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Perturbation Theory

Perturbation theory is a problem-solving method which is applicable in situations in which
we know the solution to a certain problem and now want to solve a new problem which
is very close to the first—specifically, which is obtained from the first by making a small
change in some parameter. In this case the original problem is called the unperturbed
problem and the small change is a perturbation.

Section 1: Roots of polynomials

In this section we take up one of the simplest perturbation problems: we want to determine
how the roots of a polynomial change when the coefficients of the polynomial are perturbed.

1.1 Introduction Let us consider first a simple example.

Example 1: Suppose that we want to find the roots of the polynomial

x3 − 3x2 + 2x + 0.01. (1)

We think of this polynomial as obtained by a small change of the simpler polynomial
x3 − 3x2 + 2x, whose roots we can find easily: the constant term is changed from 0 to
ε0 = 0.01. The idea of perturbation theory is to consider this change as arising from the
introduction of a new variable ε, to study the problem for general ε, and then to specialize
to ε = ε0.

We therefore study the roots of

Pε(x) = x3 − 3x2 + 2x + ε.

The unperturbed polynomial P0(x) == x3 − 3x2 + 2x has roots x1 = 0, x2 = 1, and
x3 = 2, and it can be proved that the roots of the perturbed polynomial Pε(x) will, for
small values of ε, be analytic functions of ε which approach x1, x2, and x3 as ε goes to 0:

x1(ε) = x1 + a1ε + a2ε
2 + a3ε

3 + a4ε
4 + · · · = a1ε + a2ε + · · · (2a)

x2(ε) = x2 + b1ε + b2ε
2 + b3ε

3 + b4ε
4 + · · · = 1 + b1ε + b2ε + · · · (2b)

x3(ε) = x3 + c1ε + c2ε
2 + c3ε

3 + c4ε
4 + · · · = 2 + c1ε + c2ε + · (2c)

To obtain the coefficients in these series we substitute them into Pε(x) and collect powers
of ε. For example

Pε(x1(ε)) = (a1ε + a2ε
2 + a3ε

3 + a4ε
4 + . . .)3

− 3(a1ε + a2ε
2 + a3ε

3 + a4ε
4 + . . .)2

+ 2(a1ε + a2ε
2 + a3ε

3 + a4ε
4 + . . .) + ε

= (2a1 + 1)ε + (2a2 − 3a2
1)ε

2 + (2a3 + a3
1 − 6a1a2)e

3

+ (2a4 − 3a2
2 − 6a1a3 + 3a2

1a2)ε
4 + · · · (3)
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Notice that there is no constant term in the second line of (3); this is because the constant
term in (2a), x1 = 0, was already a root of P0. If (3) is to vanish for all ε then the
coefficient of each power of ε must vanish:

ε : 2a1 + 1 = 0 ⇒ a1 = −1

2

ε2 : 2a2 − 3a1 = 0 ⇒ a2 =
3

2
a2
1 =

3

8

ε3 : 2a3 + a3
1 − 6a1a2 = 0 ⇒ a3 =

1

2
(6a1a2 − a3

1) = −1

2

ε4 : 2a4 − 3a2
2 − 6a1a3 + 3a2

1a2 = 0 ⇒ a4 =
1

2
(6a1a3 + 3a2

2 − 3a2
1a2) =

105

128

Obviously one can continue to find as many terms as one likes; Maple tells us that

x1(ε) = −1

2
ε +

3

8
ε2 − 1

2
ε3 +

105

128
ε4 − 3

2
ε5 +

3003

1024
ε6 − 6ε7 +

415701

32768
ε8 − 55

2
ε9 + · · · (4a)

One determines the series for the other roots similarly:

x2(ε) = 1 + ε + ε3 + 3ε5 + 12ε7 + 55ε9 + · · · (4b)

x3(ε) = −1

2
ε − 3

8
ε2 − 1

2
ε3 − 105

128
ε4 − 3

2
ε5 − 3003

1024
ε6 − 6ε7 − 415701

32768
ε8 − 55

2
ε9 − · · · (4c)

