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5 Perturbation Theory

Generally finding the exact solution of most interesting problems is impossible or at least so dif-
ficult that it is not practical to obtain it. Sometimes it is possible with a bit of work to obtain a
so-called asymptotic series approximation of the solution that gives a good approximation to the
solution. In what follows | hope to provide, mostly by way of numerous examples, some insight
into thisimportant branch of mathematicswhich | refer to as perturbation theory. Our goal isto ex-
amine several examplesincluding the asymptotic analysis of solutions of algebraic, transcendental,
differential equations and the evaluation of integrals.

5.1 Preliminary material
The binomia Theorem states

(n

-1
(a+b)"=a"+na"'b+ nT)a"_Zb2 + - (5.1.1)

If n isapositive integer this formula terminates and we have the more familiar formula

(n

-1
(a+b)"=a"+na"'b+ nT)a"W b

More generally for n € R the seriesisinfinite and converges for

é' < 1 and diverges otherwise.
a

As examples consider
e _ e Ly G)(F) appe
(a+0)"/° =a"/ + 50 b+ T b* + (5.1.2)
(a+b) ' =at—aPb+a b —a P+ (5.1.3)

We will also use the classical Taylor series (and Taylor Polynomial) expansion for a smooth
function which expanded about = = x is given by

n

. fn)
fla)=3" / ﬁxO) (z — o)™ (5.1.4)
n=0 ’



Examples with x, = 0 include

e = i 2—7 (5.1.5)
. B 0 (_1)n$(2n+1)
X 1\n,.(2n)
cos(z) = Z 7( (1;75‘ ) (5.1.7)
n=0 ’

We are interested in
lir%f(e), e>0.
We will usually assumethat ¢ > 0 in order to minimize confusion that might arise otherwise, e.g.,

lime ¢ =0, lime /= 0.
€l0 €70

We are also interested in the case when the limit exists (i.e., it does not have an essential singularity
likesin(1/¢)). Thus we consider the cases

fle) =0,
fle) — A, ase—0, 0<A<oo.

f(e) = oo,

If f(e) — 0,00 ase — 0 then we are also interested in the rate at which the limit is approached,
eg.,

limsin(e) = 0, lim(1 — cos(e)) = 0, lir%(e —sin(e)) =0, lin%[ln(l +6)* =0, lime /< =0.

e—0 e—0 e—0

In order to determine the rate at which such alimit is achieved we introduce the concept of gauge
functions. The ssimplest such functions are the powers of ¢ which for ¢ < 1 satisfy

I>e>e?>--, elce?ce’<. .
Thus for example we can compute, using Taylor series or using L' Hospital’s rule

. sin(e) e
o E—&%@—a+a—“>—1

e—0 €2 2!
o (emsin) 1
e—0 €3 3!
1+t € € B
e Tty )=t



Note also that functions like f(¢) = e~'/ go to zero faster than any power of ¢, i.e., by
L' Hospital’srule

) 6—1/6 ) " .
lim = lim — = lim — = 0.
e—0 €n

r—oo0 eT

Furthermore, f™(0) = 0 for al n. For example, f'(¢) = e~'/</¢%, and once again using
L'Hospital’srule

—1/e 2 2
. € . X .
f0) =l == = Jim 5 = Jim = =0,

Thus f cannot be expanded in ataylor series about e = 0.

On the other hand the function f(e) = e'/¢ — oo ase — 0 and this limit is faster than any
power of 1/¢, i.e.,

. 61/5 T
lim

= lim — = lim — = oo.
e—0 1/6" r—oo T z—00 1!

T

We also have slowly converging functionslike f(e¢) = In(1/¢) which goes to zero slower than
any power of 1/e. Namely,

lim In(1/e)

=1 = 0.
e—0 €@ T—00 I z—o00 L%
So, in addition to all powersof € (i.e., ¢/, for j = --- ,—2,—1,0,1,2,--- we aso might need
functions like e*'/ and In(1/¢), In(¢), €tc.

A very useful notation that we will use often isthe “Big Oh” and “Little Oh” notation.
Definition 5.1. We say that f(¢) = O(g(¢)) ase — O if

1
13% 7 A, 0<|A] < 0. (5.1.8)

We say that f(e€) = o(g(e)) ase — 0O if

im & =

lﬂo (0 0. (5.1.9)
Examples of “Big-Oh” include

£3/2

cos(e) = O(1), 1 —cos(e) = O(e?), tanh(e) = O(e), sec(e) = O(1) = O(e¥?).

" sin(e)
One of the main uses of the “little-oh” notation comes from the fact that sometimes it may be

hard to determine the exact rate of convergence but it is sufficient to determine whether the rateis
faster or slower than a given gauge. Examples of “little-h” include

sin(e) = o(1), sin(e) = o(€"/?), cos(e) = o(e™?), e~V = 0(6_1078)7 In(1/€) = ofe=000001),

Since we may not be able to use only powers of ¢ to identify the rate of convergence of a
function, we are lead to supposing that we have a genera set of gauge functions.



Definition 5.2. We say that
N

Z Cnfn(€)

n=0

is an asymptotic expansion of f(¢) at e = 0 if the following hold:

1. Thesequence {f,},n =0,---,(N + 1), isa gauge sequence; i.e, f.(e) = o(fn.—1(€)) as
e—0forn=1,--- ,(N+1),and

2. we have N
Fl€) =Y eatale) = O(fxsi(e) @s e —0.
n=0
Asanexample, if f(e) has (N + 1) continuous derivatives at ¢ = 0 then it can be approximated
(near e = 0) by a Taylor polynomial of degree N
£(0) = F(0) + fO(O)e + -+ FM0) [N+ O(N*).
The error term is given by

(N+1)
f—(n)eN“, forsome 0 < n < e.

(N +1)!
Here the gauge functions are f,, = €".
Theorem 5.1 (Fundamental Theorem of Perturbation theory). If an asymptotic expansion sat-
isfies
Ag+ Are+ - Ay + 0N = 0,
for all sufficiently small e and the coefficients { 4; } are independent of ¢, then

Ay=A =---=Ay=0.

5.2 Algebraic Equations
Example 5.1. We would expect that the roots of the quadratic equation

2 —2x+.001 =0

would be close to theroots x = 0 and z = 2 of 22 — 2z = 0 since .001 issmall. The question is
can we say approximately how close they are. To answer thiswe consider obtaining an asymptotic
expansion for the roots of the more general problem

2 —2r+e=0fore< 1

where e < 1 meansthat ¢ ismuch lessthan 1.
For this example let us let z; = 0, x5 = 2 and note that the exact solutions to the perturbed

problem are
r1(e) =1—V1—¢, me)=1+V1—¢

4



Then based on the binomial theorem given in (5.1.1) witha = 1, b = —e and n = 1/2 which
implies

1 1
Vi—e=1—Ze—=—---.
2 8
Thus we can write
()—1 +1 24 L 54
z1(€ —26 86 166 ,
and 1 1 1
=9 Ze—_ 2 B34,
xa(€) 5€ T3¢ T g€ +

So we can easily the rate at which the perturbed roots converge to the exact roots at e = 0.

An important question is whether or not this is actually an asymptotic expansion. If we can
show that the series represents a convergent power series, then it is an asymptotic series.

One of the best methods to check whether a power series is convergent is the ratio test which
states

u
k+1 <1

o0

Z“k convergesif lim
i k—oo Uk

—=

For our example we have the kth term given by

(1/2)(1/2-1)---(1/2 = k)(—€)"
k!

. (E+Dstterm . (k+1/2)
lim ———— = lim ———=
k—o0 kth term k—o0 (/{I + 1)

so the series convergesfor 0 < e < 1.

Thuswould not be avery useful method if we had to use the quadratic formulaaswe did above.
Let us consider amore direct method — the method of regular perturbation theory. We suspect that
thereis an asymptotic seriesin the form

x(€) = ag + are + age* + -+ - .

We substitute this formal seriesinto the perturbed equation and appeal to (5.1) by successively
setting the terms corresponding to powers of ¢ equal to zero.
For this example we would have

(ag + are +age® + )2 —2(ag + are +age* +---) +e=0
or, collecting powers of ¢,
[ag + 2apare + (a1 + 2apaz)e® + -+ -] — 2[ap + are + aze* + -] + e =0

or
(a3 — 2a0) + (2apa; — 2a; + 1)e + (a} + 2apay — 2a5)e* + - - -



which gives

e ad—2a9=0, =ay=0,2,

—1
1
€ apay a; + , a1 2(a0 — 1),
—a?
€ a%+2a0a2—2a2:0, ;&@:2@‘&711)'
0 —
If wetake ag = 0 then this gives
—1 1 —(1/2)?
al = = -, a,2 = ( / ) = -,
2(0-1) 2 2(0—-1) 8
and for ag = 2 then this gives
-1 1 —(1/2)?
" R N (VL) |
22-1) 2 2(2-1) 8

in agreement with our calculations above.
Sometimes we might want to use the knowledge that the result can be given in a power series
expansion, i.e., that

a:(j)( ) ) 4
a; = 1 where 2/ (0) = @m(e)};o'
S0 in this case we compute
L fa(e) = L (a(e)? — 20(e) +€) = 20(0) () — 22 () + 1 =0
de de de de

which, for 2(0) = 0 gives

dx 1
=3
and, for z(0) = 2 gives
dx 1
V="

We could continue but | think you get the idea.

Unfortunately it isvery common that aregular asymptotic expansion does not suffice. Consider
the following example.

Example 5.2. Consider the quadratic equation
ex’? +x+1=0.

For every nonzero e this equation has two roots but for e = 0 the equation becomesz+1 = 0 which
has only oneroot + = —1. Thus we say that there is a singularity in the roots of the perturbed
equation at e = 0 (hence the name “ singular perturbation problem”).

If we proceed as we did in Example 5.1 by assuming an expansion

z(€) = ap + are + age® + -+ -,

6



then we get
e(ag + are + age® + -+ )2 + (ag + areTaze® +---) + 1 =0,

or
(ag+1) +ela; +al) +---

which implies

ap=-1, ag=—a3, -+ = zle)=—-1—€e+---.

But this only gives information about one perturbed root.
The exact roots are

z(e) = 2% (—1+£v1—4e). (5.2.1)

If we once again apply the binomial theorem witha = 1, b = —4e and n = 1/2 then we have
1/2)(—1/2
(1_46)1/2 — 1_2€+(/>;—'/)1662+...
=1—-2—2*+---
Thus using the exact solutions (5.2.1) with the plus sign we arrive at

—14+1—2c—2e*+---
x(e) = 5 — 1l —e4---

just as above. But when we use (5.2.1) with the minus sign we get

—1—1+2+2%+--- 1
z(e) = 5 =——Hldet .

Thus the two roots go into powers of ¢ but one starts out with e~ *.
Thus we see that we cannot expect to have asymptotic expansions only in the form

z(€) = ag + are + age® + - |

and we need additional information to determine the form of the expansions.

Thisisone of the main ideas in the area of singular perturbation theory.

We could have argued that since the number of roots of the unperturbed problem is less than
the number of roots of the perturbed problem we should expect that some perturbed roots must go
to infinity ase — 0. With thisin mind we might seek an expansion in the form

z(e) = ﬁ) for v > 0.
€V

Substituting into our equation

we end up with



In order to see that one root must go to infinity (like 1/¢) we give a heuristic argument that
suggests this should be the case. Let x;(¢), x2(¢) be the two roots. Then

efz — 1 (e)][z — z2(e)] = 0.
If we multiply out the terms and recall that for every e thismust be ex? + = + 1 = 0 we get
ez’ — [21(€) + @a(e)]a + w1 (e)w2(€) = 0
or

—€lz1(e) + 22(€)] =1

and
exy(€)za(e) = 1.

Definition 5.3. Wesay that f ~ ¢ if and only if & — lase — 0.

g(€)
Now since we expect z;(¢) ~ 1 whichimpliesthat z,(¢) ~ b/e where b is some constant.
We have just learned that we do not obtain aregular perturbation problem when the number of
rootsisless for the unperturbed problem than for the perturbed problem. Thisis not the only way

asingular problem can arise from these types of perturbation problems. The next example shows
that if the original (unperturbed) problem has multiple roots there can also be a problem.

Example 5.3. Consider the quadratic equation
P(e) = 2* — 2ex — e = 0.

For this problem no roots are lost when € = 0, namely, x = 0 isadouble root. If wetry to proceed
to obtain an asymptotic expansion for the roots as aregular perturbation expansion

T =ag+ a1 x4+ asx® + - | (5.2.2)
then when we truncate at N = 2 we get
a3 + (2apa; — 2ag — 1)e + (a? + 2apay — 2a1)e* + O(e*) = 0.
Which implies
ag =0, 2apa; —2a9—1 =0, af + 2agas — 2a; = 0.
Thisimplies that
ap = Oa

and then that —1 = 0 which is a contradiction.

Thus no roots of P(e) have the form (5.2.2). Just asin the previous examples we could apply
the quadratic formula to find out what the form of the roots is but this really defeats the purpose
of our investigation. In particular for polynomials of degree greater than or equal five there is no
formulalike the quadratic formulato use.



Let us consider the following line of reasoning. We know that there must be two roots which
we denote by x;(¢) and x»(e) which must approach zero ase — 0. Let us assume that the zeros
satisfy

zj(€) ~ by, p>0, By #O0.
Just asin the last example, let us make the change of variables
z(e) = fw(e), w(0) # 0.

Then we get
Q(w, €) = P(e) = e?w?(e) — 2" w(e) — e = 0.

Ase goesto zero thelargest of {e*, »™!, ¢!} isthe one with the smallest exponent (since afraction
raised to ahigher power issmaller). Thusto find the dominant term we must determine the smallest
of these exponents.

Notethat if 1/2 < p < 1 then

min{2p,p+ 1,1} =1

which gives
Ew?(e) — 2€w(e) — e = 0.

But if wedivide by ¢ and let e tend to zero we are left with —1 = 0 which isa contradiction.
If, on the other hand, 0 < p < 1/2 then

min{2p,p + 1,1} = 2p
which, on multiplying by ¢~2?, gives
0= 2Q(w,e) = w(e) — 2 PMw(e) — ™ ~ w?(e) ~ w?(0) = w(0)=0

which, once again, is a contradiction.
The only other possibility isthat p = 1/2. In this case we have

0=e'Qw,e) = w(e) — 26 %w(e) =1 ~w'0) — 1, = w(0) = £1.

This could work.
Note that with this substitution the resulting polynomial inw is

w?(e) — 2eYw(e) — 1 =0,

Now working with a fractional power of ¢ is not so convenient so let us make one final adjust-
ment and set
ﬁ _ 61/2

to obtain the regular perturbation problem
w? — 20w —1=0,
for which we seek an expansion for 5 ~ 0 in the form

w(B) = by +b1B+ b8 + -+ byBY + O(BNT), b #0.

9



Substitution in the polynomial gives

by —1=0,
2boby — 2by = 0,
b3 + 2bgby — 20 = 0,

which implies

bo - :l:l,
bl = 17
by = +1/2,

Thus we obtain the expansions

1
zi(€) = /% 4 e+ 563/2 + O(€?),

1
To(e) = —€/? 4 e — 563/2 + O(e2).

Immediately following this example we turn to the problem of determining the asymptotic
development of a wide class of algebraic equations. This discussion will include a method for
determining the value of p asin thisexample. Since we have asimple example here let ustake this
opportunity to show graphically how the general method works.

