|w(n)|p−2|Z(n−1)|2) + O(|Z(n−1)|p) =: F (n),(10.6)

Z(n)(0, x) = Z0(x)〈
Σ̇(n+1)W (σ(n)(t)), ξm

j

〉
=
〈
O(w

(n)
1 w

(n)
2 )Z(n−1)+

O(w
(n)
1 w

(n)
2 ) + O(|w(n)|p−2|Z(n−1)|2) + O(|Z(n−1)|p), ξm

j

〉
+ O( ˙̃σ(n)(t)ξm

j Z(n)).(10.7)
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Leaving the issue of existence for the moment we utilize the bootstrap estimates proved in previous

sections. We shall assume that σn and Zn−1 satisfy (10.3) and (10.4) to prove the estimates (10.1)

and (10.2) for σ(n+1) and Z(n). First we estimate ˙̃σ(n+1) in terms of Z(n). Arguing essentially as in

Lemma 8.1 we infer that the path σ(n+1)(t) satisfies the estimate

| ˙̃σ(n+1)(t)| ≤ δ2(1 + t)−n(
1

4
+ ‖Z(n)(t)‖L2+L∞)

Once the estimate on σ(n+1)(t) has been established we consider the Z(n) equation. First, by construc-

tion Z(n) is orthogonal to ξm
j (defined relative to the path σ(n)(t)).

‖Z(n)‖Xs . δ2‖Z(n)‖Xs + δ2

and the desired estimates on Z(n) and σ(n) follow.

Therefore, we can choose a convergent subsequence of the paths σ(k)(t) → σ(t) and a weekly

convergent in Hs(Rn) subsequence Z(k) → Z. We multiply the equation (10.6) by a smooth compactly

supported function ζ(x), integrate of Rn and pass to the limit usnig that on any compact set Z(k) → Z

strongly in Hs′ for any s′ < s. In particular, since s > n
2 , Zk → Z pointwise. It will follow that Z is a

solution of the equation

i∂tZ + H(σ(t))Z = Σ̇W (σ(t)) + O(w1w2) + O(w1w2)Z + O(|w|p−2|Z|2) + O(|Z|p),(10.8)

Z(0, x) == Z0(x)

We also pass to the limit in the equation (10.7) to obtain

(10.9)
〈
Σ̇W (σ(t)), ξm

j

〉
=
〈
O(w1w2)Z + O(w1w2) + O(|w|p−2|Z|2) + O(|Z|p) + O( ˙̃σ(t)Z), ξm

j

〉
.

Comparing equations (10.8) and (10.9) we conclude that

〈Z(t), ξm
j (t)〉 = 0

for all j, m. Therefore, the function ψ = R + w1 + w2 solves the original NLS and by uniqueness, say

in L2, ψ is our original solution.

To show existence of the solution Z(n), σ(n+1) of the linear system (10.6), (10.7) we first construct

the solution on a small time interval. We note that the ”system” (10.7) for ˙̃σ(n+1) can be resolved

algebraically due to the spatial separation of the paths σ
(n)
j (t). Therefore, for simplicity we can replace

the system (10.6), (10.7) by the following caricature:

i∂tz +
1

2
4z = V (t, x)z + ω(t)a(t, x),

ω(t) = 〈z, b(t, ·)〉+ f(t)

Here V, a, b, f are sufficiently smooth given functions. We eliminate ω(t) and infer that

i∂tz +
1

2
4z = V (t, x)z + 〈z, b′(t, ·)〉a(t, x) + F (t, x)
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Using the standard energy estimates we obtain that

‖z(t)‖Hs ≤ ‖z0‖Hs + C1t sup
τ≤t
‖z(τ)‖Hs + C2,

where the constants C1 and C2 depend on the given functions. Therefore, we can establish the existence

of the solution on the time interval of size 1
2C−1

1 by means of the standard contraction argument. Then

we can repeat this argument indefinitely thus constructing a global classical solution.

11 Appendix: The linearized problem

11.1 Estimates for matrix charge transfer models

In this section we recall some of the estimates from Sections 7 and 8 from our companion paper [RSS].

First, consider the case of a system with a single matrix potential:

(11.1) i∂t

(
ψ1

ψ2

)
+

(
H + U −W

W −H − U

)(
ψ1

ψ2

)
= 0

with U, W real-valued and H = 1
24−µ, µ > 0. We say that A :=

(
H + U −W

W −H − U

)
is admissible

iff the conditions of the following Definition 11.1 hold.

Definition 11.1. Let A be as above with U, W real-valued and exponentially decaying. The operator

A on Dom(A) = H2(Rn)×H2(Rn) ⊂ H := L2(R3)× L2(R3) is admissible provided

• spec(A) ⊂ R and spec(A) ∩ (−µ, µ) = {ω` | 0 ≤ ` ≤M}, for some M <∞ where ω0 = 0 and all

ωj are distinct eigenvalues. There are no eigenvalues in specess(A) = (−∞,−µ] ∪ [µ,∞).

• For 1 ≤ ` ≤ M , L` := ker(A − ω`)
2 = ker(A − ω`), and ker(A) ( ker(A2) = ker(A3) =: L0.

Moreover, these spaces are finite dimensional.

• The ranges Ran(A− ω`) for 1 ≤ ` ≤M and Ran(A2) are closed.

• The spaces L` are spanned by exponentially decreasing functions in H (say with bound e−ε0 |x|).

• The points ±µ are not resonances of A.

• All these assumptions hold as well for the adjoint A∗. We denote the corresponding (generalized)

eigenspaces by L∗` .

We will discuss these conditions in detail in the following subsection 11.2. It is possible to establish

some of these properties by means of “abstract” methods (for example, the exponential decay of

elements of generalized eigenspaces via a variant of Agmon’s argument, or the closedness of Ran(A−ω`)

from Fredholm’s theory), whereas others can be reduced to statements concerning certain semi-linear

elliptic operators L+, L−, see (11.30) (for example, that the spectrum is real or that only 0 can have

a generalized eigenspace). However, we will not prove that L+, L− have the required properties.
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[is this all we’ll say about L+, L− ???? Hopefully not] ←−
Another condition that we will not deal with in this paper is the absence of imbedded eigenvalues in

the essential spectrum. This property will remain an assumption.

It is shown in [RSS], Lemma 7.2 that under these conditions there is a direct sum decomposition

(11.2) H =
M∑

j=0

Lj +
( M∑

j=0

L∗j
)⊥

and we denote by Ps the induced projection onto
(∑M

j=0 L∗j
)⊥

. In general, Ps is non-orthogonal. The

letter “s” here stands for “scattering” (subspace). It is known that Ran(Ps) plays the role of the

scattering states for the evolution eitA. Indeed, the main result from Section 7 in [RSS] is that if A is

admissible and the linear stability condition

(11.3) sup
t
‖eitAPs‖2→2 <∞

holds, and also ‖V̂ ‖1 <∞, then one has the dispersive bound

(11.4) ‖eitAPsψ0‖L∞ . |t|−
3
2 ‖ψ0‖L1∩L2 .

Next, we recall the notion of matrix charge transfer models from Section 8 in [RSS].

Definition 11.2. By a matrix charge transfer model we mean a system

i∂t
~ψ +

(
1
24 0
0 −1

24

)
~ψ +

ν∑

j=1

Vj(· − ~vjt)~ψ = 0(11.5)

~ψ|t=0 = ~ψ0,

where ~vj are distinct vectors in R3, and Vj are matrix potentials of the form

Vj(t, x) =

(
Uj(x) −eiθj(t,x) Wj(x)

e−iθj(t,x) Wj(x) −Uj(x)

)
,

where θj(t, x) = (|~vj |2 + α2
j )t + 2x · ~vj + γj, αj , γj ∈ R, αj 6= 0. Furthermore, we require that each

Hj =

( 1
24− 1

2α2
j + Uj −Wj

Wj −1
24+ 1

2α2
j − Uj

)

be admissible in the sense of Definition 11.1 and that it satisfy the linear stability condition (11.3).

It is clear that the Hamiltonian in (2.20) is of this form. As in Lemma 3.1 above one now verifies the

following. The Galilei transforms G~v := G~v,0 are defined as in (3.13), i.e.,

G~v(t)

(
f1

f2

)
=

(
g~v,0(t)f1

g~v,0(t)f̄2

)

where g~v,0(t) = e−i |~v|
2

2
te−ix·~veit~v·p.
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Lemma 11.3. Let α ∈ R and set

A :=

(
1
24− 1

2α2 + U −W
W −1

24+ 1
2α2 − U

)

with real-valued U, W . Moreover, let ~v ∈ R3, θ(t, x) = (|~v |2 + α2)t + 2x · ~v + γ, γ ∈ R, and define

H(t) :=

(
1
24 + U(· − ~vt) −eiθ(t,·−~vt)W (· − ~vt)

e−iθ(t,·−~vt)W (· − ~vt) −1
24− U(· − ~vt)

)
.

Let S(t), S(0) = Id, denote the propagator of the system

i∂tS(t) + H(t)S(t) = 0.

Finally, let

(11.6) M(t) =Mα,γ(t) =

(
e−iω(t)/2 0

0 eiω(t)/2

)

where ω(t) = α2t + γ. Then

(11.7) S(t) = G~v,0(t)
−1M(t)−1eitAM(0)G~v,0(0).

Proof. One has

(11.8) i∂tM(t)G~v(t)S(t) =

(
1
2ω̇ 0
0 −1

2 ω̇

)
M(t)G~v(t)S(t) +M(t)iĠ~v(t)S(t)−M(t)G~v(t)H(t)S(t).

