
CHAPTER 1

Expansions in Orthogonal Bases

1.1 Vector spaces

We will use without much further comment the idea of a vector space. Basically,
a vector space is a set of vectors (these vectors will in fact often be functions) with the
property that a linear combination of vectors is again a vector. Linear combinations involve
scalars, which may be real numbers (for a real vector space) or complex numbers (for a
complex vector space).

If u and v are vectors in a vector space, and α and β are scalars, then

αu + βv

is also a vector in the space.

These linear combinations are required to satisfy a set of rules which any reasonable person
would consider obvious. In particular there must be a zero vector 0 in the space such that
0 + u = u for every vector u. See Section 9.6 of Greenberg, and in particular Definition
9.6.1, for a careful discussion of vector spaces.

For the moment we will consider only real vector spaces, returning to complex vector
spaces at the end of these notes.

Example 1.1: One familiar vector space is R
n, the set of all row vectors with n (real)

components. If u = (u1, . . . , un) and v = (v1, . . . , vn) are two vectors in Rn then their
linear combinations are constructed by making linear combinations of their components:

αu + βv = (αu1 + βv1, . . . , αun + βvn). (1.1)

The zero vector is 0 = (0, 0, . . . , 0).

Example 1.2: Another example of a vector space, important for the theory of Fourier
series and similar applications, is Cp[a, b], the set of all piecewise continuous, real-valued
functions f(x) defined for a ≤ x ≤ b. (We defined piecewise continuity when we discussed
the Laplace transform, and the concept is also is defined on page 249 of Greenberg.) As
in any space of functions, the rule for linear combinations is

(αf + βg)(x) = αf(x) + βg(x), a ≤ x ≤ b. (1.2)

The zero vector is the function which is identically 0: 0(x) = 0 for every x. An element f
of Cp[a, b] is of course a function but, since it belongs to a vector space, we may speak of
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2 Chapter 1. Orthonormal Bases

it as a “vector” when we want to emphasize this context, as we did when we spoke of the
zero vector above. Read Section 17.6 of Greenberg for more on Cp[a, b] as a vector space.

Notation: When we speak of a general vector space in these notes we will denote typical
vectors as in Example 1.1, using boldface letters: u, v, etc., and later e1, e2, . . .. The
reader should bear in mind, however, that what we say applies equally well when the
vectors under consideration are functions, considered as members of a vector space like
Cp[a, b]. When we are speaking specifically about functions we will denote them, as in
Example 1.2, by the letters f , g, etc.

If there exists a finite number n of vectors, say u1, . . . ,un, such that every vector v

can be written as a linear combination of these,

v = c1u1 + · · · cnun, c1, . . . , cn scalars, (1.3)

then the vector space is finite dimensional. In this case one may always choose n so small
that the coefficients in (1.3) are unique, whatever the vector v; we say then that the
vector space has dimension n or is n-dimensional, and call the set u1, . . . ,un of vectors a
basis for the vector space. When no such n exists we say that the vector space is infinite

dimensional. The space Rn of Example 1.1 has dimension n; a basis is e1, . . . , en, where
ei = (0, 0, . . . , 0, 1, 0, . . . , 0) has entry 1 in the ith place, with all other entries 0. The space
Cp[a, b] of Example 1.2 is infinite dimensional.

1.2 Inner products

An inner product in a vector space is a formula which assigns to any pair of vectors,
say u and v, a number 〈u,v〉, their inner product. When the vector space is R

n there is
a familiar inner product (usually called the dot product):

〈u,v〉 = u · v =
n
∑

i=1

uivi. (1.4)

When the vector space is Cp[a, b] the most common inner product, used in the study of
Fourier series, is

〈f, g〉 =

∫ b

a

f(x)g(x) dx. (1.5)

Inner products are discussed further in Section 9.6.2 of Greenberg.

An inner product must satisfy three conditions:

(IP1) Linearity: for any vectors u,v,w and numbers α, β,

〈αu + βv,w〉 = α 〈u,v〉 + β 〈v,w〉 and 〈u, αv + βw〉 = α 〈u,v〉+ β 〈u,w〉 . (1.6)

(IP2) Symmetry: 〈u,v〉 = 〈v,u〉 for any vectors u,v.

