
CHAPTER 2

Fourier Series and Separation of Variables

2.1 Periodic functions and Fourier series

We first recall the elementary definitions of even, odd, and periodic functions (see
Section 17.2 of Greenberg). A function f(x) is even if it is defined for all x (or possibly in
some interval symmetric about x = 0, that is, of the form (−a, a) or [−a, a]) and satisfies
f(x) = f(−x); it is odd if it is similarly defined and satisfies f(−x) = −f(x). We will
frequently use the observation that if f(x) is defined for −a ≤ x ≤ a then

∫ a

−a

f(x) dx =







0, if f is odd;

2

∫ a

0

f(x) dx, if f is even.
(2.1)

This formula is easily derived by writing
∫ a

−a
f(x) dx =

∫ 0

−a
f(x) dx+

∫ a

0
f(x) dx and making

the change of variable y = −x in the first integral.
A function f(x) defined on for all x is periodic with period T if f(x+T ) = f(x) for all

x. A constant function is periodic with any period. Aside from this, the most important
periodic functions are the trigonometric functions sinx and cos x; these are each periodic
with period 2π. Because of this, each of the functions cos(nπx/ℓ) and sin(nπx/ℓ) listed
in (1.14) is periodic with period 2ℓ. Linear combinations of functions all having the same
period T have period T , so that a Fourier series

S(x) = a0 +

∞
∑

n=1

[

an cos
nπx

ℓ
+ bn sin

nπx

ℓ

]

. (2.2)

(see (1.25)) is periodic with period 2ℓ.
It is also convenient to use the idea of the periodic extension of a given function: if

f is defined on the interval [a, b] then the periodic extension fper of f , which has period
T = b − a, is defined simply by “repeating” f in all the intervals [a + nT, b + nT ] for
n = 0,±1, . . ., so that for all x,

fper(x) = f(x − nT ) whenever a + nT < x ≤ b + nT , n = 0,±1,±2, . . .. (2.3)

In Figure 2.1 we show a picture for a = 1, b = 3, and f(x) = x − 3/2:

Figure 2.1: Periodic extension fper(x) of a function f(x) defined for 1 ≤ x ≤ 3.
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14 Chapter 2. Fourier Series and Separation of Variables

Note that fper may be discontinuous at a, b, etc., even if f is continuous. A related fact
is that in defining fper we have taken fper(a) = f(b) and not fper(a) = f(a); some choice
must be made but this has no effect in practice.

In Chapter 1 we discussed the Fourier series (2.2) as an expansion of a function f , let
us say piecewise continuous, defined on the interval [−ℓ, ℓ]. Specifically, if we define the
coefficients an and bn by the formulas (1.26) that is, by

a0 =
1

2ℓ

∫ ℓ

−ℓ

f(x) dx, an =
1

ℓ

∫ ℓ

−ℓ

f(x) cos
nπx

ℓ
dx, n ≥ 1,

bn =
1

ℓ

∫ ℓ

−ℓ

f(x) sin
nπx

ℓ
dx, n ≥ 1,

(2.4)

then we will write

f(x) ∼ a0 +

∞
∑

n=1

[

an cos
nπx

ℓ
+ bn sin

nπx

ℓ

]

for −ℓ ≤ x ≤ ℓ, (2.5)

to denote that the right hand side is the Fourier series of f . In fact, we know from Chapter 1
that the symbol ∼ in (2.5) can be replaced by an equality, if this is interpreted in the sense
of one of the completeness statements of Section 1.5, that is, as in (1.31) or (1.32) (but
recall that to be sure that (1.32) holds we need f ′(x) also to lie in Cp[−ℓ, ℓ]).

Remark 2.1: One may use (2.1) to considerably simplify the formulas (2.4) when f is
even or odd. For example, if f is even then f(x) cos(nπx/ℓ) is even and f(x) sin(nπx/ℓ)
is odd, so that from (2.1),

a0 =
1

ℓ

∫ ℓ

0

f(x) dx, an =
2

ℓ

∫ ℓ

0

f(x) cos
nπx

ℓ
dx, bn = 0, n ≥ 1. (2.6)

Similarly, if f is odd one has

a0 = 0, an = 0, bn =
2

ℓ

∫ ℓ

0

f(x) sin
nπx

ℓ
dx, n ≥ 1. (2.7)

Let us emphasize that in (2.4)–(2.7) we are considering the Fourier series of a function
defined on the interval [−ℓ, ℓ]. We now want to relate these series to the Fourier series of
periodic functions; there are two complementary ways of doing so.