As we will see below, what is important here is that the roots of the unperturbed
polynomial were simple and finite. In the perturbed polynomial, such roots will always
change slightly in a way which is given by a power series of the form (2), that is, they will
be analytic functions of the perturbation parameter ε. The situation for a multiple root
of the unperturbed polynomial (that is, a root x0 for which P0(x) has a factor (x − x0)

k

with k ≥ 2), or for an infinite root (to be explained below) is more complicated, and we
take it up in the next subsections.

Remark 1: (a) If we had originally wanted to study the roots of a polynomial in which
several coefficients were perturbed, say of x3 − 3.04x2 + 1.98x + 0.01 rather than of (1),
we still could do so with the introduction of only one perturbation parameter, by studying
x3 − (3 + 4ε)x2 + (2 − 2ε)x + ε.

(b) There is an alternative way of treating a non-zero root x0 (such as x2 and x3 in the
example above): one may make a change of variable y = x − x0, thus moving the root to
y = y0 = 0, The series for the root y0(ε) will then have no constant term, as in (2a).

(c) One can, in fact, determine the radii of convergence of the series (2). Consider x1(ε),
as ε varies, this root will move around in the complex plane. Of course, the roots x2(ε)
and x3(ε) will also be moving; at some value(s) of ε, x1(ε) will collide with one of these
others. If ε∗1 is the value of such a collision ε for which |ε∗1| is the smallest, then the series
for x1(ε) will have radius of convergence |ε∗1|. For the simple example here we can calculate
that ε∗1 is a root of 4 − 27ε2 = 0, so that |ε∗1| = 2

√
3/9 ≈ 0.3849 · · ·.
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1.2 Regular and singular perturbations. We will follow Bender and Orszag [1] in classifying
perturbation problems (of all types, not just root finding) as regular or singular. A regular
problem has two characteristics:

(i) The solution of the perturbed problem has the same general character as the solution
of the unperturbed problem.

(ii) The solution of the perturbed problem is an analytic function of ε, for small ε, and
thus has a representation as a convergent power series in ε.

Bender and Orszag suggest that these two characteristics are generally found together. A
problem which does not have both these characteristics is called singular.

How does this classification apply to our current problem of finding the roots of
perturbed polynomials? If we look at Example 1 we see the two characteristics of a regular
problem: (i) the perturbed problem, like the unperturbed one, has three distinct roots,
and (ii) the perturbed roots are given as convergent power series in ε. Thus this is a
regular perturbation problem. In our current context, singular problems can occur in two
distinctly different ways, as illustrated by the next two examples.

Example 2: Consider
Pε(x) = x2 − ε.

The unperturbed polynomial P0(x) = x2 has a double root at x = 0, but for ε 6= 0,
Pε(x) has two distinct roots, at

√
ε and −√

ε. Thus neither characteristic of a regular
perturbation problem holds here: the character of the solution has changed as we pass
from ε = 0 to ε 6= 0 (since one double root has become two separate roots) and the roots
are not analytic functions of ε (since

√
ε is not analytic at ε = 0). This then is clearly a

singular perturbation problem. We note a property of the solution which, as we will see,
is typical for singular perturbations of polynomial roots: the roots behave for small ε like
εp for some power p other than p = 1 (here p = 1/2).

Example 3: Consider
Pε(x) = εx2 + 2x − 3.

