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section on the one hand and to learn how to use such software as well. To illustrate,
let us use the Maple dsolve command (discussed at the end of Section 4.2) to obtain
a Frobenius-type solution of the differential equation zy” +y = 0 about the regular
singular point z = 0; this was our Example 6. Enter

dsolve(z * diff(y(z), z, z) + y(z) = 0, y(z), type = series);

and return. The resulting output
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is found to agree with the general solution that we generated in Example 5.

EXERCISES 4.3

1. For each equation, identify all singular points (if any), and
classify each as regular or irregular. For each regular singular
point use Theorem 4.3.1 to determine the minimum possible
radii of convergence of the series that will result in (40) and
(41) (but you need not work out those series).

@y" -2’y +ay=0

(b) 2y" — (cosz)y’ + 5y =0
©(x*-3)y"—y=0

@D a(z*+3)y" +y=0

@+1)%" -4y +(z+1y=0

Ny + (Inz)y +2y=0

@ (-1)(z+3%%" +y +y=0

(h) zy” + (sinz)y’ — (cosz)y =0

(M z(z* +2)y" +y=0

@ (' -1y +zy —2?y=0

(k) (IA o | 1)3yll + (zz — 1)2yl —y= 0

Mz =13 -3z+1)%* +z(z+1)y=0
(m) (zy') — 5y =0

m) [¢¥(z - 1)y] +2y=0

(0) 22%y" —zy' + Ty =0
(P ay”’ +4y' =0
(@Qz’y" -3y=0

(1) 22%y" + Ty =0

2. Sometimes one can change an irregular singular point to a

regular singular point, by suitable change of variables, so that
the Frobenius theory can be applied. The purpose of this ex-
ercise is to present such a case. We noted, in Example 3, that
y" + vZy = 0 (z > 0) has an irregular singular point at
x = 0, because of the /z.

(a) Show that if we change the independent variable from
z to t, say, according to /r = t, then the equation on

y(x(t)) = Y(t) is

Y*(¢) - %Y'(t) FABY(8)=0. (t>0) (1)

(b) Show that (2.1) has a regular singular point at £ = 0
(which point corresponds to z = 0).

(c) Obtain a general solution of (2.1) by the Frobenius method.
(If possible, give the general term of any series obtained.)
Putting ¢ = 4/ in that result, obtain the corresponding gen-
eral solution of ' + /zy = 0. Is that general solution for
y(z) of Frobenius form? Explain.

(d) Use computer software to find a general solution.

3. In each case, there is a regular singular point at the left
end of the stated = interval; call that point zq. Merely intro-
duce a change of independent variable, from z to ¢, according
to x — xg = t, and obtain the new differential equation on
y(z(t)) = Y (t). You need not solve that equation.



@(x-1)'"+y -y=0, (1<z< o)
(b) (2% — 1)y +y = 0, (1.< z < o0)
©(z+3)y" -2(z+3)y —4y =0,
(d(z-5)72%"+2(z-5y -y=0,

4. Derive the series solution (25).

(-3 <z <)
(h<z < ox)

5. Make up a differential equation that will have as the roots
of its indicial equation

@1,4 (b) 3,3
(e) 2+ 3i L
(i) (1+2i)/3 (j)5/4,8/3

6. In each case verify that = 0 is a regular singular point,
and use the method of Frobenius to obtain a general solution
y(a) = Ayi(z) + Bya(=z) of the given differential equation,
on the interval 0 < 2 < oo. That is, determine y;(z) and
y2(z). On what interval can you be certain that your solution
is valid? HINT: See Theorem 4.3.1.

@2zy" +y +a’y=0

May" +y —zy=10

@azy" +y' +28%y =0

axy" +y' +zy=0

(e)2?y" +ay —y=0

Dy — 2%y —2y=0

@a%y" +zy —(1+2z)y=0

(h)z*y" +zy' —y =0

ey +zy +(1+2)y=0

O3y +y' +y=0

K z(l+z)y' +y=0

Mz?(2+z)y" -y=0

(m)z2y” — (2+3z)y=0

(n) bzy" + ' + 8%y =0

(0)zy" + ey =0

(p) 2zy" 4+ €*y' +y=0

(q) 162%y" + 8zy' — 3y =0

(r) 162%y" + 82y’ — 3+ )y =0
2y" + xy’ + (sinz)y =0

@ -1/2,1/2
(hy—1+i

(€)1/2,2
(g) —2/3,5

(s) z°y
() 5(zy)" — 9% +ay =0

W (zy') —y=0

V) (zy') =2y —y=0

7. (a)—=(x) Use computer software to obtain a general solution
of the corresponding differential equation in Exercise 6.

