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INFINITE SERIES, POWER SERIES, AND TAYLOR SERIES

The principal concern of Math 527 is solving ordinary and partial differential equations
as explicitly as possible. It turns out that simple combinations of the elementary functions
learned in calculus—the algebraic, exponential, logarithmic and trigonometric functions—
are usually not adequate to this task. However, infinite series of elementary functions, such
as power series, which are infinite series of polynomial functions, or Fourier series, which
are infinite series of trigonometric functions, do often work. The application of infinite
series to differential equations is a major theme of Math 527, and so it is important to
understand these series clearly.

Section 1. Infinite series

Let {an} = {a1, a2, . . .} be a sequence of real numbers. The expression

∞
∑

n=1

an = a1 + a2 + a2 + · · · ,

is called an infinite series. If lim
N→∞

N
∑

n=1

an exists and is finite, we say that the infinite

series converges, and we identify the value of the infinite series with this limit:

∞
∑

n=1

an = lim
N→∞

N
∑

n=1

an if the limit exists and is finite.

If this limit does not exist or is infinite, the infinite series is said to diverge. The sums
∑N

n=1 an, where N is finite, are called partial sums of the infinite series.

The infinite series

∞
∑

n=1

an is said to converge absolutely if

∞
∑

n=1

|an| converges. If an

infinite series converges absolutely, then it converges. A series which converges, but not
absolutely, is said to be conditionally convergent.

Warning. An elementary mistake is to confuse convergence of an infinite series with
convergence of the sequence of terms in the infinite sum. Keep clear the difference between

limn→∞ an and lim
N→∞

N
∑

n=1

an; only the latter, if it exists, represents the value of the infinite

series.

Example 1: The most important example of an infinite series is the geometric series
∑∞

n=0 rn. We have

∞
∑

n=0

rn =







1

1 − r
if |r| < 1.

diverges if |r| ≥ 1.
(1)
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For r 6= 1 this is easy to see from the formula for the partial sums of the geometric series,

N
∑

n=0

rn =
1 − rN+1

1 − r
, r 6= 1,

since we then have

lim
N→∞

N
∑

n=0

rn = lim
N→∞

1 − rN+1

1 − r
=

1

1 − r

[

1 − lim
N→∞

rN+1
]

=







1

1 − r
, if |r| < 1,

diverges, if |r| > 1 or r = −1.

Note that if r = −1 then limN→∞ rN+1 does not exist because the values rN+1 oscillate
from 1 to −1 as N changes. If r = 1, then

∑N
n=0 rn = N + 1, which grows to infinity as

N → ∞, implying divergence.

Section 2. Tests for Convergence and divergence

The elementary theory of infinite series is concerned mostly with techniques—called
tests—for determining convergence or divergence. We give here some of the most important
of these

The divergence test. A basic fact about infinite series is that if the series
∑∞

1 an

converges then it must be true that limn→∞ an = 0. As a consequence we obtain the

Divergence test

If limn→∞ an0 does not exist or limn→∞ an 6= 0, then
∑∞

1 an diverges.

For example, the divergence test implies that
∑∞

1 n/(n + 1) and
∑∞

1 (−1)n both
diverge; in the first case this is because limn→∞ n/(n + 1) = 1 6= 0 and in the second case
because limn→∞(−1)n does not exist. The divergence test also shows that the geometric
series diverges whenever |r| ≥ 1.

The divergence test is an easy first test. However, the converse of the divergence
test does not hold: that is, limn→∞ an = 0 does not imply that

∑∞

1 an converges. The
harmonic series

∑∞

1 n−1 is an example; although limn→∞ n−1 = 0, the harmonic series
diverges. Therefore, when limn→∞ an = 0 one must resort to more refined tests to dis-
criminate between convergence and divergence. These tests all involve comparison of the
infinite series, either to an improper integral or to an infinite series with known convergence
properties.
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The ratio test. This is the most important test for Math 527. It can be used only if the
limit of the ratio an+1/an, or more properly the limit of the absolute value of this ratio,
exists.

Ratio test

If lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< 1, then
∑∞

1 an converges absolutely;

If lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

> 1, then
∑∞

1 an diverges;

If lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= 1, then the test is inconclusive.

To say that the test is inconclusive means that the series may either converge or diverge,
and some other method must be used to determine which.

The ratio test is best understood intuitively as a test that compares
∑∞

1 an to a
geometric series. Let r = limn→∞ an+1/an. Heuristically, this says that for all large n,
an+1 ≈ anr. Fixing a suitably large m, we get that am+1 ≈ amr, am+2 ≈ am+1r ≈ amr2,
and, continuing in this manner, am+k ≈ amrk; thus, for large m, the terms am of the series
look approximately like those of a geometric series, and accordingly the series converges if
|r| < 1 and diverges if |r| > 1. This is not a rigorous argument, but it is the idea behind
a rigorous proof.