Let ρ(t, x) = t|~v |2 + 2x · ~v. One now checks the following properties by differentiation:

M(t)iĠ~v(t) = −
(

1
2 |~v |2 + ~v · ~p 0

0 −1
2 |~v |2 + ~v · ~p

)
M(t)G~v(t)

M(t)G~v(t)H(t) =

(
1
24+ U −ei(θ−ρ−ω)W

e−i(θ−ρ−ω)W −1
24− U

)
M(t)G~v(t)

−
(

1
2 |~v |2 + ~v · ~p 0

0 −1
2 |~v |2 + ~v · ~p

)
M(t)G~v(t).(11.9)

The right-hand side of (11.9) arises as follows. First, the Galilei transform introduces a factor of e−ix·~v,
which needs to be commuted with 1

24. Since

1

2
4
(
e−ix·~vf

)
= −1

2
|~v|2e−ix·~vf − e−ix·~vi~v · ~∇f +

1

2
e−ix·~v4f

=
1

2
|~v|2e−ix·~vf − i~v · ~∇

(
fe−ix·~v

)
+

1

2
e−ix·~v4f

=
(1

2
|~v|2 + ~v · ~p

)(
fe−ix·~v

)
+

1

2
e−ix·~v4f,
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one obtains the final term on the right-hand side of (11.9). It remains to check the terms involving

the potentials (for simplicity θ(· − t~v) = θ(t, · − ~vt)):

M(t)G~v(t)

(
U(· − ~vt) −eiθ(t,·−~vt)W (· − ~vt)

e−iθ(t,·−~vt)W (· − ~vt) −U(· − ~vt)

)(
f1

f2

)

=

(
e−iω(t)/2 0

0 eiω(t)/2

)(
g~v(t)U(· − ~vt)f1 − g~v(t)e

iθ(·−~vt)W (· − ~vt)f2

g~v(t)eiθ(·−~vt)W (· − ~vt)f1 − g~v(t)U(· − ~vt)f2

)

=

(
Ug~v(t)(e

−iω(t)/2f1)−We−i(v2t+2x·~v)ei(θ−ω)g~v(t)eiω(t)/2f2

Wei(v2t+2x·~v)ei(ω−θ) g~v(t)(e−iω(t)/2f1)− U g~v(t)eiω(t)/2f2

)

=

(
U −ei(θ−ω−ρ)W

e−i(θ−ω−ρ)W −U

)(
e−iω(t)/2 0

0 eiω(t)/2

)(
g~v(t)f1

g~v(t)f2

)
,

as claimed. In view of our definitions, θ−ρ−ω = 0. Since ω̇ = α2, the lemma follows by inserting (11.9)

into (11.8).

In order to prove our main dispersive estimates for such matrix charge transfer problems we need

to formulate a condition which ensures that the initial condition belongs to the stable subspace. To do

so, let Ps(Hj) and Pb(Hj) be the projectors induced by the decomposition (11.2) for the operator Hj .

Abusing terminology somewhat, we refer to Ran(Pb(Hj)) as the bound states of Hj .

Definition 11.4. Let U(t)~ψ0 = ~ψ(t, ·) be the solution of (11.5). We say that ~ψ0 is a scattering state

relative to Hj if

‖Pb(Hj , t)U(t)~ψ0‖L2 → 0 as t→ +∞.

Here

(11.10) Pb(Hj , t) := G~vj (t)
−1Mj(t)

−1Pb(Hj)Mj(t)G~vj(t)

with Mj(t) =Mαj ,γj(t) as in (11.6).

The formula (11.10) is of course motivated by (11.7). Clearly, Pb(Hj , t) is the projection onto

the bound states of Hj that have been translated to the position of the matrix potential Vj(· − t~vj).

Equivalently, one can think of it as translating the solution of (11.5) from that position to the origin,

projecting onto the bound states of Hj , and then translating back.

We now formulate our decay estimate for matrix charge transfer models, see Theorem 8.6 in [RSS].

Theorem 11.5. Consider the matrix charge transfer model as in Definition 11.2. Let U(t) denote the

propagator of the equation (11.5). Then for any initial data ~ψ0 ∈ L1 ∩ L2, which is a scattering state

relative to each Hj in the sense of Definition 11.4, one has the decay estimates

(11.11) ‖U(t)~ψ0‖L∞ . 〈t〉−
3
2 ‖~ψ0‖L1∩L2.

For technical reasons, we need the estimate (11.11) for perturbed matrix charge transfer equations,

as described in the following corollary. This is discussed in Remark 8.6 in [RSS].
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Corollary 11.6. Let ~ψ be a solution of the equation

i∂t
~ψ +

(
1
24 0
0 −1

24

)
~ψ +

ν∑

j=1

Vj(· − ~vj t)~ψ + V0(t, x)~ψ = 0(11.12)

~ψ|t=0 = ~ψ0,

where everything is the same as in Definition 11.2 up to the perturbation V0(t, x) which satisfies

sup
t
‖V0(t, ·)‖L1∩L∞ < ε.

Let Ũ(t) denote the propagator of the equation (11.12). Then for any initial data ~ψ0 ∈ L1 ∩ L2, which

is a scattering state relative to each Hj in the sense of Definition 11.4 (with U(t) replaced by Ũ(t)),

one has the decay estimates

(11.13) ‖Ũ(t)~ψ0‖L∞ . 〈t〉−
3
2 ‖~ψ0‖L1∩L2

provided ε is sufficiently small.

[state the inhomogeneous estimates etc...] . ←−

11.2 The spectral assumptions

In order for the linear estimates to apply, we need to impose the conditions in Definition 11.1 as well

as the linear stability assumption 11.3 on the operators from (2.21). The admissibility conditions of

Definition 11.1 were motivated to a large extent by Buslaev and Perelman [BP1], who built on earlier

work of Weinstein [We1]. We now analyse these conditions in detail. As before,

(11.14) A :=

(
H + U −W

W −H − U

)
= B + V

where U, W are real-valued, H = 1
24−µ with µ > 0, and V is the matrix potential consisting of U, W .

We first dispense with some general spectral properties of A.

Lemma 11.7. Let the matrix potential V be bounded and go to zero at infinity. Then (A − z)−1

is a meromorphic function in Ω := C \ (−∞,−µ] ∪ [µ,∞). The poles are eigenvalues of A of finite

multiplicity and Ran(A − z) is closed for all z ∈ Ω. Finally, the complement of Ω agrees with the

essential spectrum of A, i.e., specess(A) = (−∞,−µ] ∪ [µ,∞).

Proof. Suppose that z ∈ Ω. Then B − z is invertible, and A− z =
(
1 + V (B − z)−1

)
(B − z). Since

V (B − z)−1 is analytic and compact in that region of z’s, the analytic Fredholm theorem implies that

1 + V (B − z)−1 is invertible for all but a discrete set of z’s in Ω. Furthermore, the poles a precisely

eigenvalues of A of finite multiplicity. It is also a general property that the ranges Ran(1+V (B−z)−1)

are closed. Indeed, if K is any compact operator on a Banach space, then it is well-known and also
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easy to see that Ran(I−K) is closed. Since B−z has a bounded inverse for all z ∈ Ω, this implies that

Ran(A−z) is closed, as claimed. Conjugating by the matrix P =

(
1 i
1 −i

)
leads to the Hamiltonians

(11.15)

Ã := P−1AP = i

(
0 H + V1

−H − V2 0

)
= B̃ + V, B̃ = i

(
0 H
−H 0

)
, V = i

(
0 V1

−V2 0

)

where V1 = U + W and V2 = U −W . The system (11.15) corresponds to writing a vector in terms

of real and imaginary parts, whereas (11.28) corresponds to working with the solution itself and its

conjugate. By means of the matrix J =

(
0 i
−i 0

)
one can also write

B̃ =

(
H 0
0 H

)
J, Ã =

(
H + V1 0

0 H + V2

)
J.

Since B̃∗ = B̃ it follows that spec(B̃) ⊂ R. One checks that for <z 6= 0

(B̃ − z)−1 = (B̃ + z)

(
(H2 − z2)−1 0

0 (H2 − z2)−1

)

=

(
(H2 − z2)−1 0

0 (H2 − z2)−1

)
(B̃ + z)(11.16)

(Ã− z)−1 = (B̃ − z)−1 − (B̃ − z)−1W1

[
1 + W2J(B̃ − z)−1W1

]−1
W2J(B̃ − z)−1(11.17)

where W1 and W2 are the following matrix potentials that go to zero at infinity:

W1 =

(
|V1|

1
2 0

0 |V2|
1
2

)
, W2 =

(
|V1|

1
2 sign(V1) 0

0 |V2|
1
2 sign(V2)

)
.

The inverse of the operator in brackets exists if z = it with t large, for example. Moreover, by the

assumed decay of the potential the entire operator that is being subtracted from the right-hand side

is compact in that case. One is therefore in a position to apply Weyl’s criterion, see Theorem XIII.14

in [RS4], whence

(11.18) specess(A) = specess(Ã) = (−∞,−µ] ∪ [µ,∞).

The identity (11.17) goes back to Grillakis [Gr].

Next, we need to locate possible eigenvalues of A or equivalently, Ã. This will not be done on the

same general level, but require analysis of L+, L− from (11.30). But we first discuss another general

property of the matrix operator A.

