
36 Chapter 2. Fourier Series and Separation of Variables

2.6 The Fourier transform

In this section we begin with a function f(x) which is defined for all x but is not

periodic; rather, our basic assumption throughout is that it makes sense to integrate f(x)
over all values of x:

∫ ∞

−∞

|f(x)| dx < ∞. (2.81)

Our goal is to obtain a representation of f(x) which is analogous to the expansion of a
periodic function in a Fourier series. The place of the Fourier coefficients an and bn (or
equivalently cn, for the complex form of the Fourier series) is taken by a new quantity

f̂(ω), called the Fourier transform of f(x) and also written F{f(x)}:

f̂(ω) = F{f(x)}(ω) =

∫ ∞

−∞

f(x)e−iωx dx. (2.82)

Here ω is a real variable which is analogous to the index n on the Fourier coefficients; we
think of ω is a frequency variable, since (as a function of x) the exponential e−iωx oscillates
with frequency ω. What is surprising is that the inverse Fourier transform, which takes
us back from f̂(ω) to f(x), is given by a very similar integral:

f(x) = F−1{f̂(ω)}(x) =
1

2π

∫ ∞

−∞

f̂(ω)eiωx dx. (2.83)

A more precise version of (2.83) is given in Theorem 2.1 below. Although we will not prove
this theorem rigorously, we now give a heuristic discussion of why (2.83) it holds and of
the relation of the Fourier transform to the Fourier series that we discussed earlier.

We begin by considering the Fourier series of a certain periodic function fℓ(x), where
ℓ is a positive number, obtained from f(x) in a two step process: we first let h(x) be the
restriction of f(x) to the interval [−ℓ, ℓ], and then let fℓ(x) be the periodic extension of
h(x) to all of R:

First: h(x) = f(x), −ℓ ≤ x ≤ ℓ; Then: fℓ(x) = hper(x).

See Figure 2.4. (Eventually we will take a limit ℓ → ∞.) Since fℓ(x) is periodic, with
period 2ℓ, it has a (complex) Fourier series

fℓ(x) =
∞
∑

n=−∞

cneinπx/ℓ (2.84),

with

cn =
1

2ℓ

∫ ℓ

−ℓ

f(x)e−inπx/ℓ dx. (2.85)

The exponential e−inπx/ℓ occurring in (2.85) corresponds to frequency ωn = nπ/ℓ, and
comparing (2.85) and (2.82) we see that

cn ≈ 1

2ℓ

∫ ∞

−∞

f(x)e−inπx/ℓ dx =
1

2ℓ
f̂

(nπ

ℓ

)

=
1

2ℓ
f̂(ωn). (2.86)
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Section 2.6 The Fourier transform 37

Figure 2.4: A function f(x) satisfying (2.81) and the corresponding fℓ(x) for ℓ = 10.

The approximation in the first step in (2.86) comes from replacing the integral from −ℓ to
ℓ by an integral from −∞ to ∞; we would expect this approximation to become more and
more exact as ℓ → ∞.

Now we study the integral (1/2π)
∫∞

−∞
f̂(ω)eiωx dω which we have claimed in (2.83)

gives the inverse Fourier transform. For −ℓ < x < ℓ,

1

2π

∫ ∞

−∞

f̂(ω)eiωx dω ≈ 1

2π

∞
∑

n=−∞

f̂(ωn)eiωnx ∆ω ≈
∞
∑

n=−∞

cneiωnx = f(x). (2.87)

Here we have first approximated the integral as a Riemann sum, obtained by dividing
the real line (−∞,∞) into small intervals using the division points ωn, n = −∞, · · · ,∞,
so that the width of each interval is ∆ω = ωn+1 − ωn = π/ℓ, and have then used the

approximation f̂(ωn) ≈ 2ℓcn from (2.86). The final equality, which holds for −ℓ < x < ℓ,
is just (2.84). Now consider sending ℓ to infiniity. The approximations in (2.87) should
become better and better in this limit, and the range −ℓ < x < ℓ in which (2.87) holds
will become the entire real line. Thus we expect that, for all x,

f(x) =
1

2π

∫ ∞

−∞

f̂(ω)eiωx dx. (2.88)

This is the equation (2.83) which we wanted to justify. A more precise version of this result
is given in the next theorem.

Theorem 2.1: Suppose that f(x) is defined for −∞ < x < ∞, that f(x) and f ′(x) are
piecewise continuous, and that

∫ ∞

−∞
|f(x)| dx < ∞ (see (2.81)). Then

F−1{f̂(ω)}(x) =







f(x), if f is continuous at x,

f(x−) + f(x+)

2
, for all x.
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38 Chapter 2. Fourier Series and Separation of Variables

(a) (b) (c)

Figure 2.5: The functions of (a) Example 2.1, (b) Example 2.2, and (c) Example 2.4.