To determine the minimal value for the set {€%, ¢! ¢!} we proceed as follows: In the (p, q)
plane, plot thelinesq = 2p, ¢ = p+ 1, ¢ = 1. Theselineswill intersect in several places. Namely,
two of the lines intersect at (2/1, 1) and two others intersect at (0,1). Each of these points on
intersection determine the asymptotic behavior of one branch of the roots of our equation.

Fir P+1

The three lines form two intersections

10



At this point we present a quite general result for aclass of singular perturbation problems. We
consider polynomial equations of the form

P(z,€) =(1 4 boe +coe® + - ) + Are® (1 + bie + c1e + - -+ )z (5.2.3)
+oe A (1 + bpe +cpe® + -+ )" = 0,

where o; arerational, b;, ¢;, etc are constantsand (1 + b;e + - - - ) are regular asymptotic series, i.e.,
they have the form

ag + are + - - - +ane™ + Ryp1(e), with Rypi(e) = O(eN ).

We note that with this definition P(z, ¢) can have roots that approach zero, a finite number or
infinity (see the homework problems).

Much of the material in this section is taken from the Dover book [13] including the following
Theorem.

Theorem 5.2. Each zero z(e) of (5.2.3) is of the form
z(e) = fw(e), w(0)#0 (5.2.49)
where w(e) is a continuous function of € for ¢ ~ 0.

Sketch of Proof. If z(¢) = ePw(e), w(0) # 0then P(ePw, €) can be written as
P(Pw,e) = Q(w, €) + €(bp + € Pby Ayw + - - + > TPh, Aw™) + - -

where
Qw,e) =1+ e PAw + -+ e* TP A w™.

The main point is that the exponents
E= {Oual +p, 705n+np} (525)

determines a set of, so-called, proper values {pi, ps, - , Pm}. These numbers are determined as
follows: Draw the graphs of the lines ¢ = «; + jp inthe (p, q) plane. Starting on the right, we
note that for p sufficiently large the smallest exponent will be 0. As p decreases, we imagine a
vertical line moving with us through the graphs of the various lines, there will be a first point at
which (at least) two lines intersect at a point (p;,0) (heree; = 0). At this point one and only one
line will have the largest slope ;. Now continue to the left along the intersection of your vertical
line and the line with maximum slope until you encounter the next point of intersection with one
of the set of lines. This point is denoted (p», e5). The slopes, at this point, range from a minimum
of n; to amaximum of n,. Continue in the same fashion until the last and smallest proper value
pm IS reached (i.e., there are no more intersection lines to the left). At least one of the lines that
intersect at this last point must have the maximum slope of al the lineswhichisn. Inthisway we
have generated a set of pairs {(p;, ;) }7-,
Now for each j define the polynomials

T (w,e) = e P(Piw, €).

11



Each TV (w, €) can be written as
TY (w, €) = TY (w) + BV (w, €)
where ' '
TU (w) = Ay (W 4 - 4 Byjw™ik) EY(w,0) = 0.
We note that if the nonzero roots of 70) (w) are given by z;, for k = 1,- -, n;, then TW (w, €)
has n; roots denoted by x,(¢) satisfying

lim zy(e) = a2, k=1,---,n;.

€E—00

That is, the roots of 7)(w, ¢) approach the roots of 7V) (w) ase — oo.

Unfortunately, the non-zero roots of 7' (w, ¢) need not be regular: the o’s and the associated
proper values and exponents, (p;, e;), may be non-integer rational or 7V) (w) may have repeated
roots. Thus to obtain regular expansions, new parameters must be introduced. Namely, we intro-
duce anew parameter 5 by

€= [ (5.2.6)
where
¢; =lcd{0,0q4 +pj, -, o, +np;}, lcd meansleast common denominator.

then let
RO (w, 3) = TV (w, ) = 3~ P(B%7w, B7).
The roots of 7V)(w, €) areidentical to those of R\ (w, 3) but the nonzero roots of RY) (w, 3) will
have aregular expansion in w of the form

w(B) = by + b1+ +bnBY + OBV,

SUMMARY:

Every root of (5.2.3) can be expressed in the form (5.2.4). The set of exponents
(5.2.5) determines aset of proper values{p1, - - - , p,, }. For each proper valuewein-
troduce anew parameter /3 through (5.2.6) and an associated polynomial R (w, 3).
The simple non-zero roots RY)(w, 3) have regular perturbation expansions in (3.
The total number of non-zero roots of al the RY) (w, 3) isn. These yield expan-
sions for each of the roots of (5.2.3).

O

Example 5.4. At this point an example showing how to choose the proper values is probably the
best way to see what this means. Consider

P(z,e) =1+ 2% + 020 + 2%7 4 2% + €'82°.

12



The substitution of x = e¢Pw gives
P(Pw,e) =1+ P + 86P0 4 29T TP T 4 12F8P8 o 124870

so the set of exponentsis
E =1{0,3p,6 + 6p,9+ 7p, 12 + 8p, 12 + 8p}.
From the graph we can read off the proper values p; and the minimal exponentse;.

30

201

10

0 (0]

-10

20 F

-30 -

-40 . . .
-6 -4 -2 0 2

Determination of the Proper values

We obtain
1. (0,0): TW(w,e) = P ("w, €) = 1+ w? + Sws + 2°w” + '2w® + 'Su”
2. (=2,—6): TP (w,e) = SP(e 2w, €) = w® + wb + 2ew™ + w® + 8(1 4 w?)
3. (=3,-12): T (w,e) = 2P(e 3w, €) = wb + 2w™ + w® + (w? + w) + 2
4. (—6,-36): TW(w,e) = P(eSw,€) = w® + w? + 263w + Swb + €'Bw + €
Example 5.5. Let usconsider the following problem in some detail
P(z,e) =1—e+e(2+3)r — e 3(16 — €)a* + (4 — e + €*)ab.
1. Set x = e’w and determine the exponents £ = {0, 1 + p, —3 + 4p, 2 + 6p} gathered from
P(e’,e) =1 — e+ (24 3))w — e *2(16 — e)w* + 7% (4 — e + *)u®.

2. Determine the proper values and the polynomials 7¢) (w, ¢).

10

o
T

@2.0)

-10 ¢

a5t (-5/2,-13)

-20

13



Determination of the Proper values

@ (3/4,0): TO(w,e) =1 — e+ €742+ 36w — (16 — )w* + €'3/2(4 — e + €)u®.
(b) (=5/2,—13): TP (w,€) = 3(1 —€) + e¥3/2(2+ 3€)w — (16 — e)w* + (4 — e + 3)wb.

3. For each j determine ¢;, set e = 3% and compute the polynomials RY) (w, 3):

@ €= RW(w, B) =~ P(F"71w, f7) = 1+ 5 + (2 + 36%)w — (16 — §)w
) +ﬁ26(4 _ ﬁ4 +ﬁ12)w6.

(b) « = g2 B2, B) =67 P(B%w, 3%) = §20(1 = %) + (2 + 36")w — (16 — 5*)w"
' +ﬁ26(4_52 +ﬁ6)w6. '

4. Each RY)(w, 3) has non-zero roots of the form

w(B) = by +byw + -+ + by Y + O8N, (5.2.7)

Substitute (5.2.7) into RY)(w, 3) = 0, collect and equate to zero coefficients of like powers
of 3. Solve, one-by-one, for the unknowns by, by, - - - .

(@) For j = 1 theroot will have the form w(3) = by + by3* + O(37) from part 3.
We have

0= RW(w,3) =1 = B*+ 0(87) = (16 — 8*)(bo + baB* + O(87))* + O(5")
=1 — 3" — (16 — 3*) (b + 4bgba3*) + O(67)
=1 — B* — 16by — 64b3b43* + b3* + O(57).
Setting like powers of 3 to zero we arrive at

1 1/4 1 ‘
1— ]_6bé = O = bO = (E) — §e(l€—1)l7r/27 k — 17 2,3’4'

and

1—-b3)  (1—1/16)b 15
L6 b =0, = b= L0 =——b
64804 +55 =0, T 64 —4 64"

where we have multiplied the top and bottom by b, and used the fact that b3 = 1/16.

14



(b) For j = 2 theroot will have the form w(3) = by + b2 3% + O(34).
Once again we have We have

0= R®(w,8) =(4 = 8* + 8°)(bo + baf> + O(5"))° — (16 — 5°) (b + byw® + O(5"))*
+0(3%)
=(4 — %) (0§ + 6bgba” + O(5%)) — (16 — 5°)(by + 4bbaf?) + O(5)
—(4bS — 16b3) + (24b3by — b3 — 64b3by 4 b1) 3> + O(5Y).

From this we conclude that

405 — 16bg = 0 (the nonzero values satisfy) b2 = 4, = by = 2(—1)*, k= 5,6,

and
3_bo

0 = 24b3by — b — 64b3bs + by = (16)(8)baby = 48 = by = 3
5. Finally we write down theroots z;(e) for j = 1,2, 3,4, 5, 6.

15

1 .
(@) zx(e) = 56(1671)“7/263/4 (1 - (@) €+ 0(67/4)) fork=1,2,3,4.

(b) () = 2(—1)Fe >/ (1 + (3—32) €+ (‘)(62)) for k = 5,6.

Example 5.6. Consider the equation
P(z,e) =120+ 2> +ex® =0.
1. For this problem we seek x = e’w SO we get
P(Pw, €) = 1 — 26w + ePw? 4 €' ~Py)®

and
E ={0,p,2p,1+ 5p}

(0,0)

(-1/3,-2/3)

65 0 0.5

Determination of the Proper values
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2. Now for j = 1,2 wetry to carry out the procedure described above.

(@ For j =1 wehave (0,0) and

TW(w,e) = " P(fw, €) = 1 — 2w + w? + ew®.
(b) For j =2wehave(—1/3,—2/3) and
T (w,e) = EPP(ew, e) = * — 23w + w? + w°.

3. Determine ¢; and set e = 3%.

(@ For j =1 werunintotrouble. ¢, =lcd{0,1} =1s0e= Fand

RWY(w, B) =1 — 2w + w? + fu®.
If wetry aregular perturbation seriesw = by + byw + - - - we arrive at
1— 20y — 2by B —2ba B2+ (b + by B+ b2 3%)° + B (bo + by B+ b2 %)

and the coefficients of 3° is1 — 2 b, + by> which has adouble root 1 so we see that this
isnot aregular perturbation and we must proceed differently.

(b) For j =2 wehave ¢, = lcd{0, —1/3,—-2/3} = 3 s0e = 3% and
R (w, ) = 3% — 26w + w? + w®.
At this point we stop and begin again.
Because of the double root must seek
w=14+p"u, u=1uy+uf+uyB+---, uy#D0.
Thus we obtain
T+ 5, §) =1 = 2(1+ 7u) + (1 + f*u)* + B(1 + f*u)’
=1 —2(1+ Bu) + (14 28"u + B*u?) + B(1 + 56%u + 108%u? + - - -)
=B+ 58" u 4+ (1 4+ 108)u® + 108 37y + 5814yt + g1V,
The set of exponentsis

E={1,2v,v+1,3v+ 1,4v + 1,5v + 1}.

16



(1/2,2)

(-1/3,-213)

% 1 0 1 2
Determination of the Proper values
There are two proper values (py, e;) = (1/2,1) and (p2, e9) = (—1/3,—2/3)
1. For j = 1 multiply by 3~! and we have
14 56Y%u+ (1 +108)u? 4+ 108%u® + 53%u* + 5°%u° = 0.
At this point we set 3 = +? to obtain
1+ 5yu+ (14 1072)u? + 109°u® + 5y*u* + +°u’® = 0.
We now substitute v = ug + u1y + - - - and after some calculations we arrive at
l+ul=0 = =i,
2upuy +dup =0, = u; = —g,

1 5u; + 10ug + uf 65 .

2ugus + duq + 10u3 + u% =0, = uy= -3 “ _ :Fgl-
We arrive at
5 65
(&) =1+ <¢_§el/2_§7;€1+...),

5 65
(b) y1 = 14+ —i— 224 it ... ),
2 8
2. For j = 2wehavey = /3 and
V4 5y + (14 1093)u? + 10720 + 5yu* + u® = 0.
We now substitute v = ug + uqy + - - - and after some calculations we arrive at

1 1
u? +ud =0, (onlynonzeroroots) = wuy = (—1)"% = {—1, 5+ 5\@@'},

ul )
Quguy + Suf + bug(l+uy) =0, = wuy = —52 +%U8 =3
2 3 2 3
+ 10w (1 + uf) + 20uguy) 5
2 5 10 2 2 _ 0. = _ _(ul 0 1 0 _ '
Uz + ouy + L0uy + uj , Us u0(2—|—5ug) —9u0

We arrive at

17



5 5
(@ forug=—1:ys3 =1+ ¢ /3 (—1 — 561/3+ §62/3—|—~--),

1 1 ) 5)
(b) forug =~ +-V3ity,=1+¢'/? <U0— ~€'/? — —52/3"‘"')!
279 3 o

1 1 . 5 5 )
© forug ==+ =V3itys =1+ 3 (ny— P - =B 4...).
2 2 3 9U0

For this example we have set ¢ = .001 and computed the approximate solutions using Maple
and the following commands:

r :=fsol ve(subs(epsilon=.001, 1-2*x+x" 2+epsi | on*x" 5), x, conpl ex) ;
This resulted in the answers:
r(1) = —10.61837874,
r(2) = .9975295090 — (.03136955287)1, r(3) = .9975295090 + (.03136955287)1,
r(4) = 4.311659861 — (8.715473330)i, r(5) = 4.311659861 + (8.715473330)i
Next we compared these answers with our results and obtained the following errors

.y = .9975000000 + (.03136584154)i = |r(3) — 11| = .00002974147023,
. Y2 = .9975000000 — (.03136584154)i = |r(2) — | = .00002974147023,

1
2

3. ys = —10.61111111 = |r(1) — y3| = .00726763,

4. yy = 4.305555556 — (8.708366563)i = |r(4) — yu| = .009368493834,
5

. ys5 = 4.305555556 + (8.708366563)i = |r(5) — ys| = .009368493834.

5.3 Transcendental Equations

This is a much more difficult situation and because of that we cannot expect such a complete
answer. One of the main tools that we present will be the Lagrange Inversion Formula.
More generally, one situation we often encounter is that we are given
flz,t)=0 (5.3.1)
and we are interested in describing the roots = = ¢(t) for t — oc.
For the Lagrange Inversion Formula let us assume that f(z) is analytic in a neighborhood of
z=0inCand f(0) # 0. Consider
z
w = . (5.3.2)
f(z)
Thereexistsa, b > 0 such that for |w| < a, the equation (5.3.2) has one solutionin |z| < b and this
solution is an analytic function of w:

00 k—1
z = Z auw®, o = % { <diz) (f(z))k} ‘220. (5.3.3)
k=1 '

The Lagrange Inversion Formula (5.3.3) is a specia case of a very general result on Implicit
Functions that states:

18



If f(z,w) isananalytic function of z and w in |w| < ay, |z] < by and f(0,0) =0
and g—f(o,()) # 0, then there exists a < a; and b < b; such that for al |w| < a the
z

equation f(z, w) = 0 has exactly one solution z(w) in |z| < b and

o0

z(w) = Z cpw”.

k=1

Example5.7. Consider the equation

Notethat ast — oo wehavet™ — 0
To use the Lagrange Inversion Formula we observe that our equation can be written as

ze =w With z = 2, w =11,

so we have ,

f(z)
We apply the Lagrange Inversion Formulawhich impliesthat there exists a, b > 0 such that for
|w| < a so that the one and only one solution z with |z| < bisgiven by

k
w
Z_E klkkl '.

