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1 Algebraic problems

We are interested in finding the approximate roots of a polynomial of form:

P (x, ε) =
n∑
k=0

a
(ε)
k xk = 0 (aεn 6= 0), (1)

where the coefficients a
(ε)
k is a polynomial of ε and P (x, ε) is a polynomial of x of degree n if ε 6= 0.

From the fundamental theorem of algebra, the above polynomial admits n-roots. Subsequently a
root of the polynomial (1) is denoted by r(ε). We are interested in the asymptotic behaviors of
roots r(ε) as ε→ 0.

Theorem 1 (Simmonds and Mann 1998) Each root of (1), r = r(ε), is continuous as a func-
tion of ε in a punctuated neighborhood at ε = 0 and can be written as

r(ε) = εpw(ε),

where p is called a proper value, w(0) 6= 0 and ε 7→ w(ε) is analytic in a neighborhood of ε = 0:

w(ε) =
∞∑
k=0

ckε
k. (2)

To find the p-value, there are three different scenarios.

1. If the root r(0) is a simple root (of multiplicity 1), we may set p = 0 and insert (2) into (1).
Then all coefficients ck in (2) can be recursively determined. For example, consider

P (x, ε) = x4 − εx− 1 = 0.

Inserting (2) into the above equation, we have

(
∞∑
k=0

ckε
k)4 − ε

∞∑
k=0

ckε
k − 1 = 0,

which implies that

ε0 : c40 − 1 = 0, ⇒ c0 = 1, i,−1,−i;
ε1 : 4c30c1 − c0 = 0, ⇒ c1 = 1/(4c20);

ε0 : 4c30c2 + 6c20c1 − c1 = 0, ⇒ c2 = (c1 − 6c20c1)/(4c
3
0);

· · · · · ·
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2. Roots that blow up as ε → 0. The proper value p < 0. We can figure out the p-value by
dominant balance analysis. For example, consider

P (x, ε) = ε2x6 − εx4 − x3 + 8 = 0. (3)

The four terms in the above equation scale as εq, q = 6p + 2, 4p + 1, 3p, 0, respectively. To
achieve P (x, ε) = 0 as ε→ 0, at least two out of these four terms need to “balance” each other
whereas all other terms are negligibly small. The possibilities are listed as follows:

(a) If 6p+2 = 4p+1, then p = −1/2 and the four terms in (3) scale as εq, q = −1,−1,−3/2, 0.
The largest term is however the third term that scales as ε−3/2, meaning a contradiction;

(b)

(see detailed analysis on pg. 325, textbook of Bender and Orszag)

3. A repeated (or degenerate) root of multiplicity k ≥ 2. The proper value p > 0 and we can
similarly figure out the p-value by dominant balance analysis. For example, consider

P (ε)(x) = x2 − 2εx− ε = 0.

(see detailed analysis on pg. 8, Example 5.3. in the note of D. Gilliam)

We remark that the first scenario is referred to as regular perturbation whereas the second
and third scenarios are referred to as singular perturbations.

2 Transcendental equation

A transcendental equation is an equation containing transcendental functions, i.e., analytic func-
tions that are not polynomials. For example, x = ex and tanx = x. Closed-form solutions to such
equations are rare. Nevertheless, the asymptotic behavior of transcendental equation can still be
obtained near an exact solution under some mild conditions. One of the well-known situations is
summarized as Lagrange’s inversion formula.

Theorem 2 Let g(z) 6= 0 be an analytic function in a neighborhood of z = 0. Then

w =
z

g(z)

implies that in a neighborhood of w = 0,

z = z(w) =

∞∑
k=1

ckw
k, ck =

1

k!

( d
dz

)k−1
(g(z))k

∣∣∣∣
z=0

.

The above theorem follows from a more general theorem called implicit function theorem or open
mapping theorem. To see its applications, we consider the following examples.

1. Consider the equation xex = t−1. Find the asymptotic behavior of x = x(t) as t→ +∞.

(see detailed analysis on pg. 19, Example 5.7. in the note of D. Gilliam)

2. Consider the equation xt = e−x. Find the asymptotic behavior of x = x(t) as t→ +∞.

(see detailed analysis on pg. 19, Example 5.8. in the note of D. Gilliam)

3. Consider the equation tanx = x. Find the asymptotic behavior of the nth solution xn = x(n)
as n→ +∞.

(see detailed analysis on pg. 20, Example 5.9. in the note of D. Gilliam)
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3 Eigenvalue problems

We begin our discuss for linear operators defined on a finite dimensional space, i.e., symmetric
real matrices or Hermitian matrices, and then discuss about Hermitian operators that may be
regarded as matrices of infinite dimensions. First of all, we recall a theorem in linear algebra for
real symmetric matrices and complex Hermitian matrices.

