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We consider a class of Ising spin systems on a set � of sites. The sites are grouped
into units with the property that each site belongs to either one or two units, and
the total internal energy of the system is the sum of the energies of the individual
units, which in turn depend only on the number of up spins in the unit. We show
that under suitable conditions on these interactions none of the |�| Lee-Yang zeros
in the complex z = e2βh plane, where β is the inverse temperature and h the uniform
magnetic field, touch the positive real axis, at least for large values of β. In some
cases one obtains, in an appropriately taken β↗ ∞ limit, a gas of hard objects on a
set �′; the fugacity for the limiting system is a rescaling of z and the Lee-Yang zeros
of the new partition function also avoid the positive real axis. For certain forms of
the energies of the individual units the Lee-Yang zeros of both the finite- and zero-
temperature systems lie on the negative real axis for all β. One zero-temperature limit
of this type, for example, is a monomer-dimer system; our results thus generalize,
to finite β, a well-known result of Heilmann and Lieb that the Lee-Yang zeros of
monomer-dimer systems are real and negative. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4738622]

Dedicated to Elliott Lieb on the occasion of his eightieth birthday, in friendship and admiration.

I. INTRODUCTION

We consider a system of Ising spins on a finite set � of sites; we often think of � as a
subset of some lattice L. Writing σ = (σi )i∈�, with σ i = ± 1, for a spin configuration, we let
N = N (σ ) = ∑

i∈�(1 + σi )/2 be the total number of up spins. We will sometimes think of this
system as a lattice gas in which ηi = (1 + σ i)/2 is the indicator of a particle at site i; N is then the
total number of particles in the system and N/|�|, with |�| the number of sites, the average density
ρ. The average magnetization per site is m = |�|− 1∑σ i = |�|− 1(2N − |�|) = 2ρ − 1. The
thermodynamic properties of this system are determined1 by the partition function,

Z�(z, β) =
∑

σ :�→±1

zN (σ )e−βU (σ ), (1.1)

where U (σ ) is the internal energy of the configuration σ , β is the inverse temperature, and z is the
magnetic fugacity, that is, z = e2βh with h the magnetic field. Z� is a polynomial in z of order |�|,
with positive coefficients.

The zeros in the complex fugacity plane of Z�(z, β), usually called Lee-Yang zeros, have been
of interest since the original studies of Yang and Lee2 and Lee and Yang.3 For finite systems none
of the |�| zeros can lie on the physically relevant positive real axis. But when � is a subset of
some periodic lattice L and U (σ ) is the restriction to � of a translation invariant energy (with some
boundary conditions), so that we may speak of the thermodynamic limit � ↗ L, the zeros can in this
limit approach the real axis, signaling (typically) the existence of a phase transition in the model.2

The nature of the phase transition depends on the manner in which the zeros approach the positive z
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axis as β or other parameters in U are changed. Speaking loosely, there will be a discontinuity in the
magnetization per site, that is, a first order transition, at a value H of the magnetic field if the density
of zeros on the real axis at z = e2βH is nonzero, and a higher order transition if there is a nonzero
density arbitrarily close to this point.2

In their second paper,3 Lee and Yang proved that for the Ising model with ferromagnetic pair
interactions, that is, for

U (σ ) = −
∑

{i, j}∈�, i �= j

Ji jσiσ j , (1.2)

with all Jij ≥ 0, all the zeros of Z� lie on the unit circle |z| = 1. Consequently, the only possible
thermodynamic phase transition in this system takes place at z = 1 or h = 0. The Lee-Yang theorem
has been extended in many ways to a variety of classical and quantum systems; see Refs. 4 and 5
for reviews. One can also prove in many cases that there is indeed a first order phase transition at
sufficiently large β, so that the zeros must have a nonzero density at z = 1 in the thermodynamic
limit.