The unperturbed polynomial P0(x) = 2x − 3 has just one root, x1 = 3/2, but for ε 6= 0,
Pε(x), as a quadratic polynomial, has two roots, which may of course be found from the
quadratic formula. From this, and with the Taylor series

√
1 + z = 1+ 1

2
z− 1

8
z2+ 1

16
z3+· · ·

we then have

x+(ε) =
−1 +

√
1 − 3ε

ε

=
1

ε

[
−1 +

(
1 +

1

2
(3ε) − 1

8
(3ε)2 +

1

16
(3ε)3 − · · ·

)]

=
3

2
− 9

8
ε +

27

16
ε2 − · · · ; (5a)

this is the perturbation expansion of the unperturbed root x1 = 3/2. The second root is

x−(ε) =
−1 −

√
1 − 3ε

ε
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=
1

ε

[
−1 −

(
1 +

1

2
(3ε) − 1

8
(3ε)2 +

1

16
(3ε)3 − · · ·

)]

= −2

ε
− 3

2
+

9

8
ε − 27

16
ε2 − · · · ; (5b)

this shows that the second root x−(ε), present for ε 6= 0, is for small ε approximately
−2/ε. Thus this root travels off to ∞ as ε approaches zero, which is why for ε = 0 we
see only one root. This is certainly a singular perturbation problem: (i) the character of
the problem changes from having one root to having two roots as ε becomes nonzero, and
(ii) the root x−(ε) is certainly not analytic in ε for ε small.

For both the singular problems Example 1 and Example 2 we thus encounter roots
which, for small ε, behave as εp for some power p 6= 1: p = 1/2 in Example 2 and p = −1
in Example 3. This is the typical pattern, and we now turn to discussing this in full
generality. Incidentlly, we will see that the two phenomena of Example 1 and Example 2
can occur simultaneously: Pε(x) can have a multiple root at ∞.

1.3 Roots of a general polynomial. We now consider the general problem of finding the
solutions of Pε(x) = 0, where Pε(x) is a polynomial in x, of degree n, whose coefficients
depend on the parameter ε:

Pε(x) = a0(ε) + a1(ε)x + · · ·+ an(ε)xn =

n∑

k=0

ak(ε)xk. (6)

Here each coefficient ak(ε) is itself a polynomial in ε (so that in fact Pε(x) is a polynomial
in two variables, although we do not emphasize this since the roles played by x and by ε
are so different). For simplicity, and without loss of generality:

• We assume that an(ε) is not identically zero, that is, it is a polynomial in ε with at
least one nonzero coefficient. For if this were not true, then Pε(x) would really be a
polynomial of degree n − 1, and we could treat it that way.

• Similarly, we assume that a0(ε) is not identically zero. For if it were, then we could
write Pε(x) = xQε(x) with Qε(x) a polynomial of degree n − 1; thus 0 would be a
root of Pε for all ε, and we could simply note this fact and proceed to study the roots
of Qε.

When we set ε = 0, some of the coefficients of Pε may vanish; in particular, let us suppose
that an(0) = an−1(0) = · · · = am+1(0) = 0 but that am(0) 6= 0. The unperturbed
polynomial P0(x) will then be of degree m and have m roots x1, . . . , xm, and Pε(x) will
have n roots x1(ε), . . . , xn(ε), with xm+1(ε), . . . , xn(ε) approaching infinity as ε approaches
0. Note that if a root of a polynomial has multiplicity j then when we count the roots of
a polynomial we count that root j times.

Now we turn to developing the perturbation series for these roots. We concentrate
on the behavior of a zero root or an infinite root; see Remark 2 immediately below for the
general case. Our general method, based on our experience in Examples 1 through 3, will
be to make a substitution of the form x = εpw, and then to choose p in such a way that
we can study the behavior of certain roots. We expect p = 1 for a simple, finite root, and

4
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this will always be the case (see Example 1); for such roots one may start directly with
a substitution as in (2), whether the root is zero or not. We also expect that p may be
fractional for a multiple root (see Example 2), and that p will be negative for an infinite
root (see Example 3), that is, for the roots xm+1(ε), . . . , xn(ε).