Approach 1. Suppose that we are given a periodic piecewise continuous function g(x),
defined for all x; for the moment we assume that g(x) which has period 2ℓ, i.e., that
g(x + 2ℓ) = g(x). In particular, g(x) is defined for x in the interval [−ℓ, ℓ] and thus
by restricting x to lie in this interval we obtain a function f ∈ Cp[−ℓ, ℓ] (specifically,
f(x) = g(x) for −ℓ ≤ x ≤ ℓ and f(x) is undefined for other values of x). Then by the
paragraph above we know that if we define an and bn by (1.26), then f is the sum of its
Fourier series in the sense of (1.32) (again assuming that f ′(x) is also piecewise continuous).
But now the periodic extension fper(x) of f(x) is just g(x), and the right hand side of (2.4)
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Section 2.1 Periodic functions and Fourier series 15

is already a periodic function with period 2ℓ. Thus we will also say that (2.2) is the Fourier
series of g(x):

g(x) ∼ a0 +

∞
∑

n=1

[

an cos
nπx

ℓ
+ bn sin

nπx

ℓ

]

≡ S(x) for all real x. (2.8)

As above, ∼ can be replaced by = in the sense of (1.32), which here becomes

S(x) =







g(x), if g is continuous at x,

g(x+) + g(x−)

2
, if g is discontinuous at the point x.

(2.9)

Note that in (2.9) we no longer need any special consideration for the endpoint of an
interval, as we did in (1.32).

Approach 2. A second way to look at the connection of Fourier series on an interval with
the Fourier series of periodic functions is to start with a function f defined only on the
interval [−ℓ, ℓ], say f ∈ Cp[−ℓ, ℓ]. Then fper, a periodic function of period 2ℓ, can play the
role of g above; in particular, the Fourier series of f converges to fper everywhere, in our
usual sense:

S(x) =







fper(x), if fper is continuous at x,

fper(x+) + fper(x−)

2
, if fper is discontinuous at the point x.

(2.10)

Remark 2.2: (a) Suppose that we are in the situation described above: g(x) is periodic
with period 2ℓ, f(x) is defined on [−ℓ, ℓ], and g(x) = fper(x) or, equivalently, f(x) is the
restriction of g(x) to the interval [−ℓ, ℓ]. Then since f(x) = g(x) for −ℓ ≤ x ≤ ℓ, f can be
replaced by g in the definition (2.4) of the Fourier coefficients:

a0 =
1

2ℓ

∫ ℓ

−ℓ

g(x) dx, an =
1

ℓ

∫ ℓ

−ℓ

g(x) cos
nπx

ℓ
dx, n ≥ 1,

bn =
1

ℓ

∫ ℓ

−ℓ

g(x) sin
nπx

ℓ
dx, n ≥ 1,

(2.11)

Thus we never need to think about f(x) at all: everything can be expressed in terms
of g(x). Furthermore, since each integrand in (2.11) is now periodic with period 2ℓ, the
interval [−ℓ, ℓ] over which the integration is carried out may be replaced by any other
interval of the same length: for any X ,

a0 =
1

2ℓ

∫ X+2ℓ

X

g(x) dx, an =
1

ℓ

∫ X+2ℓ

X

g(x) cos
nπx

ℓ
dx, n ≥ 1,

bn =
1

ℓ

∫ X+2ℓ

X

g(x) sin
nπx

ℓ
dx, n ≥ 1.

(2.12)
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16 Chapter 2. Fourier Series and Separation of Variables

(b) In the discussion above we have always taken f(x) to be defined on [−ℓ, ℓ], but this
is not necessary. We can start with f(x) defined on any interval [a, b], obtain its periodic
extension fper(x) = g(x), and then expand g(x) in a Fourier series. Suppose that b−a = T ,
so that g(x) has period T ; then we may use (2.12), with 2ℓ = T , to find the Fourier
coefficients of g(x). In particular, if we take X = a then X + 2ℓ = b and we obtain
expressions involving the intergral of g(x), or equivalently f(x), over the original interval
[a, b]:

f(x) ∼ a0 +
∞
∑

n=1

[

an cos
2nπx

T
+ bn sin

2nπx

T

]

(2.13)

with

a0 =
1

T

∫ b

a

f(x) dx, an =
2

T

∫ b

a

f(x) cos
2nπx

T
dx, n ≥ 1,

bn =
2

T

∫ b

a

f(x) sin
2nπx

T
dx, n ≥ 1.