(IP3) Positivity 〈u,u〉 ≥ 0 for any vector u, and 〈u,u〉 = 0 if and only if u = 0.
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Section 1.2 Inner products 3

It is easy to check that the inner products defined in (1.4) and (1.5) have these properties.
Later we will use inner products in Cp[a, b] which are similar to (1.5) but have a more

general form. Let w(x) be a piecewise continuous function defined on [a, b] which is strictly
positive for all x, and for f, g ∈ Cp[a, b] define

〈f, g〉w =

∫ b

a

f(x)g(x) w(x) dx. (1.7)

Here w(x) is called a weight function because it give more weight—more importance—to
certain portions of the interval [a, b]: parts of the interval where w(x) is large contribute
more to 〈f, g〉w than parts where w(x) is small. For example, we might take w(x) = 1+x2

on the interval [−1, 1], thus defining an inner product 〈f, g〉w on Cp[−1, 1] by 〈f, g〉w =
∫ 1

−1
f(x)g(x)(1 + x2) dx.

Example 1.3: To be explicit about how this works we check that in this example, that is,
on Cp[−1, 1] with w(x) = 1 + x2, 〈f, g〉w satisfies properties (IP1)–(IP3) above. For (IP1)
we just use the standard properties of integrals:

〈αf + βg, h〉w =

∫ 1

−1

(

αf(x) + βg(x)
)

h(x) (1 + x2) dx

= α

∫ 1

−1

f(x)h(x) (1 + x2) dx + β

∫ 1

−1

g(x)h(x) (1 + x2) dx

= α 〈f, h〉w + β 〈g, h〉w . (1.8)

Checking (IP2) is even easier:

〈f, g〉w =

∫ 1

−1

f(x)g(x) (1 + x2) dx =

∫ 1

−1

g(x)f(x) (1 + x2) dx = 〈g, f〉w . (1.9)

Finally, for (IP3), notice that

〈f, f〉w =

∫ 1

−1

f(x)2 (1 + x2) dx ≥ 0, (1.10)

because the integrand f2(x)(1 + x2) is nonnegative; moreover, such an integral with a
nonnegative integrand can be zero only if the integrand is zero everywhere, which here
means that f(x) = 0 for all x.

One can define similarly inner products in Rn that generalize (1.4): if wi > 0 for all
i, 1 ≤ i ≤ n, then one defines

〈u,v〉w =

n
∑

i=1

uiviwi. (1.11)

For example, in R3 the familiar dot product of two vectors u = (u1, u2, u3) and v =
(v1, v2, v3) is u · v = u1v1 + u2v2 + u3v3. If we want to assign more importance to the

640:527 Fall 2014



4 Chapter 1. Orthonormal Bases

second coordinate than to the first, and yet more to the third coordinate, we might define
w1 = 1, w2 = 2, and w3 = 3, so that 〈u,v〉w = u1v1 + 2u2v2 + 3u3v3.

Whatever the inner product in our vector space, we can use it to measure the size of
vectors. For any vector u we define the norm ‖u‖ of u to be ‖u‖ =

√

〈u,u〉. Note that
this makes sense because, by (IP3), 〈u,u〉 ≥ 0; note also that, again by (IP3), ‖u‖ = 0
only if u is the zero vector.

Finally, for any two vectors u and v their inner product always satisfies the Cauchy-

Schwarz inequality:
| 〈u,v〉 | ≤ ‖u‖‖v‖. (1.12)

This should not be surprising; we know that in R3 the dot product (1.4) has a geometric
interpretation: 〈u,v〉 = ‖u‖‖v‖ cos θ, where θ is the angle between the two vectors. The
Cauchy-Schwarz inequality (1.12) then follows from the fact that | cos θ| ≤ 1. A general
proof may be given by noting that (1.12) is immediate if ‖v‖ = 0 (that is, if v = 0); if
‖v‖ > 0 we may use the fact that the vector

w = u −
〈u,v〉

‖v‖2
v

has nonnegative length:

‖w‖2 =

〈

u −
〈u,v〉

‖v‖2
v,u−

〈u,v〉

‖v‖2
v

〉

= 〈u,u〉 −

〈

u,
〈u,v〉

‖v‖2
v

〉

−

〈

〈u,v〉

‖v‖2
v,u

〉

−

〈

〈u,v〉

‖v‖2
v,

〈u,v〉

‖v‖2
v

〉

= ‖u‖2 −
〈u,v〉

2

‖v‖2
≥ 0.