This series converges for |w| < ¢! so fort > e (i.e, for t sufficiently large.) Thus we finally

=w where f(z) =¢e "

arrive at .
[ee) t_
— -1 k—lk,k—l_.
x ;( ) X
Note that we have used f(2)" = ¢™** s0
o l i k—1 (e_kz _ (_1)k—1kk—le—kz _ (_1)k—1k,k—1
TR \dz - k! - Ko

Example 5.8. Consider the equation
=€ t— oo.

For al |z| < 1, 2" — 0 ast — oo S0, aswe can see from the figure thereisarootin 0 < = < 1.
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Single Intersection
For x = 1 wehave 1! = 1 for al ¢ > 0. To use the Lagrange Inversion Formula we set
=14z tl=w

so that ! = e~* becomes

~ 2(1+2)
log(1+z2)

=w where f(z) =

z
f(2)
Thisfollows from
(z+1)Y =e G

which implies
w ' log(z +1) = —(2 + 1),
which implies
_ log(z+1) z
CE AR AN
log(z + 1)
We obtain )

Example5.9. In determining the eigenvalues of certain Sturm-Liouville problems we often have
need of determining the zeros of transcendental equations of the form

tan(z) = x.

It is not possible to solve such equations in closed form but by graphing the functions y = x and
y = tan(x) we can see that there are infinitely many solutions and we can use perturbation theory
to get agood idea of the asymptotic form of these zerosfor = > 0.

L
/]

N " Iry2 b 32

Infinitely many intersections

We note that there are roots in each interval

2 1
<mw) n=1.2 ..

Let z,, denote the root in the nth interval. We want to determine the behavior of x,, asn — oo.
Sincetan(z) hasaan asymptoteat each x = (2n+1)7 /2 and approaches +ooc asz — (2n+1)m/2
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we seethat x,, getting closer and closer to (2n + 1)7/2 for increasing n. So to apply the Lagrange
Inversion Formulawe set © = (2n + 1)7/2 — z where z will be a small parameter. Also alittle
shows that

sin(z) = sin ((2n + 1)7/2 — 2z) = sin((2n + 1)7/2) cos(z),

cos(x) = cos ((2n + 1) /2 — z) = sin((2n + 1)7/2) sin(z),
sowithw™" = (2n + 1)7/2 we have

1

cos(z) = (w™ " — z)sin(z)

which implies
(cos(z) + zsin(z)) -
sin(z)
or _
w— _“ with f(2) = z(cos(z) + zsin(z))

f(2) sin(z)
We note that since f(0) = 1 # 0 we can apply the Lagrange Inversion Formula. Here z is
given asaseries
z=w+cu’ +---

where ¢; = 1 since f(0) = 1. We also note that since f is even so that (f(z))* iseven. Alsoif k
is even then the (k — 1)st derivative of an even function is odd so that
=0 (for k even.)

o= { (4 <f<z>k>}

xn:(mw+mw_6% 2 ‘%((_Eiﬁ)3+'”

So we get

2 on+Dr 2n +

Example 5.10. As was mentioned in the introduction, sometimes it is not possible to obtain an
asymptotic expansion in the smple form

x:a0+a16+a262—|—---.

As an example consider
T

x+1+esech< >:0, e~ 0.

€
By considering the intersections of the graphsof y = = + 1 and y = —esech (2)

4

rd
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Single Intersection

If we seek an expansionintheform x = ag + ae + axe® + - - - thenit will follow that ag = —1
but nothing will alow us to determine o or a;. The reason is that the behavior of the hyperbolic
sech function will not allow it.

In this case we seek an asymptotic form of the solution in the form z = —1 + p(e) under the
assumption that 1 < 1 where part of our job is to determine the behavior in e. We obtain

p+ esech(—1/e+ p/e) = 0.
Now we use the fact that
sech(—1/€ 4 y1/€) ~ sech(—1/¢) ~ 2e7 /¢
so we have
[~ —2ee Ve
and
z~—1—2e Ve €—0.

A problem related to te material in this section is that of finding an asymptotic expansion for
the eigenvalues and eigenfunctions of a Sturm-Liouville problem. At this point we give a heuristic
treatment of such a problem and note that while these calculations are only formal they can be
made more rigorous and give quite good approximations. We will return to this idea when we
study the WK B method and perturbation methods for solutions of differential equations.

Let us consider the Sturm-Liouville problem

w" — q(x)w = Iw (5.34)
w(0) =0, w(l)=0 (5.3.5)

where we assume that ¢(z) isasmooth real valued functionon [0, 1]. Let A = —p?* and rewrite the
problem as

w” + p*w = q(x)w (5.3.6)
w(0)=0, w(l)=0 (5.3.7)

Applying the method of variation of parameters we can write the solution as an integral equa-
tion for w as

: L[
w(z) = Acos(pw) + Bsin(pr) + / sin(p(x — y))g(y)w(y) dy. (5.3.8)
0
Now we note that w(0) = 0 impliesthat A = 0 and we can compute that «’'(0) = pB. So we
seek 1
w(z) = sin(px) + (xp, p)‘
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We substitute this expression into the right hand side of (5.3.8) to obtain

w(z) =sin(px) + sin(ppx) /I cos(py)q(y) (Sin(py) i Aly, P)) dy

0 Y

_ coslpa) /O ’ sin(py)q(y) (Sin(py) + A(y’p)) dy.

p p

— sin(pa) + 81“2’”) / " sin(py) cos(oy)a(y) dy

- %ﬁﬂx) /0”? sin®(py)q(y) dy + O(1/p°)

—sin(pr) - 3 [“atuay+ 2 [ cosempaty) dy

2p 2p

+ Sméz z) /O sin(2py)q(y) dy + O(1/p%)

_in(pr) cos2(ppx) /Oﬂf o) dy + cos2(ppx) /Ox (sin(22ppy)) o(y) dy
+ 81“2(;’“") /0 : (_L;fp y)) q(y) dy + O(1/p%)

— sin(pz) — ;;’“") / ") dy + 0(1/0?).

Let L e
Gla) =3 | atw)dy
and we have

OPT) ) 1+ 0(1/p2).

w(z) = sin(px) —
Now from the boundary condition at x = 1 we have

_cos(p)

0 =w(l) = sin(p) G(1) +0(1/p%).

So for |p| > 1 weneedsin(p) ~ 00 p ~ nm.
Let
pn = nm +a/n+ O(1/n?)

so, with
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we must have
_cos(nm +a/n+0(1/n?)

nm+a/n+ O0(1/n?) hn + 0(1/n7)

0 ~sin(nm + a/n + O(1/n?))

_ cos(nm+a/n+ O(1/n?))

nm+a/n+ O(1/n?) b +0(1/n%)

=sin(a/n + O(1/n?))

a h1 2
n onr+ a/n+ O(1/n?) +001/n).

Thisimplies that

h

a=—,
T

so we have 5
1 2
W= 7+ —= 4 O(1/n?),
p nw e O(1/n%)

Now we can substitute this into our approximation for w to obtain

cos([nm + Z—; + 0(1/n?)|x)

wy,(x) =sin ([mr + S—; + (f)(l/nQ)]x) - G(x) + O(1/n?

[nm 4+ :ZL—;T + O(1/n?)]

_ sin(nmz) cos ([g—; +on /#)} x) + cos(nmz) sin ([g—; Lo /ﬁ)} x)

) e[ 2 + o1/

— sin(nr) sin ({Z—; + 0(1/n2)] w) } +0(1/n?)

= sin (n7x) + cos(nmz) (hl—x - @) +0(1/n?)

nm nm

where we have used ) ,
sin ([—1 + O(l/nz)] x) — T O(1/n?).
nim

nm

o, finally, we have

cos(nmz)

(hix — G(z)) + O(1/n?). (5.3.9)

wy(x) = sin (nwx) +
nm

With a bit more work we can also analyze the more challenging problem Let us consider the
Sturm-Liouville problem

w” — q(z)w = \w (5.3.10)
W' (0) = hw(0) = 0, w'(1) + Huw(1) =0 (5.3.11)
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where we assume that ¢(z) isasmooth real valued functionon [0, 1]. Let A = —p? and rewrite the

problem as
w” + p*w = q(x)w
w'(0) — hw(0) = 0,
w'(1) + Hu(1) = 0

(5.3.12)
(5.3.13)
(5.3.14)

Applying the method of variation of parameters we can write the solution as an integral equa-

tion for w as

w(z) = Acos(px) + Bsin(pz) + % /Ox sin(p(z — y))q(y)w(y) dy.

Once again we recall that a particular solution of v + p?u = v isgiven by

U= E /Ow sin(z — y)v(y) dy.

Therefore we can write the general solution of (5.3.12)-(5.3.14) as (5.3.15).
Now from (5.3.13) and the seeking w(0) = 1, w’'(0) = h we have

wla) = cos(pr) + sinpr) + 5 [ sinte = g)ul)a(s) dy.

p
Applying the boundary condition (5.3.14) we obtain
tan(p) =~
where
1 H
c=nii | [cos<py> -2 sin(pw] a(y)uly) dy.
0
Hh tr H
p=tbo | {sm@y) = cos<py>] a(y)uly) dy.
0

At this point we make a couple of assumptions and draw some conclusions.

Remark 5.1. 1. Assumethat ¢ isC?[0, 1].

(5.3.15)

(5.3.16)

(5.3.17)

(5.3.18)

2. We assume that sup |w(z)| < M < oo independent of p. Thisis always true but it would

require an extra digression to prove it so we simply assume that it is true.

3. We note the previous assumption implies that C' and D are bounded independent of p.

4. For large p we can assumethat p ~ nr

5. We see that

with a(z, p) bounded in p and x.
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Under these assumptions, applying integration by parts and simplifying the result for w we
arrive at

w(x) =(1+ O(1/p*)) cos(pz) + (@ + O(l/p2)> sin(px), (5.3.19)
G(z) =h+ % /OI q(y) dy. (5.3.20)

Now we repeat this same procedure for the expressions for C' and D to obtain

1 1
C=h+H+h +0(/p), hy = 5/ q(y) dy, (5.3.21)
0

D =0(1/p). (5.3.22)

From this we obtain

h+H+h +0(1/p) b
tan(p) = =—-+0(1/p), (5.3.23)
(p) ST 00/0) P (1/p)
b=h+H+hy. (5.3.24)
Writing
Pn =N + % +0(1/n?)
in the above we find that )
0= —
m
so that
P = NT + L +0(1/n?). (5.3.25)
nm
We now substitute (5.3.25) into (5.3.19) to obtain
wy,(z) = cos(nmx) + {Ml sin(nmz) + O(1/n?), (5.3.26)
nm

where p,, isgivenin (5.3.25) withb = h + H + hy

h1=§/0 q(y) dy, G($)=h+%/oxq(y)dy-

As afinal note, we usually are interested in normalized eigenfunctions s we would like to
compute the norm of our asymptotic eigenfunction so we could take the sguare root of this and
divide to obtain a asymptotic formulafor normalized eigenfunction.

Let us set

e =ht g [ oy —bo
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Then we have

nm

/01 (@) dr = /01 :COS(nﬂ'x) * o) sin(nmz) + O(l/HQ)} 2 dx

17 2
:/0 cos®(nmx) + 2% sin(nmx) cos(nmx) + 1(23;32 sin?(nrx)| dr + O(1/n?)

_ /0 1 :COSQ(mr:E) 1 9@) 812752"”)} dz + O(1/n?)

:% +/O g(x) (—_ coséinwx)) dz + O(1/n?)
11 (- 2nm Ly 2nm
- %{ g(fc);(;si( nmz) +/0 g(fc)cgzg nmz) dx}+(9(1/n2)
—h—1/2 [y qy) dy
;ﬂ;{( QH; >}—|—O(1/n2)
:% + (mlr)? <h+1/2/0 q(y) dy) + 0(1/n?)
L oam?
=5 +0(1/n?)
which implies
1 \ 1/2 1
Example 5.11. Asan example consider the Sturm-Liouville problem
w” — zw = \w (5.3.28)
w(0)=0, w(l)=0 (5.3.29)

In this case we have ¢(z) = = and
and

nm

wn () = sin(nmz) + 50T (f - x—2> +0 (%) |
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n=1 error= 0.016679 n=2 error= 0.019938

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

n=23 error= 0.012007 n=4 error= 0.0099617

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Eigenfunctions

. Find thefirst three termsin the asymptotic expansion for theroots of 22 — 522 + 42 + ¢ = 0.
Note that 23 — 522 + 42 = O hasrootsz = 0,z = 1 and = = 4.

. Use the quadratic formulato obtain the roots of 22 — 2ex — ¢ = 0 (see Example 5.3) and use
it to verify our findings in the notes. Namely that the two perturbed roots have expansions

1
z1(€) = e/? + e+ 563/2 + O(€?),

1
To(e) = —€/2 4 e — 563/2 + O(€?).

. Find the first two terms in the expansion of the roots of 23 — ez? — €2 = 0.

. Show that the equation (which isin the form (5.2.3) from the notes)
Pl,e)=1+elv+ela’+2°=0

has roots that approach zero, afinite number and infinity.

. For small ¢, find the first two terms in the expansion of each of the roots and compare with
the approximate answers obtained from Maple with e = .01

P(x,e)=2"—-(3+e€x—24+¢=0
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6. For small ¢, find the first two terms in the expansion of each of the roots and compare with
the approximate answers obtained from Maple with e = .01

P(r,e) = ez —2° + 30 —2=0.

7. Sketch the graph of f.(z) = 22 + e for z € R and asmall positive e. Use alittle calculus
to convince yourself that the graph is correct. From the graph note that the equation

2?+ev =5

has two roots for small postive € and find the first two terms in an asymptotic expansion of
these roots.

8. Determine atwo term expansion for the large roots of z tan(z) = 1

5.4 Evaluation of Integrals
Consider the differential equation
, 1
y+y=—.
T
The function e is an integrating factor which reduces the above equation to

d er

dr (ye*) = v
which, after integration, gives
y=e" Cdr+ce "
T

o

where z, isarbitrary and ¢ is a constant. If, for example, we impose theinitial condition y(1) = a
then

1 7
a= —dr+c¢
on

1 67—
c=ae — —dr
x0 T

y=e" (ae+/ e—dT)
1 T

IeT

y(r) =ae ™ +e " | —dr.
LT

which implies

which , in turnimplies,
or

This seems great, we have solved the initial value problem. But wait! We cannot evaluate the
integral since we cannot find an anti-derivative for

67’
T
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Thisisbut one example of asituation in which we would like to obtain approximate values for
integrals. In most of our examplestheintegrals will depend on aparameter ¢. The main techniques
in this subject are

1. Expansion of Integrands

2. Integration by Parts

3. Laplace's Method

4. Method of Stationary Phase

By way of several examples| hope to introduce you to some of the most elementary concepts
inthis area.

5.4.1 Expansion of Integrands

First let us consider the method of Expansion of Integrands.

Example 5.12. Consider the integral

1
I(e) = / sin(ez?) dz. (54.1)
0
If we expansion the Integrand in a power series
— (=)™ (e?)> ! 2 lagg 1 5 10 7
sin(ex? ; 2n—1 = e’ — e —|—mea§ + O(e").

Note, by the way, that this series coverges uniformly and absolutely for all ez? since, using the
ratio test, we have
nth term . (=1 HD) (eg2)2n=1) (2 — 3)!