Lemma 11.8. Let A be as in (11.14) with U, W continuous and W exponentially decaying, whereas U

is only required to tend to zero. If f ∈ ker(A−E)k for some −µ < E < µ and some positive integer k,

then f decays exponentially.
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Proof. We want to emphasize that the following result is “abstract” and does not rely on any special

structure of the matrix potential or on any properties of L+ or L−. We will use a variant of Agmon’s

argument [Ag]. More precisely, suppose that for some −µ < E < µ, there are ψ1, ψ2 ∈ H2(Rn) so that

(4− µ + U)ψ1 −Wψ2 = Eψ1

Wψ1 + (−4+ µ− U)ψ2 = Eψ2.(11.19)

As usual, U, W are real-valued and exponentially decaying, µ > 0. Suppose |W (x)| . e−b|x|. Then

define the Agmon metrics

ρ±E(x) = inf
γ:0→x

L±Ag(γ)

L±Ag(γ) =

∫ 1

0

min
(√

(µ±E − U(γ(t)))+ , b/2
)
‖γ̇(t)‖ dt(11.20)

where γ(t) is a C1-curve with t ∈ [0, 1], and the infimum is to be taken over such curves that connect

0, x. These functions satisfy

(11.21) |∇ρ±E(x)| ≤
√

(µ ±E − U(x))+.

Moreover, one has ρ±E(x) ≤ b|x|/2 by construction. Now fix some small ε > 0 and set ω±(x) :=

e2(1−ε)ρ±E(x). Our goal is to show that

(11.22)

∫ [
ω+(x)|ψ1(x)|2 + ω−(x)|ψ2(x)|2

]
dx <∞.

Not only does this exponential decay in the mean suffice for our applications (cf. Section 7 in [RSS]), but

it can also be improved to pointwise decay using regularity estimates for ψ1, ψ2. We do not elaborate

on this, see for example [Ag] and Hislop, Sigal [HiSig].

Fix R arbitrary and large. For technical reasons, we set

ρ±E,R(x) := min
(
2(1− ε)ρ±E(x), R

)
, ω±R(x) := eρ±E,R(x).

Notice that (11.21) remains valid in this case, and also that ρ±E(x) ≤ min(b|x|/2, R). Furthermore, by

choice of E there is a smooth functions φ that is equal to one for large x so that

supp(φ) ⊂ {µ + E − U > 0} ∩ {µ−E − U > 0}.

It will therefore suffice to prove the following modified form of (11.22):

(11.23) sup
R

∫ [
ω+

R(x)|ψ1(x)|2 + ω−R(x)|ψ2(x)|2
]
φ2(x) dx <∞.

All constants in the following argument will be independent of R. By construction, there is δ > 0 such
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that

δ

∫
ω+

R(x)|ψ1(x)|2φ2(x) dx ≤
∫

ω+
R(x)(µ + E − U(x))|ψ1(x)|2φ2(x) dx(11.24)

=

∫
ω+

R(x)(4ψ1 −Wψ2)(x)ψ̄1(x)φ2(x) dx

= −
∫
∇(ω+

R(x)φ2(x))∇ψ1(x)ψ̄1(x) dx−
∫

ω+
R(x)φ2(x)|∇ψ1(x)|2 dx(11.25)

−
∫

ω+
R(x)W (x)ψ1(x)ψ̄2(x)φ2(x) dx.(11.26)

As far as the final term (11.26) is concerned, notice that supx,R |ω+
R(x)φ2(x)W (x)| . 1 by construc-

tion, whence |(11.26)| . ‖ψ1‖2‖ψ2‖2. Furthermore, by (11.21) and Cauchy-Schwarz, the first integral

in (11.25) satisfies
∣∣∣∣
∫
∇(ω+

R(x)φ2(x))∇ψ1(x)ψ̄1(x) dx

∣∣∣∣

≤ 2(1− ε)
(∫

ω+
R(x)(µ + E − U(x))φ2(x)|ψ1(x)|2 dx

) 1
2
(∫

ω+
R(x)φ(x)2 |∇ψ1(x)|2 dx

) 1
2

(11.27)

+2
(∫

ω+
R(x)φ2(x)|∇ψ1(x)|2 dx

) 1
2
(∫

ω+
R(x)|∇φ(x)|2 |ψ1(x)|2 dx

) 1
2

Since the first integral in (11.27) is the same as that in (11.24), inserting (11.27) into (11.25) yields

after some simple manipulations

ε

∫
ω+

R(x)(µ + E − U(x))|ψ1(x)|2φ2(x) dx ≤ ε−1

∫
ω+

R(x)|∇φ(x)|2 |ψ1(x)|2 dx

−
∫

ω+
R(x)φ(x)2W (x)ψ2(x) ψ̄1(x) dx.

Since ∇φ has compact support, and by our previous considerations involving ω+
RW , the entire right-

hand side is bounded independently of R, and thus also (11.24). A symmetric argument applies to

the integral with ψ2, and (11.23), (11.22) hold. This method also shows that functions belonging to

generalized eigenspaces decay exponentially. Indeed, suppose (A− E)~g = 0 and (A−E) ~f = ~g. Then

(4− µ + U)f1 −Wf2 = Ef1 + g1

Wf1 + (−4 + µ − U)f2 = Ef2 + g2

with g1, g2 exponentially decaying. Decreasing the value of b in (11.20) if necessay allows one to use

the same argument as before to prove (11.22) for ~f . By induction, one then deals with all values of k

as in the statement of the lemma.

We now need to specialize A from (11.14) to the form (2.21), i.e.,

(11.28) A =

(
1
24− α2

2 + β(φ2) + β′(φ2)φ2 β′(φ2)φ2

−β′(φ2)φ2 −1
24+ α2

2 − β(φ2)− β′(φ2)φ2

)
.
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As shown in Section 2, these are the stationary Hamiltonians derived from the linearization of NLS,

see (2.21) and Lemma 11.3. Let α > 0 and φ be a solution of

(11.29)
1

2
4φ − α2

2
φ + β(φ2)φ = 0

which is positive and radially symmetric. Such a solution is known to exist and to be unique if

β(u) = |u|σ provided 0 < σ < 2
d−2 and is referred to as the “ground state”. In our case we will need

to assume the existence and uniqueness of φ, together with several other properties.

[is that all we can say ???] ←−
To formulate those properties, let

(11.30) L− := −1

2
4 +

α2

2
− β(φ2), L+ := −1

2
4 +

α2

2
− β(φ2)− 2β′(φ2)φ2

with domains Dom(L+) = Dom(L−) = H2(Rn) so that

(11.31) Ã =

(
0 −iL−

iL+ 0

)

with Dom(Ã) = H2(Rn)×H2(Rn). Here Ã is obtained by conjugating A with the matrix P , see (11.31).

For simplicity, however, we no longer distinguish between A and Ã, i.e., we set A = Ã. The spectrum

of L± on [µ,∞) is purely absolutely continuous, and below µ = α2

2 > 0 there are at most a finite

number of eigenvalues of finite multiplicity (by Birman-Schwinger). Clearly,

(11.32) L−φ = 0, L+(∂jφ) = 0, 1 ≤ j ≤ n, L+(∂αφ) = −αφ,

whee the final propery is formal. We now collect some crucial properties discovered by M. Weinstein.

Definition 11.9. Spectral assumptions on the scalar elliptic operators L+ and L− :

L− has a unique positive, radial and exponentially decaying solution φ = φ(·; α) for all α ∈ (α0 −
c0, α0 + c0). Moreover, φ is smooth in both variables and ‖∂αφ‖H1(

�
n) +‖∂2

αφ‖H1(
�
n) <∞. The kernels

have the following explicit form:

ker(L−) = span{φ} and ker(L+) = span{∂jφ | 1 ≤ j ≤ n}.

The operator L+ has a single negative eigenvalue E1 with a unique ground state ψ ≥ 0, whereas L− is

nonnegative. Furthermore, the nonlinear stability condition 〈∂αφ(·; α), φ(·; α)〉> 0 holds, see (2.13).

We would like to emphasize that these properties have been shown to hold by Weinstein [We1]

and [We2] in case of power nonlinearities, i.e., β(u) = |u|σ, 0 < σ < 2
d−2 .

[any other cases known??]. ←−

Lemma 11.10. Impose the spectral assumption on L+ and L− from Definition 11.9. Then spec(A) ⊂
R, the only eigenvalue that admits a generalized eigenspace is 0, and Ran(A2) is closed.
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Proof. Consider

(11.33) A2 =

(
T ∗ 0
0 T

)
, T = L+L−

with domain H4(Rn) = W 4,2(Rn). Following [BP1], we first show that any eigenvalue of T , and

therefore also of spec(A2) is real, and then under the assumption (2.13), that it is nonnegative. Because

of (11.18), the latter then implies that spec(A) is real, as required in Definition 11.1. Clearly, Tφ = 0.

Let ψ 6∈ span{φ}, Tψ = Eψ. Let ψ = ψ1 + cφ, ψ1 ⊥ φ. Then

L
1
2
−L+L

1
2
−L

1
2
−ψ1 = EL

1
2
−ψ1,

so that L
1
2
−ψ1 6= 0 is an eigenfunction of the symmetric operator L

1
2
−L+L

1
2
− (with domain H4(Rn)), and

thus E is real. Hence any eigenvalue of A can only be real or purely imaginary. Since φ ⊥ ker(L+) by

our assumption concerning L+, the function

g(E) := 〈(L+ −E)−1φ, φ〉

is well-defined on an interval of the form (E1, E2) for some E2 > 0. Moreover,

g′(E) = ‖(L+ −E)−1φ‖2 > 0

so that g(E) is strictly increasing on the interval. Finally,

(11.34) g(0) = − 1

α
〈∂αφ, φ〉 < 0

in view of (11.32) and (2.13). Now suppose that A2 has a negative eigenvalue. Then by the preceding,

so does T , and therefore also L
1
2
−L+L

1
2
−. More precisely, the argument from before implies that there

is χ ∈ ker(L−)⊥, χ 6= 0, so that

〈L
1
2
−L+L

1
2
−χ, χ〉 = 〈L+ψ, ψ〉< 0

with ψ = L
1
2
−χ. Let P⊥− denote the projection onto the orthogonal complement of ker(L−) = span(φ).