(2.14)

Finally, everything said above applies also to the complex form of the Fourier series:
a function g(x), periodic with period 2ℓ, has a complex Fourier series

g(x) ∼

∞
∑

n=−∞

cneinπx/ℓ, (2.15)

with

cn =
1

2ℓ

∫ X+2ℓ

X

g(x)e−inπx/ℓ dx. (2.16)

and with convergence in the sense of (2.9).

2.2 Separation of variables

To provide motivation for further study of Fourier series we will discuss here a very sim-
ple case of the method of separation of variables for solving partial differential equations
(PDE). More examples of this method will be considered in Section 2.3 and Section 2.5.

Remark 2.3: All the equations that we will study will be linear; this means that, if
u(x, t) is the unknown function that we want to find, every term in the equation will be
either

(i) u itself or some partial derivative of u, possibly multiplied by function of x and/or t,

or

(ii) a term independent of u, that is, a constant or some function of x and/or t.

For example, the heat equation on an interval, which we will consider in this section, is

ut(x, t) − α2uxx(x, t) = f(x, t), 0 < x < L, t > 0. (2.17)
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Section 2.2 Separation of variables 17

When the equation contains no term independent of u, that is, no term of type (ii), it is
called homogeneous; otherwise it is called inhomogeneous. (2.17) is inhomogeneous (unless
f is zero); the corresponding homogeneous equation is

ut(x, t)− α2uxx(x, t) = 0, 0 < x < L, t > 0. (2.18)

In these notes we will use separation of variables only for solving homogeneous
PDE. We will solve inhomogeneous PDE using a particular solution; see Chapter 3. I
believe that this approach is much clearer than that of Greenberg, who sometimes uses
separation of variables for inhomogeneous problems.

The (homogeneous) heat equation (2.18), also called the diffusion equation, describes
the temperature of a rod of length L. It is written in terms of a coordinate system along
the rod for which the coordinate x varies from x = 0 at the left end of the rod to x = L
at the right end. The rod is assumed to be of such small cross section that we can regard
the temperature as depending only on this coordinate x and the time t, neglecting any
variation of the temperature in directions perpendicular to the axis of the rod; the variable
u(x, t) denotes this temperature. We also assume that the lateral surface of the rod is well
insulated, so that heat can flow into or out of the rod only through the ends. Under these
assumptions, u(x, t) satisfies (2.18).

Let us rewrite (2.18) slightly as

PDE: ut(x, t) = α2uxx(x, t), 0 < x < L, t > 0. (2.19)

We emphasize that here subscripts denote partial derivatives, that is, ut = ∂u/∂t and
uxx = ∂2u/∂x2. α2 is a constant, the diffusion constant or thermal diffusivity, which
depends on the properties of the material of which the rod is formed. See Section 18.2.3
of Greenberg for a derivation of the heat equation and a discussion of this constant.

To determine u(x, t), however, we need more than the heat equation alone; as in-
dicated above, heat can enter or leave the rod through its ends, and we must specify
boundary conditions which determine this heat flow. For the moment let us suppose that
the temperature at each end is held constant and equal to zero:

BC: u(0, t) = 0 and u(L, t) = 0, t > 0. (2.20)

These are called homogeneous Dirichlet boundary conditions: they are homogeneous be-
cause both equations in (2.20) have 0 on the right hand side, and the term Dirichlet here
refers to the fact that the boundary condition at a particular boundary, x = 0 or x = L,
involves only the value of the temperature at that boundary. Other naturally occurring
boundary conditions, which we will discuss later, involve also the derivative ux(x, t) at the
boundary x = 0 or x = L.

Finally, we must give an initial condition specifying the temperature when the process
starts, say at t = 0:

IC: u(x, 0) = f(x), 0 < x < L, (2.21)

where f(x) is some given function defined for 0 < x < L.
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18 Chapter 2. Fourier Series and Separation of Variables

The PDE (2.19), boundary conditions (2.20), and initial condition (2.21) form one
initial/boundary value problem which we wish to solve to determine u(x, t) for all (x, t)
with 0 < x < L and t > 0. At the risk of redundancy, we summarize:

Problem 1: Find a function u(x, t) satisfying

PDE: ut(x, t) = α2uxx(x, t), 0 < x < L, t > 0,

BC: u(0, t) = 0 and u(L, t) = 0, t > 0 (2.22)

IC: u(x, 0) = f(x), 0 < x < L.