. —(ex?)?
1 T N2 — — l =
A Dsttem i @n = D= ()@ Dk n— D(zn—2) "

Thus we can substitute the series into the integral, interchange the sum and integral and inte-
grate each term to get

0 n+1 2n 1 1 _

n 4.2
Z 2n—1 /0 x dx (5.4.2)
n=1
> n+1 2n 1
Z 2n — 1 dn — 1)

n=1

1 P 1
3™ 3¢ T 1330 T O
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Example5.13. Consider the integral
[(a:):/ t=34e~tat  forsmall . (5.4.3)
0

Once again we expand (part of) the integrand as

—t - (_1>ntn 12 13 1 4 5
_ R . B SN
=2 ot — gt gt TO)

n=0
By the ratio test we see that the series converges for al ¢ since we have

lim nth term o (=1)"t"(n — 1)! _ lim -t _ 0
n—oo (n — l)stterm  n—oo nl(—1)7~1¢n—1 n—oco M ’

Thus once again we substitute the series into the integral to get

= Z / 3 gt (5.4.4)

o n n+1/4
:Z n+ 1/4)

n=1
4

Al ZpE 2x9/4 B 3I13/4 4 O(x”“).

9 39

5.4.2 Integration by Parts

Sometimes expanding the integrand in a power series is not appropriate. Sometimes a useful
alternate is the method of Integration by Parts.

Example 5.14. Consider theintegral
[e'e) 6—t
I(a;)z/ t—zdt for large =x. (5.4.5)

Rather than try to expand in a series we use integration by parts

/f d:c—fg /f
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—t

n > €
For x <t < oo wehave (t/z) > 1 whichimplies (¢/x)"*% > 1 or "2 > z"*2. Thuswe have
1 1

<
n+2 — n+2
t T

o et 1 * e
/x 2 dt < $n+2/z e dt = o2

Thus we have an asymptotic expansion

A e P V|
I(x) =e Z(QST—'—G o<xN+2>‘

But we note that the infinite series diverges:

and we can write

i nth term _ (—=1)"Inlzn .

On the other hand, for any fixed N we can make the error small by taking x large.

Example 5.15. Consider the Laplace transform integral

I(z) :/Ooo e ™ f(t)dt forlarge =. (5.4.6)
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Here we assume that f isan analytic function and that the integral exists.

0= [ (=) s
)
o) , 1

:—+—/0 e~ () dt

T $2 $n+1 anrl

If we assume that
sup |f"(8)] < M

0<t<oo o

then

1 /OO —at p(n+1) ‘
e P FTU () dt
$n+1 0

M oo
<
—xn—l—l

e "t dt

So we have

Example 5.16. Consider the Fourier transform of afunction f € C*(R™) and f* ¢ L'(R*) for
al k

I(a) = /OOO e f(t)dt forlarge a > 0. (5.4.7)

Here f € C>*(R*) meansthat f isinfinitely differentialbe and f*) € L'(R*) means that the
integral

/Oo|f<k>(t)|dt<oo.
0
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Thus we can apply integration by parts as often as we like and, just as in the last example, we

obtain
N

- J™(0) 1
IW)ZOW”’ oD )
In this case the estimate of the error term
1 oo
E _ iat £(n+1) ) dt
)= [ oo

proceeds as follows

b=k [0

(=i (icv)

0 00 eiatf(N-‘rQ) (t)
0 N /0 (icx) ] ‘
<o 10O+ [0

a+2)"

The method of integration by parts, while quite appealing, is not very flexible. it can only
produce asymptotic seriesin avery specia form, e.g. for

I(z) = / " Ht)ere at

only an expressing of the form
I(z) = e Z Ay, & — 00
n=1

(i.e., powers of 1/x). Attempts to use integration by parts will break down when you arrive at a
step with aterm that doesn’t exist, e.g., integration by parts is not going to work when ¢/(t) has a
zero on [a, b]. Thiswould be true for example for

/ e~ dt.
0

Inthiscase p(t) = 2, ¢'(t) = 2t, and ©'(0) = 0. If wetry to use integration by parts then

RN <1 2
I(x) :/ e " dt :/ (—2It6_$t> dt
0 0 —2xt
= /Oo ! <6_$t2>/ dt
Jo —2at
—xt? o0 00
1 2
o —/ e " dt.
=2zt ) |, 0 —2xt?

Note that these terms don’t exist.




54.3 LaplacesMethod

Consider integrals of the form

I(z) = / ’ e f(t) dt (5.4.8)

where f(t) isredl, the integral exists and z islarge positive. According to Laplace's method only
the immediate neighborhood of the maximum of 4 (¢) on [a, b] contribute to theintegral for z large.
If there are severa places where the maximum occurs thenthe expansion will have contributions
from each of these.

Assumption 5.1. We assume that A(-) is a continuous function with a maximumon [a, b] at t = ¢
and f(c) # 0 and f is continuous and real valued.

The result is that the integral (5.4.8) only depends (asymptotically) only on ¢ near ¢, i.e, If
I(x, €) denotes the integral

a+e

I(z,6) = / FOECr r—
cte

I(x,¢) :/ f)e"Ddt, a0 <c<b,
b

I(x,€e) = f®)edt, ¢ =,

b—e

In order for thisto work the following are critical:
1. The expansion of I(x, ¢) does not depend on ¢;
2. The expansion of I(z, €) isidentical to the full expansion of I(x).

It turns out that 1 and 2 are both true. If, for example, a < ¢ < b then

c—e b
/ f(t)e™® dt' + [ e dt‘

ct+e

is exponentially small with respect to 7(z) asx — oo. Thisfollows because for al ¢ € [a,c — €]
andt € [c + €, b], the expression ¢*"(®) is exponentially smaller than e*) asz — oo. To show
that 7(x) — I(x, ¢) isexponentially small asz — oo you can use integration by parts. It is helpful
to replace I(x) by I(z, €) because for ¢ > 0 may be chosen so small that it is valid to replace f(t)
and h(t) by their Taylor Series expansionsat ¢t = c.

Rather than attempt a general proof we will consider a series of examples.
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Example5.17. Consider the integral

10 e—a:t
I(z) = /0 T (5.4.9)

In this case h(t) = —t which on [0, 10] hasamax at t = 0 and ~(0) = 0. We will use Laplaces
Method to find the first term in the asymptotic expansion of

I(x,€) :/ (14t) te " dLt.
0

If we exapnd (1 + ¢)~! isaTaylor series about ¢t = 0 we can write

1+t =1+0(@).

Then we have
_ [ T ot gy, L)
I(x,e)= | (1+t) e ®dt= [ (1+0(t)e ™ dt ~ . , T — 00
0 0
and
el z—oo forany e€>0

SO

10 1

]($):/ (1+t)_16_”dt~5, T — 00.
0

Laplace Method Steps
1. Replace I(X) by I(z,¢).

2. Expand the functions f(¢) and h(t) in series which are valid near the location of the max of
h(t). Thuswe obtain I(x, ¢) asasum of integrals.

3. Extend each of these integrals to / , 1.e., replace the upper limit ¢ by co.
0

L et us reexamine Example 5.17.

Example 5.18. Once again we consider the integral (5.4.9)

I(2) = /0 i

If wetry to expand (1 + ¢)~! in powers of ¢ using the binomial formulawe get
A+t t=1—t+2 =>4,

But by the ratio test



S0 the series converges only for |¢| < 1 and we cannot integrate from 0 to 10. So let us break up
the integral to get

g et 10 et
I(x):/o (t+1)dt+/5 (t+1)dt:1'1($,5)—|—12(x,5).

We shall show that I5(x, ) is exponentially small for large = and so gives no significant con-
tribution to the value of 7(z). Not that for all

1
t>0, <1
(1+1)
SO
I 5 10 efxt dt 10 B tdt 1 10 s
— < x - _ - —10z _ _—dx )
2(x,0) /5 T /5 e » (e e )

The last term goes to zero exponentialy asx — oco. So we have

6 —xt
I(x) = / ¢ dt + (exponentially small term for large z).
o (t+1)

Thisis true for all § > 0 so we conclue that the value of I(x) only depends on the immediate
neighborhood of t = 0 for large z.

Note that .

=1
=0 ((1 + t>>

and thissup occurs at t = 0.

Now for § < 1 we can expand (1 + ¢)~! in a convergent power seriesin ¢t and I, (z, §) can be
written as

I(2,6) = /0 et (i(—l)”t") dt (5.4.10)

n=0

:nj:;(_m (/ ey it).

Let 7 = xt sothat dr = zdt and we get

) 1 oz
et dt = e " dT.
/0 :L‘n—‘rl /0

Now we can us repeated integration by parts to get further information.
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Note that

o Sz €_T /
/ e Tdr —/ " < > dr (5.4.11)
0 0 -1
e T | ox
= ( ) + n/ D=7 dr
1 . 0

oz
= — e %(6x)" — e (6x)" "t +n(n — 1) / e’ dr
0

= — e % (x)" —ne ()" — - —n(n—1)---3 e Tdr
=—e " [(6z)" +n(dzx)" '+ +n(n—1)---4(0x)%]
n! ox

4+ — —7’2d'
2067’7’

Now we notice that by integration by parts once again

n! n!
— e Trdr =3 [—e_TT2

ox ox
+ 2/ e ’T dT] (5.4.12)
0 0

TL' —0x 2 o —T
=— —e %(0x)" +n! e Trdr
2 0

n! —dx

ox
=-e (6x)% — nle %% (0z) + n!/ e Tdr
0
n! —ox 2 —dz —dx
=-5¢ (0x)* — nle™°*(dx) — nle " 4+ n!

Combining (5.4.12) with (5.4.11) we arrive at

1) 1 ox
/ oy — / e dr (5.4.13)
0 " o

n! e

= — n n=l 4 ... n_' 2 ! !
=~ 0 [(59&) +n(0x)" 4+ + 5 (0z) + nl(0x) —i—n.]

n! s {(5" no"t
= y € —+

T ot T 72
n(n —1)6"2 nlo? n!o n! }
TR LA .

3 Tt o T T e
_5 1
Now asz — oo, theterm e~%* — () faster than any power of ( — |, so we have
X

6
et dt = + exponentially small terms. (5.4.19)
0 (n+1)
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Remark 5.2. 1. So al this work has taught us that, up to the order of exponentially small
terms, the integral 7(z, §) satisfies (5.4.14) which isindependent of § € R.

2. With this in mind we follow our next step in the Laplace method. That is, instead of the
messy calculations above let us replace the upper limit of integration § by oo and from the
theory of Laplace transforms we have

e n!
/ the " dt = (5.4.15)
0

pn+1)”
So our above work justifies Laplaces claim.

Next we substitute (5.4.15) into (5.4.10) to obtain (up to exponentially small terms which we
neglect)

I(z) = i (;}L)n”!, T — 0. (5.4.16)

+1
=0

3

Concerning the infinite sum in (5.4.16) we note that

y nth I (=1)"nlz" . —n
11m -————— = l1In = =
n—00 (n — 1)St n—00 (—1)"‘1(72 — 1)!1‘”+1 n—oo I

The series diverges! So actually we cannot use “=" in (5.4.16). Thus more precisely we write,
= (=1)"n!
I(z)~ ) ( xnll , T — 00 (5.4.17)
n=0

Thisis afamous formula known as Watson' Lemma.

The method of this last exampleis applicable to integrals of the form

I(z) = /0 b F(t)e ™ dt. (5.4.18)

Assumption 5.2. The function f is assumed to be continuous on [0, b] and possess an asymptotic
expansion

ft) ~t*) apt™, as t— 0%, a>-1, 8>0. (5.4.19)
n=0

The conditions on « and (5 gaurantee that the integral existsnear t = 0. Also if we have b = oo
then we must also assume that

f(t) < Me,  for some M,c> 0,

so that the integral existsat t = oco.
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Lemma5.1 (Watson’sLemma). If f satisfies the conditionsin Assumption 5.2 then

~ a,l(a+fn+1)
o)~y g = 00 (5.4.20)
n=0

Remark 5.3. 1. If theexpansion for f satisfies, instead of (5.2), the condition
Ft) ~ S ant™ "t as t— 0%, 530,
m=1

(note the sum startsat m = 1 but o = —1) then Watson’s Lemma gives

(9] 00 oo T
I(x) ~ Z am/ tmAlem Tt gt = Z A g:nl?)
m=1 0

m=1

2. Recall that our origina interest in Laplace’s Method was in integrals of the form (5.4.8).
The integrals we consider for Watson's Lemma are a special case with h(t) = —t and on the
interval (0, co) the maximum of thisfunctionisc =0at¢ = 0.

Outline of Proof

1. First we define .
](m,e):/ f()e ™ dt.
0

2. Next we choose ¢ so small that the first V terms in the asymptotic series for f are a good
approximation to f(t), i.e,

< KtotPWNHD g <t <e, K> 0.

' f(t) —t= i Apmt™

m=0

3. We substitute the above seriesinto the integral to get

N €
I(z,€) — Z an/ tothne=et gt
n=0 0

0

0

_ KI'(a+pB(N+1)+1)
- ratB(N+1)+1 :
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4. Finaly, since the right-hand-side of 3. is independent of ¢ we can replace the upper limit
of integration on the left-hand-side by oo. The resulting integrals can be evaluated (using
formulas from Laplace transform theory) to obtain

/mww%ﬂ%ﬁzrm+ﬁ”+”_
0

l.a-l—ﬂn—‘rl
So we obtain
7 Ia+06n+1)|  KI(a+B(N+1)+1)
(z) — Qn potBntl 2otB(N+1)+1 :
m=0

5. For every N (recal that 5 > 0) the term

KT(a+ BN +1) +1)
.’L‘B

can be made as small aswe like by taking x sufficiently large. Thus, for x sufficiently large,

we can write N
I'(a+pn+1) 1
[(:C) o Z n pot+Bntl < potBN+L’
m=0

Sincethisisvalid for all NV we have obtained a valid asymptotic expansion.

Example 5.19. Consider the integral
5 e—xt
I(x) = /0 a+o dt, forlarge =z.
For small ¢t we have the convergent Taylor series

1

=1t
1+ ) * *

ft) =

so applying Watson's Lemma we get
120 4 6!

Remark 5.4. For more general integrals (5.4.8) we cannot directly use Watson's Method; it only
works for h(t) = —t. There are a couple of cases that we mention briefly. Thus we consider
integrals of theform (5.4.8), i.e.,

I(z) = /b ™0 f(t) dt

1. If hisvery simpletry setting s = —h(t) sothat ds = —h/(t)dt and, provided h/(t) # 0 we
can set
o £t

I(z) = /_ F(s)e™**ds, F(s)= W)

h(a)
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2. If h hasamax at t = ¢ then we can replace the integral by an integral near ¢, i.e., we pick
small e and integrate over theregion |t — ¢| < e. Intheregion |t — ¢| < e wereplace h(t) by
the first few terms of a Taylor seriesabout ¢ = ¢. Provided that /' (c) # 0 we have

h(t) = h(c) + (t — )l ().
If h'(c) = 0 then (if A”(c) # 0) we would have

h(t) = h(c) + %(t —c)*h'(c).

More generally, if h(®)(c) # 0 isthefirst nonvanishing derivative at ¢t = ¢ then

h(t) =~ h(c) + 2%(t —¢)PhP(¢).

In each case we expand f(t¢) about t = ¢ and retain the leading term (assume for simplicity
that f(c) # 0 so the leading term is f(c)) There are three possibilities: either 1) ¢ = a, 2)
c=>bor3)a< c<b Wewill consider the cases 1) and 3) and leave 2) as an exercise.