1.3 Orthogonal sets of vectors

Suppose we are given a vector space with an inner product, which again we denote by
〈u,v〉. We say that two vectors u and v are orthogonal if 〈u,v〉 = 0. A set {e1, . . . ek, . . .}
of vectors in our space (there may be a finite or an infinite number of them) which are
nonzero and mutually orthogonal,

〈ei, ej〉 =

{

0, if i 6= j;
‖ei‖

2 > 0, if i = j,
(1.13)

is called an orthogonal set.

Example 1.4: The functions

1, cos
πx

ℓ
, sin

πx

ℓ
, cos

2πx

ℓ
, sin

2πx

ℓ
, . . . , cos

nπx

ℓ
, sin

nπx

ℓ
, . . . (1.14)
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Section 1.4 Best approximation 5

form an orthogonal set in Cp[−ℓ, ℓ] when we use the standard inner product (1.5). To see
this, one just computes, as follows (we always assume here that m, n ≥ 1):

〈1, 1〉 =

∫ ℓ

−ℓ

dx = 2ℓ, (1.15a)

〈

1, cos
nπx

ℓ

〉

=

∫ ℓ

−ℓ

cos
nπx

ℓ
dx = 0,

〈

1, sin
nπx

ℓ

〉

=

∫ ℓ

−ℓ

sin
nπx

ℓ
dx = 0, (1.15b)

〈

cos
mπx

ℓ
, cos

nπx

ℓ

〉

=

∫ ℓ

−ℓ

cos
nπx

ℓ
cos

mπx

ℓ
dx =

{

ℓ, if n = m
0 , if m 6= m.

0, (1.15c)

〈

sin
mπx

ℓ
, sin

nπx

ℓ

〉

=

∫ ℓ

−ℓ

sin
nπx

ℓ
sin

mπx

ℓ
dx =

{

ℓ, if n = m
0 , if m 6= m.

0, (1.15d)

〈

cos
mπx

ℓ
, sin

nπx

ℓ

〉

=

∫ ℓ

−ℓ

cos
nπx

ℓ
sin

mπx

ℓ
dx = 0. (1.15e)

These integrals are perhaps most easily evaluated by substituting cos θ = (eiθ + e−iθ)/2,
sin θ = (eiθ − e−iθ)/2i, and then using the formula, valid for m, n any integers,

∫ ℓ

−ℓ

e−imπx/ℓeinπx/ℓ =

{

2ℓ, if n = m,
0, if n 6= m,

(1.16)

Note that it is a consequence of (1.15) that

‖1‖2 = 2ℓ,
∥

∥

∥
cos

nπx

ℓ

∥

∥

∥

2

=
∥

∥

∥
sin

nπx

ℓ

∥

∥

∥

2

= ℓ. (1.17)

1.4 Best approximation

Now we again suppose that e1, e2, . . . is an orthogonal set in some vector space, and
ask the following fundamental question:

Question: Given a vector v, what linear combination

u =
∑

i

ciei (1.18)

of the vectors in the orthogonal set gives the best approximation to v? That is,
how should the coefficients ci be chosen to give this best approximation?

Before we can approach the question, we need to know in what sense the approximation
is to be “best”. The idea is to make the difference vector v − u as small as possible, and,
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6 Chapter 1. Orthonormal Bases

since we have introduced ‖w‖ as a measure of the size of the vector w, this means to make
‖v − u‖ as small as possible. So we may reformulate the question:

Question: Given a vector v, how should the coefficients ci be chosen so that if
u =

∑

i ciei then ‖v − u‖ is as small as possible?

We will give several different ways to find the answer to this question.

Approach 1: Suppose first that it is possible to choose the coefficients ci so that the
vector u of (1.18) is in fact equal to v, that is, so that the size of the error ‖v−u‖ is zero.
This means that we can write

v =
∑

i

ciei (1.19)

for some coefficients ci. Then it is easy to find what the coefficients must be: we take the
inner product of both sides of this equation with the vector ej ; this gives, using (IP1) and
(1.13),

〈v, ej〉 =

〈

∑

i

ciei, ej

〉

=
∑

i

ci 〈ei, ej〉 = cj 〈ej , ej〉 = cj‖ej‖
2, (1.20)

which implies that

cj =
〈v, ej〉

‖ej‖2
. (1.21)

As we will see in the next two approaches, formula (1.21) gives the “best” coefficients for
approximating v even when one cannot write v as a linear combination of the ei.