Example 2: (a) The infinite series
∑∞

1 1/n! converges, because

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

1/(n + 1)!

1/n!
= lim

n→∞

n!

(n + 1)!
= lim

n→∞

1

n + 1
= 0.

(b) Similarly,
∑∞

1 n/2n converges, because

lim
n→∞

an+1

an
= lim

n→∞

n + 1

2n
=

1

2
.

The root test. This is quite similar to the ratio test, but is based on the value of the
limit of the quantities n

√

|an|. We state it briefly for completeness.

Ratio test

If lim
n→∞

|an|1/n < 1, then
∑∞

1 an converges absolutely;

If lim
n→∞

|an|1/n > 1, then
∑∞

1 an diverges;

If lim
n→∞

|an|1/n = 1, then the test is inconclusive.

The root test is more powerful than the ratio test, but often more difficult to apply.

3
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Other tests. There are other important tests for convergence of series—in particular, the
comparison test, based on comparing one series with another, and the integral test, based
on comparing a series to an improper integral, but these will not be so useful for us in this
course, so we omit them here.

Section 3. Power series

A power series is an expression of the form

∞
∑

n=0

cn(x − x0)
n, (2)

or equivalently
c0 + c1(x − x0) + c2(x − x0)

2 + c3(x − x0)
3 + · · · . (3)

In this series c0, c1, . . . are real numbers, called the coefficients of the power series, x0 is a
real number, called the center of the power series (one says that the power series is centered

at x0), and x is a variable. The first term c0(x− x0)
0 is always taken to be equal to c0, as

shown in the second form (3). In dealing with power series it is frequently a good idea to
work with both the form (2), called sigma notation or summation notation, and the more
explicit form (3).

In a sense, power series are generalizations of polynomials. In fact, polynomials are
special cases of power series in which only a finite number of terms are nonzero.

Power series can be used to define functions. If we define a function f by the rule

f(x) =
∞
∑

0

cn(x − x0)
n, (4)

we mean that f assigns to x the value of the sum of the infinite series on the right hand
side of (4), if the infinite series converges. If the infinite series diverges, then x is not in
the domain of f and f(x) is undefined.

Example 3: Let us define a function g(x) as the sum of a power series by the formula

g(x) =
∞
∑

n=0

(x − 1)n.

With a little thought we can recognize that this series is in fact a geometric series, with
ratio r = (x − 1) so that from (1) we can conclude that

∞
∑

n=0

(x − 1)n =







1

1 − (x − 1)
=

1

2 − x
, if |x − 1| < 1,

diverges, if |x − 1| ≥ 1.

(5)

Hence the domain of g is the interval 0 < x < 2, and g(x) is equal to 1/(2 − x) on this
interval. Notice that we are not asserting that 1/(2 − x) and g(x) =

∑∞

n=0(x − 1)n are

4
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identical functions, only that they coincide on (0, 2), which happens to be the interval on
which the power series converges. In working with power series, one must be attentive to
intervals of convergence in this way.

The important things to know about power series are: given a power series, how
to find the set of values of x at which it converges; how to differentiate, integrate, and
algebraically manipulate power series on their domains of convergence; and how to find
power series representations (Taylor series) of a given function f .

Section 4. Domain of convergence of a power series

The basic fact is this: given a power series in the form (2) there exists a number R,
called the radius of convergence of the power series, with 0 ≤ R ≤ ∞, such that

Radius of convergence

• The power series converges if |x − x0| < R, that is, on (x0 − R, x0 + R);

• The power series diverges if |x − x0| > R;

• If |x − x0| = R (and R is not 0 or ∞) then the power series may either

converge or diverge.

In the special case R = 0, the series converges if and only if x = x0, (convergence at x = x0

is always true because then all terms in the series are zero, except possibly the first term
c0). In the case R = ∞, the power series converges for all x. When 0 < R < ∞, the power
series may diverge or converge at the endpoints x0 − R and x0 + R.

The radius of convergence can often be determined in practice by applying the ratio
test (or the root test); we now give several examples of this, and then a general discussion.
Another important method of finding R, which applies in a somewhat different

context, is described in Section 8 below.

Example 4: (a) Consider the power series
∑∞

n=0

√
n xn/2n. The nth term of this series

is an =
√

nxn/2n. To apply the ratio test we compute

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

√
n + 1 xn+1/2n+1

√
n xn/2n

∣

∣

∣

∣

= lim
n→∞

√

n + 1

n

|x|
2

=
|x|
2

.