The method we will use is separation of variables, which may be broken down into
three steps:

Step 1: Find nonzero solutions of the partial differential equation (2.19) which
have a product form

u(x, t) = X(x)T (t). (2.23)

Step 2: Select from among the solutions found in Step 1 those solutions which
satisfy the boundary condition (2.20). There will typically be an infinite sequence
of these:

un(x, t) = Xn(x)Tn(t), n = 1, 2, . . . . (2.24)

Step 3: Observe that, because the PDE and BC are linear and homogeneous, any
linear combination of solutions of these will again be a solution. Thus for any choice
of coefficients c1, c2, . . . the linear combination

u(x, t) =

∞
∑

n=1

cnun(x, t) (2.25)

will again be a solution of the PDE and BC (assuming the series converges). Choose
the constants cn so that u(x, t) satisfies the initial condition (2.21).

Remark 2.4: In Step 1 we specified a nonzero solution. This is because the zero function
u(x, t) = 0 is always a solution of our problem (2.19) with (2.20), because both of these
equations are linear and homogeneous. However, this solution cannot help us satisfy the
initial condition (2.21) (unless f(x) = 0 for all x, in which case u(x, t) = 0 is a solution
and we are done). For this reason we do not include the zero solution in carrying out Steps
2 and 3.

Let us now apply this program to our problem (2.19)–(2.21). For the first step we
substitute the product form (2.23) into the PDE (2.19), and see that X(x) and T (t) must
satisfy X(t)T ′(t) = α2X ′′(x)T (t) or, dividing through by α2X(x)T (t),

1

α2

T ′(t)

T (t)
=

X ′′(x)

X(x)
. (2.26)
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Section 2.2 Separation of variables 19

Now the left side of (2.26) depends only on t—it is independent of x—and the right side
depends only on x, yet the equality holds for all x and t. This can happen only if both sides
are constant—say both equal to −λ. We conclude that u(x, t) = X(x)T (t) is a solution of
(2.19) if and only if for some constant λ,

1

α2

T ′(t)

T (t)
=

X ′′(x)

X(x)
= −λ,

that is,

T ′(t) = −α2λT (t) (2.27a)

X ′′(x) = −λX(x) (2.27b)

Now technically λ could be complex, but this possibility will never interest us. There are
thus three cases to consider: those in which λ is positive, negative, or zero; when λ > 0 we
write λ = κ2 and when λ < 0 we write λ = −k2. Then from (2.27) we obtain the solutions
in these three cases (A and B are arbitrary constants, not both zero by Remark 2.4):

Equation X(x) T (t)

(I) λ = κ2 > 0 X ′′ + κ2X = 0 A cosκx + B sin κx e−α2κ2t

(II) λ = 0 X ′′ = 0 A + Bx 1

(III) λ = −k2 < 0 X ′′ − k2X = 0 A cosh kx + B sinh kx eα2k2t

(2.28)

In each case, u(x, t) = X(x)T (t).
Now we pass to the second step: determining which solutions in (2.28) satisfy the

boundary conditions (2.20). Consider the condition that u(0, t) = 0 for all t; since u(t, 0) =
X(0)T (t) this requires that X(0) = 0; the condition is similar for x = L and we conclude
that (2.20) reduces to

X(0) = X(L) = 0. (2.29)

We analyze (2.29) separately for the three cases of (2.28).

(I) Since X(x) = A cosκx + B sin κx, X(0) = A and (2.29) tells us that A = 0. But
then X(L) = B sin κL, and X(L) = 0 requires either that B = 0 or sinκL = 0. The first
possibility would lead to X(x) = 0 for all X , an uninteresting case (see Remark 2.4), so
we consider only the second possibility, which requires that κ = nπ/L or λ = (nπ/L)2,
n = 1, 2, . . .. Thus from case I we have the solutions

un(x, t) = sin
nπx

L
e−(αnπ/L)2t, λn =

n2π2

L2
, n = 1, 2, . . . . (2.30)

(II) Since X(x) = A + Bx, X(0) = A and (2.29) requires that A = 0. Then X(x) = Bx
and X(L) = BL; since L is not zero, X(L) = 0 requires that B = 0, so that X(x) = 0 for
all x; we reject this solution (see Remark 2.4). Case II leads to no interesting solutions.

(III) Since X(x) = A cosh kx+B sinh kx, X(0) = A and (2.29) requires that A = 0. Then
X(x) = B sinh kx and X(L) = B sinh kL; since sinh u = 0 only if u = 0, X(L) = 0 again
requires that B = 0 and we have only the (uninteresting) zero solution.
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20 Chapter 2. Fourier Series and Separation of Variables

We conclude that the only solutions of our PDE and BC found by separation of variables
are those of (2.30).