By the Rayleigh principle this implies that the self-adjoint operator P⊥−L+P⊥− has a negative eigenvalue,

say E3 < 0. Thus L+ψ = E3ψ + cφ for some ψ ⊥ φ. If c = 0, then E3 = E1 so that ψ > 0 as the

ground state of L+. But then 〈φ, ψ〉> 0, which is impossible. So c 6= 0, and one therefore obtains

(L+ − E3)
−1φ =

1

c
ψ =⇒ g(E3) = 0.

But this contradicts (11.34) by strict monotonicity of g. Thus A2 does not have any negative eigen-

values, which implies that A does not have imaginary eigenvalues. Hence all eigenvalues of A are real,

as desired.

We now turn to generalized eigenspaces. Suppose Aψ = Eψ + χ, where E 6= 0, (A− E)χ = 0 and

χ 6= 0. This is equivalent to saying that A has a generalized eigenspace at E. Then ψ, χ ∈ Dom(A2),

and moreover

(A2 −E2)χ = 0, (A2 − E2)ψ = (A−E)χ + 2Eχ = 2Eχ,
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so that A2 would have a generalized eigenspace at E, and therefore also T . Hence, suppose Tψ = Eψ,

with E 6= 0, ψ 6= 0. If (T −E)χ = cψ with c 6= 0, then

(L
1
2
−L+L

1
2
− −E)L

1
2
−χ1 = cL

1
2
−ψ1 6= 0, (L

1
2
−L+L

1
2
− − E)2L

1
2
−χ1 = cL

1
2
−(L+L− − E)ψ = 0

where ψ1, χ1 denote the projections of ψ, χ onto the orthogonal complement of φ. But L
1
2
−ψ1 6= 0 since

E 6= 0 and thus E would have to be a generalized eigenvalue of L
1
2
−L+L

1
2
−, which is impossible. So only

E = 0 can have a generalized eigenspace. Here we used the property that L
1
2
−L+L

1
2
− is self-adjoint on

its domain H4(Rn). While symmetry is obvious, self-adjointness on H4(Rn) requires a bit more care.

Suppose 〈L
1
2
−L+L

1
2
−f, g〉 = 〈f, h〉 for all f ∈ H4(Rn), and some fixed g, h ∈ L2(Rn). Taking f ∈ ker(L−)

shows that P⊥− h = h, i.e., that h ∈ (ker(L
1
2
−))⊥. By the Fredholm alternative applied to the self-adjoint

operator L
1
2
−, one can write h = L

1
2
−h1 with some h1 ∈ Dom(L

1
2
−) = H1(Rn). Note that h1 is defined

only up to an element in ker(L
1
2
−), i.e., h1 + cφ has the same property for any constant c. Thus

〈L
1
2
−L+L

1
2
−f, g〉 = 〈f, L

1
2
−(h1 + cφ)〉 = 〈L

1
2
−f, h1 + cφ〉

for all f ∈ H4(Rn). Equivalently, setting f1 = L
1
2
−f , one has

〈L
1
2
−L+f1, g〉 = 〈f1, h1 + cφ〉.

Note that the class of f1 are all functions in H3(Rn) with f1 ⊥ φ. We now want to remove the latter

restriction, which can be achieved by a suitable choice of c. Indeed, in order to achieve

〈L
1
2
−L+(f1 + λφ), g〉= 〈f1 + λφ, h1 + cφ〉

for all f1 ∈ H3(Rn), f1 ⊥ φ, λ ∈ C one chooses c such that

〈L
1
2
−L+φ, g〉 = 〈φ, h1 + cφ〉,

which can be done since 〈φ, φ〉 > 0. Renaming h1 + cφ into h1, one thus arrives at

(11.35) 〈L
1
2
−L+f1, g〉 = 〈f1, h1〉 for all f1 ∈ H3(Rn).

Recall that h = L
1
2
−h1. One can now continue this procedure. Indeed, since (11.35) implies that

h1 ⊥ ker(L+), one can write h1 = L+h2 = L+(h2 +
∑k

j=1 cjψj), where ker(L+) = span{ψj}kj=1 and

h2 ∈ H3(Rn) (in fact, ψj = ∂jφ by our assumption). As before, the constants {cj} are chosen in such

a way that
〈
L

1
2
−(L+f1 +

k∑

j=1

λjψj), g
〉

=
〈
L+f1 +

k∑

j=1

λjψj, h2 +
k∑

j=1

cjψj

〉

for all λj . This can be done because of the invertibility of the Gram matrix of {ψj}kj=1. Hence

〈L
1
2
−f2, g〉 = 〈f2, h2〉 for all f2 ∈ H1(Rn).
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Moreover, h = L
1
2
−L+h2 with h2 ∈ H3(Rn). By the self-adjointness of L

1
2
− this implies that h2 = L

1
2
−g.

It follows that g ∈ H4(Rn) and h = L
1
2
−L+L

1
2
−g as desired.

Finally, we show that Ran(A2) is closed. By (11.33) it suffices to show that the ranges of both

T = L+L− and T ∗ = L−L+ are closed with domain H4(Rn). We will first verify that these operators

are closed on this domain. Indeed, they each can be written in the form 42 + F14+4F2 + F3. Since

for M large

‖(42 + M + F14 +4F2 + F3)f‖2 ≥ ‖(42 + M)f‖2 − C‖f‖W 2,2 ≥ 1

2
‖(42 + M)f‖2 & ‖f‖W 4,2 ,

one concludes that T + M , T ∗ + M are closed, and therefore also T, T ∗. Next, let P− and P+ be the

projections onto ker(L−) and ker(L+), respectively. Then L−L+ = L−P⊥−L+P⊥+ . Now

(11.36) P⊥−L+f = L+f − ‖φ‖−2〈L+f, φ〉φ = L+

(
f − ‖φ‖−2〈f, L+φ〉φ̃

)
,

where we have written φ = L+φ̃, φ̃ ∈ ker(L+)⊥ = Ran(P⊥+ ) by virtue of the fact that

φ ∈ Ran(L+) = Ran(L+) = ker(L+)⊥ = span{∂jφ}⊥.

The last equality here is Weinstein’s characterization, more precisely, our assumption on L+. Define

φ̃ := P⊥+ φ̃1, Qf := f − ‖φ‖−2〈f, L+φ〉φ̃, Q̃f := f − ‖φ‖−2〈f, P⊥+ L+φ〉φ̃1

so that (11.36) gives

P⊥−L+P⊥+ = L+QP⊥+ = L+P⊥+ Q̃ =⇒ L−L+ = L−L+P⊥+ Q̃.

In particular,

‖T ∗f‖2 = ‖L−P⊥−L+P⊥+ f‖2 ≥ c1 ‖P⊥−L+P⊥+ f‖2
= c1 ‖L+QP⊥+ f‖2 = c1 ‖L+P⊥+ Q̃f‖2 ≥ c1c2 ‖P⊥+ Q̃f‖2,(11.37)

where the existence of c1, c2 > 0 follows from the self-adjointness of L−, L+. Hence, if T ∗fn =

T ∗P⊥+ Q̃fn → h in L2, then by (11.37) and linearity P⊥+ Q̃fn → g in L2. Since T ∗ was shown to

be closed, it follows that h = T ∗g, and Ran(T ∗) is closed. A similar argument shows that Ran(T ) is

closed.

Next, we derive the linear stability assumption as well as the structure of the generalized eigenspaces

of A and A∗ from our spectral assumptions on L−, L+. From the spectral assumptions in Definition 11.9

as well as

L−φ = 0, L−(xjφ) = −∂jφ, L+(∂jφ) = 0, L+(∂αφ) = −αφ
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it follows that

ker(A) = span
{(0

φ

)
,

(
∂jφ

0

)
: 1 ≤ j ≤ n

}

ker(A∗) = span
{(φ

0

)
,

(
0

∂jφ

)
: 1 ≤ j ≤ n

}

N (A) :=
∞⋃

k=1

ker(Ak) ⊃ span
{(0

φ

)
,

(
∂αφ

0

)
,

(
0

xjφ

)
,

(
∂jφ

0

)
: 1 ≤ j ≤ n

}
=:M(11.38)

N (A∗) :=
∞⋃

k=1

ker((A∗)k) ⊃ span
{(φ

0

)
,

(
0

∂αφ

)
,

(
xjφ

0

)
,

(
0

∂jφ

)
: 1 ≤ j ≤ n

}
=:M∗.(11.39)

One of our goals is to show that equality holds in the last two relations. This is the same as the

structure statement made in Proposition 4.1, but one needs to apply the matrix P =

(
1 i
1 −i

)
to

pass between these two representations.