Much less is known rigorously for general spin systems in which the zeros do not lie on the unit
circle. This has led to numerical studies of these zeros for � a subset of a lattice L; in particular,
the cases in which L is either Z2 or the planar triangular lattice, and in which the internal energy
is given by (1.2) with uniformly antiferromagnetic nearest-neighbor interactions, that is, with Jij

= Jδ|i − j|, 1, J < 0, have been investigated extensively.6–8 These systems can be proven to undergo
phase transitions in the thermodynamic limit � ↗ L, for large values of β, at nonzero values of
h.9–11 This implies that the zeros of their partition functions must converge to the real axis at some
point z(β) �= 1. More recently, there have also been results for systems in which the zeros lie on the
unit circle for large β but not for small β.12 In some cases they touch the real axis, either for finite
β or in the limit β ↗ ∞.

There have also been many studies of the Lee-Yang zeros of the grand canonical partition
function for general interacting particle systems on lattices or in the continuum. Of particular
interest to us is the case of “hard” interactions, in which for every particle configuration η either
U(η) = 0 or U(η) = ∞; put another way, some configurations are forbidden, while all others have
no internal energy. Systems with such interactions can often be obtained as a suitable β → ∞ limit
of (1.2). In many interesting cases one may then think of the model as a system of particles (which
may or may not correspond to the original particles) with fixed shapes, like dimers, diamonds,
or hexagons, which cover more than one lattice site and which cannot overlap. For such systems
temperature plays no role, so that the partition function does not depend on β; we will write y for
the fugacity of the new particles and Q�(y) for the corresponding partition function. It has been
shown, in particular, for the case of dimers (on an arbitrary graph) that the zeros of Q�(y) all lie on
the negative real y axis;13 any system with this property will of course not have any phase transitions
in the thermodynamic limit. On the other hand, hard diamonds on Z2 and hard hexagons on the
triangular lattice do have a phase transition in the thermodynamic limit.9, 14, 15

In this note we will first describe a new class of Ising systems for which no zeros touch the
positive real axis, at least for large β (low temperature). In some of these systems all the zeros lie
on the negative real axis, either for all values of β or for large β; in others, the zeros are excluded
from some wedge −φ < arg z < φ, where 0 < φ < π . We will then investigate the “hard” systems
obtained from some of these, after suitable rescaling, in the limit β → ∞; these systems will
similarly have no zeros of Q(y) encroaching on the real y axis and hence no phase transition. The
models obtained in this way include the monomer-dimer model13 and the graph-counting models of
Refs. 16 and 17; our results thus generalize these latter results to a wider class of “hard” systems
and to related low-temperature models.

II. A CLASS OF SYSTEMS WITH LEE-YANG ZEROS BOUNDED AWAY
FROM THE POSITIVE REAL AXIS

We consider Ising spin systems decomposable into subsystems, called units, with the property
that each site belongs to either one or two units. Examples include the (three-dimensional) pyrochlore
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(a) Kagome lattice (b) Checkerboard (c) Ladder

FIG. 1. Lattices decomposable into units with each site in two units.

lattice,18, 19 in which the units are tetrahedra, the (two-dimensional) kagome lattice (Figure 1(a)),
in which the units may be taken to be either the triangles or the hexagons, the checkerboard,12, 20

in which the units are the alternate squares of the two dimensional square lattice (Figure 1(b)),
and the ladder, in which every square is a unit (Figure 1(c)). We use the notation of Sec. I and
write �α for the set of sites of the αth unit, with |�α| = nα , and σα for the spin configuration
and Nα = Nα(σα) = Nα(σ ) for the total number of up spins in the αth unit. Note that, in general,
N (σ ) ≤ ∑

α Nα(σ ) ≤ 2N (σ ), since a site i with σ i = 1 may belong to either one or two units.
The internal energy U (σ ) of the system is assumed to be the sum of the internal energies of the

units,

U (σ ) =
∑

α

Uα(σα), (2.1)

and these are assumed to be symmetric in the spins of the unit, so that

Uα(σ ) = Fα(Nα(σ )), (2.2)

with Fα a polynomial of degree at most nα . We can think of (2.2) as a mean field interaction among
the spins in �α . The partition functions (1.1) for a single unit and for the entire system thus become