Approach 2: Consider a simple example in which the vector space is R3—ordinary vectors
in three dimensional space—and there are two vectors e1 and e2 in the orthonormal set.
The set of vectors u which can be written as linear combinations of these two vectors—
u = c1ei + c2e2—forms a plane through the origin. The vector in that plane which
best approximates v is the orthogonal projection of v onto the plane, so that if u is the
best approximation then v − u should be orthogonal to the plane, i.e., orthogonal to
both the vectors e1 and e2. This geometric intuition in fact applies in general: the best
approximating vector u in the form (1.18) should be such that v − u is orthogonal to all
the vectors ej :

〈v − u, ej〉 =

〈

v −
∑

i

ciei, ej

〉

= 〈v, ej〉 − cj 〈ej, ej〉 = 0. (1.22)

This is just equation (1.20) again and leads again to (1.21).

Approach 3: Now we show explicitly that the choice (1.21) for the coefficients cj makes
‖v − u‖ as small as possible. Let w =

∑

i cjej , with the cj given by (1.21), and let
u =

∑

i biei be some other linear combination of the vectors ei; we want to show that the
error v−u is at least as big as the error v−w. The calculation in (1.22) shows that v−w
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Section 1.5 Completeness 7

is orthogonal to all the vectors ej , and it is therefore orthogonal to any linear combination
of these—in particular to w−u =

∑

i(ci − bi)ei, so that 〈v − w,w − u〉 = 0. This lead to

‖v − u‖2 = ‖(v − w) + (w − u)‖2

= 〈(v − w) + (w − u), (v − w) + (w − u)〉

= 〈v − w,v −w〉 + 〈v − w,w − u〉 + 〈w − u,v −w〉 + 〈w − u,w − u〉

= ‖v − w‖2 + ‖w − u‖2

≥ ‖v − w‖2. (1.23)

Notice also that unless u = w there is strict inequality in the last line of (1.23).

Summary: The best approximation u =
∑

i ciei to a given vector v is obtained
by choosing the coefficients cj according to

cj =
〈v, ej〉

‖ej‖2
. (1.24)

Example 1.5: Let us apply this to the vector space Cp[−ℓ, ℓ] and the orthonormal set of
trigonometric functions discussed in Example 1.4. According to (1.24), the best approxi-
mation to a function f ∈ Cp[−ℓ, ℓ] of the form

S(x) = a0 +
∞
∑

n=1

[

an cos
nπx

ℓ
+ bn sin

nπx

ℓ

]

(1.25)

is obtained by choosing

a0 =
〈f, 1〉

‖1‖2
=

1

2ℓ

∫ ℓ

−ℓ

f(x) dx (1.26a)

an =

〈

f, cos
nπx

ℓ

〉

∥

∥

∥
cos

nπx

ℓ

∥

∥

∥

2 =
1

ℓ

∫ ℓ

−ℓ

f(x) cos
nπx

ℓ
dx, n ≥ 1, (1.26b)

bn =

〈

f, sin
nπx

ℓ

〉

∥

∥

∥
sin

nπx

ℓ

∥

∥

∥

2 =
1

ℓ

∫ ℓ

−ℓ

f(x) sin
nπx

ℓ
dx, n ≥ 1, (1.26c)

where we have used (1.17). The series (1.25), with the coefficients defined by (1.26), is
called the Fourier series of the function f .

Remark 1.1: Often one works with orthogonal sets which have the added property that
the vectors ei have norm 1, that is, are normalized. Such vectors are called unit vectors and
usually denoted with a hat, and a set {ê1, ê2 . . .} of such vectors is called an orthonormal

set. If {e1, e2 . . .} is an orthogonal set then we may obtain an orthonormal set by defining
êi = ei/‖ei‖. The formula (1.24) for the coefficients cj becomes

cj = 〈v, êj〉 (1.27)

when an orthonormal set is used.
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8 Chapter 1. Orthonormal Bases

1.5 Completeness

Now once again we suppose that e1, e2, . . . is an orthogonal set in some vector space.
Our final question is this: is it true that for every vector v in the space the best approx-
imation u =

∑

i ciei, with ci = 〈v, ei〉 /‖ei‖
2, is actually equal to v? In other words: are

there are enough vectors in our orthogonal set to expand every vector v in terms of that
set? If so, we say that the orthogonal set is complete or is a basis. To be more specific we
may speak of an orthogonal basis or, or, if it is the orthogonal set is actually orthonormal,
an orthonormal basis.