We now turn to the third step of our program, and thus ask: Can we find constants
c1, c2, . . . such that

u(x, t) =

∞
∑

n=1

cn sin
nπx

L
e−(αnπ/L)2t, (2.31)

which we know solves our PDE and BC, also satisfies the initial condition u(x, 0) = f(x)?
Since u(x, 0) =

∑

∞

n=1 cn sin(nπx/L), this is equivalent to asking:

Q1: Given a function f(x) defined on [0, L], do there exist constants c1, c2, . . . such
that

f(x) =

∞
∑

n=1

cn sin
nπx

L
, for 0 ≤ x ≤ L ? (2.32)

If the answer is “yes” then (2.31) furnishes a solution to our problem (2.19)–(2.21). We
analyze this question in the next section.

Remark 2.5: We may also take a slightly different, but equivalent, point of view on our
procedure of separation of variables; specifically we may combine the differential equation
for X(x) in (2.27b) with (2.29) to obtain a boundary value problem

ODE: X ′′(x) = −λX(x) for some λ, 0 < x < L, (2.33a)

BC: X(0) = 0, X(L) = 0. (2.33b)

After we have solved this problem, producing the λn and correspondingly the solutions
Xn(x) = sin(nπx/L), we solve (2.27a) to obtain Tn(t), and then un(x, t) = Xn(x)Tn(t).

2.3 Half range and quarter range Fourier series

In this section we describe several useful Fourier-type series associated with a function
f(x) defined on the interval [0, L], say f ∈ Cp[0, L]. Each of these is associated with some
extension of f to a periodic function defined on the entire real line; graphs of these various
extensions are shown in Figure 2.2 when L = π and the function f is given by f(x) = x,
0 ≤ x ≤ π.

A. The Fourier series of f . This is the series discussed in Section 2.1; see in particular
Remark 2.2(b). Since f(x) is defined for 0 ≤ x ≤ L it is the Fourier series of the periodic
extension fper of f to a function of period L. It has the form (2.13) with ℓ = L/2:

f(x) ∼ a0 +

∞
∑

n=1

[

an cos
2nπx

L
+ bn sin

2nπx

L

]

, (2.34)
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Section 2.3 Half range and quarter range series 21

Figure 2.2: Various extensions of f(x) = x from [0, π] to R.

with coefficients given by (2.14):

a0 =
1

L

∫ L

0

f(x) dx, an =
2

L

∫ L

0

f(x) cos
2nπx

L
dx, n ≥ 1,

bn =
2

L

∫ L

0

f(x) sin
2nπx

L
dx, n ≥ 1,

(2.35)

We know already that this series converges to f(x) (in the sense of (1.32) or (1.32)).

B. The half range sine series of f . The series in (2.32) is called a half range sine
series. Note that in comparison with (2.34), (2.32) involves only sine functions, and the
nth sine term is sin(nπx/L), not sin(2nπx/L); this is the origin of the name.

There are two ways to think about (2.32). First, one can check easily that the functions
sin(nπx/L), n = 1, 2, 3, . . ., form an orthonormal set in Cp[0, L] with the usual inner
product. (Exercise: verify this.) This immediately tells us that the correct formula for
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22 Chapter 2. Fourier Series and Separation of Variables

the coefficients bn in (2.32) is

bn =
〈f(x), sin(nπx/L)〉

‖ sin(nπx/L)‖2
=

2

L

∫ L

0

f(x) sin
nπx

L
dx. (2.36)

The remaining question is whether or not this orthonormal set is complete, that is, whether
or not equality holds in (2.32) for every function f(x).

The second way to look at (2.32) also furnishes an answer to that question. Let us
start with the function f defined on [0, L], say f ∈ Cp[0, L]. We then define f1(x), the
odd extension of f with period 2L, which we will also call the half range sine extension,
by first extending f to an odd function defined on [−L, L], taking f1(x) = −f(−x) for
−L ≤ x < 0, and then extending this odd function to a periodic function, with period 2L,
on all of R (see Figure 2.2). Now f1(x) has a Fourier series as in (2.5) (with ℓ = L); by
(2.7) the Fourier coefficients are given by

a0 = an = 0, bn =
2

L

∫ L

0

f1(x) sin
nπx

L
dx =

2

L

∫ L

0

f(x) sin
nπx

L
dx, n ≥ 1,

(2.37)
where we have used the fact that f1(x) = f(x) for 0 ≤ x ≤ L. The series is then just

f1(x) ∼

∞
∑

n=1

bn sin
nπx

L
. (2.38)

In fact, we know that here ∼ can be replaced by = (in the usual sense) for all x, and in
particular for all x ∈ [0, L] where f1(x) = f(x); thus we obtain

f(x) =

∞
∑

n=1

bn sin
nπx

L
, 0 ≤ x ≤ L,

again in the sense of (1.31) or (1.32). But this is just the half-range sine series (2.32),
and (2.37) is just the formula for the coefficients that we obtained in (2.36) above. We
summarize:

Half range sine series: The half range sine series (2.32) or (2.38) is the Fourier
series of the odd periodic extension f1 of f ; it converges to f(x) for x in [0, L] and
the coefficients cn = bn are given by (2.36). The orthonormal set of all function
sin(nπx/L), n = 1, 2, 3, . . ., is complete in Cp[0, L].