According to the ratio test, then, this series converges if |x|/2 < 1 or, equivalently, if
|x| < 2, and diverges if |x| > 2. Thus the radius of convergence in this case is R = 2.

(b) The series
∑∞

n=0 n3nx2n converges if

lim
n→∞

∣

∣(n + 1)3n+1x2(n+1)
∣

∣

∣

∣n3nx2
∣

∣

= 3x2 lim
n→∞

n + 1

n
= 3x2 < 1,

and diverges if this limit is greater than 1. Thus the radius of convergence is determined
by the inequality 3x2 < 1, or equivalently, |x| <

√
3, and hence R =

√
3.

5
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Now we consider a general power series
∑∞

0 cn(x− x0)
n and try to use the ratio test

to obtain a general formula for the radius of convergence. We have to study the limit

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

cn+1(x − x0)
n+1

cn(x − x0)n

∣

∣

∣

∣

=
∣

∣x − x0

∣

∣ lim
n→∞

∣

∣

∣

∣

cn+1

cn

∣

∣

∣

∣

.

It then follows from the ratio test that if the limit L = limn→∞

∣

∣cn+1/cn

∣

∣ exists then the
series converges if |x − x0|L < 1 and diverges if |x − x0|L > 1, so that

R =
1

limn→∞

∣

∣

∣

cn+1

cn

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

cn

cn+1

∣

∣

∣

∣

. (6)

Equation (6) furnishes a general formula for R when limn→∞

∣

∣cn+1/cn

∣

∣ exists (if this limit
is ∞ then R = 0 and if it is 0 then R = ∞).

However, one must use formula (6) with great caution, because the limit may not
exist. Thus if we write out the power series of Example 4(b) in full we have

∞
∑

n=0

n3nx2n = 3x2 + 18x4 + 81x6 + 324x8 + · · · .

This series contains only even powers of x, that is, cn = 0 if n is odd, so that the ratio
|cn+1/cn| alternates between 0 and ∞, and the limit in (6) does not exist. Our text gives
a trick which furnishes one way to handle this problem (see Example 4 on page 178) but
I think that it is simpler, and safer, to use the ratio test directly, as we did in
Example 4(b).

Example 5: To find the radius of convergence of the series
∑∞

n=1 n−nxn it is convenient
to use the root test:

lim
n→∞

|an|1/n = lim
n→∞

( |x|n
nn

)1/n

= lim
n→∞

|x|
n

= 0.

The series converges for all x by the root test, so R = ∞.

Section 5. Algebra and calculus of power series

The rule of thumb is: on their intervals of convergence, infinite series can be treated

as if they were polynomials. This means:

• Different power series which have the same center x0 and which all converge for x sat-
isfying |x−x0| < R may be added, multiplied, and divided as if they were polynomials,
and the resulting power series converge for |x−x0| < R, except in the case of division,
in which they converge so long as the denominator is not zero. See Example 8(e) for
an example of multiplication of series. (Note that all the series involved must have
radius of convergence at least as big as R, but some of them may have a larger radius
of convergence.)

6
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• If a power series
∑∞

0 cn(x−x0)
n converges for x in the interval (x0 −R, x0 +R) then

it is differentiable on (x0 − R, x0 + R) and its derivative is obtained by term-by-term
differentiation:

d

dx

[

∞
∑

0

cn(x − x0)
n

]

=
∞
∑

n=0

d

dx
cn(x − x0)

n =
∞
∑

n=1

ncn(x − x0)
n−1 (7)

for x0 − R < x < x0 + R. Notice that we were able to change the lower limit of
the summation to n = 1 because the n = 0 term of the derivative vanished. By
repeating this procedure, one finds that power series have derivatives of all orders on
their intervals of convergence and

dk

dxk

[

∞
∑

0

cn(x − x0)
n

]

=
∞
∑

n=k

n(n − 1) · · · (n − k + 1) cn(x − x0)
n−k, (8)

again for x0 − R < x < x0 + R.