(1) We assume that a maximum of h occurs at ¢ = a and that 4/(a) # 0. Thisimplies that
h(a) <0, h(t) ~ h(a)+ (t — c)h'(a) and we replace f(t) by f(a) to obtain

a-+e
I(z,€) ~ / f(a)er M@+ t=ar’@] g

W

f(a)emte) S 1o oo
- zh'(a) '
Thus we have
xzh(a)

(2) We assumethat amaximum of » occursat ¢ = b, f(b) # 0and h/(b) # 0 and we obtain

exh(b)

The proof of thisis|eft as an exercise.
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(3) Finaly consider the case that « < ¢ < b which means that (since it is an interior
maximum) h/(c¢) = 0. Let us assume that h”(c) # 0, then we must have h"(c¢) < 0
(why?) and we have

h(t) ~ h(c) + %(t — o2 (c).
We also assumethat f(c) # 0. Recall that

o o 1
/ e ds = / w e du =T (5) = /.
—00 0

With this we can write
cte
](l’, 6) ~ / f(C>6x[h(c)+l/2(t—c)2h”(c)] dt
sl [ etormrg,
At this point we make the substitution

—h"(c)x —h"(c)x

s = 5 (t—rc), =ds= 5 dt,
and we have
I(z,€) =f(c)e™Me ”—h” / e ds
mh c)\/%
o
zh(c), /
f(c)e—QW T — 00. (5.4.23)

1~ gy

Remark 55. (a) Inthecasesc =aorc=1b,if h'(c) = 0 but h”(c) # 0 then the answers
givenin (5.4.21) or (5.4.22) issimply are replaced by (5.4.23) multiplied by %

(b) If h®)(c) # 0 isthefirst nonvanishing derivative (b7 (c) = 0forj =1,--- ,(p — 1))
then (cf. [1])

2U'(1/p)(p!)"/? 2h(c)
I(x flc)e"™ 9z — oco. (5.4.24)
(z) ~ o Lah ()7 (¢)

Verification of thisresult requires the formula

& . 2 1
/ e ¥ ds=-_ (—) )
—00 b b
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. Show that ase ~ 0

1 .
t 1 1
/ sin(et) dt ~ € — —e + —¢.
0

/we—tdt L(l_n 2 s

—dt~e (- — =+ ———).

. T x  x?  x3 at

. Find an expansion in the form I(z) = ¢y + c12 + ¢ + co2? + ezt + -+ - cga® + O(2) for

small z for -
I(x) :/ e ¥ dt.

(Hint: write I(z) = / exp(—t?) dt — / exp(—tQ)dt) Use (1) your answer and (2)
0 0
Maple to find approximationsto /() for

. Show that asz — o

z=.1,.255,1.
Compare your answers.

e—t

. Find an asymptotic expansion, for large x, for I(x) = / Y dt. Show that the infinite

series you obtain divergesas N — oo (hint: use ratio test). Use, (1) your answer, and (2)
Maple to find approximationsto /(z) for N = 2 and N = 4 and = = 10, 100, 1000, 10000.
Compare your answers.

. Show that asz — oo, / et dt =

1+§: (2n_1)].
16_ "sin(t) dt ~ —.

. Show that asz — oo,

. Show that as z — oo,

X

e L(1/n)

1+t gt

. Show that asz — oo, / o~ tan(t dtwl.

. Show that asz — oo,



5 Perturbation Theory

5.5 Perturbation Methods for ODEs

In this section we will consider the use of perturbation methods applied to finding approximate
solutions to a variety of initial and boundary value problems for ordinary differential equations.
Thisisonly avery basic introduction to a very large subject. You can learn more about this topic
by going to some of the references in the bibliography. The main point is that for most differential
equations it is not possible to obtain an exact, explicit answer so we do what we can to obtain
useful information about the solution. Sometimes a problem aready contains a parameter whichis
known to be small (or large) and in some cases we can introduce such a parameter. This parameter
is used as a perturbation parameter to obtain an asymptotic series expansion of the solution. Just
as we saw in earlier sections sometimes a straightforward expansion is possible but other times
we must be much more careful and use some aternative devise to arrive at a uniform asymptotic
expansion.

Problems are classified as regular or singular. A regular problem is one for which a simple
asymptotic expansion can be found with the property that the expansion is uniform in the indepen-
dent variable. Usually, but not aways, thisis applicable for problems on afinite interval, e.g., for
al t satisfying 0 <t < T < oo. The problem

i=—1"+exr, 2(0,6) =& + e+ O(?), here i = —u,

dt

isaregular problem on any fixedinterval 0 < ¢ < T < co. Itisnot regular on (0, co). For smooth
enough data and some stability a regular expansion can hold on an infinite interval. For example
the problem

i=—x+e 2(0,€) =& + e+ O(?),

isregular on (0, co). Finaly aproblem like
et = —x, x(0,€) =& + €& + O(e?)

issingular evenon 0 < ¢t < T' < oo since the solution depends on e in asingular way (as you will
see later).

5.5.1 Regular Perturbation

Let us begin with asimple example

Example5.1. Consider thefirst order initial value problem
i+ 2r+er? =0, 2(0)=cosh(e), 0<e< 1. (5.5.1)

We seek an approximate solution to this problem as an asymptotic seriesin powers of . Namely,
we seek

w(t) = xo(t) + 21 (t)e + 2o (t)e® + - - - (5.5.2)
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Just as we have done in each previous example we substitiute (5.5.2) into (5.5.1) to get
(2o + 220) + €(@1 + 221 + 23) + €2 (g + 209 + 22071) + -+ = 0. (5.5.3)

Similarly for theinitial condition we obtain

2 4
20(0) + e21(0) + 25(0) + - - - = cosh(e) = 1 + % + ;—4 T (5.5.4)

For thisto hold for all € we equate corresponding powers of ¢ in both (5.5.3) and (5.5.4). Inthis
way we obtain an infinite sequence of linear nonhomogenous equations to solve for the functions

(1)

1 i+ 2w0=0, 1(0) =1, (5.5.5)

e @+ 21 = a3, 1,1(0)=0, (5.5.6)
1

€ @y + 2wy = —22071, 29(0) = 3" (5.5.7)

From the ° terms we can easily solve the homogeneous first order linear equation to get
xo(t) = e .

The remaining problems are first order linear nonhomogeneous problems. Recall that these prob-
lems are easily solved (up to quadrature) as follows: For

v +py=q y(0)=yo
we multiply by the exponential (here we mean theindefiniteintegral or antiderivative) exp ( / p(t) dt)

oo ([ v0yar) y@}' ~atyess ( [prar).

Nett we integrate this to obtain

exp ( / p(t) dt) y(t) = / o(t) exp ( / o(t) dt) ds + Cy
y(t) = exp (— / 0 dt) { /O " 4(t) exp ( / 0 dt) ds + 00: |

Substituting ¢t = 0 we have C;y = y, so that finally

y(t) = exp (— / p(t) dt) { /0 tq(t) exp ( / () dt) ds + yo: (5.5.9)

Applying (5.5.8) to (5.5.6) we have

to obtain

or




or
Thus we have

Finally for the €2 term we have from (5.5.7)

Bo + 2y = —2m9x; = e — 7O,

Once again appealing to (5.5.8) we have

1 1
To(t) = e {——ezt + e M4 C’}

2 4
and 1 1 1
§:$2(0)= |:_§+Z+C:|7
0 3
sz,
and

Combining these terms we arrive at

1 1 1
o) = e (1 fp-e#es ] E _ey —} ) | (559

The exact solution to this problem is given by

2 cosh(e)

#(t) = 2e2t + e cosh(e) [e2t — 1] (5510)

It can be shown, using Maple for example, that the first three termsin the Taylor series expan-
sion of the exact solution in (5.5.10) is exactly (5.5.9).

We set e = 1 (which is not small) and plot both the aymptotic formula and the exact solution.
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This example exhibits the basic feature of the regular perturbation method. What we have not
doneisaddressthe question of whether thisisactually an asymptotic expansion which isisuniform
int.

At this point we give atheorem from [7] for regular first order systemson afiniteinterval. Thus
we consider

= f(t,r,e) x(0)=¢&(), 0<t<T <. (5.5.11)
We also impose the following assumptions

Assumption 5.1. We assume that the unperturbed problem has a unique solution z,(t) on 0 <
t <T. Thatis, xy isthe unique solution of

Qfo = f(t,.?f(), 0) .CE()(O) = 5(0)

Assumption 5.2. We assume that f and £ are smooth. More precisely for some desired n we
assumethat f and ¢ are C™ !,

This last assumption implies, for example, that
§(€) =&+ Gre+ - Lue" + 0>,

Theorem 5.1 (Regular Perturbation Theorem Finite Interval). Under the Assumptions5.1, 5.2,
for sufficiently small e the problem (5.5.11) hasa unique solution definedon 0 < ¢ < 7', itis(n+1)
times continuously differentiable with respect to e and has a Taylor series expansion

x(t) = zo(t) + 21 (t)e + - - 4 2, (£ + O,
where the error estimate holdsase — 0 uniformly for 0 <t¢ <T.

Example 5.2. Consider thefirst order initial value problem

(1+¢€)’

z(0) = cos(e), 0<e<x 1. (5.5.12)

We seek an approximate solution to this problem as an asymptotic series in powers of . Namely,
we seek

w(t) = xo(t) + 21 (t)e + 2o (t)e® + - - - . (5.5.13)
For ¢ < 1 we have
! =l—e+e -S4
(1+e€)

and we can write

d

%<l’0(t) +a(t)e+ )= —(zo(t) +x1(t)e+ - )1 —e+e +---)

:_[x0+(370_1‘1)€+(xo—xl—kq;Q)eQ_}_...}_
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So equating powers of ¢ we obtain

€ iy = —xo, 10(0) =1, (5.5.14)

el &y = —x1 + 0, z1(0) =0, (5.5.15)
1

€ @y = —x9+ 11 — T, x9(0) = —3 (5.5.16)

The exact solution to this problem is

x(t) = cos(e)e_l%f

which is bounded for all 0 < ¢ < oo. Furthermore on any bounded interval 0 < ¢t < T < oo our
asymptotic expansion

t? 1
() ~ette et e {5 —t— 5} e+ 0(€)

can be compared with the exact answer. For ¢ = .1 the maximum deviation of the exact and
asymptotic solution with just three terms (second order in ¢) is on the order of 10°.

On the other hand, as we have mentioned, there are problems which are regular on the any
finite interval but not on the infinite interval. Consider the following two problems:

1. & = —2° + ez and z(0) = a.
2. & =exand z(0) = a.

Asfor 1. we have the exact solution

_ +4/e (1 — a2exp(—2¢t(a? —¢))
(1 —a2exp(—2et(a? —¢)) '

z(t)

which convergesto /¢ ast — oo which isnot asmooth function. Asfor 2. the solution diverges
to infinity and we see that e does not converge univormly for 0 < ¢ < oo ase — 0.
Nevertheless we do have aresult concerning regular expansions on unbounded intervals.

Assumption 5.3. We assume that the unperturbed problem has a unique solution z((t) on 0 <
t < oo. That is, z isthe unique solution of

Ty = f(t,70,0) w0(0) = &(0).

Assumption 5.4. Weassumethat f and £ are smooth functionson 0 < ¢ < oo. More precisely for
some desired n we assume that f and ¢ are C™ 1.
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Assumption 5.5. We assume that the linearization about z(t) is exponentially stable, i.e., If Y'(¢)

is the solution of

dY

o fa(t,z0(t),0)Y, Y(0)=1.
Then

V(1) < Ke*, K>0, a>0, 0<¢t<oc.

Ofi

in the vector case.
ax]—

here f, isthe jacobian matrix with (4, 7) entry given by

Theorem 5.2 (Regular Perturbation Theorem Infinite Interval). Under the Assumptions5.3, 5.4,
5.5, for sufficiently small e the problem (5.5.11) has a unique solution defined on 0 < ¢ < oo, it is
(n + 1) times continuously differentiable with respect to e and has a Taylor series expansion

x(t) = xo(t) + x1(t)e + - - + 2, (H)e” + O<€n+1)’
where the error estimate holds ase — 0 uniformly for 0 < ¢ < oo.

Example 5.3. Consider the two dimensional first order initial value problem
t=Ar+ef(x), z(0)=¢, 0<ex 1. (5.5.17)

where A isan n x n matrix and f is a nonlinear function from R™ to R™ with f(0) = 0. If in
addition o(A) is contained in the left half complex plane, then from Theorem 5.2 we can conclude
that

z(t,€) = e+ 0O(e).

As an example consder

T1 = —2x1 + 9 + ex%, (5.5.18)
By = —2x9 + 11 + €ex?, (5.5.19)
1’1(0) = 1, 1’2(0) = 1.

o[ 4[5 4 o[

The eigenvalues of A are given by the zeros of the characteristic polynomial

In this case we have

A+2) -1

Ozd“{(—l (A+2)

}:(A+m2—1
which implies
AL=—1,\ = -3
Since these eignevalues are in the left half plane and f(0) = 0 we can apply the theorem.

A maple code that finds the asymptotic expansion for x; and x5 using basic principles can be
found on my web page.
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Example 5.4. Finaly we consider ageneral class of problems that naturally led to the material in
the next section. Consider the second order initial value problem

y' = f@)y=0, y(0)=1, ¢y (0)=1 (5.5.20)

There arevery few functions f for which it is possible to obtain a closed form solution to this prob-
lem. Nevertheless thisis a standard model for many problems that arise in practical applications.

Note the problem has no ¢. To see how pereturbation methods are useful in practice let us
introduce € into (5.5.20) to obtain

' —ef(z)y=0, y(0)=1, y(0)=1. (5.5.21)
Now we seek aregular perturbation expansion as

y(@) = " yulz)

n=0

where
¥0(0) =1, y5(0) =1, ,(0)=0, 9,(0)=0, n=1,2,---.
For e = 0 we have

which implies

yo(z) =1+ z.
Furthermore, in general we have
Y €y —f(x)d €y, =0,
n=0 n=0

or -
o+ € (W — f@)yn) = 0.
n=1

Thus we obtain the recurcise formulas

Y = f(2)Yn_1, Yn(0) =0, 9,(0)=0.

Since we know that yo(x) = 1 + = these equations can be solved (in principle) by quadrature, i.e.,

i) = | £ (5 (5) ds,
() = /0 ' ( /0 K () ds) n
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From this we have

y(x) :(1+:B)+6/0$ (/Otf(s)(1+s)ds> dt +

62/036 (/Otf(s) UOS{/OU(lJru)f(u)du} dv} dg) dt+---.

As aspecific example consider f(z) = —e™* and
y'+eTy=0, y(0)=1, y'(0)=L1
The exact solution is the complicated expression, given in terms of Bessel functions,

oy — 02) 4 Y521) B (2eF%) = [(2) + ()] Yo(2e ")
/ (o 2Y3(2) = Jy(2)Yo(2))

Thereisamaple file on the web page that computes the asymptotic expansion of this solution

7
yp(z) = = — —x—3/2e "+ 1/de “w+1/de " —1/4e * "y — 5—46’39” —1/36e 3%

and compares it with the exact solution and the 10th degree Taylor approximation y(z)

7 1 A7 7 263
= 14+2—-1/22°+1/122*—1/24 2°+— 25 T_ 9_ 10
yr(z) = 1to=1/227+ /1207 =1 /240 o p 2 e = 2o T o060 © 1814400

S+

Graphs of y(x) (green), yp (blue), and yr (red)

5.5.2 Singular Perturbation Methods

We will illustrate several singular perturbation techniques applied to a particular nonlinear oscilla-
tor known as Duffing equation.
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Example 5.5 (Duffing’s Equation).
j+wyt+e =0, y0)=A, y0)=B, 0<t<oo. (5.5.22)
Consider, for example, thecase A =1, B =0, i.e,
j+w’y+ey® =0, y0)=1, 5(0)=0.