Now suppose that i∂t
~ψ + A~ψ = 0. This can be written as ∂t

~ψ + JM ~ψ = 0 where J =

(
0 −1
1 0

)

and M =

(
L+ 0
0 L−

)
. Therefore,

d

dt
〈~ψ, M ~ψ〉 = 2<〈∂t

~ψ, M ~ψ〉 = −2<〈JM ~ψ, M ~ψ〉 = 0

by anti-selfadjointness of J . In other words,

Q(~ψ) := 〈L+ψ1, ψ1〉+ 〈L−ψ2, ψ2〉

is constant in time if ~ψ(t) = eitA ~ψ(0) (here ~ψ =
(
ψ1
ψ2

)
). Although the previous calculation calculation

bascially required classical solutions, it is clear that its natural setting are H 1(Rn)-solutions. In that

case one needs to interpret the form Q(~ψ) via

〈L+ψ1, ψ1〉 =
1

2
‖∇ψ1‖22 +

α2

2
‖ψ1‖22 − 〈β(φ2)ψ1, ψ1〉

〈L−ψ2, ψ2〉 =
1

2
‖∇ψ2‖22 +

α2

2
‖ψ2‖22 − 〈(β(φ2) + 2β′(φ2)φ2)ψ2, ψ2〉.(11.40)

In what follows, we will tacitly make this interpretation whenever it is needed. The following lemmas

are due to Weinstein [We1].

Lemma 11.11. Impose the spectral assumptions on L+, L− from Definition 11.9. Then 〈L+f, f〉 ≥ 0

for all f ∈ H1(Rn), f ⊥ φ.

This is a special case of Lemma E.1 in [We1], and we refer the reader to that paper for the proof.

Lemma 11.12. Impose the spectral assumptions on L+, L− from Definition 11.9. Then there exist

constants c = c(α, β) > 0 such that for all ~ψ ∈ H1(Rn),
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1. 〈L−ψ2, ψ2〉 ≥ c‖ψ2‖22 if ψ2 ⊥ ∂αφ, ψ2 ⊥ ∂jφ

2. 〈L+ψ1, ψ1〉 ≥ c‖ψ1‖22 if ψ1 ⊥ φ, ψ1 ⊥ xjφ.

The constant c(α, β) can be taken to be uniform in α in the following sense: If α0 satisfies Defini-

tion 11.9, then there exists δ > 0 so that 1. and 2. above hold for all |α−α0| < δ with c(α, β) > 1
2c(α0, β).

Proof. Consider the minimization problems

inf
f∈H1

〈L−f, f〉 subject to constraints ‖f‖2 = 1, f ⊥ ∂αφ, f ⊥ ∂jφ(11.41)

inf
g∈H1

〈L+g, g〉 subject to constraints ‖g‖2 = 1, g ⊥ φ, g ⊥ xjφ.(11.42)

As usual, one would like to establish the existence of minimizers by means of passing to weak limits in

minimizing sequences. While such sequences are bounded in H 1(Rn), this is not enough to guarantee

strong convergence in L2(Rn) because some (or all) of the L2-mass might escape to infinity. Using the

fact that the quadratic forms in question are perturbations of 1
2‖∇f‖22 + α2

2 ‖f‖22 by a potential that

decays at infinity, one can easily exclude that all the L2-mass escapes to infinity. One then proceeds

to show that the remaining piece of the limit, normalized to have L2-norm one, is a minimizer. This,

however, is a simple consequence of the nonnegativity of L− and L+, the latter under the constraint

f ⊥ φ, see Lemma 11.11 above. This argument is presented in all details in [We1], page 478 for the case

of power nonlinearities. But the same argument also applies to the general nonlinearities considered

here, and we do not write it out.

Assume therefore that f0 is a minimizer of (11.41) with ‖f0‖2 = 1, f0 ⊥ ∂αφ, f0 ⊥ ∂jφ. Then

(11.43) L−f0 = λ0f0 + c0∂αφ +
n∑

j=1

cj∂jφ

for some Lagrange mulitpliers λ0, c0, . . . , cn. Clearly, λ0 agrees with the minimum sought, and therefore

it suffices to show that λ0 > 0. If λ0 = 0, then taking the scalar product of (11.43) with φ implies

that c0 = 0 (using that 〈∂αφ, φ〉 > 0). Taking scalar products with xkφ shows that also ck = 0 for

1 ≤ k ≤ n. Thus L−f0 = 0, which would imply that f0 = γφ for some γ 6= 0. However, this is

impossible because of f0 ⊥ ∂αφ.

Proceeding in the same manner for L+, one arrives at the Euler-Lagrange equation

L+g0 = λ0g0 + c0φ +
n∑

j=1

cjxjφ.

As before, λ0 is the minimum on the left-hand side of (11.42) and thus λ0 ≥ 0 by Lemma 11.11. If

λ0 = 0, then taking scalar products with ∂kφ leads to ck = 0 for all 1 ≤ k ≤ n. Hence L+g0 = c0φ

which implies that

g0 = −c0

α
∂αφ +

n∑

`=1

b`∂`φ.
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Taking scalar products of this line with φ and xjφ shows that c0 = 0 and b` = 0 for all 1 ≤ ` ≤ n,

respectively. But then g0 = 0 which is impossible.

Since the constants c(α, β) > 0 were obtained by contradiction, one has no control on their depen-

dence on α. However, let |α− α0| < δ be as in Definition 11.9. Suppose ‖f‖2 = 1 satisfies f ⊥ φ(·, α),

f ⊥ xjφ(·, α). Then there is

h ∈ span
{
φ(·, α), φ(·, α0), xjφ(·, α), xjφ(·, α0) : 1 ≤ j ≤ n

}

so that f + h ⊥ φ(·, α0) and f + h ⊥ xjφ(·, α0). Moreover, since ‖∂αφ‖H1(
�
n) + ‖∂2

αφ‖H1(
�
n) < ∞

one can take ‖h‖H1(
�
n) as small as desired provided δ is chosen small enough. One can therefore use

inequality 2. from this lemma at α0 for f + h to obtain a similar bound for f at α.

The following corollary proves the crucial linear stability assumption contingent upon the spectral

assumptions on L+, L− from above (and thus, in particular, contingent upon the nonlinear stability

assumption). Strictly speaking, the following corollary gives a stronger statement than (11.3), since

the range of Ps is potentially smaller than needed for the stability to hold.

Corollary 11.13. Impose the spectral assumptions on L+, L− from Definition 11.9. Then there exist

constants C = C(α, β) <∞ so that for all ~ψ0 ∈ H1(Rn)

(11.44) ‖eitA ~ψ0‖H1(
�
n) ≤ C‖~ψ0‖H1(

�
n) provided ~ψ ∈ M⊥∗ .

HereM∗ is the A∗-invariant subspace from (11.39). Moreover, the same bound holds for H s(Rn)-norms

for any real s with s-dependent constants (and thus in particular for L2(Rn)). Analogous statements

hold for eitA∗. Finally, the constants C(α, β) can be taken to be uniform in α in the following sense:

If α0 satisfies Definition 11.9, then there exists δ > 0 so that (11.44) holds for all |α − α0| < δ with

C(α, β) < 2C(α0, β).

Proof. Let ~ψ(t) = eitA ~ψ0. By Lemma 11.12 one has

Q(~ψ0) = Q(~ψ(t)) ≥ c ‖~ψ(t)‖2L2(
�
n)

provided that ~ψ0 ∈ M⊥∗ . Since clearly Q(~ψ0) ≤ C‖~ψ0‖2H1(
�
n) one concludes that (11.44) holds with

L2(Rn) on the left-hand side. In order to pass to H1(Rn) write

〈L−f, f〉 = (1− ε)〈L−f, f〉+ ε

2
‖∇f‖22 + ε

α2

2
‖f‖22 − ε

∫
�
n

β(φ2(x))|f(x)|2 dx

≥ ε

2
‖∇f‖22 + c(1− ε)‖f‖22 + ε(α2/2− ‖β‖∞)‖f‖22,(11.45)

where the constant c in (11.45) is the one from Lemma 11.12. Taking ε small enough, one sees that

the third term can be absorbed into the second. Thus the entire right-hand side of (11.45) admits

the lower bound ε
2‖f‖2H1(

�
n). The same argument applies to L+, and (11.44) follows. The uniformity

statement concerning the constants C(α, β) is an immediate consequence of the analogous statement

in Lemma 11.12. To obtain (11.44) for all H s spaces note first that

(11.46) C−1
` ‖~ψ‖H2`(

�
n) ≤ ‖(A + iM)` ~ψ‖2 ≤ C` ‖~ψ‖H2`(

�
n)
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for all integers ` and sufficiently large M = M(`). Indeed, to check the lower bound for ` = 1 one can

use (A + iM)−1 = (B + iM)−1
[
1 + V (B + iM)−1

]−1
. The inverse of the operator in brackets exists

provided M is large and it is a bounded operator on L2(Rn). Taking powers of this relation allows

one to deal with all ` ≥ 1 (in our case V is C∞ which is needed here). Since M∗ is A∗-invariant and

therefore M⊥∗ is A-invariant, inserting (11.46) into (11.44) allows one to pass to all odd integers s.

The case of general s then follows by interpolation. Finally, since all arguments in this section apply

equally well to A∗ as A, the corollary follows.

This corollary has an important implication concerning the structure of the root spaces as required

in Proposition 4.1.

Corollary 11.14. Impose the spectral assumptions on L+, L− from Definition 11.9. Then equality

holds in the relation concerning the root spaces (11.38) and (11.39). In particular, one has ker(A2) =

ker(A3) and ker((A∗)2) = ker((A∗)3).

Proof. Suppose dim(N (A)) > 2n + 2. Then there exists ~ψ0 ∈ N (A) such that ~ψ0 ∈ M⊥∗ . This is

because a system of 2n + 2 equations in 2n + 3 variables always has a nonzero solution. Since ∂αφ 6⊥ φ

and ∂jφ 6⊥ xjφ, one checks that ~ψ0 6∈ ker(A). Therefore, ~ψ0 ∈ ker(Ak) \ ker(Ak−1) for some k ≥ 2.