Z�α
(z, β) =

∑
σi =±1, i∈�α

zNα(σα )e−βFα (Nα(σα)) =
nα∑

l=0

(
nα

l

)
zle−βFα (l), (2.3)

Z�(z, β) =
∑

σi =±1

zN (σ )e−β
∑

α Fα(Nα (σ )). (2.4)

We will prove in Sec. III that under certain conditions on the function Fα the Lee-Yang zeros
of Z�(z, β) are bounded away from the positive real z axis at low temperature or, under stronger
conditions, must lie on the negative real axis. The next result shows that such bounds on the zeros
of Z�(z, β) follow from similar bounds on the zeros of Z�α

(z, β).

Theorem 2.1: Suppose that the angle φ satisfies 0 ≤ φ < π /2. If each zero ζ of Z�α
(z, β)

satisfies

ζ �= 0, π − φ ≤ arg ζ ≤ π + φ, (2.5)

then each zero ζ ′ of Z�(z, β) satisfies

ζ ′ �= 0, π − 2φ ≤ arg ζ ′ ≤ π + 2φ. (2.6)

In particular, if each ζ is real and negative, so is each ζ ′.

Before proceeding to the proof of the theorem we give a simple example.
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Example 2.2: If unit α has antiferromagnetic pair interactions of equal strength between every
pair of sites then its internal energy may be written, after adding a constant, as

Fα(Nα(σα)) = −J
∑

{i, j}⊂�α, i �= j

(σiσ j − 1) = −2 |J | Nα(nα − Nα), J < 0. (2.7)

We consider several cases in which each unit has energy of the form (2.7).

(a) The one-dimensional nearest neighbor antiferromagnetic Ising model, defined on � = {1, . . . ,
n}, may be regarded as a model of this type in which the units are the pairs αi = {i, i + 1}, all
with the same coupling J. From (2.7) we then have Z�αi

(z, β) = z2 + 2az + 1 with a = e2β|J|

> 1; this polynomial has two negative real zeros and hence, by Theorem 2.1, the zeros Z(z, β)
are negative real.

(b) When the only interactions considered for the checkerboard of Figure 1(b) are pair interactions
then one may term the system the pyrochlore checkerboard,20 since if each pair of vertices in
a square are connected with edges one obtains a planar representation of a tetrahedron. To be
concrete we choose, for example, a 2L × 2L lattice with doubly periodic boundary conditions.
It is then possible to check that with the unit energy (2.7), with of course nα = 4, all four zeros
of Z�α

(z, β) are on the negative real axis (this is in fact verified for arbitrary values of nα in
Theorem 3.1 below). Theorem 2.1 then states that the zeros of Z� will all lie on the negative
real axis; since this remains true as � ↗ Z2, the system will not have a phase transition at
any finite temperature. In fact, the pressure and all correlations will be analytic functions of h
for all h ∈ R.

(c) The ladder (Figure 1(c)) illustrates the fact that two units may share several vertices and thus
an edge. Note, however, that the form (2.2) of the total energy implies, with (2.7), that the
coupling constant for these shared edges (vertical in Figure 1(c)) is twice that for the unshared
(horizontal) edges.

A. Proof of Theorem 2.1

The proof of Theorem 2.1 depends on two standard results, which we quote for completeness;
see the Appendix of Ref. 21 for more details. We let An denote the space of complex polynomials in
z1, . . . , zn which are separately affine in each variable, and observe that if P is a complex polynomial
of degree at most n then there is a unique symmetric P̂ ∈ An such that P̂(z, . . . , z) = P(z). A closed
circular region is a closed subset K of C bounded by a circle or a straight line.

Theorem 2.3 (Grace’s theorem): Let P be a complex polynomial in one variable of degree at
most n. If the n roots of P are contained in a closed circular region K and z1 �∈ K, . . . , zn �∈ K, then
P̂(z1, . . . , zn) �= 0.