First we note that the solution to this problem is bounded on [0, oo). To see this we multiply
the equation by ¢ to get
yij + w’yy + ey’y = 0.

Thisimplies
1d .5 w*d, , ed, 4
2a W 3 g W) =0
or L d
. €
3 [0+ (07) +5 ()] =0

Integrating this equation we have
)+ () +5 (v") = C.
Now employing the initial conditions we find that

€
C=uw*+-.
w+2

Now using the fact that (3)* > 0 and % (y*) > 0 we can write

<14 —
y— +2w27

€
) <,/14+ —.
(O] < 1+ 5

On the other hand in an attempt to find a regular asymptotic expansion for y we would seek

or

Y=o+ e+ e+
Substitution of this expression into the equation gives
(o + ihe + Gia€” + ) + w* (Yo + yre + yoc® + -+ *)
3
= —¢ (y0+y16—|—y262+~~~)

= —¢ (yg’ + 2y§y16 + 2y0y%62 + - ) )
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For the initial conditions we have

1=y(0) = yo(0) + y1(0)e + y2(0)e* + - - -,
0 =4'(0) = yo(0) + 51 (0)e + y5(0)e* + - - .

From this we obtain the sequence of problems

€t fo+w’yo =0, 1(0) =1, 5(0) =, (5.5.23)
' g+ Wiy = —ys, 11(0) =0, 3:(0) =0, (5.5.24)
€1 G+ wlyp = —2y3y1, 12(0) =0, 2(0) =0, (5.5.25)

In what follows we will have several occasions to use the trig identity

3 1
cos®(wt) = 2 cos(wt) + 1 cos(3wt). (5.5.26)
From Equation (5.5.23) we obtain a periodic solution
Yo(t) = cos(wt). (5.5.27)

Then, using (5.5.26) and the expression for i, in (5.5.27) expression on the right hand side in
(5.5.24), we have

4

This second order, linear, nonhomogeneous problem can be solved by the method of undetermined
coefficients (or using maple) to obtain
cos(wt) — itsin(cut). (5.5.28)

(1) = =
P = 500 322 8w
This to second order our asymptotic expnasion gives

3 1
i + Wiy = — (— cos(wt) + 1 cos(3wt)) , 11(0) =0, y;(0)=0.

cos(3wt) —

1 1
397 cos(3wt) — 3952 cos(wt) — %tsin(wt)) + O(e?).
There is a big problem — this function is not bounded in ¢. The reason for this is due to the
phenomena of resonance. Namely, we are driving a harmonic oscillator with natural frequency w
with a sum of terms, one of which

y(t) ~ cos(wt) + ¢ (

~ 39 cos(wt)

isoscillating at the natural frequency of the system. It iswell know that this must lead to terms of
the form
Atsin(wt) or Btcos(wt),

and these terms become unbounded ast — oo. In the asymptotic expansion we call such aterm
asecular term. Our objective in the singular perturbation methods will be to remove these secular
terms form the asymptotic expansion.

54



Before beginning to study specific methods let me give a ssmple example to show how secular
terms can arise very naturally and how the can be eliminated (but not in a practical way).
Consider the asymptotic series

SISy (52 P (S SN (S0 P

1 2 6 n!

Every term in this expansion (beyond the first) is a secular term for large ¢, i.e, for ¢t ~ 1/¢ or
larger. But the infinite sum of this series is e which is bounded for all ¢. For our ODE with
w = 1 to simplify the notation, an induction argument can be used to show (cf, [1]) that the sum of
the leading order secular termsin the regular expansion, written in complex notation, are given by

—— —_ (& — (& .
2n! 8 8

Note that there are many lower order term, i.e., termsinvolving t/ for j < n, but for large ¢t these
are dominated by t". If we sum only the leading order secular terms the asymptotic expansion
fromn = 0ton = oo we have

it”e” i ne”+ 3 ne*“ = cos |t 1+§e
on! 8 8 a 8 /)|’

n=0

which isbounded for al ¢. In fact, it turns out that the approximation

Ye(t) = cos [t (1 - gﬂ (5.5.29)

is avery good approximation to the actual solution (which, by the way, cannot be obtained using
maple) and it is bounded for al t. We will seethat it is exactly this expression that we will obtain
by employing the methods for singular perturbation problemsin what follows.

Lindstedt-Lighthill-Poincare Method (Method of Strained Variables)

In it simplest form we seek a perturbation expansion of both the independent variable ¢ and
dependent variable y. Thus we seek

t=T1+4et1(7) + Eta(T) + -, (5.5.30)
£(0)=0, i=1,2--,
y(7) = yo(7) + eyr (1) + ya (1) + -+ - . (5.5.31)

We note that in most cases we can replace the more genera expansion (5.5.30) by
t=7(1+eby + by +---), (5.5.32)

where b; are constants.

. . . d . .
In the following calculations we will use’ = e and we liberally use the chain rule, e.g., we

-
have
d_drd
dt — dt dr’
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We aso have

dr  (dt\ " 1
— =) = =1 —eth +E((t)? —th) +---.
dt (dT) Lt el + 2ty +---) chre((h) —h)

As we have mentioned, in most cases it sufficesto choose ¢ asin (5.5.32) and in this case we get

dr 1
dt —~ \14+eby+eby+---)’

or

d
d—; = (1= eby + (17 — by) + (bs — 2baby + b2) +--+)) .
So that
d 2/12 3 3 d
= = (1= by + (02 — by) + €3 (by — 2byby + b3) + - -) ~—. (5.5.33)
dt dr
Similarly,
Py d (d
%g: - (d—z(l—eb1+e2(bf—bg)+---))
d2
- d—g(1—eb1+62(b§—b2)+---)2
d2
= —dT:Z (1 — 26b1 + - )
=(1—2eby+--)y". (5.5.34)

We apply thisideato the Duffing equation fron Example 5.5.
Example 5.6 (Duffing Revisited). Substituting (5.5.32) and (5.5.34) into (5.5.22) we get
0 =ij + w?y + ey® (5.5.35)
= (1 —2¢by + ) (yo (1) + e (7) + (1) + )
+ w? (yO(T) + ey (1) + Eya(T) + - )
+ € (yol(r) + e (1) + Epa(r) + )’
Also we have

1 =150(0) + eyy (0) 4 - - -, (5.5.36)

0=g(t=0)=y(r=0)(1—2eb + ) (5.5.37)



Thus we get
€yl +wlyo =0, yo(0) =1, 4o(0) =0, (5.5.38)
eyl + Wiy = —yp + 2b1yp (5.5.39)
= —2byw? cos(wt) — cos®(wt)

1
= —2byw?* cos(wt) — E cos(wt) + 1 cos(3wt)

In order to cancel the secular term we must eliminate the resonance that occurs due to the
combination of the w? term on the left and the cos(wt) on the right. Thus we need to set

[—leuﬂ — %1 cos(wt) = 0.

Thus we take 5

by = ———
1 8(4)2’

which implies

I N Pl 2
=T - T = - e
Sw? 8w?

With this choice we can write (5.5.39) as

1
Yy +wiy = 1 cos(3wr), ¥1(0) =0, y1(0) = 0.

Thisimplies

1 1
(1) = T cos(wt) + e cos(3wT) *)

so our first order approximation is
3e 3e
y ~ yo(T) = cos(wT) ~ cos {w (1 + @> t} = cos [(w + 8_w> t} :

1.51
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Graph of regular purturbation approximation yo(x) = cos(wt) withe = .3
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Graphs of y () withe = .3
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Graphs of exact solution y(x) computed numerically with e = .3

Example 5.7. For the more genera problem givenin (5.5.22)
j+wy+e’=0, y(0)=A, y(0)=wB, 0<t<oco.

we could proceed exactly as we did above. But just to give you a sampling of various peoples
approaches to these problems we will write things in adlightly differently (when the dust settles it

is the same as above).
We seek 7 = (5t with 3 = [3(¢). By the chain rule we can write

d drd d

at " drar Var
dZ_ﬁdQ_ d_Td_2_62d_2
a2 Udtdr  Udtdr2 " dr?

With this change of variables the equations becomes

B2y + Wy + ey® = 0.
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Now we seek expansions

y(1) =yo(7) + en () + -+,
6<6>:1+€ﬁ1+€252+"',

where 3; are scalars.
Thus we obtain

(L+ebi+- ) (yo(7) +eyi (1) + ) + W (yo(7) + eyr(7) +--+)
+ e(yo(r) + epu () +---)° = 0.
As usual we now group according to powers of ¢ to obtain
0= (yg +w?vo) + e(y) + W’y + vy +261y0) + -+ .

For the boundary conditions we have

and
wB=9(0)=y'(0)(1 +ebi +--)
= (h(0) + €wi (0) + - )(L+€By + )
= 45(0) + €(y1(0) + Bryy(0)) + -
Thus we have

%(0) =wB, y,(0) = —wBp:.
Equating powers of ¢ to zero we get

60 : yg +w2y0 = 07 y0(0> = A7 yé(()) = WBa

eyl +wiy = —ys — 261y, wi(0) =0, ¥;(0) = —wBp.

Now the first equation gives

B
yo(1) = ——sin(w ) + Acos(w ) = acos(wr + b),
w

where B
a=VA2+ B2, b=tan ! (%) )
For the second equation we need to simplify the right hand side.
—ys — 201y = —a* (1/4 cos(3w T +3b) +3/4 cos(wT + b)) + 2 3 acos(wT + b)w?.

So to cancel the resonance we need to choose 3; so that
3
261wa — Za?’ =0,
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or

3a?
b L2
Thus we obtain
< b b
V1= 353 cos(wt — 3b) — 2 cos(wT + 3b)
— 12Bsin(wT) + cos(3wT + 3b) | .
and 22
a

so we conclude that
y ~ acos(wr +b)+---

3a?
=qgcos|wl|1l+—€|t+b)++---
Sw?

As special casesfor yq, y; we have

1. f A=0,B>0thena= B,b= —7/2implies

3B3
yo(t) = Bsin (wt + 6t> :

8w

3
() = 32w?

In the specia case B = 1 we get

[(3 = 12B)sin(wr) — sin(3wT)].

- 32w?

y1(t) [9sin(wT) + sin(3wT)].

2. 1f B=0,A>0,thena = Aandb = 0 which gives

A3
yo(t) = Acos (wt + 38 et) :

w

A3
T 3202
in agreement with (x) from the last section.

y1(T) [ cos(3wr) — cos(wT)],

We note that this expansion is uniform to first order in e since there are no secular terms and
the order ¢ term is small compared to the first term (for small ¢).
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Krylov-Bogoliubov Method — M ethod of Averaging

In this section we present an aternative method for obtaining uniform asymptotic expansions
for singular problems. We will consider this method for problems that can be cast in the form

Py =atef(y,9), 0<e<w, (5.5.40)
y(0) =b, §(0) =,

where a, b and ¢ are constants.
The following example is taken from [14].

Example 5.8 (Precession of Mercury).
flu,v) =v? ,w=1, a=.98 b=1.01, c=0.

In this case (5.5.40) becomes
j+y=a+ ey’

Example 5.9 (Rayleigh Oscillator).

1
f(u,v) :v—§v3, ,w=1, a=0.

In this case (5.5.40) becomes
. A
jry=ely—30)7.
Example 5.10 (Van der Pol Oscillator).
flu,v) = (1 —v*)v, w=1, a=0.

In this case (5.5.40) becomes
ity =el—y)y.

Example 5.11 (Duffing Equation).
f(u,v) = _y37 a=0.

In this case (5.5.40) becomes
i+ wy + ey =0.

For e = 0 the equation (5.5.40) becomes
j+wy=a
which for suitable A and B (determined by the initial conditions) can be written as

y(t) = % + Asin(wt + B). (5.5.41)

w2
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Namely, we have

C

b
A=V +¢2, B=tan' (—) )

For the method of Averagingweassumethat A = A(¢) and B = B(t) and differentiate (5.5.41)
with respect to ¢ to obtain

dy dA . dB
prilre sin(wt + B) + A (w + E) cos(wt + B).
We seek A and B so that
dA dB
— sin(wt + B) + A— cos(wt + B) = 0. (5.5.42)
dt dt
Thisimplies
dy
i Aw cos(wt + B). (5.5.43)

. d? :
Now we use equations (5.5.40) and (5.5.43) to compute d—téj So on the one hand we obtain
d*y dA aB| .
T W cos(wt + B) —wA {w + %] sin(wt + B).
On the other hand we have
d2

Yy .
Friaie Wyt a+ef(y, 1) (5.5.44)

A ;
=—w [E—O—Asm(wt—i-B)

+a+ef ((% + Asin(wt + B), Aw cos(wt + B)) :

Equating the results from (5.5.43) and (5.5.44) and defining

o =wt+ B, (5.5.45)
we obtain
dA dB . a :
—pweosy - %Aw sinp = €f (E + Asin p, Aw cos <p) . (5.5.46)
Using (5.5.45) in (5.5.42) we obtain a2 x 2 system
dA
sin Acosp o 0
= a (5.5.47)
weosp —Awsingp dB ef<—2+Asingo,chosgp>
dt W
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which, using cramer’srules, gives

A(t) COS @

d € a )

T B = ;f (E + Asin ¢, Aw cos go) sing (5.5.48)
A

Thisisacomplicated first order nonlinear system of ordinary differential equations. But at this
point it is still an exact set of equations —that is, no approximations have been made. At this point
we notice that dA/dt and dB/dt are proportional to the small quantity e. This means that for e
small A and B are dlowly varying. If we assume thisto be true then the main variation on the right
in (5.5.48) is due to the terms involving ¢ which always occur as the argument of a 2r-periodic
function (sine or cosine). Thusthe Method of Averaging entails replacing (5.5.48) by the averaged
value on the right hand side over one period in .

Ap(t) o cos @
d 0 € a
— = — — + Asi A 5 . d 5.5.49
dt | gyny| — 27w Jo ! (uﬂ A, Aowcos "D) _51;1190 4 (55.49)
0

Inthisintegration A, and B, are held fixed during the ¢ integration. Then after computing A, and
By from (5.5.49) we set

Yolt,€) = u% + Ag(t, €) sin(wt + Bo(t, €)). (5.5.50)

It has been proved by Bogoliubov in (1958) and Mitropolsky in (1961) that thisis an approxi-
mation to the exact solution y over any time interval of length O(1/¢), i.e,
|y(t7 6) - y0<t7 6)' < cie

uniformly for al ¢ and e satisfying
0<t<cye

where ¢; and ¢, do not depend on e.
Example 5.12 (Rayleigh Oscillator continued).
1 3

u,v)=v—=v°, , w=1, a=0.
In this case (5.5.49) becomes
d [Ao(t) 2 1 —Agcos
pr = —e/ cos(p) <1 - gAg c082(<p)> _ dy (5.5.51)
By(t) 0 sin ¢
Example 5.13 (Duffing Equation continued).
f(U,,U) = _y37 a=0.
Ap(t) o 5| €O5¥
4 S / (i + Apsin <p> : dy (5.5.52)
dt Bo(t) w ), \w? _sing
Ap
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Example 5.14 (Precession of Mercury continued).
flu,v) =v? ,w=1, a=.98 b=1.01, c=0.
In this case (5.5.49) becomes

. cos ¢
€ :
=5 /O (a+ Agsin)? sin dp
Ao

We will consider this example in more detail. The first equation in (5.5.53) is

d [Ao(t)

dt

By(t)

dA() € m

il An si 2
i o ), (a+ Agsin(gp))” cos(p) dp

with A, held fixed during the integration.
If we make the substitution = a + A sin(p) theintegral becomes

dA @
0_ _¢ /772d7]:0.