Expanding eitA into a series implies that ‖eitA ~ψ0‖2 > c tk−1 for some constant c > 0, which contradicts

Corollary 11.13. Therefore, dim(N (A)) ≤ 2n + 2. Since moreover φ > 0 and 〈∂αφ, φ〉 > 0 imply that

the 2n + 2 vectors on the right-hand side of (11.38) are linearly independent, equality must hold as

claimed. Analogously for (11.39).

Next, we need to show that resonances for A do not occur at ±α2

2 up to finitely many choices of α.

[perhaps that’s too ambitious??]. ←−
First, we need to recall from [RSS] what is meant by a resonance in this particular case. From now

on, we restrict ourselves to odd dimensions n ≥ 3, since only that case was presented in [RSS]. We

shall also revert to writing systems in the form

B =

(
H 0
0 −H

)
, A = B + V, V =

(
U −W
W −U

)

where U, W are real-valued and exponentially decaying and H = 1
24 − α2

2 . The operator Eε stands

for multiplication with e−ερ(x) with ρ(x) = |x| for large x. It is shown in [RSS], based on work of

Rauch [Rau], that the weighted resolvents

Fε(z) := Eε(iB − z)−1Eε and Gε(z) := Eε(iA− z)−1Eε,

can be continued meromorphically across the boundary of their orginal domain of definition <z > 0.

See Lemmas 7.7 and Corollary 7.8 of that paper. Moreover, Fε(iα
2/2− iζ2) and Fε(−iα2/2 + iζ2) are

analytic on |ζ| < ε/4. By the analytic continuation of the resolvent identity,

(11.47) Gε(iα
2/2− iζ2) =

[
1 + Fε(iα

2/2− iζ2)E−2
ε V

]−1
Fε(iα

2/2− iζ2).
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The analytic Fredholm alternative applies to the operator in brackets on the region |ζ| < ε/4.

[This needs to be finished; I want to argue then that no resonance at±µ implies that the eigenvalues

can’t accumulate at the edges. This has not been ruled out yet, but I had rather do this w/o bringing

in absence of resonances. ]. ←−

12 Generalized decay estimates for the charge transfer model

Consider the time-dependent matrix charge transfer problem

i∂t
~ψ + H(σ, t)~ψ = F

where the matrix charge transfer Hamiltonian H(σ, t) is of the form

H(σ, t) =

(
1
24 0
0 −1

24

)
+

ν∑

j=1

Vj(· − ~vjt)

where ~vj are distinct vectors in R3, and Vj are matrix potentials of the form

Vj(t, x) =

(
Uj(x) −eiθj(t,x) Wj(x)

e−iθj(t,x) Wj(x) −Uj(x)

)
,

where θj(t, x) = (|~vj |2 + α2
j )t + 2x · ~vj + γj, αj , γj ∈ R, αj 6= 0. Our goal is to extend the dispersive

estimate

(12.1) ‖~ψ(t)‖L2+L∞ . (1 + t)−
n
2

(
‖~ψ0‖L1∩L2 + ‖|F‖||+ B

)

with

(12.2) ‖|F‖| := sup
t≥0

∫ t

0
‖F (τ)‖L1 dτ + (1 + t)

n
2

+1‖F (t, ·)‖L2

to the corresponding estimates for the derivatives of ~ψ(t). The estimate (12.1) holds only for the

solutions ~ψ(t) which are scattering states, i.e., for ~ψ obeying the a priori condition that

‖Pb(Hj , t)~ψ(t)‖L2 ≤ B(1 + t)−
n
2

for all j = 1, .., ν. Our first lemma shows that the functions

~ψk(t) := ∇k ~ψ(t), k ∈ Z+

are scattering states as well.

Lemma 12.1. The functions ~ψk(t) obey the estimates

(12.3) ‖Pb(Hj , t)~ψk(t)‖L2 . Ck(1 + t)−
n
2
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Proof. Let ~η(x) be an arbitrary C∞ exponentially localized function. Then for any y ∈ Rn

∫
�
n

~ψk(t, x) · ~η(x− y) dx = (−1)k

∫
�
n

~ψ(t, x)∇k~η (x− y) dx . ‖~ψ(t)‖L2+L∞‖∇k~η ‖L1∩L2 . (1 + t)−
n
2

Now recall that the projection

Pb(Hj , t) := G~vj (t)
−1Mj(t)

−1Pb(Hj)Mj(t)G~vj(t)

with the Pb(Hj is given exlicitly

Pb(Hj)f =
∑

αβ

cαβuα(f, vβ)

where cαβ are given constants and uα, vβ are exponentially localized functions. The result now follows.

Proposition 12.2. The functions ~ψk = ∇k ~ψ satisfy the L2 + L∞ dispersive estimate

(12.4) ‖∇k ~ψ(t)‖L2+L∞ . (1 + t)−
n
2

k∑

`=0

(
‖∇` ~ψ0‖L1∩L2 + ‖|∇`F‖|+ B

)

Proof. We have already shown that ∇kψ is a scattering state. Moreover, differentiating the equation

k times we obtain

i∂t∇k ~ψ + H(t, σ)∇k ~ψ = Fk :=
k−1∑

`=0

G`(t, x)∇` ~ψ +∇kF

where G`(t, x) are smooth exponentially localized potentials uniformly bounded in time. Therefore ∇k

is a scattering state solving an inhomogeneous charge transfer problem. Using the estimate (12.1) we

then have

(12.5) ‖∇k ~ψ(t)‖L2+L∞ . (1 + t)−
n
2

(
‖∇k ~ψ0‖L1∩L2 + ‖|Fk(τ)‖|+ B

)

We use that for any p ∈ [1, 2]

‖G`(t, x)∇` ~ψ‖Lp . ‖∇` ~ψ‖L2+L∞

Proceeding by induction on k we conclude that for any ` < k

∫ t

0
‖G`(t, x)∇` ~ψ‖L1 .

∫ t

0
(1 + τ)−

n
2 dτ

∑̀

m=0

(
‖∇m ~ψ0‖L1∩L2 + ‖|∇mF‖|

)

.
∑̀

m=0

(‖∇m ~ψ0‖L1∩L2 + ‖|∇mF‖|)

and that

(1 + t)
n
2 ‖G`(t, x)∇` ~ψ(t)‖L2 .

∑̀

m=0

(‖∇m ~ψ0‖L1∩L2 + ‖|∇mF‖|)
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The result now follows from (12.5) and the inequality

‖|Fk(τ)‖| ≤ ‖|∇kF‖|+
k−1∑

`=0

‖|G`(t, x)∇` ~ψ‖|

We recall the definition of the Banach spaces X and Y of functions of (t, x) from (5.6), (5.7)

‖ψ‖Xs = sup
t≥0

(
‖ψ(t, ·)‖Hs + (1 + t)

n
2

s∑

k=0

‖∇kψ(t, ·)‖L2+L∞

)
(12.6)

‖F‖Ys = sup
t≥0

s∑

k=0

( ∫ t

0

‖∇kF (τ, ·)‖L1 dτ + (1 + t)
n
2

+1‖∇kF (t, ·)‖L2

)
(12.7)

We can summarize our estimates for the charge transfer model in the following proposition.

Proposition 12.3. Let ~ψ be a solution of the matrix charge transfer problem

i∂t
~ψ + H(t, σ)~ψ = F

satisfying the condition that for every j = 1, .., ν

(12.8) ‖Pb(Hj(σ, t))~ψ‖L2 . B(1 + t)−
n
2

Then for any integer s ≥ 0

(12.9) ‖~ψ‖Xs .
s∑

k=0

‖∇kψ(0, ·)‖L1∩L2 + ‖F‖Ys + B

13 Existence of a ground state and the nonlinear stability condition

The existence of a ground state for the problem

(13.1) −1

2
4φ − β(|φ|2)φ +

α2

2
φ = 0

for α 6= 0 had been establsihed by Berestycki and Lions under the following conditions on the function

β:

1. 0 ≥ lims→+∞β(s)s−
2

n−2 ≥ +∞

2. There exists s0 > 0 such that G(s0) =
∫ s0

0 β(s2)s ds− α2

4 s2
0 > 0
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Moreover, in the case when the function β(s) satisfies a stronger condition that

(13.2) lim
s→+∞

β(s)s−
2

n−2 = 0

a ground state can be constructed from a solution of the constrained minimization problem for the

following functional:

(13.3) J [u] =
{∫

�
n

|∇u|2 : W [u] =

∫
�
n

G(u) = 1
}

If w is a minimum it solves the equation

−1

2
4w − λ(β(w2)w − α2

2
w) = 0

where the Lagrange multiplier λ is determined from the condition that W [w] = 1. We can then find a

ground state via rescaling

(13.4) φ(x) = w(λ−
1
2 x)

Observe that it is possible to choose w a positive spherically symmetric function. We now consider the

case of the monomial subcritical nonlinearity β(s) = s
p−1

2 with p < n+2
n−2 . By the results of Coffman,

McLeod-Serrin, and Kwong there exists a unique positive radial solution of the equation (13.1) for

α 6= 0. Let w denote the corresponding minimumizer of the functional J .

”Uniqueness of a minimizer”

Definition 13.1. Given γ > 0 and w the minimizer of J corresponding to the unique ground state φ

define

θ(γ) = inf
{
θ : for any positive non-increasing radial function u with the

property that ‖u− w‖H1 ≥ θ we have that J [u] ≥ J [w] + γ
}

(13.5)

We now make the following claim

Lemma 13.2. Function θ(γ)→ 0 as γ → 0.