When the vector space is finite dimensional, say of dimension n, then the orthogonal
set forms a basis if and only if it contains n vectors; that is, if e1, . . . , en is an orthogonal
set in an n dimensional vector space then for any vector v in that space we have

v =
n
∑

j=1

〈v, ej〉

‖ej‖2
ej . (1.28)

Such an orthogonal basis is of course also a basis as defined in Section 1.1. When the
vector space is infinite dimensional, we will need an infinite orthonormal set to have any
hope of forming a basis; we are then asking whether every v in the space can be written
as

v =

∞
∑

j=1

〈v, ej〉

‖ej‖2
ej .

The question of whether or not a particular orthogonal set is complete is a delicate one,
which must be considered separately in each case. Here we consider the question for the
Fourier series described in Example 1.5.

The answer in this case is yes: the set of trigonometric functions (1.14) is indeed
complete, which means that every function f ∈ Cp[−ℓ, ℓ] is equal (more or less) to the sum
S(x) of its Fourier series, that is, that

f(x) = S(x) = lim
N→∞

[

a0 +
∞
∑

n=1

[

an cos
nπx

ℓ
+ bn sin

nπx

ℓ

]

]

. (1.29)

In fact this is true (more or less) in two senses, depending on how the limit in (1.29) is
interpreted; we say “more or less” because in the second interpretation we need to assume
something about the derivative f ′(x).

Completeness statement I: Let us denote by SN the partial sum of the Fourier series
of f :

SN (x) = a0 +

N
∑

n=1

[

an cos
nπx

ℓ
+ bn sin

nπx

ℓ

]

. (1.30)

Then the norm of the difference between the function f and the approximation SN goes
to zero as N → ∞:

lim
N→∞

∥

∥SN − f
∥

∥ = lim
N→∞

(

∫ ℓ

−ℓ

[f(x)− SN (x)]2 dx

)1/2

= 0. (1.31)
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Section 1.6 Complex vector spaces 9

In fact, this last statement is true not only for f ∈ Cp[−ℓ, ℓ] but also for functions f
belonging to a larger vector space: L2[−ℓ, ℓ], the space of all functions f for which the

integral

∫ ℓ

−ℓ

f(x)2 dx defining ‖f‖2 is finite.

Completeness statement II: Suppose that both f(x) and f ′(x) belong to Cp[−ℓ, ℓ]. Then
for each x ∈ [−ℓ, ℓ] the series (1.25) defining S(x) converges, that is, S(x) = limN→∞ SN (x)
exists, and it is given by

S(x) =



























f(x), if f is continuous at the point x ∈ (−ℓ, ℓ),

f(x+) + f(x−)

2
, if f is discontinuous at the point x ∈ (−ℓ, ℓ).

f(ℓ−) + f(−ℓ+)

2
, if x = ℓ.

(1.32)

Here f(x+) = limy→x, y>x f(y) and f(x−) = limy→x, y<x f(y). That is, the Fourier series
converges to f(x) wherever f(x) is continuous, and at a point x where f takes a jump
it converges to the average of the values of f from the right and left of the jump. The
endpoints of the interval need special treatment: there S(x) converges to the average of
the limit (from the left) of f at ℓ and the limit (from the right) of f at −ℓ.

1.6 Complex vector spaces

Sometimes it is convenient to consider vector spaces formed by complex-valued func-
tions or by row vectors with complex entries; see Example 1.6 below. When we form linear
combinations αf + βg or αu + βv in this setting the numbers α and β can be complex.
Most of what we said above goes through, but with one key change. We still want the
inner product to satisfy 〈u,u〉 ≥ 0 or 〈f, f〉 ≥ 0, so that for row vectors (the vector space
is now Cn) we define

〈u,v〉 =
∑

i

uivi, (1.33)

where the bar denotes complex conjugation; now 〈u,u〉 =
∑

i uiui =
∑

i |ui|
2 ≥ 0. Simi-

larly we define, for f, g complex-valued functions piecewise continuous on [a, b],

〈f, g〉 =

∫ b

a

f(x)g(x)dx, (1.34)

so that again 〈f, f〉 =
∫ b

a
|f(x)|2 dx ≥ 0.

The general rules for an inner product on a complex vector space are

(IP1′) Linearity: for any vectors u,v,w and complex numbers α, β,

〈αu + βv,w〉 = α 〈u,v〉 + β 〈v,w〉 and 〈u, αv + βw〉 = α 〈u,v〉 + β 〈u,w〉 . (1.35)

(IP2′) Symmetry: 〈u,v〉 = 〈v,u〉 for any vectors u,v.
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10 Chapter 1. Orthonormal Bases

(IP3′) Positivity: 〈u,u〉 ≥ 0 for any vector u, and 〈u,u〉 = 0 if and only if u = 0.