Remark 2: As mentioned immediately above, the method we will describe here is directly
applicable to the study of either a root at 0 or a root at ∞. To study the perturbation of
a nonzero finite root x0 we can use one of two methods:

• As in Remark 1(b) we can make the change of variable y = x − x0, thus moving the
root to y = 0, and then use the substitution y = εpw, following the methods described
below, or

• We can study the root directly by a substitution x = x0+εpw. Once we have simplified
the resulting expression, however, the result will be just that which we would have
obtained using the method of substitution described immediately above.

See Example 6 below.

We now return to the problem of determining the perturbation expansion of the roots
of Pε(x) which arise from roots at x = 0, or at x = ∞, of the unperturbed polynomial
P0(x). The key idea is to look for numbers p such that some root or roots of Pε(x) = 0
behave, when ε → 0, as εpw, with w 6= 0. To find such values of p, and more information
about the behavior of the corresponding roots, we follow steps 1–3 below.

Example 4: We will illustrate our process as we go along with the model polynomial

Pε(x) = ε2x5 + (2ε + 3ε2)x3 + x2 + εx − 3ε + 4ε3. (7)

Note that P0(x) = x2 has two zero roots and three infinite roots.

Step 1. We make the substitution x = εpw in Pε(x), and ask how each term ak(ε)xk in
(6) will behave under this substitution. ak(ε) is a polynomial; suppose that the smallest
power of ε appearing there is rk, that is, that ak(ε) = εrk ãk(ε), with ãk(ε) a polynomial
satisfying ãk(0) = Ak 6= 0. Then

ak(ε)xk x=εpw−−−−−−→ εrk ãk(ε)(εw)p ∼ εrk+kpAkwk,

where in the last expression we have replaced factors ã(ε) by its ε = 0 value Ak. Thus
under this substitution we have

Pε(x) ∼
n∑

k=0

εrk+kpAkwk. (8)

Example 4 (continued): For the model polynomial P ∗
ε of (7) the polynomial of (8) is

ε2+5pw5 + ε1+3p2w3 + ε2pw2 − ε1+pw − 3ε.

Step 2. We now are interested nonzero roots, as ε → 0, of the polynomial (8) obtained
in the previous step. As ε becomes very small only the terms in this polynomial with the

5
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Exponent ri + pi
i = 5 i = 3 i = 2 i = 1 i = 0

j k rj + pj = rk + pk p 2 + 5p 1 + 3p 2p 1 + p 1

0 1 1 = 1 + p 0 2 1 0 1 1
0 2 1 = 2p 1/2 9/2 5/2 1 3/2 1
0 3 1 = 3p + 1 0 2 1 0 1 1
0 5 1 = 5p + 2 −1/5 1 2/5 −2/5 3/5 1
1 2 1 + p = 2p 1 7 4 2 2 1
1 3 1 + p = 1 + 3p 0 2 1 0 1 1
1 5 1 + p = 5 + 2p −1/4 3/4 1/4 −1/2 3/4 1
2 3 2p = 1 + 3p −1 −3 −2 −2 0 1
2 5 2p = 2 + 5p −2/3 −4/3 −1 −4/3 1/3 1
3 5 1 + 3p = 2 + 5p −1/2 −1/2 −1/2 −1 1/2 1

Table 1

smallest power of ε will be relevant, and a nonzero root will exist only if there are at least
two of these relevant terms. This leads to our criterion for the possible values of p:

For at least two indices j, k, with 0 ≤ j < k ≤ n, the exponents of ε in (8) must
agree, and must further be the smallest among all the exponents:

rj + pj = rk + pk ≤ ri + pi for all i, 0 ≤ i ≤ n.