If P is in fact of degree k with k < n then we say that n − k roots of P lie at ∞ and take K
noncompact. For a proof of the result see Polya and Szegö22 Sec. V, exercise 145.

Lemma 2.4 (Asano-Ruelle) (Refs. 23 and 24): Let K1, K2 be closed subsets ofC, with K1, K2 �� 0.
If � is separately affine in z1 and z2, and if

�(z1, z2) ≡ A + Bz1 + Cz2 + Dz1z2 �= 0,

whenever z1 �∈ K1 and z2 �∈ K2, then

�̃(z) ≡ A + Dz �= 0,

whenever z �∈ − K1 · K2. [We have written −K1 · K2 = {−uv : u ∈ K1, v ∈ K2}].

The map � 
→ �̃ is called Asano contraction; we denote it by (z1, z2) → z. To state the next
result we define, for ε > 0 and − π /2 < θ < π /2, Kθ (ε) = {z: Re[eiθ (z + ε)] ≤ 0}.
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Lemma 2.5: If φ is as in Therorem 2.1 and P is a complex polynomial each of whose zeros ζ

satisfies (2.5), then for any θ with |θ | < π /2 − φ there is an ε > 0 such that P̂(z1, . . . , zn) �= 0
when z1, . . . , zn �∈ Kθ (ε).

Proof: Clearly there is an ε > 0 such that P(z) �= 0 when z �∈ Kθ (ε), and the result follows from
Grace’s theorem. �

Lemma 2.6: Suppose that φ is as in Theorem 2.1 and that Pi(z), i = 1, . . . , I, is a polynomial of
degree ni each of whose zeros ζ satisfies (2.5). Suppose further that the polynomial Q̂(z1, . . . , zn) is
obtained from the product

I∏
i=1

P̂i (zi,1, . . . , zi,ni ),

by a sequence of Asano contractions (zi, j, zk, l) → zm or relabelings zi, j → zm. Then each zero ζ ′ of
Q(z) satisfies (2.6).

Proof: For each θ with |θ | < π /2 − φ we obtain from Lemma 2.5 and the Asano-Ruelle lemma
that for some ε > 0, Q̂(z1, . . . , zn) �= 0 when each of z1, . . . , zn lies in the complement of the set
− Kθ (ε) · Kθ (ε). Thus Q(z) �= 0 when z is in the complement of −Kθ (ε) · Kθ (ε). This complement
is the interior of a parabola with focus at 0 and, in particular, contains the ray making an angle
2θ with the positive real axis. As θ varies in θ ∈ (−π /2 + φ, π /2 − φ) this ray sweeps out the
complement of the region defined by (2.6). �

We can now give the proof of the main result.

Proof of Theorem 2.1: The main statement of the theorem is an immediate consequence of
Lemma 2.6, since Ẑ (z1, . . . , z|�|) is obtained from

∏
α Ẑα(zα1, . . . , zαnα

) by Asano contractions and
relabelings. The last statement follows by taking φ = 0. �

In Sec. III A below we will need the following corollary of Lemma 2.6.

Corollary 2.7: Suppose that P(z) is a polynomial of degree n for which each zero ζ is real and
negative. If Q̂ is obtained from P̂ by squaring all coefficients, then each zero ζ ′ of Q is real and
negative.

Proof: Take φ = 0, I = 2 and P1 = P2 = P in Lemma 2.6 and make all contractions (z1j, z2j)
→ zj. �
III. ZEROS OF THE PARTITION FUNCTION OF A SINGLE UNIT

In this section we consider a particular unit α with nα sites, energy Fα(Nα), and partition
function Z�α

, and address the question implicitly raised by Theorem 2.1: when are all zeros of the
function Z�α

confined to a sector of the form (2.5) for some φ? In Sec. III A we give a criterion
which guarantees that for all β these zeros satisfy (2.5) with φ = 0, and in Sec. III B several criteria
implying bounds of the form (2.5) for various values of φ.

A. A quadratic interaction energy

Theorem 3.1: Suppose that Fα(l) is quadratic with positive leading coefficient: Fα(l) = al2

+ bl + c with a > 0. Then for any β ≥ 0 all zeros of Z�α
(z, β) are real and negative.