Note that the inner product is now not linear but antilinear in its second argument (second
equation in (IP1′)); this is necessary for (IP1′) to be consistent with (IP2′). One can check
that this is exactly how the inner products (1.33) and (1.34) behave.

We say that a set {e1, . . .} of vectors in a complex vector space is an orthogonal
set exactly as for the real case, that is, when (1.13) holds. Moreover, exactly the same
arguments tell us the the coefficients cj which make

∑

cjej the best approximation to a
vector v are given by (1.24): cj = 〈v, ej〉 /‖ej‖

2. In using this formula, however, one must
now be a little cautious, because 〈v, ej〉 6= 〈ej,v〉.

Example 1.6: Consider again Cp[−ℓ, ℓ], now allowing complex valued functions. Equation
(1.16) tells us that the functions

ϕn(x) = einπx/ℓ, n = 0,±1,±2 . . . (1.36)

form an orthogonal set. Since the orthogonal set (1.14) of trigonometric functions is
complete, and since these trigonometric functions can be expressed in terms of the complex
exponentials (1.36) via

1 = ϕ0(x),

cos
nπx

ℓ
=

ϕn(x) + ϕ−n(x)

2
, n ≥ 1,

sin
nπx

ℓ
=

ϕn(x) + ϕ−n(x)

2
, n ≥ 1,

(1.37)

the complex exponentials are also a complete set, so that any (complex) function f ∈
Cp[−ℓ, ℓ] can be expanded in a complex Fourier series

f(x) =
∞
∑

n=−∞

cneinπx/ℓ, (1.38)

with

cn =

〈

f(x), einπx/ℓ
〉

∥

∥einπx/ℓ
∥

∥

2 =
1

2ℓ

∫ ℓ

−ℓ

f(x)e−inπx/ℓ dx. (1.39)

Notice that in writing the second form in (1.38) we have taken the complex conjugation

in (1.34) into account, using the fact that einπx/ℓ = e−inπx/ℓ. We can of course also use
the complex Fourier series formulas (1.38) and (1.39) if f happens to be real, since a real
function is just a special case of a complex function. In that case it follows from (1.39)
that c−n = cn.
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1.7 Exercises

1. All parts of this question refer to the vector space Cp[0, 2] and two inner products on
this space:

〈u, v〉 =

∫ 2

0

u(x)v(x) dx and 〈u, v〉w =

∫ 2

0

u(x)v(x)w(x) dx,

where w(x) = x2 − 2x + 2. We correspondingly write

‖u‖ =
√

〈u, u〉 and ‖u‖w =
√

〈u, u〉w.

Let f(x) = 1, g(x) = 1 − x, and h(x) = x2.

(a) Show that f and g are orthogonal in the inner product 〈·, ·〉, and find ‖f‖ and ‖g‖.
Then compute the constants c1, d1 that make h1 = c1f + d1g the approximation of h with
the smallest error ‖h − h1‖, and compute this error.

(b) Show that f and g are orthogonal in the inner product 〈·, ·〉w, and find ‖f‖w and ‖g‖w.
Then compute the constants c2, d2 that make h2 = c2f + d2g the approximation of h with
the smallest error ‖h − h2‖w, and compute this error.

(c) Compute ‖h − h2‖ and show that, as expected, this error is larger than ‖h − h1‖.

2. In this problem we consider continuous functions defined on the (infinite) interval [0,∞).
For these we introduce the inner product and norm

〈f, g〉 =

∫

∞

0

f(x)g(x)e−x dx, ‖f‖ =
√

〈f, f〉.

(a) Find constants a, b, and c such that if f1(x) = 1, f2(x) = x+a, and f3(x) = x2 +bx+c
then {f1(x), f2(x), f3(x)} is an orthogonal set. In the remainder of the problem we assume
that f1, f2, and f3 are defined with these constants.

(b) Let g(x) = x3. Compute the constants c1, c2, and c3 such that

g1(x) = c1f1(x) + c2f2(x) + c3f3(x)

is the best approximation to g(x) by a linear combination of f1, f2, and f3, in the sense
that the error ‖g − g1‖ is as small as possible. Compute this error.
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