Theorem 3 (i) For every real symmetric matrix A ∈ Rn×nsym , there exist n eigenvectors {e1, · · · en} ∈
Rn that form an orthonormal basis of Rn. The analogous theorem for complex matrix is as follows:
(ii) For every Hermitian matrix A ∈ Cn×nHer , there exist n eigenvectors eigenvectors {e1, · · · en} ∈ Cn
that form an orthonormal basis of Cn. In addition, all eigenvalues are real.

3.1 Perturbation method for finite dimensional eigenvalue-eigenvector prob-
lems

Now let us consider a symmetric matrix A0 ∈ Rn×nsym . By the above theorem, we know there exist
an orthonormal basis {e01, · · · e0n} ∈ Rn formed by eigenvectors of A0:

A0e
0
i = λ0i e

0
i .

We are interested in finding the eigenvalues and eigenvectors of a new symmetric matrix A =
A0 + εA1 that is a small perturbation of the original matrix A0. To this end, we can assume that
the original eigenvalue-eigenvector pair (λ0i , e

0
i ) becomes (λi, ei) that can be expanded in term s of

ε as:

(λi, ei) = (λ0i , e
0
i ) + ε(λ1i , e

1
i ) + ε2(λ2i , e

2
i ) + · · · .

Without loss of generality we can impose the normalization condition: ei · e0i = 1, i.e.,

eki · e0i = 0 ∀ k ≥ 1 & i = 1, · · · , n. (4)

By definition we shall have

Aei = (A0 + εA1)(e
0
i + εe1i + ε2e2i + · · · ) = (λ0i + ελ1i + ε2λ2i + · · · )(e0i + εe1i + ε2e2i + · · · ).

Arranging terms according to the order of ε, we obtain

ε0 : A0e
0
i = λ0i e

0
i ,

ε1 : A0e
1
i + A1e

0
i = λ0i e

1
i + λ1i e

0
i ,

ε2 : A0e
2
i + A1e

1
i = λ0i e

2
i + λ1i e

1
i + λ2i e

0
i ,

... · · · · · ·

(5)

The first of the above equation is clearly trivial. Taking the inner product of the second equation
with e0j we have

λ0je
0
j · e1i + e0j ·A1e

0
i = λ0i e

0
j · e1i + λ1i δij . (6)

The implication of the above equation has two separate cases. For clarity and without loss of
generality, below we focus on the first eigenvalue-eigenvector, setting i = 1.
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• Nondegenerate case. If λ0j 6= λ01 for j 6= 1, the above equation impliesλ
1
1 = e01 ·A1e

0
1 if j = 1;

e11 · e0j =
e0j ·A1e01
λ01−λ0j

if j 6= 1.

Together with (4), the last of the above equation implies

e11 =
∑
j 6=1

e0j ·A1e
0
1

λ01 − λ0j
e0j . (7)

Moreover, taking the inner product of the third equation of (5) with e0j we have

λ0je
0
j · e2i + e0j ·A1e

1
i = λ0i e

0
j · e2i + λ1i e

0
j · e1i + λ2i δij . (8)

For the nondegenerate state i = 1, from the above equation we obtain
λ21 = e01 ·A1e

1
1 =

∑
j 6=1

(e0j ·A1e01)
2

λ01−λ0j
if j = 1;

e21 · e0j =
e0j ·A1e11−λ11e0j ·e11

λ01−λ0j
if j 6= 1.

• Degenerate case. If λ0j 6= λ01 for j > m and λ0j = λ1 for j = 1, · · · ,m, then the eigenvectors

can be chosen to be any orthonormal basis of the eigenspace V := {e : A0e = λ01e} =
span{e01, · · · , e0m}. Further, equation (6) implies thatλ

1
1δ1j = e0j ·A1e

0
1 if j = 1, · · · ,m;

e11 · e0j =
e0j ·A1e01
λ01−λ0j

if j > m.
(9)

The first of the above equation of course cannot be true for general eigenvectors in the
eigenspace V . Instead, we can show that (9)1 requires that e01, · · · , e0m are orthonormal
eigenvectors of the linear mapping A1 restricted to the subspace V , which is defined as{

A′1 : V → V,

A′1x = PA1x,

where P : Rn → V is the projection operator. In addition, it can be shown that the matrix
representation of A′1 for an orthonormal basis {f01 , · · · , f0m} of V is given by

(A′1)ij = f0j ·A1f
0
i i, j = 1, · · · ,m.