Note that if Fα(l) = al2 + bl + c then the constant c is irrelevant, the constant b represents
a shift in the magnetic field, and the constant a may be absorbed into the inverse temperature; thus
we may (and will) assume without loss of generality that Fα(l) = − l(n − l). In the spin language
this is an energy in which every pair of spins in the unit is coupled with the same antiferromagnetic
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interaction and there is a uniform magnetic field, as in example 2.2; in the lattice gas language
particles on each pair of sites interact with the same positive repulsive potential and there is a
uniform chemical potential.

Lemma 3.2: If b > 0, the polynomial

P(b)(z) =
n∑

l=0

(
n

l

)
(1 + bl(n − l))zl

has only real negative zeros.
Proof: We have

P(b)(z) = (z + 1)n + bn(n − 1)
n−1∑
l=1

(
n − 2

l − 1

)
zl

= (z + 1)n + bn(n − 1)z(z + 1)n−2

= (z + 1)n−2[z2 + (2 + bn(n − 1))z + 1],

which has only real negative zeros.

Proof of Theorem 3.1: Starting from P(2−kβ) as in Lemma 3.2, we obtain by k applications of
Corollary 2.7 that the polynomial

n∑
l=0

(
n

l

)
(1 + βl(n − l)2−k)2k

zl (3.1)

has only real negative zeros. Letting k → ∞ we find that

Z�α
(z, β) =

n∑
l=0

(
n

l

)
eβl(n−l)zl (3.2)

has only nonpositive real zeros, and we need only observe that the constant term in (3.2) is
nonzero. �

Remark 3.3:

(a) If we consider the system to be comprised of a single unit, i.e., take �α = �, then Theorem
3.1 implies that in the mean-field Ising model with antiferromagnetic interactions all Lee-Yang
zeros lie on the negative real axis.

(b) If we consider this same system but with ferromagnetic pair interactions, which is equivalent
to taking β < 0 in (3.2), then the standard Lee-Yang theory implies that all zeros of Z� lie on
the unit circle .

B. A convex interaction energy

When Fα is as in Theorem 3.1 it is convex on the range 0 ≤ l ≤ nα in the sense that

2Fα(l) ≤ Fα(l + 1) + Fα(l − 1), l = 1, . . . , nα − 1. (3.3)

In this section we consider a unit energy Fα(l), not necessarily quadratic, which satisfies (3.3).
We begin by introducing some notation to describe such an Fα more precisely. Let 0 = k0

< k1 < · · · < kr−1 < kr = nα be indices such that strict inequality holds in (3.3) if and only
if l = ki for some i with 1 ≤ i ≤ r − 1. To understand the role of these indices it is helpful
to introduce a geometric interpretation. Let fα(x) be defined on the interval [0, nα] as the linear
interpolation of the nodes (l, Fα(l)), l = 0, 1, . . . , nα , and let f ∗

α ⊂ R2 be the epigraph of fα:
f ∗
α = {(x, y) | x ∈ [0, nα], y ≥ fα(x)}. Then f ∗

α is a convex subset of R2 with two vertical faces
and r nonvertical faces. The vertices of f ∗

α are the nodes (ki, Fα(ki)); all other nodes (l, Fα(l)) are
interior points of the (nonvertical) faces of f ∗

α . See Figure 2. For 1 ≤ i ≤ r we define Hα, i to be the
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0 1 2 3 4 5 6 7 8

f∗
α

FIG. 2. Typical set f ∗
α , with nα = 8, r = 5, and (k0, . . . , k5) = (0, 3, 4, 5, 7, 8). Nodes (l, Fα(l)) are indicated by dots, with

heavier dots when l = ki for some i.

slope of the (nonvertical) face of f ∗
α containing (ki−1, Fα(ki−1)) and (ki, Fα(ki)), and note that Hα, i

= Fα(l) − Fα(l − 1) whenever ki − 1 < l ≤ ki. Finally, for h ∈ R we define

Eα(h) = min
0≤l≤n

(Fα(l) − hl). (3.4)

We will be interested in Sec. IV in the set Sα(h) of values of l on which the minimum in (3.4) is
realized; clearly if h is not equal to any of the Hα, i then Sα(h) contains a unique l, while for h = Hα, i

it contains those l for which (l, Fα(l)) lies in the ith nonvertical face of f ∗
α .