Example 4 (continued): Let us see what this means for our model polynomial (7) We
tabulate the relevant data in Table 1: for each possible index pair j, k we give the equation
rj + pj = rk + pk, the value of p thus determined, and the values of all the exponents
ri + ip for this value of p. The values of p which determine the behavior of roots are those
in which the exponents for the indices j and k are the smallest among all these exponents.
By inspection of the table we see that there are two such values, p = 1/2, from the second
row of the table, and p = −2/3, from the ninth row. We will also need the corresponding
exponents e = rj + pj = rk + pk, which for these two rows are e = 1 and e = −4/3; when
we make the substation x = εpw the resulting polynomial will contain an overall factor εe.
(The notation e for this exponent is taken from [3] and used also in [2].) In summary, the
values we will need as we continue are

p e

1/2 1 (from j = 0, k = 2);
−2/3 −4/3 (from j = 2, k = 5).

(9)

Step 3. We now fix one of the (p, e) pairs found in Step 2 and study the behavior of those
roots of Pε(x) which behave as εp as ε → 0. It is convenient to make two more changes
of variable. First, if p is not an integer then our scaling will involve fractional powers of

6
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ε, and this is inconvenient for several reasons. Therefore if p = µ/ν with µ and ν integers
with no common factor and ν ≥ 2, we replace ε with a new variable β defined by ε = βν ;
then the replacement we make, corresponding to x = εpw = εµ/νw, is x = βµw. Second,
since we know that under this substitution , Pε will acquire an overall factor εe = βeν , we
remove this factor by multiplying Pε by β−eν . In summary: we study the nonzero roots of

Qβ(w) = β−eνPβν (βµw).

It turns out that these nonzero roots, say w1, . . . , wl, will be simple and will be analytic
functions of β, so that their perturbation expansion wi(β) = a0 + a1w + a2w

2 + · · · can be
studied as were the roots in Example 1.

Example 4 (continued): Again we work this out for our model problem, using the (p, e)
pairs given in (9). For p = 1/2 we have (by comparison with p = µ/ν) that µ = 1, ν = 2,
and so must introduce β by ε = β2 and make the substitution x = εpw = βw. Then, since
e = 1, we study the polynomial

Qβ(w) = β−2Pβ2(βw)

= β−2
(
β4(βw)5 + (2β2 + 3β4)(βw)3 + (βw)2 + β2(βw) − 3β2 + 4β6

)

= β7w5 + (2β3 + 3β5)w3 + w2 + βw − 3 + 4β4. (10)

The unperturbed polynomial here, Q0(w), is w2 − 3, with roots w1 =
√

3 and w2 = −
√

3,
and so Qβ(w) will have roots of the form (compare (2))

w1(β) =
√

3 + c1β + c2β
2 + c3β

3 + c4β
4 + · · · , (11a)

w2(β) = −
√

3 + d1β + d2β
2 + d3β

3 + d4β
4 + · · · . (11b)

To determine the coefficients in these expansion we substitute (11) into (10), set the result
equal to zero, and solve. For example, for w1(β) this gives

β7(
√

3 + c1β + c2β
2 + · · ·)5 + (2β3 + 3β5)(

√
3 + c1β + c2β

2 + · · ·)3

+ (
√

3 + c1β + c2β
2 + · · ·)2 + β(

√
3 + c1β + c2β

2 + · · ·) − 3 + 4β4 = 0

from which, setting the coefficients of various powers of β to 0, we have

β0 : 3 − 3 = 0

β : 2
√

3c1 +
√

3 = 0 ⇒ c1 = −1

2

β2 : c1 + c2
1 + 2

√
3c2 = 0 ⇒ c2 =

√
3

24
β3 : c2 + 2

√
3c3 + 2c1c2 + 6

√
3 = 0 ⇒ c3 = −3

β4 : 4 + c3 + 2
√

3c4 + 2c1c3 + c2
2 + 18c1 = 0 ⇒ c4 =

959
√

3

1152

7
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The coefficients di for w2(β) are obtained from the ci by changing
√

3 to −
√

3. Thus we
have series for two of the roots of the original polynomial Pε(x):

x1(ε) =
√

ε

(
√

3 − 1

2
ε1/2 +

√
3

24
ε − 3 ε3/2 +

959
√

3

1152
ε2 + · · ·

)

x2(ε) =
√

ε

(
−
√

3 − 1

2
ε1/2 −

√
3

24
ε − 3 ε3/2 − 959

√
3

1152
ε2 + · · ·

)