8. Use the method of Frobenius to obtain a general solution
to the equation zy"” + ¢y’ = 0 on = > 0, where ¢ is a real
constant. You may need to treat different cases, depending
upon c.
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9. (a) The equation

(2’ -z)y" +(4x—-2)y +2y=0, (0<z<l1l) (9.1)
has been “rigged” to have, as solutions, 1/z and 1/(1 — z).
Solve (9.1) by the method of Frobenius, and show that you do
indeed obtain those two solutions.

(b) You may have wondered how we made up the equation
(9.1) so as to have the two desired solutions. Here, we ask
you to make up a linear homogenous second-order differential
equation that has two prescribed LI solutions F'(z) and G(z).

10. (Complex roots) Since p(z) and g(z) are real-valued func-
tions, pg and gq are real. Thus, if the indicial equation (38) has
complex roots they will be complex conjugates, r = a=+if3, so
case (i) of Theorem 3.4.1 applies, and the method of Frobenius
will give a general solution of the form

y(z) = Ayi(z) + Bya(z)
= AgErB TS g0 4 B0 § I b,

(10.1)

(a) Show that the b,,’s will be the complex conjugates of the
B 850 =il
(b) Recalling, from Section 3.6.1, that

2% = 3% [cos (BInz) £ isin (BInz)], (10.2)

show that (10.1) |with b, replaced by @,, according to the
result found in part (a) above] can be re-expressed in terms of
real functions as
y(z) = Cz° [cos (BInz) Y g cnz™
—sin(BInz) Y5 dna"]
+Dz% [cos (BInz) Y5 dnz™

+sin(Blnz) 35" enz™],

(10.3)

where ¢,,,d,, are the real and imaginary parts of a,, respec-
tively: a, = ¢, + id,.
(c) Find a general solution of the form (10.3) for the equation

22y +z(l+2)y +y=0.

That is, determine «, 3 and ¢,, d, in (10.3), through n = 3,
say.
(d) The same as (c), for z%y" + zy’ + (1 — 2)y = 0.
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and return. Here, the initial conditions merely serve to establish the point about
which the expansion is desired. The result is

y(r)=a+b(xr —4) - %a(;n —4)% - éb(;,,- o la(m — 4)!

! 5_ L 6_ 1 7 8
—b(zx — 4)° -~ —a(z—4)° - -4 O ((z -
+200@ ~ 4 ~ 70(e — 4" — g — 4"+ 0 (2 - 4))
EXERCISES 4.2
1. Use (7a) or (7b) to determine the radius of convergence 12 (h) 2’ — 3z +2 25 =0
-1 '

of the given power series,

(a) i nzg”

luonwn

> (-1)"n

0
1000

3. Work out the Taylor series of the given function, about the
given point zg, and use (7a) or (7b) to determine its radius of
convergence.

© Z g ) nla @e*, zp=1 b)e~*, zo=—2
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(g)Zn—l(I-k?)" (h)z (lnn)"*! (z - 2)" 0 ¢ 1 v
= &~ nl - (k)cos(z—2), xp=2 m g0 0= 0
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2. Determine the radius of convergence R of the Taylor series
expansion of the given rational function, about the specified

3)2n+1

4. Use computer software to obtain the first 12 nonzero terms
in the Taylor series expansion of the given function f, about
the given point zq, and obtain a computer plot of f and the
partial sums s3(z), sg(z), so(z), and s;2(z) over the given
interval I.