In addition to the half range sine series there are three other commonly used Fourier-
like series expansions of a function f(x) defined on [0, L]. Each is associated with a
particular boundary value problem like (2.33) (or equivalently an initial/boundary value
problem like (2.22)) and is the true Fourier series of some extension of f(x) from [0, L] to
the entire line. The development in each case is almost exactly parallel to the development
of the half range sine series above. We will therefore discuss the first two of these—the half
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Section 2.3 Half range and quarter range series 23

range cosine and quarter range sine series—very briefly, but to further illustrate the ideas
we will give some of the computations for the third—the quarter range cosine series—in
more detail.

C. The half range cosine series of f . Consider the initial/boundary value problem

PDE: ut(x, t) = α2uxx(x, t), 0 < x < L, t > 0,

BC: ux(0, t) = 0 and ux(L, t) = 0, t > 0 (2.39)

IC: u(x, 0) = f(x), 0 < x < L.

This is the same as the problem (2.22) considered above except that the boundary condition
there has been replaced by a homogeneous Neumann boundary condition, that is, a condi-
tion involving only the partial derivative ux(x, t) at the boundaries. Applying separation
of variables as in Section 2.2 leads to a boundary value problem similar to (2.33):

ODE: X ′′(x) = −λX(x) for some λ, 0 < x < L, (2.40a)

BC: X ′(0) = 0, X ′(L) = 0. (2.40b)

This is analyzed just as in Section 2.2: this time we find that one possible value of λ
is λ0 = 0, with corresponding solution X0(x) = 1. The other possible values of λ are
λn = (nπ/L)2, n = 1, 2, . . ., with solutions Xn(x) = cos(nπx/L). In each case we solve
(2.27a) to find Tn(t) = exp(−α2λnt). Thus we can solve (2.39), with solution of the form

u(x, t) =

∞
∑

n=0

anXn(x)Tn(t) = a0 +

∞
∑

n=1

an cos
nπx

L
e−(αnπ/L)2t,

if every function f(x) may we written as a half range cosine series:

f(x) = a0 +

∞
∑

n=1

an cos
nπx

L
, 0 ≤ x ≤ L. (2.41)

To investigate (2.41) we first note that the functions Xn(x), n = 0, 1, 2, . . ., form an
orthogonal set in Cp[0, L] (Exercise: verify this), leading via (1.24) to the formulas

a0 =
1

L

∫ L

0

f(x) dx, an =
2

L

∫ L

0

f(x) cos
nπx

L
dx, n = 0, 1, 2, . . . . (2.42)

We then consider the even periodic extension f2(x) of f(x) with period 2L, which we also
call the half range cosine extension of f ; this is defined by first extending f(x) to an even
function on [−L, L] and then to a periodic function on all of R; see Figure 2.2. f2(x)
has a Fourier series which, on the interval [0, L], coincides with the series in (2.41), and
has coefficients given by (2.42); the fact that the Fourier series converges to f2 guarantees
that (2.41) holds, i.e., that the orthogonal set of functions Xn, n = 0, 1, 2, . . ., is complete.
Briefly:
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24 Chapter 2. Fourier Series and Separation of Variables

Half range cosine series: The half range cosine series (2.41) is the Fourier series
of the even periodic extension f2 of f ; it converges to f(x) for x in [0, L] and the
coefficients an are given by (2.42). The orthogonal set consisting of 1 and of all
functions cos(nπx/L), n = 1, 2, 3, . . ., is complete in Cp[0, L].

D. The quarter range sine series of f . Consider the initial/boundary value problem

PDE: ut(x, t) = α2uxx(x, t), 0 < x < L, t > 0,

BC: u(0, t) = 0 and ux(L, t) = 0, t > 0 (2.43)

IC: u(x, 0) = f(x), 0 < x < L.