We now consider the second (p, e) pair: p = −2/3, e = −4/3. Now µ = −4, ν = 3; we
write ε = β3 and make the substitution x = εpw = β−2w. Then

Qβ(w) = β4Pβ3(β−2w)

= β4
(
β6(β−2w)5 + (2β3 + 3β6)(β−2w)3 + (β−2w)2 + β3(β−β−2w2w) − 3β3 + 4β9

)

= w5 + (2β + 3β4)w3 + w2 + β5w − 3β7 + 4β13. (12)

The unperturbed polynomial Q0(w) is w5 + w2, with roots w1 = w2 = 0, w3 = −1, w4 =
eπi/3, and w5 = e−πi/3. The two zero roots are the ones whose perturbation expansions
were obtained above, and here we are interested in the nonzero roots. They show that
Qβ(w) will have roots of the form

w3(β) = −1 + b1β + b2β
2 + b3β

3 + b4β
4 + · · · , (13a)

w4(β) = eπi/3 + c1β + c2β
2 + c3β

3 + c4β
4 + · · · , (13b)

w5(β) = e−πi/3 + d1β + d2β
2 + d3β

3 + d4β
4 + · · · (13c)

(of course, the coefficients ci and di here are not the same as those in (11).) We determine
the coefficients as above; for w3(β) the first step leads to

(−1 + b1β + b2β
2 + · · ·)5 + (2β + 3β4)(−1 + b1β + b2β

2 + · · ·)3

+ (−1 + b1β + b2β
2 + · · ·)2 + β5(−1 + b1β + b2β

2 + · · ·) − 3β7 + 4β13 = 0.

with similar formulas for w4 and w5. We omit details of the calculation; the final answers
are

x3(ε) = ε−2/3

(
−1 +

2

3
ε1/3 − 8

81
ε +

227

243
ε4/3 +

1

3
ε5/3 + · · ·

)

x4(ε) = ε−2/3

(
−1 +

2

3
e2πi/3ε1/3 − 8

81
eπi/3ε +

227

243
e2πi/3ε4/3 +

1

3
ε5/3 + · · ·

)

x5(ε) = ε−2/3

(
−1 +

2

3
eπi/3ε1/3 − 8

81
e2πi/3ε +

227

243
eπi/3ε4/3 +

1

3
ε5/3 + · · ·

)

8
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Exponent ri + pi
i = 2 i = 1 i = 0

j k rj + pj = rk + pk p 1 + 2p p 0

0 1 0 = p 0 1 0 0
0 2 0 = 1 + 2p −1/2 0 −1/2 0
1 2 p = 1 + 2p −1 −1 −1 0

Table 2

1.4 Further examples We treat briefly several other examples. In most cases we will be
quite brief, finding the scaling behavior of the roots but not calculating the higher terms
in the perturbation series.

Example 3 revisited: Earlier we studied the roots of the polynomial

Pε(x) = εx2 + 2x − 3.

via the quadratic formula; here we use the method of the previous section. Substituting
x = εpw into Pε(x) yields

ε1+2pw2 + εp2w − 3.

Analyzing this as for Example 4 above leads to the results summarized in Table 2, from
which it is clear that the relevant (p, e) pairs are

p e

0 0 (from j = 0, k = 1);
−1 −1 (from j = 1, k = 2).

(14)

For the case p = e = 0 we have x = ε0w = w and Qε(w) = ε0Pε(x) = Pε(x), that is, we
are simply looking at the original polynomial. Then P0(x) = 2x− 3 has one (simple) root
x1 = 3/2 and thus Pε(x) has root

x1(ε) =
3

2
+ b1ε + b2ε

2 + · · · , (15a)

and the coefficients bi may be determined in the usual way. For p = e = −1, x = ε−1w
and Qε(w) = εPε(ε

−1w) = w2 + 2w − 3ε. Thus Q0(w) = w2 + 2w has the simple root
w = −2, and the second root of Pε(x) will have the form

x2 = ε−1w(ε) = −2

ε
+ c1 + c2ε + · · · . (15b)

Of course, we have just found again the roots (5) found earlier.