Then the eigenvectors e01, · · · , e0m such that (9)1 holds can be find by solving the eigenvalue
problem:

A′1e
0
i = λ1i e

0
i i = 1, · · · ,m,

which determines perturbed eigenvalues. In regard of (9)2, the leading correction of eigen-
vector e11 is given by

e11 =
∑
j>m

e0j ·A1e
0
1

λ01 − λ0j
e0j .
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3.2 *Perturbation method for infinite dimensional eigenvalue-eigenfunction prob-
lems

We now consider a linear operator H : Dom(H)→ D, where Dom(H) is a function space (typically
a dense subspace of D). Heuristically, we may regard linear operators (on an infinite dimensional
vector space) as a matrix of infinite size. To apply the above theorems and calculations to operators,
we need to properly generalize the inner product for vector space D and the concept of “symmetric”
operators.

To be concrete, for periodic functions E(x), ρ(x) with period p we consider the Hermitian
operator H : Dom(H)→ D defined by

H(x) = − 1

ρ(x)

d

dx
E(x)

d

dx
,

D = {f ∈ L2
loc(R) : f(x+ p) = eikpf(x)}.

• Inner product:

〈f, g〉 =

∫ p

0
ρf̄gdx.

• The operator H is Hermitian since

〈f,Hg〉 = 〈g,Hf〉 ∀ f, g ∈ D.

• The operator H is positive since

〈f,Hf〉 > 0 ∀ 0 6= f ∈ D.

Then in analogy with, we have the following theorem:

Theorem 4 There exist (λn, φn) ∈ R × D (n = 1, 2, · · · ) such that (i) Hφn = λnφn ( i.e., eigen-
values and eigenfunctions), (ii) 〈φi, φj〉 = δij, and (iii) for any function f ∈ D, we have

∞∑
i=1

〈f, φn〉φn → f in D̄.

We now consider a Hermitian operator H0 : Dom(H0) → D. By the above theorem, we know
there exist an orthonormal basis {φ01, φ02, · · · } ⊂ D formed by eigenfunctions of H0:

H0φ
0
i = λ0iφ

0
i .

We are interested in finding the eigenvalues and eigenvectors of a new Hermitian operator

H = H0 + εH1,

which is a small perturbation of the original operator H0. To this end, we can assume that the
original eigenvalue-eigenfunction pair (λ0i , φ

0
i ) becomes (λi, φi) that can be expanded in term s of ε

as:

(λi, φi) = (λ0i , φ
0
i ) + ε(λ1i , φ

1
i ) + ε2(λ2i , φ

2
i ) + · · · .
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Without loss of generality we can impose the normalization condition: 〈φi, φ0i 〉 = 1, i.e.,

〈φki , φ0i 〉 = 0 ∀ k ≥ 1. (10)

By definition we shall have

Hφi = (H0 + εH1)(φ
0
i + εφ1i + ε2φ2i + · · · ) = (λ0i + ελ1i + ε2λ2i + · · · )(φ0i + εφ1i + ε2φ2i + · · · ).

Arranging terms according to the order of ε, we obtain

ε0 : H0φ
0
i = λ0iφ

0
i ,

ε1 : H0φ
1
i +H1φ

0
i = λ0iφ

1
i + λ1iφ

0
i ,

ε2 :

· · · · · ·

(11)

The first of the above equation is clearly trivial. Taking the inner product of the second equation
with φ0j we have

λ0j 〈φ0j , φ1i 〉+ 〈φ0j , H1φ
0
i 〉 = λ0i 〈φ0j , φ1i 〉+ λ1i δij . (12)

The implication of the above equation again has two separate cases. For clarity and without loss
of generality, below we focus on the first eigenvalue-eigenfunction, setting i = 1.

• Nondegenerate case. If λ0j 6= λ01 for j 6= 1, the above equation impliesλ
1
1 = 〈φ01,A1φ

0
1〉 if j = 1;

〈φ11, φ0j 〉 =
〈φ0j ,H1φ01〉
λ01−λ0j

if j 6= 1.

Together with (10), the last of the above equation implies

φ11 =
∑
j 6=1

〈φ0j , H1φ
0
1〉

λ01 − λ0j
φ0j .