There is a small table of Fourier transforms in Appendix D of Greenberg. But they
are easy to calculate.

Example 2.1: Suppose that f1(x) = e−|x|; see Figure 2.5(a). The condition (2.81) is
certainly satisfied, since f1(x) decreases exponentially as |x| → ∞. Then

F{f1(x)}(ω) =

∫ ∞

−∞

e−|x|e−iωx dx =

∫ 0

−∞

e(1−iω)x dx +

∫ ∞

0

e−(1+iω)x dx

=
e(1−iω)x

1 − iω

∣

∣

∣

∣

0

−∞

− e−(1+iω)x

1 + iω

∣

∣

∣

∣

∞

0

=
1

1 − iω
+

1

1 + iω
=

2

1 + ω2
.

Example 2.2: Suppose that a > 0 and let f2(x; a) = H(x+a)−H(x−a) =

{

1, if |x| < a,
0, if |x| > a.

Then

F{f2(x; a)} = f̂2(ω; a) =

∫ ∞

−∞

f2(x; a)e−iωx dx

=

∫ a

−a

e−iωx dx =
1

−iω

(

e−iωx − eiωx
)a

−a
=

2

ω
sin ωa

and

f2(x; a) = F−1{f̂2(ω; a)} =
1

π

∫ ∞

−∞

sin ωa

ω
eiωx dω.

Example 2.3: Let f3(x) = e−axH(x), with a > 0. Then

F{f3(x)} = f̂3(ω) =

∫ ∞

−∞

f3(x)e−iωx dx =

∫ ∞

0

e−(a+iω)x dx =
1

a + iω
.

Example 2.4: Suppose that f4(x; p) = e−x2/4p2

; f4 is a Gaussian, sometimes called a bell

curve. See Figure 2.5(c). All that really matters is that we consider a function having the
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Section 2.6 The Fourier transform 39

form e−Ax2

for some positive constant A; the specific choice A = 1/4p2 is used here for
historical reasons. To work out the Fourier transform of f4(x; p) we need the Gaussian

integral
∫ ∞

−∞

e−x2/4p2

dx = 2p
√

π, (2.89)

as well as a simple completion of a square:

x2

4p2
+ iωx =

1

4p2
(x + 2iωp)2 + ω2p2.

Then we have

F{e−x2/4p2}(ω) =

∫ ∞

−∞

e−x2/4p2

e−iωx dx =

∫ ∞

−∞

e−(x2/4p2+iωx) dx

= e−ω2p2

∫ ∞

−∞

e−(x+2iω)2/4p2

dx = e−ω2p2

∫ ∞

−∞

e−ξ2/4p2

dξ

= 2p
√

πe−ω2p2

, (2.90)

where we have made the substitution ξ = x + 2iωp.

Remark 2.12: Everyone should know the simple trick to derive (2.89); we pause to
recall it:

Evaluation of a Gaussian integral

Let I denote the integral on the left hand side of (2.89). Then I2 is a product of
two integrals; the trick is to write these using two different (dummy) integration
variables, x and y, so that the product becomes a double integral over the entire
plane, and then to evaluate this double integral using a change of variables to polar
coordinates:

I2 =

(
∫ ∞

−∞

e−x2/4p2

dx

) (
∫ ∞

−∞

e−y2/4p2

dy

)

=

∫∫

R2

e−(x2+y2)/4p2

dx dy

=

∫ 2π

0

∫ ∞

0

e−r2/4p2

r dr dθ = (2π)(2p2)

∫ ∞

0

e−u du = 4πp2,

where in the last line we have made the substitution u = r2/4p2, with then du =
r dr/2p2. Taking the square root of I2 = 4πp2 yields (2.89).

Example 2.5: Suppose that f5(x; a) =
(

δ(x− a) + δ(x + a)
)

/2 (this rather special Fourier
transform will be needed below). Then

F{f5(x; a)}(ω) =

∫ ∞

−∞

δ(x − a) + δ(x + a)

2
e−iωx dx =

e−iaω + eiaω

2
= cos aω.
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40 Chapter 2. Fourier Series and Separation of Variables

The next proposition gives the most important properties of the Fourier transform.