W n 27TAO
or JA
0
—%—9
dt
or
A(] = .

Also, the second equation in (5.5.53) is

dBO €

27
_ . 2
i oA /0 (a + Apsin(p))” sin(p) dp

and a direct integration on expanding the squared term gives

45,
dt

= —€a

or
BQ = —eat + 6,

where «, 3 are constants of integration. Thus we obtain
yo(t,€) = a+ asin((1 — ea)t + 3),

whichinturn implies

%(t, €) = a(l — ea) cos((1 — ea)t + 3),
where o and 3 are determined from theinitial conditions
_p By _
yo(0) = b, —=(0) = 0.
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Using (5.5.54) and (5.5.55) we obtain
acos(f) =0, asin(f)=>b—a
which implies
B=7/2, a=b—a,
and

yo(t,e) = a+ (b—a)cos((1 — ea)t). (5.5.56)

Remark 5.1. 1. If we were to seek a regular perturbation expansion for the solution to this
problem the result would yield afirst order approximation of

yo(t) = a+ (b a) cos(t)
which is exactly (5.5.56) with e = 0.

2. For our approximation (5.5.56) it can be shown that

1
|y(tv 6) - yO(ta 6)| S 17 =~ 1—06

foral 0 <t <1/e.

This follows from the known estimates for the first order approximations with the Method
of Averaging due to the value of . Namely,

_ GMT

3GM
a = 72

~ 1077,

~ .98, bx1.01, e=

T

where M isthe mass of the sun, G is Newton graviational constant, 4 is the angular momen-
tum of Mercury, 7 = 5.83 x 10'2 cm is the typical distance from Mercury to the Sum, c is
the speed of light in a vacuum.

From thisit can be determined that the perihelion (direction of the major axis of the elliptical
orbit of the planet) advances by an amount equal to 2ae which interprets to approximately
40secs of arc per century. Thisisamost exactly the amount by which there was a deviation
from the expected value due to Newtonian mechanics.

Jose Wudka member of the Physics Department at UC Riverside:

To understand what the problem islet me describe the way Mercury’s orbit looks.
As it orbits the Sun, this planet follows an ellipse...but only approximately:
it is found that the point of closest approach of Mercury to the sun does not
always occur at the same place but that it slowly moves around the sun (see
the figure). Thisrotation of the orbit is called a precession.

The precession of the orbit is not peculiar to Mercury, al the planetary orbits
precess. In fact, Newton's theory predicts these effects, as being produced
by the pull of the planets on one another. The question is whether Newton's
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predictions agree with the amount an orbit precesses; it is not enough to un-
derstand qualitatively what is the origin of an effect, such arguments must be
backed by hard numbers to give them credence. The precession of the orbits
of al planets except for Mercury’s can, in fact, be understood using Newton;s
equations. But Mercury seemed to be an exception.

As seen from Earth the precession of Mercury’s orbit is measured to be 5600
seconds of arc per century (one second of arc=1/3600 degrees). Newton's
equations, taking into account all the effects from the other planets (as well
as a very slight deformation of the sun due to its rotation) and the fact that
the Earth is not an inertial frame of reference, predicts a precession of 5557
seconds of arc per century. There is a discrepancy of 43 seconds of arc per
century.

This discrepancy cannot be accounted for using Newton's formalism. Many ad-
hoc fixes were devised (such as assuming there was a certain amount of dust
between the Sun and Mercury) but none were consistent with other observa-
tions (for example, no evidence of dust was found when the region between
Mercury and the Sun was carefully scrutinized). In contrast, Einstein was
ableto predict, without any adjustments whatsoever, that the orbit of Mercury
should precess by an extra 43 seconds of arc per century should the General
Theory of Relativity be correct.

Method of Multiple Scales

Just as a clock has different time scales, T, for seconds, 77 for minutes and 75 for hours,
differential equations can have different time scales, such as, Ty, = t, Ty = et and T, = €*t. These
time scales vary from fast, to slower to even slower. In a problem we imagine that these time scales
are independent variable (even though they are not actually). Thus we consider

y(t,e) replacedby y(Ty, 11, Ts, -+ ,¢€)

with To=1t,Ty=¢€t and 75 = Ezt, etc.
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Using the chain rule we have

i— 0 +€8 + € 0 + e
dt 9T, 0T, Ty ’

& d{a o L0 }

a2 —a|or, o € an
0 [ 0 + € 0 + € —l—]
oty |or, T o T € amy
97 a o, 0 }
+...

o {8% o T on,
TR T
oty o1, T or T omy

_|_...

0? o? 9 0? 0?
=+ 2e——— 2 ee
o1z T omer, € ( ITo0Ts T 6T22) *
As an example consider the Duffing equation

j+y+e=0. (5.5.57)
We obtain

0%y Py oo Py PPy 3
2 ~ 0. 5.5.58
o1z T omer, € ( ITo0Ts 8T22> Tyt (5558)

Thus an ODE has been turned into a PDE. Normally this would not be a good idea but in the
present case we now seek a uniform approximation to the solution of (5.5.57) in the form

y=1yo(To,Th,Ts,---) +epn(To, 11, Tn, -+ ) + 62?/2(T0,T1>T27 )

Subtituting this expression into (5.5.58), collecting powers of ¢ and equating to zero, we obtain

_ Pyo Oy

2
aT()aTl (y(] +eyr + - )

+(yo+eyr +--+)
+e(yo +eyr +---)°.

+ 2¢

a2?/0
GTUQ_ +yo =0, (5.5.59)
82% 3 82y0

= —ys — 2 5.5.60
orz T T T T Canan (5560
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The general solution of (5.5.59) is
Yo = CL(Tl, TQ, s ) COS(T() + b(Tl, T27 s )) (5561)

Notethat « and b are functions of 77, 75, etc. The functional dependence on these variableswill be
determined as we eliminate the secular terms.
Now we substitute our value for y, into (5.5.60) to obtain

3291 623/0

3
- J1 — 3 —9
o1z TV T T T anam,

2

_ 0 3.3
=— 28T08T1 (acos(Ty + b)) — a’ cos®(Ty + b)

Ja . ob
_28—T1 sin(Tp + b) + 2a8—T1 cos(Tp +b)

3 1
— Ea?’ cos(Tp +b) — Za?’ cos(3Tp + 3b).

Thus we have

da . ob 3
+uy = 28—Tl sin(Ty 4+ b) + (2a8—T1 — Za3> cos(Ty + b)

823/1
aT?

1
- Za3 cos(3Ty + 3b).

We need to remove the secular terms which arise due to the terms sin(7, + b) and cos(Ty + b)
which introduce resonance. Thus we see that we need

da ob 3
— = d 2a— — Za® = 0.
T, 0 an a@Tl 4a 0

Thisimpliesthat a isindependent of 77 so we have
a = G(Tg,tg, e )7

and, using this result, we also have

b 3 3
8—7_11 — §a27 = b = éCLQTl + bo(TWQ7 Tg, o ) (5562)
We can solve for y; and we get
1
Yy = 3—2a3 cos(3Tp + 3b). (5.5.63)

Now substitute our values for a and b to get the first two terms of our asymptotic expansion for y

3
Yy NCL(TQ, T3, s ) COS <T0 + nga,Q(TQ,Tg, L ) + bg(Tg,Tg, L ))

9
+ éag(T%TSv e ) COs (3T0 + §T1GQ(T2,T3, c ) + 3b0<T2, Tg, ce )) .
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If we stop the expansion at this step then we can consider « and b to be constants (to within the
order of the error indicated), i.e.,
a(Ty, Ts,--+) = a(et, ¥, ---)
da

:a(0,0,~~~)+a—T2

(0,0, )t + - -- =a+ 0(e’t),

and

bo(T2, Ty, -+ ) = bo(€%t, ¢, - +)
Oby

o (0,0, )t 4 = bo + O(€%),
2

= bp(0,0,---) +
where @ and b, are constants. Replacing a and b, by @ and bo, respectively, we have

~ 3~ o~
Y ~a cos (TO + nga + b())

€

+32

@ cos (3T0 + §T132 + 3%) +O(e).
Boundary Layer methods
We begin this topic with an example
Example 5.15. Consider the equation
ey’ +y' =2, y(0)=0, y(1)=1, 0<z<1

with exact solution

Note that as ¢ — 0 this function approaches
youter($) =2r—1

which is exactly the first term in an asympotic expansion for this problem, i.e,, it is the solution
of y/(z) = 2 which satisfies the boundary condition at = = 1. Notice that it cannot satisfy the
boundary condition at x = 0. Also notice that
(1 —exp(=x/e)) _ (exp(—z/e) — exp(—1/e))
— =1— —
VO = WoueT) = 1= T (1) T (1 exp(—1/e)

For € =~ 0 we have the right hand side is exponentially small.

At this point we seek to find a change of variables ¢ = ¢z so that the terms ey’ and ¢/ are of
the same order for small €. Applying the chain rule we have

dy _dydg _ dy &y o, d%y

dr  dédr  CdE dr? © der
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SO we get

For the terms on the | &ft to be of the same order we need

1+2p=p

which impliesthat p = —1. In this case we can write

Py | dy
— 4+ 2 =2
a T
If we consider the problem with ¢ = 0 we have
d2
_y + @ — 07
ag?  d¢
with general solution
B+ Ce¢.

In order that this solution satisfy the boundary condition (of the original problem) at = = 0 we take
B=—-landC =1,

yinner(f) =e*— 1.
or

yinner(fﬁ) =e 1.

At this point we add our inner and outer solutions and subtract the common term (—1) to get

Y ~ Youter(T) + Yinner(z) = (22 — 1) + (e""j/6 -1 —-1=2zx—-1+ e/,

e=1/2" error=0.13534 e=1/2° error = 0.00033546

T T T 15
1.5 1

-0.5
0

0.2 0.4 0.6 0.8 1 0
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e=1/2° error = 1.2768e-14

Example 5.16. Consider the equation
ey +y +y=0, y(0)=0, y()=1, 0<z <1 (5.5.64)

Thisisclearly asingular perturbation problem since when we set ¢ = 0 we have areduced equation
of order one, namely,

Y'+Y =0, (5.5.65)

with solution
Y(x) = Ae™®, A (constant). (5.5.66)
It is clear that we cannot possible satisfy both boundary conditions in (5.5.64). The exact

solution to this problem is
(emrac _ 67",:1:)

y(e) = @ =)
where
(-1+£v1—4e)
ry = .
2¢

Without using this exact solution for motivation let us proceed using a hueristic argument

Note that, in general, the solution of the constant coefficient linear homogeneous ODE in
(5.5.64) is a sum of two linearly independent solutions. The solution we have in (5.5.66) which
can satisfy the BC at = = 1 also has the following properties:

1. ¢Y” isuniformly small compared to Y’ and Y (Not to their difference which is zero) ,
2. thedomain of z isfinite, [0, 1].

Thus we might expect that any other independent solution y might have the property that e;” have
the same order of at least one of ¢ or .
Motivated by what we would do with a polynomial of the form

e’ +z2+1
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(namely, introduce » = ¢~ 1w) we proceed by introducing new independent variable ¢ = ¢ 'x. By
the chain rule we have

= _ —— an _— e —
dv  déx  edf’ dr? €2 dg?’
and we can write (5.5.64) as

jtytey=0 y0)=0, yle)=1 0<E<e, (5.5.67)

dy dyd{ ldy g >y 1d%y

We seek a solution of the transformed equation such that ey is small compared to 7 and ¢. This
leads to the equation ) _
W+W=0
whose general ,solution is
W()=B+Ce$=DB+ Ce /e (5.5.68)

We need to set B = () since otherwise ¢ B would not be small (as we assumed) compared to B and
B which are zero. If we now add our two solutions Y and W we have

Yy~ Ae™® + Ce /¢
which we hope will lead to a good approximation of our solution. Imposing the BC's we have

A+C=0
Ae 4 CeVe=1"
Thefirst equation implies C' = — A and then from the second we get
1 e

A= = )
(et +eVe)  (1+el-1/e)

Thus we obtain

(elfx _ elfx/e)

y(l’) ~ (1 . 61_1/6)

= (e — e ) 1 o). (5.5.69)

Theterm e—*/¢ iscalled aBoundary Layer becauseit issignificant only in avery narrow layer
of width O(e) near z = 0. The other function e~* approximates the solution outside the boundary

layer.

als
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Exact and Asymptotic solutionsfor e = .1

T 4 - ] [
Exact and Asymptotic solutionsfor e = .025

It turns out that boundary value problems are, in some sense, more difficult to study theninitial
value problems. namely there is not such a simple fundamental existence, uniqueness theory for
BVPsasthereisfor IVPs. At this point we digress and present some results concerning existence
and uniqueness of solutionsto BV Ps.

Existence Theorems for Boundary Value Problems

First define anonlinear two-point boundary value problem:

v = f(z,y,y) , x € (a,b) (5.5.70)
apy(a) —ary'(a) = a aol + faa] # 0 (5.5.71)
boy(b) —biy'(b) = a  ,|bo| + |b1] #0 (5.5.72)

Definition 5.1. f(z, ) isLipschitzin u;, @ = (uy,us, . .. , uy,), With Lipschitz constant K; if
|fz,ur, .oy, un) — floun, vy, uy)| < Kjlug — vy (5.5.73)

If (5.5.73) is satisfied uniformly in w; for j = 1,2,...n, then f(x,«) is Lipschitz in @ with
Lipschitz constant

" 1/2
K= (Z Kf) (5.5.74)

when the Euclidean norm s chosen.

Theorem 5.3. Let f(x,uy,uz) becontinuouson D = [a,b] x R? and be Lipschitzin @ uniformly
with Lipschitz constant K. Also, assume f,,,, f., are continuouson D, f,, > 0 on D, and there
exists a constant M > 0 such that

of
81,62

If apa; > 0,boby > 0 a@nd |ag| + |bo| # 0 then there exists a unique solution to (5.5.70)-(5.5.72).

<M , (z@)eD (5.5.75)
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Corollary 5.1. Letp,q,r € Cyla, b, g(z) > 0 on [a, b]. Then there exists a unique solution y(z)
of the boundary value problem

Lyl = =" +p@)y' +q(x)y = r@@) . ze(ab) (5.5.76)
apy(a) —a1y'(a) = « ,|ao] + ]ai] #0 (5.5.77)
boy(h) — b/ () = @ Jbol + [ba] £ 0 (5.5.78)

prOViding agay > 0,bpby > 0 and |0J0’ + ’bg’ 7£ 0.

Theorem 5.4. (Alternative) Let p, ¢, and L be as in the previous corollary and define the two
problems:

Lly] = r(@) ,y(a)=a ,yb)=20 (5.5.79)
Lyl = 0 ,yla)=0 ,y(b)=0 (5.5.80)

then (5.5.79) has unique solution if and only if the only solution to (5.5.80) isy = 0.

The text here was taken from the homepage of Mark C. Pernarowski, Department of Mathe-
matics, Montana State University, where the results were attributed to H. Keller [8].