• Degenerate case. If λ0j 6= λ01 for j > m and λ0j = λ1 for j = 1, · · · ,m, then the eigenfunctions of

H0 associated with eigenvalue λ01 can be chosen to be any orthonormal basis of the eigenspace
V := {φ : H0φ = λ01φ} = span{φ01, · · · , φ0m}. Further, equation (6) implies thatλ

1
1δ1j = 〈φ0j , H1φ

0
1〉 if j = 1, · · · ,m;

〈φ11, φ0j 〉 =
〈φ0j ,H1φ01〉
λ01−λ0j

if j > m.
(13)

The first of the above equation of course cannot be true for general eigenfunctions in the
eigenspace V. Instead, we can show that (13)1 requires that e01, · · · , e0m are orthonormal
eigenvectors of the linear mapping H1 restricted to the subspace V, which is defined as{

H ′1 : V → V,
H ′1φ = PH1φ,
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where P : D̄ → V is the projection operator. In addition, it can be shown that the matrix
representation of H ′1 for an orthonormal basis {ϕ0

1, · · · , ϕ0
m} of V is given by

(H ′1)ij = 〈ϕ0
j , H1ϕ

0
i 〉 i, j = 1, · · · ,m.

Then the eigenfunctions φ01, · · · , φ0m such that (13)1 holds can be find by solving the eigenvalue
problem:

H ′1φ
0
i = λ1iφ

0
i i = 1, · · · ,m,

which determines perturbed eigenvalues. In regard of (13)2, the leading correction of eigen-
function φ11 is given by

φ11 =
∑
j>m

〈φ0j , H1φ
0
1〉

λ01 − λ0j
φ0j .
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4 Integral evaluations

Typical techniques of evaluating an integral that depends on a small parameter ε include:

1. Expansion of integrands;

2. Integration by parts;

3. Laplace method;

4. Method of stationary phase.

The most important examples that are relevant to physics/statistical mechanics concern about the
Gaussian integrals.

4.1 Expansion of integrands

I(ε) =

∫ 1

0
sin(εx2)dx (ε� 1);

∫ x

0
t−3/4e−tdt (x� 1).

4.2 Integration by parts

I(x) =

∫ ∞
x

e−t

t2
dt (x� 1);

∫ ∞
0

e−stf(t)dt (s� 1).

4.3 Laplace method

Assume h = h(t) is a smooth function on the interval [a, b] and achieves its maximum at x = c.
Then

I(x) =

∫ b

a
exh(t)f(t)dt (x� 1)

≈ I(x, ε) =


∫ a+ε
a e−xh(t)f(t)dt if c = a,∫ c+ε
c−ε e

−xh(t)f(t)dt if c ∈ (a, b),∫ b
b−ε e

−xh(t)f(t)dt if c = b,

=


−f(a)exh(a)

xh′(a) if c = a & h′(a) 6= 0,
f(c)exh(c)

√
2π

[−xh′′(c)]1/2 if c ∈ (a, b) & h′′(c) < 0,

f(b)exh(b)

xh′(b) if c = b & h′(b) 6= 0.

(14)

Remark 5 In statistical physics, we often encounter integral of such form

F (β) =
1

Z

∫ b

a
e−βH(t)f(t)dt (β = 1/kBT � 1),

where H is the Hamiltonian of the system, Z =
∫ b
a e
−βH(t)dt is the partition function, and the above

integral yield the expected value of the thermodynamic quantity F (β) in the low temperature limit.
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Examples (x� 1):

I(x) =

∫ 10

0

e−xt

1 + t
dt

Watson’s Lemma: If f(t) = tα
∑∞

n=0 ant
βn (α > −1, β > 0) and |f(t)| < Mect for some M, c > 0.

Then

I(x) =

∫ b

0
f(t)e−xtdt ∼

∞∑
n=0

anΓ(α+ βn+ 1)

xα+βn+1
.

4.4 Method of stationary phase

Consider the oscillatory integral for g ∈ C∞0 (R) and x� 1:

I(x) =

∫
R
f(t)eixg(t)dt

Assume that

g′(c) = 0, g′′(c) 6= 0.

We have

I(x) = eixg(c)
∫
R
f(t)eix[g(t)−g(c)]dt ≈ eixg(c)

∫ c+ε

c−ε
f(t)e

g′′(c)
2

ix(t−c)2dt

≈ eixg(c)f(c)

∫
R
e

g′′(c)
2

ix(t−c)2dt = eixg(c)f(c)

√
2πi

xg′′(c)
.