point g, using the ideas given in the paragraph preceding Ex- (4 flz)=e® z0=0 I:0<z<4
ample 5. Also, prepare a sketch analogous to those in Fig. 3. (b) f(z) = na:, z0o=0, I:0<z<10
(c) f(z) = po=1 I:0<e<2
(Q)IE+1‘ o =0 (d)f(z)=1/1—a:) 20=0, I: =l<a<l
b 1 - @ flz)=1/z, 26=2 I: 0<s<4
();g2+g‘ = (N f(x)=1/1+2%), zo=0, I: -1<z<l1
© 23 -2z +1 5wl @ f(z) = 4/(4+z+2?), 2o=0, I: -1.3<z<0.36
. +551+ (. : 5. (Geometric series) (a) Show that
(.CD y Tp = —26
T+ 2 1 4 o z'n
(z+1)° —=1l4z+z’+. +2" 1 + (5.1)
@)=, Ba=-—4 1—2x 1—2x
2?2 +3z+2 | e —
22 -3z +1 is an identity for all z # 1 and any positive integer n, by
® 22+ 2z +4 =3 multiplyin'g t'hrough by 1 — z (which is nonzero since = # 1)
2?2 +z2-2 and simplifying.
(8) y o =2 (b) The identity (5.1) can be used to study the Taylor series
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k

known as the geometric series Y-, z* since, according to

(5.1), its partial sum s, (z) is

n-1 1—g"
== k _
sn(z)_};m otk st
Show, from (5.2), that the sequence s,(z) converges, as
n — oo, for |z| < 1, and diverges for |z| > 1.
(¢) Determine, by any means, the convergence or divergence
of the geometric series for the points at the ends of the in-
terval of convergence, x = *1. NOTE: The formula (5.2)
is quite striking because it reduces s, () to the closed form
(1 —2™)/(1 — z), direct examination of which gives not only
the interval of convergence but also the sum function 1/(1—z).
It is rare that one can reduce s, (z) to closed form.

6. (a) Derive the Taylor series of 1/(z — 1) about z = 4
using the Taylor series formula (16), and show that your result
agrees with (38).

(b) Show that the same result is obtained (more readily) by
writing

(c#1) (2

T - o 1 sk M
z—1 3+(z-4) 314234
and using the geometric series formula

1 n
1—-¢ zt
0
from Exercise 5, with t = —(z — 4)/3. -Further, deduce the

z interval of convergence of the result from the convergence
condition [t| < 1in (6.2).

(6.1)

(It] < 1) (6.2)

7. For each of the following differential equations do the fol-
lowing: Identify p(z) and g(z) and, from them, determine the
least possible guaranteed radius of convergence of power se-
ries solutions about the specified point xp; seeking a power
series solution form, about that point, obtain the recursion for-
mula and the first four nonvanishing terms in the power series
for y1 (z) and ya(z); verify that y,, y, are LI

@y'+2 +y=0, 20=0
M) y'+2y =0, x=0
©@y'+2% =0, z=3
Dezy'"+y' +y=0, zo=-5

@y’ -2y +zy=0, z¢=1
Hz?y’ —y=0, =2
@y + @B+ z)y +ay=0,
hy" +y +(1+z+2%)y=0,
Oy'-(1+z2)y=0, z¢=0
Py"—zy=0, z=0

l'[)=—3
I():O

Ky +2% +y=0, z0=0
Wy +zy +2%y=0, zp=0
m)y" +(z-1)>%y=0, z¢=2

8. (a)—(m) Use computer software to obtain the general so-
lution, in power series form, for the corresponding problem
given in Exercise 7, about the given expansion point.

9. (Airy equation) For the Airy equation,

vy’ —zy =0, (—o0 < z < ) 9.1)
derive the power series solution
¥(z) = aoy(z) + a1ya()
o0 l.(in
e 1+£1:2-3---(3n—1)(3n) 9.2)

o0 pintl
i ($+21: 3.4.-- (3n)(3n + 1))

and verify that it is a general solution. NOTE: These series are
not summable in closed form in terms of elementary functions
thus, certain linear combinations of y, and y; are adopted as a
usable pair of LI solutions. In particular, it turns out to be con-
venient (for reasons that are not obvious) to use the Airy func-
tions Ai(z) and Bi(z), which satisfy these initial conditions:
Ai(0) = 0.35502, Ai'(0) = —0.25881 and Bi(0) = 0.61493,
Bi'(0) = 0.44829.

10. Use computer software to obtain power series solutions of
the following initial-value problems, each definedon 0 < z <
oo, through terms of eighth order, and obtain a computer plot
of so(x), s4(x), ss(z), and sg(z).