Matching: Theory, Definition and | ssues

Let D =[0,1], I = (0,¢;) and y(x, €) be continuous on D x I. Furthermore, suppose that there
are y;(x) such that the outer expansion

y ~ yo(r) + eyi(w) + yaa) + - (5.5.81)

isuniformly valid on [z, 1],z > 0, ase — 0. Also, for the inner variable

x=12 (5.5.82)

€

suppose there exist Y3 (X)) such that
Y~ Yo(X) 4+ Y1 (X) + Yo (X) + - - (5.5.83)

uniformly on [0, X], for some X < 1/¢;, ase — 0F. That isto say, we are supposing that we have
both an inner and outer expansion for the same function y(z, €). The function y(z, €) should be
viewed as a solution of the algebraic problem

f(z,y,6) =0 (5.5.84)
or a boundary-value problem like
_ Ay dy B
L]y] = et a(x)% +b(z) = f(z,¢) ze(0,1) (5.5.85)
y(0,)=A4 .,  y(l,e)=B (5.5.86)

For the “outer limit” in (5.5.81), x isfixed. For the “inner limit” in (5.5.83), X isfixed.
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For the purpose of clarity we will let D,(z) and D;(X) denote the regions of uniform validity

for the outer and inner expansions, respectively:
D,(z) ={(x,¢e):x € [z,1],e € I} (5.5.87)
Di(X) ={(z,¢€) : x €[0,Xe],e € I} (5.5.88)
Though, as defined, D, (z) and D;(X) depend on the (e-independent) fixed values z and X, these
valueswill be seento beirrelevant to thelatter discussions of overlap regionsand matching. Hence-
forth, we will denote these regions simply as D, and D;. Extension theorems are theorems which

extend the region of uniformity of asymptotic statements like (5.5.81). One early (and relatively
simple) theorem is due to Kaplan (1967):

Theorem 5.5. Let D = [0,1], I = (0,¢;) and y(z, €) be continuouson D x I. Also, let y(x) be
some continuous function on (0, 1] such that

lim [y(x,€) —yo(x)] =0 (5.5.89)

e—0t

uniformly on [z, 1], for every z > 0. Then there exists a function 0 < ¢(e) < 1 such that

lim [y(z,€) — yo(z)] =0 (5.5.90)

e—0t
uniformly on [§(e), 1].

(see Eckhaus (1979) for more theorems). There are clearly examples of functions satisfying
the hypothesis of this theorem. For example,

y(z,€) =z + e 4 ¢ , yo(x) =z (5.5.91)

Moreover, the limit (5.5.89) implies y(x, €) ~ yo(x) + o(1) uniformly on [z, 1].

What this theorem does is effectively extend the region of uniform validity D, to one like
D,. To more carefully define D, intermediate variables need to be introduced. Let 7(¢) be any
function with 0 < 7n(e) < 1. We define the intermediate variable z,, by

z = n(e)x, (5.5.92)
Then, the conclusion of the theorem may be stated

lim  [y(nzy, €) — yo(nay)] =0 (5.5.93)

e—01,zy, fized

uniformly on z,, € [z,, 1], for al n with 6 = O(n). Generaly, when introducing intermediate
variables we view 7 as satisfying § < 7 < 1, though to clearly define D, we can set 1) equal to §
or 1:

Do(%,) = {(z,¢) : & € [,0(¢),1],e € T} (5.5.94)

For the examplein (5.5.91), we have for some intermediate variable z,,:

—xnn

y(z,€) —yo(w) = e <

+e=o0(1)
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uniformly on [z,, 1] providing z,, > 0 and ¢ < . For instance, one could choose §(e) = /2 in
the theorem.

In an analogous fashion, one can construct an extended domain of validity D; for the inner
expansion (5.5.83) noting the inner variable

X = @ (5.5.95)
For some (z, ¢) near (0, 0) the non-extended domains D, and D, do not overlap (do not intersect
regardless of the choices of z, X). Similarly, one can have nonoverlapping extended domains and
overlapping extended domains. If there is an overlapping extended domain, there are functions
n;(€) and n,(e) such that for any intermediate variable z,, with 7;(¢) < n(e) < 1,(€) both theinner
and outer expansions are uniformly valid. That isto say, given any n with 7;(e) < n(e) < n,(e),
there is an e-independent interval I, such that both

o W€ = go(ny)] =0 (5:5.96)
: Ty _
e—>0+1,1z:I:lfi:ced |:y(775137], ) }/O ( € >:| =0 (5597)

uniformly on z,, € I, z,, > 0. Subtracting these expressions we have obtain a matching condition:

lim [yo(nxn) %(nf"ﬂ ) (5.5.98)

e—0%,z, fized
And, if yo(07) and Yy (o0) exist, sincee < n < 1,

lim yo(z) = lim ¥o(X) (5.5.99)
which is the Prandtl matching condition. If (5.5.98) can be satisfied, then one would say that the
leading outer expansion y,(x) can be matched to the leading inner expansion Y, (X') on an overlap
domain

Dy = {(z,€) : z, = an € I, m;(e) < n(e) < nole)} (5.5.100)

At this stage, we need to make a few points. Firstly, yo(0") or Y;(oo) may not exist in which
casetheinner and outer expansions cannot be matched to leading-order using the Prandtl matching
condition. However, it may still be possible to match the expansions by demonstrating the existence
of an overlap domain for which (5.5.98) is satisfied. Secondly, even if the matching condition
(5.5.98) cannot be satisfied that does not preclude the possibility of a P term outer expansion
matching a () term inner expansion. That isto say, there may be some overlap domain where

p Q
im Y @yl - Y, (5””77>] —0 (5.5.101)
n=0

0t,zy, fived
€e— n f o

At this point we are in a position to define matching.
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Definition Choose and fix =, = % € R and let R be any nonnegative integer. e say that the

outer and inner expansions defined in (5.5.81)-(5.5.83) match to O(e®) on a common domain of
validity Dy (x,) if there exist functions »; and 7, with ; < 1, and integers P, () such that

- b o .
n n Ty7
y S ta) - Y ()
PQ . n=0 n=0

= | = 5.5.102
e—01,zy, fized el e—>0+,11:rjlfixed el 0 ( )

for any function n satisfying ; < n < 7, and
Dg(x,) = {(z,€) : , = an,mi(€) < n(e) < nale)} (5.5.103)

We conclude with afew remarks:

1) Genera theorems showing the existence of overlap domains have not been found (Lager-
strom 1988). In practice, the existence of overlap domains where inner and outer solutions
can be matched is done on a case by case basis.

2) For boundary value problems where the method of matched asymptoticsis applied, matching
conditions are used to find integration constants occurring in the inner expansion. Typically,
inner and outer expansions can be matched only if those constants are chosen equal to spe-
cific values.

3) Prandtl matching correspondsto leading-order matchingwith P = Q = R = 0.
4) In some problems, P and () may not be known apriori. Moreover, P may not equal Q.

5) Some expansions cannot be matched. The matching defined in (5.5.102) is with respect to
the guage functions ¢,,(¢) = €",n > 0. Clearly, some functions y may have more general
outer expansions:

y(@,€) ~ > dnl(e)yn() (5.5.104)

n>0

Indeed, the inner variable could be defined in amore general way, X = z/d(¢),0 < § < 1,
and the inner expansion may be with respect to different guage functions. These sorts of
generalizations are not normally considered.

Example:
In this section we consider a single example which illustrates all of the features discussed in
the previous section. We will use the following facts throughout the discussion: If 0 < §(¢), z > 0
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|log(e)| <6 = e’ <€ VYn>0
§=04(|log(e))) = e =0,(1)
< ellog(e)] = e < e Vn>0

where 6 — O, (1) means 6 — O(1)) and v = O(9).

Specifically we will consider matching of inner and outer expansions of the function

1
y(tv 6) = m

which isthe solution of the singular initial value problem
e +y +y=0

1
y(()? 6) =0 9 y/(ov 6) = =
€
The first two terms of the outer expansion

y(t,€) ~ yo(t) + eyr (t) + ya(t) + - -

can easily be determined from (5.5.108). Fixing ¢ and expanding in e one finds
y = (14 2+ 0(?)) [e*HtW(EQ) _ e t/ett0(e)

from which we deduce

Similarly, to compute the inner expansion
y(t,e) =Y(T,e) ~ Yo(T) + YVi(T) + Ya(T) +--- , T =
reexpress (5.5.108) in terms of 7', fix T' and then expand in ¢:
Yy — (1 + % + 0(62)) e—eT—62T+O(e3) . e—T+eT+O(e2)
From this one finds:

W)=1-¢" , Yi(T)=@2-T)-2+T)e"

(5.5.105)
(5.5.106)
(5.5.107)

{exp {_(1 _ \/1—746)%1 —exp {—(1 + M)ﬂ } (5.5.108)

(5.5.109)

(5.5.110)

(5.5.111)

(5.5.112)

(5.5.113)

(5.5.114)

(5.5.115)

(5.5.116)

Before we find the overlap domains where the outer and inner expansions match to O(1) and
O(e), wewill discuss how these expansionswould arise had we not know the exact solution apriori.
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By substituting the expansion (5.5.111) into (5.5.109) we obtain the problems:
O() : y+y=0 (5.5.117)
O(e) © y1+u=-y, (5.5.118)
whose general solutions are (for ag, by constant)

yo(t) = age™ (5.5.119)
n(t) = (bo—aot)e™ (5.5.120)

Clearly, a, cannot be chosen so that y,(¢) satisfy both initial conditions. Therefore, there must be
alayeratt = 0. Intermsof Y and T theinitial value problem (5.5.109)-(5.5.110) can be written

Y'+Y' +eV =0 (5.5.121)

Y(0,e) =0 , Y'(0,e)=1 (5.5.122)

from which we obtain the inner problems
O) : Yy4+Y,=0 , Y5(0)=0 , Yy0)=1 (5.5.123)
Oe) : Y/'+Y/ ==Yy, , Yi(0)=0 , Y/(0)=0 (5.5.124)

whose solutions are that given in (5.5.116). In contrast to boundary value problems, the unknown
constants of integration to be determined from matching are part of the outer solution. If we apply
Prandtl matching to match g, and Y, we find

lim yo(t) =ap=1= Tlim Yo(T) (5.5.125)

t—0+ —00

and recover y,(t) in (5.5.113).

Demonstrating extended outer domainsto O(1)
To find an extended domain for the outer expansion one assumes 7 (e) < 1 and seeks an 7, ()
such that 7, (¢) < n(e) implies

lim [y(nty, €) — yo(nty)] =0 (5.5.126)

e—0t,t, fized

for the intermediate variable

t, = % >0 (5.5.127)

Given (5.5.112), this limit holds providing e *"/¢ < 1. To assure this, we choose 7;(¢) =
e|llog(e)|. Now let the notation ¢ <= 1) mean that either ¢ < ¥ or ¢ = O,(¢). Then we
can conclude that D, will be an extended domain for the outer expansion so long as ) satisfies

Mo = €llog(e)| < n <=1 (5.5.128)
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Though each 7 defines a different region in the (z, €)-plane for ¢, € 1, all that really matters for
the limit to vanish is that n satisfy (5.5.128). So it is common practice to say that the extended
domain for the single term outer expansion y, (). "is’ (5.5.128).

Demonstrating extended outer domainsto O(¢)
To find the extended domain for the two term outer expansion yy(t) + ey; () one assumes
n(e) < 1 and seeksan 7, 1(€) such that 7, ;(¢) < n(e) implies

i Y0t ©) = yo(nty) — eya(ity)]

e—0t,t, fized €

=0 (5.5.129)

Again from (5.5.112), we find that if n satisfies (5.5.128) the above limit holds. That isto say the
choice 1,1 = n1,0 works. If we continue this process of extending the domain in an R term outer
expansion to find 7, it is often the case that 7, r < 71, r41 Since adding more termsto the limit
places more restrictions on 7. For this particular example the extended outer domainsat O(1) and
O(e) turned out to be the same.

Demonstrating extended inner domainsto O(1) and O(e¢)
To find an extended domain for the single term inner expansion one assumes ¢ < 7(¢) and
seeks an 1), (¢) such that 17 < 7, (e) implies

lim  [y(nty,€) — Yo(nt,/€)] =0 (5.5.130)

e—07T ty fized

Again from (5.5.112) it is easy to verify that the extended domain for the single term inner expan-
sion is defined by

Finding the extended inner domain to O(¢) is more delicate. In terms of the intermediate variables

_ Ui
-, =
€ € € € €

+O(n) +0 <%2> + O(e)

tne—tn’?/e + 2 — 26—%71/5

and in terms of the intermediate variables

1 t 1 —tym/€
Lyy gy, = Yt L e my,
€ € € € € €

tne*tnn/ﬁ + 2 — 23725’77)/6 (55132)

Subtracting these two expressions we see that

lim ly(nty, €) — Yo(ntn/€) — €Y1 (nty/€)]

e—01 t, fized €

=0 (5.5.133)

provided n?/e < 1. That is to say the choice n,; = ¢/ ensures the limit vanishes and the
extended inner domainto O(e) is

<=1 K 1y = €2 (5.5.134)
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Here we note the extended domain to O(¢) is”smaller” than thedomainto O(1), i.e. 1721 < 120.

Demonstrating overlap to O(1) and O(e)
Considering the previous discussions it is clear to see that the overlap domains to O(1) and
O(e) are, respectively,

Mmoo < 1<<1N20 (5.5.135)
myp < <K< n21 (5.5.136)
or
ellog(e)] < n<1 (5.5.137)
e|llog(e)] < n < €/? (5.5.138)

If n satisfies these asymptotic relations, the outer and inner expansions match to O(1) and O(e),
respectively. Explicitly, if n satisfies (5.5.135) then

lim [yolirty) — Yo(ty/e)] = 0 (5:5.139)

e—01,ty, fized
And, if n satisfies the more stringent requirement (5.5.136)

lim [yo(mfn) + €Y1 (ntn) - Y'O(mn/ﬁ) — Y] (ntn/ﬁ)]

e—0t,t, fized €

=0 (5.5.140)

If the exact solution y was not known apriori then one would choose a in the incomplete outer
solution yo(t) = age™" and find 7, o, 12,0 S0 that (5.5.139) is satisfied.

1. Consider the problem
y'+ey +y=0, y0)=1, y'(0)=0. *)

(@) Find the exact solution to thisinitial value problem.

(b) Obtain atwo term regular asymptotic expansion for (*).

(c) Compare graphically your answer for ¢ = .25 and ¢ = .1 with the exact answer for
0<z <2

2. Obtain atwo term regular expansion for 3" + 2y = e, y(0) = y(1) = 0.
3. Obtain atwo term regular expansion for (1 + ez®)y” +y = 2%, y(0) = ¢, y(1) = 1.

4. Find atwo term expansion for y” = sin(z)y, y(0) =1, ¥'(0) = 1 using the method of
successive integration from Example 5.4.

T=x—2y+exy

5. Find aregular expansion for the system { =1 — 3y — exy

Isthe expansion valid for all

t > 0? Give areason.
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6. Usethe method of strained variablesto obtain atwo term expansion for

dy
iy =0 1) =1.
(x+ey)d$+y . y(1)

Also find the exact solution and compare graphically your results and the exact solution on
the interval [0, 2] for e = .1.

7. Use the method of averaging to find an approximate periodic solution to the Van der Pol
oscillator

j+y+ey’=1)9=0
i.e., find an approximation y(t) ~ a(t) cos(t + 6(t)), a(0) =ag, O(0) = Oy.

8. Find auniform asymptotic approximation to the boundary layer problem, i.e., find an inner,
outer and matched solution.

e+ (1+e)y +y=0, y0)=0, y(1)=1.

Also compute the exact solution and graphically compare your answers for e = .1 and
e = .025.

9. Find a uniform asymptotic approximation to the boundary layer problem, i.e., find an inner,
outer and matched solution.

ey +2y +e =0, y(0)=0, y(1)=0
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