5 Ordinary differential equations

5.1 Regular perturbation

Consider a general first-order linear ODE for y : R→ Rn:

y′(x) = F(x)y(x), y(0) = y0, (15)

where F : R→ Rn×n is Lipschitz continuous in the sense that ∃M > 0,

|F(x)− F(y)| ≤M |x− y| ∀ x, y ∈ R.

The the solution to (15) is given by
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5.2 Boundary layer method

If the highest-order term of an ODE vanishes as ε→ 0, we are in the regime of singular perturbation.
Unlike regular perturbation, a naive Taylor expansion with respect to the small parameter cannot
work since the unperturbed problem does not even admit a solution. To see what happens, it is
useful to study two simple constant coefficient equations:

εy′′ − y′ = 0, y(0) = 0, y(1) = 1;

ε2y′′ + (1 + ε2)y′ + y = 0, y(0) = 0, y(1) = 1.
(16)

Formal procedure of boundary layer method:

• We first solve (16)1.
1 For outer region (0, 1− δ), neglecting εy′′ we obtain

y′ = 0, y(0) = 0,

which implies solution

y = 0 on (0, 1− δ).

For the inner region (1− δ, 1), we anticipate y′ ∼ 1/ε, y′′ ∼ 1/ε2. To extract the asymptotic
behavior in the inner region, we have change of variables that zoom in the region:

Y (X) = y(x), X − 1 =
x− 1

ε
.

The above definition of Y (X) implies that

d

dx
y(x) =

d

dx
Y (X) =

d

εdX
Y (X),

d2

dx2
y(x) =

1

ε2
d2

dX2
Y (X).

Therefore, (16)1 implies that

YXX − YX = 0, Y (1) = 1,

and hence

Y (X) = C1 + C2e
X−1, C1 + C2 = 1.

We need a second condition to fix both C1 and C2. To this end, we assume (x − 1) = aε1/2

for some constant a < 0. Then X − 1 = aε−1/2 → −∞ as ε → 0. As ε → 0, on one hand
the inner solution y(1 + aε1/2) = Y (1 + aε−1/2) → C1; on the other hand the outer solution
implies y(1 + aε1/2)→ 0. To be self-consistent, we shall equate two limits:

C1 = 0.

In summary, we obtain our boundary-layer solution:

y(x) =

{
0 on (0, 1− ε),
e(x−1)/ε on (ε, 1).

1 The exact solution is given by

y(x) =
ex/ε − 1

e1/ε − 1
.

For more general problems, exact solutions are rarely possible.
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• We next solve (16)2.
2 For outer region (δ, 1), we anticipate y ∼ y′ ∼ y′′ ∼ 1. Neglecting

O(ε)-terms we obtain

y′ + y = 0, y(1) = 1,

which implies solution

y = e−x+1 on (δ, 1).

For the inner region (0, δ), we anticipate y′ ∼ 1/ε2, y′′ ∼ 1/ε4. To extract the asymptotic
behavior in the inner region, we have change of variables that zoom in the region:

Y (X) = y(x), X =
x

ε2
.

The above definition of Y (X) implies that

d

dx
y(x) =

d

dx
Y (X) =

d

ε2dX
Y (X),

d2

dx2
y(x) =

1

ε4
d2

dX2
Y (X).

Therefore, (16)2 implies that

YXX + YX = 0, Y (0) = 0,

and hence

Y (X) = C1 + C2e
−X , C1 + C2 = 1.

We need a second condition to fix both C1 and C2. To this end, we assume x = aε1/2 for
some constant a > 0. Then X = aε → +∞ as ε → 0. As ε → 0, on one hand the inner
solution y(aε) = Y (aε−1)→ C1; on the other hand the outer solution implies y(aε)→ e. To
be self-consistent, we shall equate two limits:

C1 = e.

In summary, we obtain our boundary-layer solution:

y(x) =

{
e− e1−x/ε2 on (0, δ),

e1−x on (δ, 1),

where δ can be determined by 3

e− e1−δ/ε2 = e1−δ ⇒ δ ∼ ε2.

From the above formal solution procedures to (16), we may raise the questions: (i) Why bound-
ary layer occurs? (ii) What is the right scaling of a boundary layer? and (iii) Where is the boundary
layer? Below we heuristically address these questions which will be useful for solving more general
non-constant coefficient problems.

2 The exact solution is given by

y(x) =
e−x/ε2 − e−x

e−1/ε2 − e−1
.