This is the same as the problems (2.22) and (2.39) considered above except that the we now
have a homogeneous Dirichlet boundary condition at x = 0 and a homogeneous Neumann
boundary condition at x = L. Separation of variables leads to the boundary value problem

ODE: X ′′(x) = −λX(x) for some λ, 0 < x < L, (2.44a)

BC: X(0) = 0, X ′(L) = 0. (2.44b)

Now the possible values of λ are of the form λn = (nπ/2L)2 with n odd; the solutions are
Xn(x) = sin(nπx/2L), and we then solve (2.27a) to find Tn(t) = exp(−α2λnt). Thus we
can solve (2.43), with solution of the form

u(x, t) =
∑

n odd

bnXn(x)Tn(t) =
∑

n odd

bn sin
nπx

2L
e−(αnπ/2L)2t,

if every function f(x) may we written as a quarter range sine series:

f(x) =
∑

n odd

bn sin
nπx

2L
, 0 ≤ x ≤ L. (2.45)

Again the functions Xn(x), n odd, form an orthogonal set in Cp[0, L] (Exercise: verify
this), leading via (1.24) to the formulas

bn =
2

L

∫ L

0

f(x) sin
nπx

2L
dx, n odd. (2.46)

The quarter range sine extension of f(x), f3(x), is an extension of period 4L; to obtain it
we first extend f(x) to the interval [0, 2L] in such a way that it is symmetric around x = L
(the formula is f(x) = f(2L− x) for x in [L, 2L]), extend this function to an odd function
on [−2L, 2L], and then make a periodic extension to all of R (see Figure 2.2). f3(x) has
a Fourier series which, on the interval [0, L], coincides with the series in (2.51), and has
coefficients given by (2.52); the fact that the Fourier series converges to f3 guarantees that
(2.51) holds, i.e., that the orthogonal set of functions Xn, n = 1, 3, 5, . . ., is complete.
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Section 2.3 Half range and quarter range series 25

Quarter range sine series: The quarter range sine series (2.51) is the Fourier
series of the quarter range sine periodic extension f3 of f ; it converges to f(x) for
x in [0, L] and the coefficients bn are given by (2.52). The orthogonal set consisting
of all functions sin(nπx/2L), n odd, is complete in Cp[0, L].

E. The quarter range cosine series of f . Now we consider the initial/boundary value
problem

PDE: ut(x, t) = α2uxx(x, t), 0 < x < L, t > 0,

BC: ux(0, t) = 0 and u(L, t) = 0, t > 0 (2.47)

IC: u(x, 0) = f(x), 0 < x < L.

that is, we impose a homogeneous Neumann boundary condition at x = 0 and a homoge-
neous Dirichlet condition at x = L. Separation of variables leads to the boundary value
problem

ODE: X ′′(x) = −λX(x) for some λ, 0 < x < L, (2.48a)

BC: X ′(0) = 0, X(L) = 0. (2.48b)

Just as in Section 2.2 the form of the solutions of the differential equation (2.48a)
depend on the sign of λ; the alternatives are as in (2.28), which we reproduce in part here:

λ X(x)

(I) λ = κ2 > 0 A cosκx + B sin κx

(II) λ = 0 A + Bx

(III) λ = −k2 A cosh kx + B sinh kx

(2.49)

We now carry out, for each of the three cases in (2.49), the analysis of which solutions can
satisfy the boundary condition.

(I) Since X(x) = A cos κx + B sin κx, X ′(0) = kB and since k 6= 0 (the case λ = 0 is case
II), (2.48b) tells us that B = 0 and so X(L) = A cosκL. Now X(L) = 0 requires either
that A = 0 or cos κL = 0. As usual we reject the first possibility (which leads to X(x) = 0
for all x); the second possibility requires that κ = nπ/2L for some odd value of n. Then
λn = (nπ/2L)2, n = 1, 3, 5, . . ., and we have solutions of (2.48):

Xn(x) = cos
nπx

2L
, λn =

n2π2

L2
, n = 1, 3, 5, . . . . (2.50)

(II) Since X(x) = A+Bx, X ′(0) = B and (2.29) requires that B = 0. Then X(x) = A and
in particular X(L) = A; thus (2.48b) requires that B = 0. Case II leads to no interesting
solutions.

(III) Since X(x) = A cosh kx + B sinh kx, X ′(0) = b and (2.48b) requires that B = 0 and
so X(x) = A cosh kx and X(L) = A cosh kL; since cosh u > 0 for all u, X(L) = 0 requires
that A = 0 and we have only the (uninteresting) zero solution.
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26 Chapter 2. Fourier Series and Separation of Variables

We conclude that (2.50) gives all solutions of the boundary value problem (2.48).
The function Tn(t) associated with λn is still Tn(t) = exp(−α2λnt), and so we propose

a solution of the initial/boundary value problem (2.47) in the form

u(x, t) =
∑

n odd

anXn(x)Tn(t) =
∑

n odd

an cos
nπx

2L
e−(αnπ/2L)2t.