@y"+4y'+y=0, y0)=1, 2(0)=0
My +2’y=0, y0)=2, y(0)=0
©y"—zy+y=0, y0)=0, ¢'(0)=1
dA+z)y"+y=0 y0)=2 ¢(0)=0
e@B+z)y" +y +y=0, y(0)=0, y(0)=1
M1+ +y=0 y(0)=1, ¥(0)=1

11. From the given recursion formula alone, determine the
radius of convergence of the corresponding power series solu-
tions.

@ (n+3)(n+2)ans2 — (n+1)%a,41 +nap =0

(b) (n+ 1)ap42 + 5napyy + an — an—1 =0

(C) (n = 2 1)2aﬂ+2 + (27’12 + l)an+1 Nt 4ﬂn =0

@ (n+1apt2 —3(n+2)a, =0

(e) nan+2 + 4na, 41 + 3a, =0

(0 n*ant2 — 3(n + 2)%an41 + a1 =0

12. In the Comment at the end of Example 6 we wondered
what the divergence of the series solution over 7 < = < o0




implied about the nature of the solution over that part of the

domain. To gain insight, we propose studying a simple prob-

lem with similar features. Specifically, consider the problem
(-1 +y=0, y(4)=5 (12.1)

on the interval 4 < z < o0,

(a) Solve (12.1) analytically, and show that the solution is

15

r—1
over 4 < x < oo. Sketch the graph of (12.2), showing it
as a solid curve over the domain 4 < z < oo, and dotted over
-0 <z <4

(b) Solve (12.1), instead, by seeking y(z) = 3.5 an(z —4)".
(c) Show that the solution obtained in (b) is, in fact, the Taylor
expansion of (12.2) about = = 4 and that it converges only in
|z — 4] < 3 so that it represents the solution (12.2) only over
the 4 < o < 7 part of the domain, even though the solution
(12.2) exists and is perfectly well-behaved over 7 < z < oo.

y(z) = (12.2)

13. Rework Example 5 without using the ) summation nota-
tion. That is, just write out the series, as we did in the intro-
ductory example of Section 4.1. Keep powers of x up to and
including fifth order, z°, and show that your result agrees (up
to terms of fifth order) with that given in (29).

14. Rework Example 6 without using the ¥~ summation no-
tation. That is, just write out the series as we did in the intro-
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ductory example of Section 4.1. Keep powers of z — 4 up to
and including fourth order (z — 4)?, and show that your result
agrees (up to terms of fourth order) with that given in (46).

15. (Cesaro summability) Although (5) gives the usual defi-
nition of infinite series, it is not the only possible one nor the
only one used. For example, according to Cesaro summabil-
ity, which is especially useful in the theory of Fourier series,
one defines

(15.1)

ia = K 81 +8a+ -+ 8N
1 n_Naoc N !

that is, the limit of the arithmetic means of the partial sums. It
can be shown that if a series converges to s according to “‘or-
dinary convergence” [equation (5)], then it will also converge
to the same value in the Cesiro sense. Yet, there are series that
diverge in the ordinary sense but that converge in the Cesiro
sense. Show that for the geometric series (see Exercise 5),

si+8+-+sy _ 1z 1-azV (152)
N T 1-z N(1-z)? '
for all z # 1, and use that result to show that the Cesdiro
definition gives divergence for all |z| > 1 and for z = 1, and
convergence for |2| < 1, as does ordinary convergence, but
that for z = —1 it gives convergence to 1/2, whereas accord-
ing to ordinary convergence the series diverges for x = —1.

4.3 The Method of Frobenius

4.3.1. Singular points. In this section we continue to consider series solutions of

the equation
v +p(a)y’ +g(z)y = 0.

(1)

From Section 4.2, we know that we can find two LI solutions as power series
expansions about any point zg at which both p and ¢ are analytic. We call such
a point zy an ordinary point of the equation (1). Typically, p and g are analytic
everywhere on the x axis except perhaps at one or more singular points, so that all
points of the z axis, except perhaps a few, are ordinary points. In that case one
can readily select such an zg and develop two LI power series solutions about that

point.

Nevertheless, in the present section we examine singular points more closely,
and show that one can often obtain modified series solutions about singular points.