The next result shows that at low temperature the zeros of Z�α
fall into r groups, where the ith

group is naturally associated with the ith nonvertical face of f ∗
α and contains ki − ki−1 points, all

with magnitude of order e−β Hα,i .

Lemma 3.4: For i = 1, . . . r let

Ri (t) =
ki∑

j=ki−1

(
nα

j

)
t j−ki−1

and let ti,1 . . . ti,ki −ki−1 be the zeros of Ri. Then one may number the zeros z1, . . . znα
of Z�α

in such
a way that for ki−1 < j ≤ ki,

lim
β→∞

z j e
β Hα,i = ti, j−ki−1 .

Proof: For l < ki−1 or l > ki the coefficient of tl in the polynomial

R̂β,i (t) = eβEα (Hα,i ) Z�α
(teβ Hα,i , β)

= t ki−1 Ri (t) + ∑
l<ki−1 or l>ki

(
nα

l

)
t le−β(Fα (l)−Hα,i l−Eα (Hα,i ))

converges to zero as β ↗ ∞. Thus, ki−1 of the roots converges to 0, nα − ki to infinity, and the
remaining ki − ki−1 to the roots of Ri.25 �

To state the main result of this section we let δ = max1 ≤ i ≤ r(ki − ki−1); δ + 1 is the maximum
number of nodes lying on any nonvertical face of f ∗

α .

Theorem 3.5:

(a) If δ = 1, i.e, if all the inequalities in (3.3) are strict, then all roots of Z�α
are real and negative

for sufficiently large β.
(b) If δ = 2 then all roots of Z�α

satisfy (2.5) with φ = π /3 for sufficiently large β.
(c) If δ = 3 then there is an angle φnα

, which as indicated may be chosen to depend only on nα ,
such that φnα

< π/2 and such that all roots of Z�α
satisfy (2.5) with φ = φnα

for sufficiently
large β.
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(d) If k1 ≤ 4 and kr−1 ≤ nα − 4 with at least one of these an equality, and ki − ki−1 ≤ 3 for i −
2, . . . , r − 1 so that δ = 4, then there is an angle φnα

< π/2 such that all roots of Z�α
satisfy

(2.5) with φ = φnα
for sufficiently large β.

Proof:

(a) When δ = 1 each of the polynomials Ri(t) is linear, with a negative real root. From Lemma 3.4
the roots of Z�α

for large β must be widely separated in magnitude, and since any complex
roots among these occur in complex conjugate pairs, the roots must in fact be real.

(b) It follows from Lemma 3.4 that arg z j → arg ti, j−ki−1 as β ↗ ∞, so that it suffices to show that
each root tij satisfies | arg ti j − π | < π/3. When δ = 2 the Ri(t) are either linear, with roots
having argument π , or quadratic; in the latter case the quadratic formula shows that the roots
tij are complex, have negative real part, and satisfy∣∣∣∣ Im ti j

Re ti j

∣∣∣∣ =
√

4(ki − 1)(nα + 1 − ki )

ki (nα + 2 − ki )
− 1 <

√
3, (3.5)

which yields the desired bound. Improved bounds on the roots for specific values of ki and nα

may be obtained from (3.5). For example, if i = 1 then k1 = 2 and one obtains (2.5) with φ

= π /4 for the smallest (in magnitude, at large β) two zeros of Z�α
, a result closely related to

earlier work of Ruelle,16 as we discuss in Sec. V.
(c) When δ = 3 the polynomials Ri can be linear, quadratic, or cubic; following the analysis of