• Power series can be integrated term-by-term on their interval of convergence: if
∑∞

0 cn(x − x0)
n converges on (x0 − R, x0 + R), then on this interval

∫ x

x0

∞
∑

n=0

cn(u − x0)
n du =

∞
∑

n=0

∫ x

x0

cn(u − x0)
n du =

∞
∑

n=0

cn

n + 1
(x − x0)

n+1. (9)

Section 6. Representation of functions by power series; Taylor series

In equation (4) we used a power series to define a function. Now we approach the
problem from another direction: we start with a given function f and try to represent it
by a power series. More specifically, we suppose that x0 is given point and are interested
in representing f in an interval about x0 by a convergent power series with center x0:

f(x) =
∞
∑

0

cn(x − x0)
n, x0 − R < x < x0 + R. (10)

Suppose that this is in fact possible and that (10) holds. Then (8) tells us that f is
infinitely differentiable on the interval x0 − R < x < x0 + R and that on this interval

f (k)(x) =
∞
∑

n=k

n(n − 1) · · · (n − k + 1) cn(x − x0)
n−k

= k! ck + [(k + 1)k · · · 2] ck+1 (x − x0) + · · · . (11)

where f (k) denotes the derivative of f of order k. If we set x = x0 in (11) then all

terms with n > k vanish, and we find that ck =
f (k)(x0)

k!
. It follows that the power series

representation of f in (10) must have the form

f(x) =

∞
∑

0

f (n)(x0)

n!
(x − x0)

n. (12)

7
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This power series is called the Taylor series of f centered at x0. The Taylor series of f at
x0 = 0 is sometimes called the Maclaurin series of f .

It is important to realize that a polynomial is its own Taylor series with center

x0 = 0 (Maclaurin series). Consider for example f(x) = 1 + 2x + 6x2; if we write

f(x) = 1 + 2x + 6x2 = 1 + 2x + 6x2 + 0 x3 + 0 x4 + 0 x5 + · · ·

we see that the polynomial is a Maclaurin series in which all but a finite number of
coefficients are zero.

Example 6: If one wants the Taylor series with a different center, say x0 = 5, there is a
simple trick to find it:

f(x) = 1 + 2[(x − 5) + 5] + 6[(x − 5) + 5]2

= 1 + 2[(x − 5) + 5] + 6[(x − 5)2 + 10(x − 5) + 25]

= 161 + 62(x − 5) + 6(x − 5)2.

Here are some basic Taylor series, given with intervals of convergence. These are easily
obtained from (12), but are so important that they should be known from memory. Notice
that the first is just the geometric series.

1

1 − x
=

∞
∑

n=0

xn, |x| < 1;

ex =
∞
∑

n=0

xn

n!
, |x| < ∞;

cos x =
∞
∑

n=0

(−1)n x2n

(2n)!
, |x| < ∞;

sin x =
∞
∑

n=0

(−1)n x2n+1

(2n + 1)!
, |x| < ∞.

(13)

Now we can define a very important class of functions

Analytic functions

If the Taylor series of f at x0 converges to f in some interval centered at x0

of radius R > 0, then f is said to be analytic at x0.

The Taylor series shown in (13) tell us immediately that the functions there are all analytic
at x = 0. In fact, the elementary special functions that are studied in undergraduate
calculus are analytic at most points. The exponential and trigonometric functions, as
well as the polynomials, are analytic at all points. Rational functions, that is, ratios of
polynomials, are analytic at all points at which they are defined. Fractional powers xp,
where p is not an integer, are analytic everywhere they are defined except at the origin. If
f is analytic at x0 and g is analytic at f(x0), then g(f(x)) will be analytic at x0.

Example 7: (a) The function ex is analytic at every x, and so are sinx and esin(x2).

(b) The function 1/(x2−1) is analytic everywhere except at x = ±1, where the denominator
vanishes.

8
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(c)
√

x is analytic at every x > 0, but is not analytic at 0. e
√

x will be analytic at every
x > 0, but not at 0.

Section 7. Finding Taylor series

Suppose that one is given a function f and a point x0 and wants to find the Taylor
series of f with center x0. In the very simplest cases one can use (12). However, this is
often very time consuming or completely impractical, and it may be simpler to exploit
simple known power series, using substitution into a known Taylor series, differentiation
or integration of such a series, and/or algebraic manipulations as illustrated in Example 8.

Example 8: (a) To find the Taylor series centered at x = 0 for f(x) = ex2

one simply
substitutes x2 for x in the Taylor series given in (13), to find

ex2

=

∞
∑

n=0

x2n

n!
.

It is instructive to try to solve this one by direct use of (12); you will find that the
complications are immense.

(b) Suppose that we want to find the Taylor series of
1

x + 2
with center x0 = 1, and its

radius of convergence. We are looking for a Taylor series in the form
∑∞

n=0 cn(x − 1)n, so
we write

1

x + 2
=

1

3 + (x − 1)
=

1

3

[

1

1 − (−(x − 1)/3)

]

.