3The precise value of δ is of no importance.
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Why boundary layer occurs?

First of all, the phenomenon of a boundary layer is not the only possible behavior in a singular
perturbation problem. It occur if (i) on average the general solution behave like eλ(ε)x for some
λ(ε) ∈ R, and (ii) λ(ε)→ ±∞ as ε→ 0.

If λ(ε) has nonzero imaginary part, the solution will be fast oscillating.

What is the scaling of a boundary layer?

There are two ways to determine the scaling: (i) The scaling can be determined by solve the constant
coefficient equation at one of the boundary point, or (ii) By conjecturing a scaling X−a = (x−a)/δ,
upon changing of variables we shall obtain a nontrivial equation where at least two terms in the
original equation remain.

Where is the boundary layer?

Assume that boundary layer occurs near one boundary point. The singular solution is given by
eλ(ε)x. If λ(ε) → +∞ as ε → 0, then to guarantee a bounded solution on the interval (0, 1), the
boundary layer shall occur on the right boundary point as for (16)1; if λ(ε)→ −∞ as ε→ 0, then
to guarantee a bounded solution on the interval (0, 1), the boundary layer shall occur on the left
boundary point as for (16)2.
Example 1 Find solutions to the following problems by the boundary layer method:

εy′′ + a(x)y′ + b(x)y(x) = 0 on (0, 1), y(0) = A, y(1) = B,

where a(x) > 0 on (0, 1).
Example 2 Find solutions to the following problems by the boundary layer method:

εy′′ + a(x)y′ + b(x)y(x) = 0 on (0, 1), y(0) = A, y(1) = B,

where a(x) < 0 on (0, 1).

5.3 WKB method

Consider

εy′′ + y = 0, y(0) = 0, y(1) = 1.

A quick analysis shows that the singular roots are given by λ(ε) = ±ε−1/2i, and therefore, we
expect solutions of form y(x) ∼ c1 sinx/

√
ε+ c2 cosx/

√
ε. Indeed, the exact solution is given by

y(x) =
sin(x/

√
ε)

sin(1/
√
ε)
.

This kind of behavior of solutions cannot be captured by boundary layers since there are singular
oscillations in the interior domain.

More generally, let us consider

ε2y′′ = Q(x)y, Q(x) 6= 0.

If Q(x) > 0, we anticipate boundary layers; if Q(x) < 0, we anticipate singular oscillations in the
interior domain.
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To capture such singular behaviors, we may consider ansartz of form

y(x) ∼ exp(
1

δ

∞∑
n=0

δnSn(x)).

Inserting the above ansartz into equation, we find that

y′ ∼ 1

δ

∞∑
n=0

δnS′ny,

y′′ ∼ {1

δ

∞∑
n=0

δnS′′n + [
1

δ

∞∑
n=0

δnS′n]2}y,

and henceforth,

ε2

δ2
(S′0)

2 +
2ε2

δ
S′0S

′
1 +

ε2

δ
S′′0 + · · · = Q(x).

By dominant balance we necessarily have δ ∼ ε, and

(S′0)
2 = Q(x),

2S′0S
′
1 + S′′0 = 0,

2S′0S
′
n + S′′n−1 +

∑
S′jS

′
n−j = 0,
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Excercise

1. For small ε, find the first two terms in the expansion of each of the roots of

P (x, ε) = εx4 − x3 + 3x− 2 = 0.

2. Determine a two term expansion for the large roots of x = tanx and x tanx = 1.

3. Determine a two term expansion for the each of roots of

P (x, ε) = x3 − (3 + ε)x− 2 + ε = 0.

(Hint: the zeroth order solution x3 − 3x− 2 = 0 is given by x = −1,−1, 2.)

4. (Optional) Find the first two terms in the expansion of the roots of x3 − εx2 − ε2 = 0.

5. Consider the matrix Aε = A0 + εA1 for some small number ε << 1.

A0 =

[
1 0
0 2

]
, A1 =

[
a b
b c

]
Find the first three terms in the expansion of each eigenvalue-eigenvector pairs of Aε.

6. Evaluate the Fourier transformation of a function f ∈ C∞0 (R+):

I(ω) =

∫ ∞
0

eiωtf(t)dt (ω � 1).

(see Example 5.16 in the note of D. G.)

7. Evaluate the integral

I(x) =

∫ 5

0

e−xt

(1 + t2)
(x� 1).

(see Example 5.19 in D.G.)

8. Read remark 5.4 in the note of D.G. and write the proof for (14).

14
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