Proposition 2.2: (a) The Fourier transform and inverse Fourier transform are linear: if
α and β are constants, then

F{αf(x) + βg(x)} = αF{f(x)}+ βF{g(x)},
F−1{αf̂(ω) + βĝ(ω)} = αF−1{f̂(ω)} + βF−1{ĝ(ω)},

(2.91)

Proof: This follows immediately from the definitions (2.82) and (2.83).

(b) Suppose that f(x) is continuous, not just piecewise continuous, and has a derivative
which is piecewise continuous and satisfies

∫ ∞

−∞
|f ′(x)| dx < ∞ (see (2.81)). Then

F{f ′(x)}(ω) = iωf̂(ω) (2.92)

Similarly, if f(x), f ′(x), . . . f (n−1)(x) are continuous, f (n) is piecewise continuous, and
∫ ∞

−∞
|f (k)(x)| dx < ∞ for k = 0, . . . n, Then

F{f (n)(x)}(ω) = (iω)nf̂(ω). (2.93)

Proof: Equation (2.92) is obtained by integration by parts:

F{f ′(x)}(ω) =

∫ ∞

−∞

f ′(x)e−iωx dx = f(x)e−iωx
∣

∣

∣

∞

−∞
+ iω

∫ ∞

−∞

f(x)e−iωx dx = iωf̂(ω).

Here we are justified in setting f(x)e−iωx
∣

∣

∣

∞

−∞
equal to zero by the fact that f(x) → 0 as

x → ±∞; the full proof of this is technical and we omit it.

To state the next property we define the convolution (f ∗ g)(x) of two functions f(x)
and g(x), which are defined for all x and satisfy (2.81), by

(f ∗ g)(x) =

∫ ∞

−∞

f(ξ)g(x− ξ) dξ. (2.94)

This is very similar to the convolution we used in working with the Laplace transform,
but differs because the range of integration in (2.94) is the entire line; there should be
no confusion because we will never be using Laplace and Fourier transforms at the same
time. The next part of our proposition shows that this convolution is related to the Fourier
transform just as our earlier version was to the Laplace transform.

(c) Suppose that f(x) and g(x) satisfy (2.81) and have Fourier transforms f̂(ω) and ĝ(ω)
respectively. Then

F−1{f̂(ω)ĝ(ω)} = f ∗ g. (2.95)
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Section 2.7 Applications of the Fourier transform 41

Proof: To verify (2.95) we compute the Fourier transform of f ∗ g:

F{(f ∗ g)(x)}(ω) =

∫ ∞

−∞

(f ∗ g)(x)e−iωx dx

=

∫ ∞

−∞

∫ ∞

−∞

f(ξ)g(x− ξ)e−iωx dξ dx

=

∫ ∞

−∞

f(ξ)

∫ ∞

−∞

g(x − ξ)e−iωx dx dξ

=

∫ ∞

−∞

f(ξ)e−iωξ

∫ ∞

−∞

g(y)e−iωy dy dξ

=

(
∫ ∞

−∞

f(ξ)e−iωξ dξ

)(
∫ ∞

−∞

g(y)e−iωy dy dξ

)

= f̂(ω)ĝ(ω).

Here we have, in line-by-line order, (i) inserted the definition (2.94) of f ∗g, (ii) exchanged
the order of the x and ξ integrals, (iii) made a change of variable from x to y = x − ξ in
the inner integral, using that then dx = dy and e−iωx = e−iωye−iωξ, and (vi) reorganized

the integral to make it clear that we now have a product of the Fourier transforms f̂ and
ĝ.

(d) Suppose that f(x) satisfies (2.81) and has Fourier transforms f̂(ω). Then

F{f(x − a)} = e−iωaf̂(ω) and F−1{f̂(ω − a)} = eiaxf(x). (2.96)

Proof: We verify the first formula in (2.96):

F{f(x − a)} =

∫ ∞

−∞

f(x − a)e−iωx dx =

∫ ∞

−∞

f(y)e−iω(y+a) dx = e−iωaf̂(ω)

where we have made the change of integration variable y = x − a. The second formula is
obtained similarly.
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42 Chapter 2. Fourier Series and Separation of Variables

2.7 Applications of the Fourier transform

The Fourier transform can be used to solve partial differential equations in which one of
the variables varies over the entire line. We give two examples.

A1. The heat equation for a doubly infinite rod

We want to solve the initial value problem for a function u(x, t):

α2uxx(x, t) = ut(x, t); −∞ < x < ∞, t > 0; (PDE)

u(x, 0) = f(x), −∞ < x < ∞, (IC)

We may think of this as the heat equation for an infinitely long rod, or as an approximation
to the heat equation in a very long rod. The initial value f(x) is assumed to be localized,
that is, to fall off to zero as x → ±∞; we will specifically assume that f(x) satisfies the
condition (2.81), so that we may use the Fourier transform. There are no explicit boundary
conditions in the problem, but they arise implicitly because our solution u(x, t) will satisfy
u(x, t) → ∞ as x → ±∞.