(b) it suffices to show that in the cubic case all roots have negative real part. Up to a constant
factor any such cubic Ri has the form

k(k − 1)(k − 2) + k(k − 1)(n + 3 − k)t

+ k(n + 3 − k)(n + 2 − k)t2 + (n + 3 − k)(n + 2 − k)(n + 1 − k)t3, (3.6)

where n = nα and k = ki. For n = k = 3 this polynomial has a triple root at z = − 1; we
may then vary n and k continuously to some desired values and ask whether roots can cross
the imaginary axis during this procedure. We may assume that the intermediate values of n, k
remain real and satisfy n, k ≥ 3 and n − k ≥ 0. Suppose (3.6) vanishes for t = is, s real. We
cannot have s = 0 since k(k + 1)(k + 2) �= 0. For s �= 0 we would have both

(k − 1)(k − 2) = (n − k + 2)(n − k + 3)s2

and

k(k − 1) = (n − k + 1)(n − k + 2)s2,

so that (n − k + 1)(k − 2) = k(n − k + 3), i.e., n + 1 = 0, in contradiction with n ≥ 3.
(d) We suppose that k1 = 4; the analysis when kr−1 = nα − 4 is the same. With the results (a)–(c)

above it suffices to show that the roots of

R1(t) =
4∑

l=0

(
nα

l

)
t l (3.7)

satisfy an appropriate bound of the form (2.5). The roots of R1(t) are all equal to − 1 for
nα = 4 and, treating nα as a continuous variable, can have the form t = is, s real, only for nα a
root of n2 + 9n − 4 = 0; as both the roots of this polynomial are less than 4 the roots of R1

for nα > 4 must all lie strictly in the left half plane.

Remark 3.6:

(a) A classical result of Newton provides a converse to Theorem 3.5(a): if all roots of Z�α
are real

for some β then either equality holds for all l in (3.3), in which case Fα(l) = A + Bl for some
A, B, there are no interactions, and all roots of Z�α

are equal, or strict inequality holds for all
l in (3.3). For a proof see p. 104 of Ref. 26. Other related results are contained in Refs. 27–29.
In particular, (a) of the theorem follows from the result of Ref. 27.
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(b) By taking k ≈ nα/2 one sees that there is no bound (2.5) on the roots of (3.6) which is uniform
in nα and k and satisfies φ < π /2. On the other hand, one can show that such a uniform bound
may be found both for the roots of (3.6) for fixed k and for the roots of (3.7).

C. An example: Quartic and quadratic interactions

As an example we consider a unit with two and four spin interactions which satisfy spin flip
symmetry. In the particle language described in Sec. I the energy is

Uα(σ ) = −K2

∑
1≤i< j≤n

(ηiη j + η̂i η̂ j ) − K4

∑
X⊂{1,...,n}

|X |=4

(∏
i∈X ηi + ∏

i∈X η̂i
)
,

where η̂i = 1 − ηi , i.e.,

Fα(l) = −K2

[(
l

2

)
+

(
nα − l

2

)]
− K4

[(
l

4

)
+

(
nα − l

4

)]
.

We assume that K2 and K4 are not both zero. The convexity condition (3.3) is satisfied with strict
inequality for all l, if

2K2 + K4

2

[
(l − 1)(l − 2) + (nα − l − 1)(nα − l − 2)

]
< 0

for l = 1, . . . , n − 1. This happens when

θnα
< arg(K2 + i K4) < φnα

, (3.8)

where the angles φn and θn are given by

tan θn = − 4
(n−2)(n−3) , π/2 ≤ θn < π,

tan φn =
⎧⎨
⎩

− 8
(n−2)(n−4) , if n is even,

− 8
(n−3)2 , if n is odd,

3π/2 ≤ φn < 2π.

See Figure 3. Under condition (3.8), Theorem 3.5(a) implies that Z�α
has its zeros on the negative

real axis at low temperature, and hence by Theorem 2.1 so does Z�, if all units in the system
are of this type. Note that, in particular, (3.8) includes the negative K2-axis, where we know from
Theorem 3.1 that the zeros are real and negative at all temperatures. For nonzero values of K2 and K4

not satisfying (3.8), Remark 3.6(a) implies that the zeros do not lie exclusively on the real z axis for
any β.

