position. Show that the equation of Hamilton's principle is of the form

$$\delta \int_{t_1}^{t_2} \left(\frac{1}{2} m \dot{x}^2 + m g x - \frac{1}{2} k x^2 \right) dt = 0,$$

and obtain the Euler equation.

- 58. A particle of mass m is falling vertically under the action of gravity, and its motion is resisted by a force numerically equal to a constant c times its velocity \dot{x} .
 - Show that the equation of Hamilton's principle takes the form

$$\delta \int_{l_{1}}^{l_{2}} \left(\frac{1}{2}m\dot{x}^{2} + mgx\right) dt - \int_{l_{1}}^{l_{2}} c\dot{x} \delta x dt = 0.$$
59. Three masses are connected in

FIGURE 2.11

$$\delta \int_{t_1}^{t_2} \left(\frac{1}{2} m \dot{x}^2 + m g x \right) dt - \int_{t_1}^{t_2} c \dot{x} \, \delta x \, dt = 0$$

59. Three masses are connected in series to a fixed support, by linear springs. Assuming that only the spring

forces are present, and using the notation of Figure 2.11, show that the Lagrangian function of the system is

$$L = \frac{1}{2} [m_1 \dot{x}_1^2 + m_2 \dot{x}_2^2 + m_3 \dot{x}_3^2 - k_1 x_1^2 - k_2 (x_2 - x_1)^2 - k_2 (x_3 - x_2)^2] + \text{const.},$$

where the x_i represent displacements from equilibrium. [Notice that if the x_i are given increments δx_i the total work done by the springs is given by

$$\delta\Phi = -\delta V = [k_2(x_2 - x_1) - k_1x_1]\delta x_1 + [k_3(x_3 - x_2) - k_2(x_2 - x_1)]\delta x_2 + [-k_3(x_3 - x_2)]\delta x_3.$$

Section 2.11.

- 60. Obtain the Lagrangian equations relevant to the mechanical system of Problem 59.
- 61. A mass 4m is attached to a string which passes over a smooth pulley. The other end of the string is attached to a smooth pulley of mass m, over which passes a second string attached to masses m and 2m. If the system starts from rest, determine the motion of the mass 4m, using the coordinates q_1 and q_2 indicated in Figure 2.12.
- 62. Obtain the Lagrangian equations for a triple pendulum consisting of three weights of equal mass m, connected in series to a fixed support by inextensible strings of equal length a, taking as the coordinates the angles θ_1 , θ_2 , and θ_3 made with the vertical by the three strings. Show also that, for small deviations from equilibrium, and small velocities, the Lagrangian function

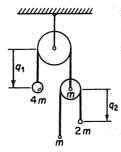


FIGURE 2.12

takes the approximate form

$$L = \frac{ma^2}{2} \left(3\theta_1^2 + 2\theta_2^2 + \theta_3^2 + 4\theta_1\theta_2 + 2\theta_2\theta_3 + 2\theta_1\theta_3 - \frac{mga}{2} \left(3\theta_1^2 + 2\theta_2^2 + \theta_3^2 \right) + \text{const.} \right)$$

- 63. Two particles of equal mass m are connected by an inextensible string which passes through a hole in a smooth horizontal table, the first particle resting on the table, and the second particle being suspended vertically. Initially, the first particle is caused to describe a circular path about the hole, with an angular velocity $\omega = \sqrt{g/a}$, where a is the radius of the path, so that the suspended mass is held at equilibrium. At the instant t = 0, the suspended mass is pulled downward a short distance and is released, while the first mass continues to rotate.
- (a) If x represents the distance of the second mass below its equilibrium position at time t, and θ represents angular position of the first particle at time t, show that the Lagrangian function is given by

$$L = m[\dot{x}^2 + \frac{1}{2}(a - x)^2\theta^2 + gx] + \text{const.},$$

and obtain the equations of motion.

(b) Show that the first integral of the θ equation is of the form

$$(a-x)^2\theta=a\sqrt{ag},$$

and that the result of eliminating θ between this equation and the x equation becomes

$$2\ddot{x} + \left[\frac{1}{(1 - x/a)^3} - 1 \right] g = 0.$$

(c) In the case when the displacement of the suspended mass from equilibrium is small, show that the suspended mass performs small vertical oscillations of period $2\pi \sqrt{2a/3g}$.

Section 2.12.

64. (a) In terms of Lagrange's function $L(q_1, \dots, q_n; \dot{q}_1, \dots, \dot{q}_n)$, such that L = T - V, show that the equations of motion become

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\right) = \frac{\partial L}{\partial q_i} \qquad (i = 1, 2, \dots, n).$$

(b) Show that the generalized momentum p_i corresponding to the ith coordinate q_1 is given by

$$p_i \equiv \frac{\partial T}{\partial \dot{q}_i} = \frac{\partial L}{\partial \dot{q}_i}.$$