Let û(ω, t) denote the Fourier transform of u(x, t) in the variable x:

û(ω, t) = F{u(x, t)} =

∫ ∞

−∞

u(x, t)e−iωx dx. (2.97)

Note that by (2.93) the Fourier transform of uxx(x, t) is −ω2û(ω, t), and also that the
transform of ut(x, t) is ût(ω, t), since we can carry a t derivative in (2.97) through the
integral:

ût(ω, t) =
∂

∂t

∫ ∞

−∞

u(x, t)e−iωx dx =

∫ ∞

−∞

∂

∂t
u(x, t)e−iωx dx = F{ut(x, t)}. (2.98)

Thus the Fourier transform of (PDE) is

−α2ω2û(ω, t) = ût(ω, t).

This is an ordinary differential equation for û(ω, t) with solution û(ω, t) = C(ω)e−α2ω2t,
where C(ω) is some arbitrary function of ω. C(ω) may be evaluated from the initial
condition:

C(ω) = û(ω, 0) = F{u(x, 0)} = F{f(x)} = f̂(ω).

thus
û(ω, t) = f̂(ω)e−α2ω2t. (2.99)

To complete the solution we must find u(x, t) = F−1{û(ω, t)}. Certainly we can write
this down using the integral formula (2.83) for F−1:

u(x, t) = F−1{û(ω, t)} =
1

2π

∫ ∞

−∞

f̂(ω)e−α2ω2teiωx dω.
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Section 2.7 Applications of the Fourier transform 43

Figure 2.6: The function K(ξ, t) plotted, with α2 = 1, for t = 0.0025 (red), t = 0.01 (blue),
t = 0.04 (green), t = 0.16 (black), and t = 0.4 (brown).

An alternate approach is to use the convolution property (2.95) of the Fourier transform

to compute F−1{û(ω, t)}. (2.99) expresses û(ω, t) as product; since F−1{f̂(ω)} = f(x)

and, from Example 2.4 with p =
√

α2t, F−1{e−α2ω2t} = e−x2/4α2t/2
√

α2πt, (2.95) yields
(see (2.95))

u(x, t) =
1

2
√

α2πt

∫ ∞

−∞

f(ξ)e−
(x−ξ)2

4α2t dξ. (2.100)

We may interpret the solution (2.100) as follows. From (2.89),

1

2
√

α2πt

∫ ∞

−∞

e−
(x−ξ)2

4α2t dξ =
1

2
√

α2πt

∫ ∞

−∞

e−
ξ2

4α2t dξ = 1.

Thus (2.100) tells us that the value u(x, t) is an average of the initial values f(ξ), averaged
with weight function K(x − ξ, t), where

K(ξ, t) =
1

2
√

α2πt
e−

ξ2

4α2t .

K(ξ, t) is called the heat kernel. The graphs of K(ξ, t) for several different values of t, with
α2 = 1, are shown in Figure 2.6; the graphs of K(x − ξ, t) would look the same but be
shifted to have center at ξ = x. We see that for small t the averaging will take place over
values of f(ξ) with ξ very close to x, while for large t the averaging will be over a very
wide range of values. (The first statement is not really true, since the heat kernel K(ξ, t)
is never zero, but it is effectively zero outside a range which grows with t.)

As a specific example, suppose that f(x) is the square pulse f2(x; a) considered in
Example 2.2; see Figure 2.5(b). In this case the solutions (2.100) are plotted, with a = 2,
as functions of x for various values of t, in Figure 2.7. For small values of t the averaging
discussed above does not affect values u(x, t) of the solution when x is near the center of the
pulse or some distance outside it; for those values of x essentially all the values f(ξ) being
averaged are the same, either 1 or 0 respectively. Near the edge of the pulse, however, the
averaging extends over values of f(ξ) which are both 1 and 0, and this produces a rounding
of the edges of the pulse. After a longer time the averaging includes both 1 and 0 values
for all x shown in the figure, and the resulting solution looks very much like the weight
function itself.
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44 Chapter 2. Fourier Series and Separation of Variables

Figure 2.7: Evolution of a square pulse under the heat equation.
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Section 2.7 Applications of the Fourier transform 45

A2. The wave equation on the real line

We want to solve the initial value problem for a function u(x, t):

c2uxx(x, t) = utt(x, t); −∞ < x < ∞, t > 0; (PDE)

u(x, 0) = f(x), ut(x, 0) = g(x), −∞ < x < ∞. (IC)

Again we suppose that f and g satisfy (2.81):
∫ ∞

−∞
|f(x)| dx < ∞ and

∫ ∞

−∞
|g(x)| dx < ∞.