Substituting −(x − 1)/3 for x in the geometric power series formula (a) above, we find

1

x + 2
=

1

3

∞
∑

n=0

[

−x − 1

3

]n

=

∞
∑

n=0

(−1)n

3n+1
(x − 1)n,

∣

∣

∣

x − 1

3

∣

∣

∣
< 1.

This is the Taylor series and its radius of convergence is R = 3. Note that in writing
x + 2 = 3 + (x − 1) we are using essentially the same trick as in Example 6.

(c) Here is an example using differentiation:

1

(1 − x)2
=

d

dx

(

1

1 − x

)

=
d

dx

∞
∑

n=0

xn =
∞
∑

n=1

nxn−1 =
∞
∑

k=0

(k + 1)xk, |x| < 1.

In the last step we have made a change of index, with k = n − 1.

(d) An example using integration:

ln(1 − x) = −
∫ x

0

(

1

1 − x

)

dx = −
∫ x

0

(

∞
∑

n=0

xn

)

dx = −
∞
∑

n=0

xn+1

n + 1
, |x| < 1.

9



640:527 POWER SERIES FALL 2016

(e) Finally, an example using the multiplication of power series:

ex

1 − x
=

(

1 + x +
x2

2
+

x3

6
+ · · ·

)

(1 + x + x2 + x3 + · · ·)

= 1 + (1 + 1)x +

(

1 + 1 +
1

2

)

x2 +

(

1 + 1 +
1

2
+

1

6

)

x3 + · · ·

= 1 + 2x +
5

2
x2 +

8

3
x3 + · · · .

Section 8. Finding the radius of convergence

In Section 5 above we said that power series could be divided, and the resulting series
would converge as long as the denominator was not zero. Here we give a more precise
statement of this idea.

Principle of the Radius of Convergence

Suppose that f and g are analytic at x0 and that their power series with
center x0 have radii of convergence R1 and R2 respectively. Suppose also that
g(x0) 6= 0 and that R3 is the distance from x0 to the closest point in the
complex plane at which g vanishes. Then f/g is analytic at x0 and the radius
of convergence of its Taylor series there is at least as big as the smallest of R1,
R2, and R3.

We can often use this principle to find the radius of convergence of a Taylor series,
even if we do not work out the series itself.

Example 9: (a) We know that f(x) = 1 and g(x) = 1 − x are analytic everywhere, in
particular at x = 0, and that g(0) 6= 0, so we know that f(x)/g(x) = 1/(1 − x) is analytic
at x = 0. Using the notation of the principle above we have R1 = R2 = ∞. But the only
zero of the denominator 1 − x is at x = 1, a distance of R3 = 1 from the origin, so the
Taylor series of 1/1 − x must have R = 1. Of course, this is just the geometric series of
(13), so we knew this already.

(b) The function 1/(x2 +4) is analytic at x = 0. The zeros of the denominator are at ±2i,
each a distance 2 from the origin, so the radius of convergence of the Taylor series with
center 0 will be 2. The Taylor series with center 3 will have R =

√
13, the distance from

the center to either of these zeros.

Section 9. Exercises

1. Find explicitly the Taylor series with center x0 = 0 of the function 1/(x2 + 4) discussed
in Example 9(b), and show using the ratio test that it has radius of convergence 2, as we
concluded there. Hint: use the method of Example 8(b).

10
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2. In each part below, find the Taylor series of the given function with the given center
x0. Try to use the methods of Section 7 to obtain these series from other ones which are
already known, rather than the formula (12). Find also the radius of convergence, and
explain how your answer is consistent with the Principle of the Radius of Convergence
above.

(a) 1/(2 + 3x), x0 = 3. (b) (1 + x)/(1 − x), x0 = 0.

(c) ex, x0 = −3. (d) 1/(1 − x)3, x0 = 0.

(e) 1/(1 − x)3, x0 = 4. (f) 1/(1 + x3), x0 = 0.

(g) sin(x4), x0 = 0. (h) lnx, x0 = 2.

(i) sin 2x, x0 = π/4. Hint: sin(θ − π/2) = − cos θ.

3. Find the Taylor series with the given center x0 for the given functions directly from
(12), and show that the results agree with those obtained by other methods, as indicated.

(a) 1/(1 − x)2, x0 = 0. (Example 8(c))

(b) ln(1 − x), x0 = 0. (Example 8(d))

(c) sin 2x, x0 = π/4. (Exercise 2(i))

4. Show that the Taylor series for sinx with center x0 = 0 may be obtained by differenti-
ating the series for cos x.

5. Find the Taylor series for 1/(1− x)2, given in Example 8(c), by squaring the geometric
series for 1/(1 − x).
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