Example 5: Consider the polynomial

Pε(x) = x4 + ε2x3 − εx2 + ε3.

9
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Exponent ri + pi
i = 4 i = 3 i = 2 i = 0

j k rj + pj = rk + pk p 4p 2 + 3p 1 + 2p 3

0 2 3 = 1 + 2p 1 4 5 3 3
0 3 3 = 2 + 3p 1/3 4/3 3 5/3 3
0 4 3 = 4p 3/4 3 17/4 5/2 3
2 3 1 + 2p = 2 + 3p −1 −4 −1 −1 3
2 4 1 + 2p = 4p 1/2 2 7/2 2 3
3 4 2 + 3p = 4p 2 8 8 7 3

Table 3

The unperturbed version P0(x) = x4 has root x = 0, of multiplicity 4. The substitution
x = εpw leads to

ε4pw4 + ε2+3pw3 + ε1+2pw2 + ε3,

and this leads to the data in Table 3. Recall now that the p values in the table were chosen
so that rj + jp = rk + kp; what remains is to determine the rows in which this common
value is the minimum of all the values of ri + ip in that row. This criterion is satisfied by
rows 1, in which r0 = r1 + 1 = 3 and the other ri + ip values are 4 and 5, and by row 5,
in which r2 + 2p = r4 + 4p = 2 and the other values are 7/2 and 3. Thus the (p, e) pairs
which must be considered are

p e

1 3 (from j = 0, k = 2);
1/2 2 (from j = 2, k = 4).

(16)

For the case p = 1, e = 3 we have x = εw and Qε(w) = ε−3Pε(εw) = εw4 + ε2w3 −w2 +1;
Q0(w) = −w2 + 1 has roots ±1 and so Qε(w) has roots

x±

1 (ε) = ε
(
±1 + b±1 ε + b±2 ε2 + · · ·

)
. (17a)

The coefficients b±i are determined in the usual way. For p = 1/2, e = 2, x = ε1/2w,
β =

√
ε, and Qβ(w) = β4Pβ2(βw) = w4 + β3w3 − w2 + β6. Now Q0(w) = w4 − w2 has

roots w = ±1 and Pε(x) has roots

x±

2 = ε1/2
(
±1 + c±1 ε1/2 + c±2 ε + · · · . (17b)

In this example the order-four root of the unperturbed polynomial P0(x) has split into two
pairs of roots, scaling in different ways: one pair as ε, one as

√
ε.

Example 6: We consider briefly

Pε(x) = εx3 + x2 − (4 + ε)x + 4 + 2ε.

10
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Now P0(x) = x2 − 4x + 4 has a double root at x = 2. We could investigate the behavior
of this root by the substitution x = 2 + εpw. Let us rather shift the root to the origin, by
the substitution y = x − 2, leading to the polynomial

P ∗

ε (y) = Pε(y + 2) = εy3 + (6ε + 1)y2 + 11εy + 8ε.

Analysis of P ∗
ε (y) then proceeds as in our earlier examples; we find two roots with leading

behavior y ∼ ±2
√

2
√

ε (corresponding to x ∼ 2 ± 2
√

2
√

ε) and one with leading behavior
y ∼ −1/ε (so that also x ∼ −1/ε).

References

[1] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and
Engineers. Springer, New York, 1999.

[2] David Gilliam, Perturbation Theory. Lecture notes from Texas Tech.

[3] James G. Simmonds and James E. Mann, Jr., A First Look at Perturbation Theory,
Second Edition. Dover Publications, Mineola, 1998.

11