We can then solve the inital value problem if every function f(x) defined on [0, L] may we
written as a quarter range cosine series:

f(x) =
∑

n odd

an cos
nπx

2L
, 0 ≤ x ≤ L. (2.51)

The investigation of (2.51) is parallel to similar discussions above. The functions
Xn(x), n odd, form an orthogonal set in Cp[0, L] (Exercise: verify this). Thus we know
that the right hand side of (2.51) is the best possible approximation to f(x) if we take

an =
2

L

∫ L

0

f(x) cos
nπx

2L
dx, n = 1, 3, 5, . . . . (2.52)

In order to verify the equality in (2.51) we then consider the quarter range cosine
extension f4(x) of f(x), which has period 4L. Let us define this very carefully. We first
extend f(x) to a function g(x) on the interval [0, 2L] in such a way that g is antisymmetric
under reflection across x = L, that is, by defining g(x) = f(x) for x in [0, L] and g(x) =
−f(2L − x) for x in [L, 2L]. Next we extend g(x) to an even function h(x) on [−2L, 2L],
defining h(x) = g(x) if x lies in [0, 2L] and h(x) = g(−x) if x lies in [−2L, 0]. Finally we take
f4(x) to be the periodic extension hper of h (which will have period 4L): f4(x) = hper(x).
See Figure 2.4.

Now f4(x) has a Fourier series of the form

f4(x) ∼ a0 +

∞
∑

n=1

(

an cos
nπx

2L
+ bn sin

nπx

2L

)

. (2.53)

Because f4 is an even function we know that the coefficients bn all vanish, but we also want
to show that the coefficients an are such that (2.53) reduces to (2.51) with coefficients
given by (2.52). We evaluate the coefficients an in (2.53) using (2.6) and the fact that
f4(x) = g(x) on the interval [0, 2L]:

a0 =
1

2L

∫ 2L

0

f4(x) dx =
1

2L

∫ 2L

0

g(x) dx

=
1

2L

[
∫ L

0

g(x) dx +

∫ 2L

L

g(x) dx

]

=
1

2L

[
∫ L

0

f(x) dx +

∫ 2L

L

(−f(2L − x)) dx

]

=
1

2L

[
∫ L

0

f(x) dx−

∫ L

0

f(u) dx

]

= 0,

(2.54)
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where at the last step we have made the substitution u = 2L − x. We compute an for
n > 0 similarly (we omit a few steps which can be easily reconstructed from (2.54)):

an =
1

L

∫ 2L

0

g(x) cos
nπx

2L
dx

=
1

L

[
∫ L

0

f(x) cos
nπx

2L
dx −

∫ 2L

L

f(2L − x) cos
nπx

2L
dx

]

=
1

L

[
∫ L

0

f(x) cos
nπx

2L
dx −

∫ L

0

f(u) cos
nπ(2L− u)

2L
dx

]

=
1

L

[
∫ L

0

f(x) cos
nπx

2L
dx + (−1)n+1

∫ L

0

f(u) cos
nπu

2L
dx

]

=







0, if n is even,

2

L

∫ L

0

f(x) cos
nπx

2L
dx, if n is odd.

(2.55)

Here we have first made the substitution u = 2L−x and then used the identity cos(nπ−θ) =
(−1)n cos(θ). We see that inserting (2.54), (2.55), and bn = 0 into (2.53) yields (2.51) with
(2.52)—that is, the quarter range cosine series (2.51) is essentially just the Fourier series
of f4.

Quarter range cosine series: The quarter range cosine series (2.51) is the Fourier
series of the quarter range cosine extension f4 of f ; it converges to f(x) for x in
[0, L] and the coefficients an are given by (2.52). The orthogonal set consisting of
all functions cos(nπx/2L), n = 1, 3, 5, . . ., is complete in Cp[0, L].

Remark 2.6: With each of the half and quarter range series considered in B through
E above we associated a certain boundary value problem. The Fourier series considered
in A is similarly associated with such a problem—one with periodic boundary conditions.
We will study this problem when we discuss Sturm-Liouville problems.

2.4 Sturm-Liouville problems

NO DETAILED NOTES ON THIS TOPIC HAVE BEEN PREPARED; SEE SECTIONS
17.7 AND 17.8 OF GREENBERG.
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