Proof. We argue by contradiction. Assume that there exists a sequence γk → 0, a positive constant θ,

and positive radial functions uγk such that ‖uγk−w‖H1 ≥ θ but J [uγk ] < J [w]+γk. Then the sequence

uγk ,θ is minimizing for the functional J . This implies that

‖∇uγk‖L2 → ‖∇w‖L2

Using the constraint W [uγk ] = 1 it is not difficult to show that the sequence uγk is uniformly bounded

in H1, see [BL]. Thus without loss of generality we assume that uγk → u weakly in H1 for some

radial non-increasing function u. Therefore, u is another minimizer of the functional J and its rescaled

version is a non-increasing radial solution of the equation (13.1). By the strong maximum principle
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it is positive2 and therefore a ground state. Since the ground state is unique, after rescaling back we

conclude that u = w. Therefore, we have constructed a sequence uγk with the properties that

uγk → w weakly in H1,(13.6)

∇uγk → ∇w in L2,(13.7)
∫

�
n

|uγk |p+1 = 1 +
α2

4

∫
�
n

|uγk |2,(13.8)

‖uγk − w‖H1 ≥ θ(13.9)

Since 2 < p + 1 ≤ 2n
n−2 , conditions (13.6) and (13.7) imply that

∫
�
n

|uγk |p+1 →
∫

�
n

|w|p+1

Thus from (13.8) ∫
�
n

|uγk |2 →
∫

�
n

|w|2

and with the help of (13.6) and (13.7) we conclude that uγk → w in H1. This contradicts (13.9).

We now consider the ground state problem

(grε) −1

2
4φε − βε(|φε|2)φε +

α2

2
φε = 0

for the nonlinearities

(13.10) βε(s
2) = −sp−1 s3−p

ε + s3−p

for any ε > 0 and any p ∈ (1, 3). Define

Gε(τ) =

∫ τ

0

β(s2)s ds− α2

4
τ2,(13.11)

Wε[u] =

∫
�
n

Gε(u(x)) dx(13.12)

Lemma 13.3. We have the following estimate

(13.13) |Wε[u]−W0[u]| . ε
p−1

2

∫
�
n

(
|u|2 + |u|p+1

)

Proof. Estimate (13.13) immediately follows from the inequality

(13.14) |Gε(τ)− G0(τ)| ≤ τp+1 ε

ε + τ3−p
= ετ2p−4 τ3−p

ε + τ3−p

2The minimizer u cannot be identically zero since one can show that the minimum is attained on the function satisfying
the constraint W [u] = 1, see [BL].
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since the above expression can ne bounded by

min
{
ετ2p−4, τp+1

}

Thus using the first term for the values of τ ≥ ε
1
2 so that τp−3 ≤ ε

p−3
2 (since p < 3), and the second

term when τ ≤ ε
1
2 so that τp−1 ≤ ε

p−1
2 , we obtain (13.14).

”Continuity of ground states”

We now consider the variational problem

(13.15) Jε[u] =
{∫

�
n

|∇u|2 : Wε[u] = 1
}

Proposition 13.4. Let φ be the ground state of the problem (gr0). Then for any sufficiently small

ε > 0 there exists a positive constant δ′ = δ′(ε)→ 0 as ε→ 0, and a ground state φε of (grε) such that

‖φε − φ‖H1 < δ′.

Proof. We start by choosing a sufficiently large constant M such that for all sufficiently small ε any

minimizer of Jε is contained in a ball BM/2 of radius M/2 in the space H1. In particular, using (13.13)

we will assume that for u ∈ BM

(13.16) |Wε[u]−W0[u]| . ε
p−1

2

We now observe the following trivial property of the contraint functionals Wε[u]: for any ε ≥ 0 and

an arbitrary µ 6= 0

(13.17) Wε[u(x)] = µnWε[u(
x

µ
)]

We now fix a sufficiently small of ε > 0. Let w be the minimizer of the variational problem J = J0

corresponding to the unique ground state φ. The function w satisfies the constraint W0[w] = 1.

Therefore, using the rescaling property (13.17) and (13.16) we can show that there exists µ = µ(w)

with the property that

Wε[w(
x

µ
)] = 1,

|µ− 1| ≤ ε
p−1
2n(13.18)

Moreover,

(13.19) Jε[w(
x

µ
)] = µn−2J0[w(x)] = J0[w] + O(ε

p−1
2n )

We now claim that there exists a small positive δ = δ(ε) → 0 as ε → 0, such that for any positive

non-increasing radial function u satisfying the constraint Wε[u] = 1 and the property that

(13.20) ‖u− w(
x

µ
)‖H1 ≥ δ
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we have

(13.21) Jε[u] ≥ Jε[w(
x

µ
)] + ε

p−1
2n

Assume for the moment that the claim holds. Then (13.20) and (13.21) imply that Jε has a minimizer

in the δ neighborhood of the function w( x
µ). We denote this minimizer by wε. Then (13.18) implies

that

‖wε − w‖H1 ≤ ‖wε − w(
x

µ
)‖H1 + ‖w − w(

x

µ
)‖H1 ≤ δ + ‖w − w(

x

µ
)‖H1

Observe that ‖w − w( x
µ)‖H1 → 0 as µ → 1, which follows by the density argument and the fact that

it is easily satisfied on functions of compact support3. Define the function aw(ε):

(13.22) aw(ε) := sup

|µ−1|≤ε
p−1
2n

‖w − w(
x

µ
)‖H1 , aw(ε)→ 0 as ε→ 0

Therefore,

(13.23) ‖wε − w‖H1 . δ + aw(ε)

The functions wε, w are the solutions of the Euler-Lagrange equations

− 1

2
4wε − λε

(
βε(wε)

2)wε −
α2

2
wε

)
= 0,(13.24)

− 1

2
4w − λ

(
β0(w)2)w − α2

2
w
)

= 0,(13.25)

where the lagrange multipliers λε, λ are determined from the conditions that Wε[wε] = W0[w] = 1.

We multiply the equations (13.24) and (13.25) by wε and w correspondingly, integrate by parts, and

subtract one from another. Using the estimate

∫
�
n

∣∣βε(wε)
2)w2

ε − β(wε)
2)w2

ε

∣∣ . ε
p−1

2 ,

which is essentially the same as the estimate (13.16), and the estimate (13.23) we obtain that

(13.26) (λ− λε)

∫
�
n

(β0(w)2)w2 − α2

2
w2
)

= O(δ) + O(ε
p−1

2 ) + aw(ε)

Recall that β0(w
2) = wp−1. The condition that W [w] = 1 implies that

∫
�
n

( 1

p + 1
|w|p+1 − α2

4
|w|2

)
= 1

Thus, ∫
�
n

(β0(w)2)w2 − α2

2
w2
)

= 2 +
p− 1

p + 1

∫
�
n

|w|p+1 ≥ 2

3In fact, the minimizer w is smooth and localized in space and thus one could even give the precise dependence on µ
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This allows us to conclude that

(13.27) |λ− λε| ≤ δ + ε
p−1

2 + aw(ε)

Finally, recall that the ground states φε and φ are obtained by the rescaling of the minimizers wε and

w.

φε(x) = wε(λ
− 1

2
ε x), φ(x) = w(λ−

1
2 x)

Thus

‖φε − φ‖H1 . ‖wε(λ
− 1

2
ε x)− w(λ−

1
2 x)‖H1

= λ
n
2
ε ‖wε(x)− w

(
(
λε

λ
)

1
2 x
)
‖H1

≤ λ
n
2
ε ‖wε(x)− w(x)‖H1 + ‖w(x)− w

(
(
λε

λ
)

1
2 x
)
‖H1

By (13.27) the constants λε are uniformly bounded in terms of the absolute constant λ, which depends

only on w. Noreover, λε → λ as ε → 0. We appeal again to the H1 modulus of continuity of the

minimizer w and define the function 4

(13.28) bw(ε, δ) := sup

|µ−1|≤δ+ε
p−1

2 +aw(ε)

‖w(x)− w(µ−
1
2 x)‖H1

The function bw(ε, δ) → 0 as ε, δ → 0. Therefore, since we have already proved in (13.23) that wε is

close to w in H1, we obtain

(13.29) ‖φε − φ‖H1 . δ + ε
p−1

2 + aw(ε) + bw(ε, δ)

Since by the claim δ = δ(ε)→ 0 as ε→ 0 and the functions aw(ε), bw(ε, δ) also have this property we

obtain the desired conclusion.