As in A.1 above we let û(ω, t) denote the Fourier transform, in x, of u(x, t), and by taking
the Fourier transform of (PDE) obtain

−c2ω2û(ω, t) = ûtt(ω, t) ⇔ ûtt + (cω)2û = 0.

Again we have obtained an ordinary differential equation for û(ω, t); now the solution is

û(ω, t) = A(ω) cos cωt + B(ω) sin cωt,

with A(ω) and B(ω) determined by the initial conditions:

û(ω, 0) = A(ω) = F{u(x, 0)} = F{f(x)} = f̂(ω) ⇒ A(ω) = f̂(ω),

ût(ω, 0) = cωB(ω) = F{ut(x, 0)} = F{g(x)} = ĝ(ω) ⇒ B(ω) =
1

cω
ĝ(ω).

Thus

û(ω, t) = f̂(ω) cos cωt +
1

cω
ĝ(ω) sin cωt. (2.101)

Finally, we can find u(x, t) by taking the inverse Fourier transform of (2.101); we
will do this using the convolution property (2.95). If we recall the functions f2 and f5

from Example 2.2 and Example 2.5, and their Fourier transforms as computed in those
examples, we see that (2.101) can be written as

û(ω, t) = F{f4(x; ct)}F{f(x)}+
1

2c
F{f2(x; ct)}F{g(x)}

so that by (2.95),

u(x, t) = F−1{û(ω, t)} = (f4 ∗ f)(x, t) +
1

2a
(f2 ∗ g)(x, t)

=

∫ ∞

−∞

f4(ξ; ct)f(x− ξ) dξ +
1

2c

∫ ∞

−∞

f2(ξ; ct)g(x− ξ) dξ.

(2.102)
Let us consider the two terms in (2.102) separately. For the first we find,

∫ ∞

−∞

f4(ξ; ct)f(x−ξ) dξ =
1

2

∫ ∞

−∞

(

δ(ξ−ct)+δ(ξ+ct)
)

f(x−ξ) dξ =
1

2

(

f(x−ct)+f(x+ct)
)

.
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x

t •
(x0, t0)

x0 − ct0 x0 + ct0

slope 1/c
ց

slope −1/c
ւ

Figure 2.8: The x-t plane and the domain of dependence of u(x, t).

For the second,

1

2c

∫ ∞

−∞

f2(ξ; ct)g(x− ξ) dξ =
1

2c

∫ ct

−ct

g(x− ξ) dξ =
1

2c

∫ x+ct

x−ct

g(η) dη

where we have made the change of variable η = x−ξ and, since then dη = −dξ, exchanged
the upper and lower limits. In summary,

u(x, t) =
1

2

(

f(x − ct) + f(x + ct)
)

+
1

2a

∫ x+ct

x−ct

g(η) dη. (2.103)

The result (2.103) is called d’Alembert’s solution of the wave equation on the infinite
line. There is an important geometric interpretation of this formula. Consider Figure 2.8,
which shows the x-t plane; the initial data are specified at t = 0, that is, along the x
axis in this figure. One particular point, (x0, t0), is shown with a heavy dot, and we are
interested in how u(x0, t0) depends on the initial data f(x) and g(x). The dashed lines
project backwards in time from this point; their slopes are dt/dx = ±1/c, which correspond
to velocities dx/dt = ±c, and they intersect the x axis at x = x0 − ct0 and x = x0 + ct0.
Now (2.103) shows that the only values of f(x) which can influence u(x0, t0) are the values
at these two points: f(x0 − ct0) and f(x0 + ct0). Similarly, the only values of g(x) which
can influence u(x0, t0) are the values g(x) with x0 − ct0 ≤ x ≤ x0 + ct0, that is, the values
at points on the portion of the x axis marked with the heavy line. Data at points x not on

this heavy line, that is, with x < x0 − ct0 or x > x0 + ct0, cannot influence u(x0, t0). This
portion of the x axis is called the domain of dependence of u(x0, t0). Another way to say
this is that the initial information f(x) and g(x) cannot propagate with speed greater than
c. The situation is quite different for the heat equation: the initial value u(x, 0) = f(x)
will affect u(x0, t0) for every (x0, t0), although the effect will be extremely small unless
(x0, t0) is close to (x, 0) in some appropriate sense.
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