It remains to prove the claim (13.20), (13.21). Let u be as in the claim, i.e., u ∈ BM and Wε[u] = 1,

and

(13.30) ‖u− w(
x

µ
)‖H1 ≥ δ.

for some δ to be chosen below. Similar to (13.18) we can find a constant ν = ν(u) such that

W0[u(
x

ν
)] = 1, J0[u(

x

ν
)] = Jε[u] + O(ε

p−1
2

n),(13.31)

|ν − 1| ≤ ε
p−1
2n(13.32)

4One can show that α 6= 0 the Lagrange multiplier λ 6= 0. This follows from the following argument. By interpolation
for p ≤ n+2

n−2 �
wp+1 ≤ ‖∇w‖n

p−1
2

L2 ‖w‖p+1−n p−1
2

L2

Thus for n > 2 the power p + 1 − n p−1
2

< 2 and using Cauchy-Schwarz, constraint W [w] = 1 and the assumption that
α 6= 0, we can show that ‖∇w‖L2 ≥ c for some positive constant c. Repeating argument determining the Lagrange
multiplier we verify that λ 6= 0
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Using (13.18), (13.30), (13.32), and defini tion (13.22) we infer that

(13.33) ‖u(
x

ν
)−w‖H1 ≥ ‖u(

x

ν
)−w(

x

µν
)‖H1 − ‖w(

x

νµ
)−w(x)‖H1 ≥ ν

n
2 δ− aw(ε) ≥ δ− ε

p−1
2n δ− aw(ε)

We now use Lemma 13.2 for the variational problem J = J0. This gives a function θ(γ), with the

property that θ(γ)→ 0 as γ → 0, such that for any radial non-increasing positive v with the property

that ‖v − w‖H1 ≥ θ(γ) and W0[v] = 1 we have J0[v] ≥ J0[w] + γ. We set

γ = 5ε
p−1
2n , δ = θ(γ) + ε

p−1
2n + aw(ε)

It follows from Definition 13.1 of θ(γ) and (13.33) that with these choices, function u( x
ν ) verifies the

inequality

J0[u(
x

ν
)] ≥ J0[w] + 5ε

p−1
2n

Finally, using (13.19) and (13.31) we obtain

Jε[u] ≥ Jε[w(
x

µ
)] + 3ε

p−1
2n

It remains to note that the constant δ in (13.20) has been chosen

δ = θ(ε
p−1
4n ) + ε

p−1
2n + aw(ε)

and by Lemma 13.2 and (13.22) it goes to zero as ε → 0, as claimed.

From now on we restric the values of p to the subcritical case

(13.34) p ≤ 1 +
4

n

Recall definition of the operator Lε
+ associated with the ground state φε.

(13.35) Lε
+ = −1

2
4− βε(φ

2
ε)− 2β′ε(φ

2
ε )φ

2
ε +

α2

2

Denote

(13.36) Vε = βε(φ
2
ε ) + 2β′ε(φ

2
ε)φ

2
ε

Uisng the definition of βε we compute Vε explicitly

(13.37) Vε = 3φp−1
ε

φ3−p
ε

ε + φ
3−p
ε

− (3− p)φp−1
ε

( φ3−p
ε

ε + φ
3−p
ε

)2

Uniform properties of ground states φε guaranteed by the Proposition 13.4 imply the following result.

Lemma 13.5. For any p ∈ (1, 1 + 4
n ] there exists a q = q(p) in the interval q ∈ [n

2 ,∞) such that

(13.38) ‖Vε − V0‖Lq → 0, ε→ 0
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Proof. We have a pointwise bound

|Vε − pφp−1
ε | . φp−1

ε

ε

ε + φ3−p
ε

≤ min
{
φp−1

ε , εφ2p−4
ε

}
≤ ε+φp−1−

ε

In addition, since φε → φ in H1 we have that φp−1
ε → φp−1 in the space L

2
p−1 ∩ L

2n
(n−2)(p−1) . Since

|Vε − V0| ≤ |Vε − pφp−1
ε |+ p|φp−1

ε − φp−1|

we obtain the desired conclusion for any q in the interval q ∈ ( 2
p−1 , 2n

(n−2)(p−1) ]. The existence of the

Lebesque exponent q in the desired interval now follows from the restrictions (13.34) on p.

Corollary 13.6. The operators

(Lε
+ − L+)(−4 + 1)−1 : L2 → L2,

(−4 + 1)−1(Lε
+ − L+) : L2 → H1

with the norm converging to 0 as ε→ 0.

Proof. The difference Lε
+−L+ = Vε−V0. The result now follows from Lemma 13.5, Sobolev embeddings,

and Hölder inequality.

”Everything follows from perturbation theory”

Theorem 13.7. Let φε be ground states constructed in Proposition 13.4. Assume that the ground state

φ0 is stable then for all sufficiently small ε the ground states φε are also stable.

Proof. The nonlinear stability condition for the a ground state φε(α) requires that

(13.39) 〈φε, (L
ε
+)−1φε〉 < 0

where the operators Lε
+ are obtained by linearizing at φε. Condition (13.39) is meaningful provided

that φε is othogonal to the kernel of Lε
+. We start by examining the spectrum of the operator L+.

As we know (?) L+ has a unique negative eigenvalue, the zero eigenvalue has multiplicity n and the

corresponding eiegenspace is spanned by the function ∂
∂xi

φ. The rest of the spectrum is contained

in the set [α2

2 ,∞). Therefore, in the case α 6= 0 the spectrum Σ(L+) of L+ has an isolated discrete

component (in fact two components). We can construct an eigenspace projector P0 of an isolated

component of the discrete spectrum

(13.40) P0 =
1

2πi

∫

γ
(L+ − z)−1 dz

with an arbitrary curve γ encircling the desired spectral set and such that γ ∩ Σ(L+) = 0. Consider

now the resolvent of Lε
+ at z such that dist(z, Σ(L+)) ≥ C for some sufficiently small constant C,

which only depends on L+. We have

(13.41) (Lε
+ − z)−1 = (L+ − z)−1 − (Lε

+ − z)−1(Lε
+ − L+)(L+ − z)−1
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It is not difficult to show that for such z

‖(L+ − z)−1f‖H2 . ‖f‖L2

Therefore, using Corollary 13.6 we can conclude from (13.41) that

‖(Lε
+ − z)−1‖ ≤ 2‖(L+ − z)−1‖

and thus z 6∈ Σ(Lε
+). Moreover,

(13.42) ‖(Lε
+ − z)−1 − (L+ − z)−1‖ ≤ c(ε)

for any z : dist(z, Σ(L+)) ≥ C. By Corollary 13.6 the constant c(ε)→ 0 as ε→ 0. Therefore, for the

same path γ as in (13.40) we can define

(13.43) Pε =
1

2πi

∫

γ
(Lε

+ − z)−1 dz

Moreover, for all sufficiently small ε ≥ 0 the rank of Pε remains constant. Thus, for any sufficiently

small ε the operator Lε
+ has a unique simple negative eigenvalue and a zero eigenspace of dimension n.

Since we know that the functions ∂
∂xi

φε are contained in that subspace, they, in fact, span it. Therefore,

φε is orthogonal to the kernel of Lε
+ and the expression (13.39) is well defined.

For any sufficiently small ε ≥ 0 we set Qε to be a projection on the orthogonal complement of the

null eiegnespace of Lε
+. Let λ 6∈ ∪εΣ(Lε

+). Define the operators

(13.44) Kε(λ) := Q0(L
ε
+ − λ)−1Qε − (L+ − λ)−1Q0

It follows from (13.42) and the properties of the spectrum of L+ that for all small ε ≥ 0 and all 〈 such

that |〈| ≤ C

(13.45) ‖(Lε
+ − λ)−1Qε‖ ≤

1

dist
(
λ, Σ(Lε

+) \ {0}
) ≤ C ′

for some universal constant C ′, determined by the operator L+. Also note that

(13.46) ‖Qε −Q0‖ ≤ c(ε)

This is a consequence of (13.42) and the definition

Qε = I − 1

2πi

∫

γ
(Lε

+ − z′)−1 dz′

with a short path γ around the origin. Using the resolvent identity

(Lε
+ − z)−1 = (L+ − z)−1 + (L+ − z)−1(Lε

+ − L+)(Lε
+ − z)−1

we obtain that for any λ 6∈ ∪εΣ(Lε
+)

Kε(λ) =Q0(L+ − λ)−1Qε − (L+ − λ)−1Q0 + Q0(L+ − λ)−1(Lε
+ − L+)(Lε

+ − λ)−1Qε =

(L+ − λ)−1Q0(Qε − Q0) + (L+ − λ)−1Q0(L
ε
+ − L+)(Lε

+ − λ)−1Qε
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Using Corollary 13.6, (13.45), and (13.46) we infer that for any λ ≤ c and λ 6∈ ∪εΣ(Lε
+)

(13.47) ‖Kε(λ)‖ ≤ c(ε)(1 + ‖(L+ − λ)−1Q0(−4 + 1)‖) ≤ c(ε)

uniformly in λ. The last inequality follows since the operator norm of (L+ − λ)−1Q0(−4 + 1) is

bounded by a universal constant dependent on L+ only. This can be seen as follows. Since V0 is a

smooth ponetial and (L+−λ)−1Q0 is bounded on L2 we can replace the operator (−4+1) by (L+−λ)

and the result follows immediately.

We now test the operator Kε(λ) on the ground state φε.

Kε(λ)φε = Q0(L
ε
+ − λ)−1φε − (L+ − λ)−1φ + (L+ − λ)−1Q0(φ− φε)

Coupling the above identity with φ.

〈φε, (L
ε
+ − λ)−1φε〉 − 〈φ, (L+ − λ)−1φ〉 = 〈φ, Kε(λ)φε〉+ 〈(φε − φ0), (L

ε
+ − λ)−1φε〉

+ 〈φ, (L+ − λ)−1Q0(φ− φε)〉 = O(c(ε))

where we have used that Qεφε = φε, the bound (13.45), and the estimate ‖φε − φ‖H1 , which follows

from Proposition 13.4. The above holds uniformly for all |λ| ≤ c and λ 6∈ ∪εΣ(Lε
+). Passing to the

limit λ→ 0, say from the upper half-plane, we obtain that for all sufficiently small ε ≥ 0

〈φε, (L
ε
+)−1φε〉 = 〈φ, L−1

+ φ〉+ O(c(ε)) < 0

The last inequality follows since by the assumption φ is a stable ground state, i.e., 〈φ, L−1
+ φ〉 < 0.
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