If we specialize further to the case nα = 4, in which θn = tan − 1(−2) and φn = 3π /2, then the
region in the space of interactions at which all zeros are on the negative real axis can be computed
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FIG. 3. In the shaded region (which extends to infinity in both the x and y directions) all zeros are real and negative at low
temperature.
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FIG. 4. The case nα = 4. When β = 1 all zeros are real and negative if and only if (K2, K4) lies in the shaded region (which
extends to infinity in both the x and y directions).

exactly. Since a change of temperature is equivalent to a rescaling of (K2, K4) it is convenient to take
β = 1; then this region is given by

log

[
3 − √

9 − 8a2

2a4

]
> K4 >

{
log

[
4a−3

a4

]
, i f K2 > log(3/4),

−∞, otherwise,

where a = eK2 . See Figure 4. The computation follows that in the proof of Proposition 6 of Ref. 12,
and we omit details.

IV. GROUND STATES AND ZERO TEMPERATURE LIMITS

Consider a system which is assembled from units, as described in Sec. II, such that the energy
Fα for each unit is convex in the sense of (3.3). In this section we suppose further that each site
belongs to exactly two units.

Let us fix, for the moment, a magnetic field h0. The total energy of the system in spin configu-
ration σ , including the magnetic energy, is then

U (σ ) − 2h0 N (σ ) =
∑

α

[Fα(Nα(σ )) − h0 Nα(σ )]. (4.1)

From (4.1) and (3.4) it follows that this energy is bounded below by E0 = ∑
αEα(h0). On the other

hand, if we recall the definition of Sα(h0) given below (3.4) we see that E0 is in fact the ground
state energy of the system—the minimum value of (4.1)—if and only if it is possible to find a spin
configuration σ such that Nα(σ ) ∈ Sα(h0) for each α. When this is true we say that the system is not
frustrated.

Now we assume that our system is not frustrated and consider a zero temperature limit β ↗ ∞
with a β-dependent fugacity z(β) = e2βh(β) such that h(β) → h0 as β ↗ ∞; specifically, for some
λ ∈ R we take

h(β) = h0 + λ

2β
. (4.2)
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FIG. 5. The h-T plane for the pyrochlore checkerboard with pair interactions.

In the h-T phase plane (where T = 1/β is the temperature) this corresponds to approaching (h0, 0)
along a line with slope 2/λ.30 Then with y = eλ the limiting partition function is

Q�(y, h0) = lim
β↗∞

eβE0 Z�(z(β), β)

= lim
β↗∞

∑
σ

yN (σ )e−β(U (σ )−2h0 N (σ )−E0) =
∑

σ∈G(h0)

yN (σ ), (4.3)

where G(h0) is the set of ground-state configurations. We are of course interested in the behavior
of the zeros of Z� under the limiting process (4.3). If Nmin(h0) = minσ∈G(h0) N (σ ) and Nmax(h0)
= maxσ∈G(h0) N (σ ) then Nmin zeros will converge to 0 and |�| − Nmax to ∞,25 while the remaining
zeros converge to the (nonzero) roots of y−Nmin Q�(y, h0).

When for each α one has |Sα(h0)| = 1, that is, when h0 �= Hα, i for any α, i, there is a unique
ground state configuration and Q(y, h0) is rather uninteresting. When there are many ground state
configurations, however, they can in some cases be identified with configurations of “hard objects”
and Q(y, H0) is then the partition function for these.

In the next example we illustrate these ideas by revisiting example 2.2(b). In Sec. V we describe
a family of examples involving graph-counting polynomials.

Example 4.1: We consider again example 2.2(b): pair interactions on a 2L × 2L pyrochlore
checkerboard with doubly periodic boundary conditions. The unit energy of the model is given in
(2.7), with nα = 4 for all α. Since the energy for all units has the same form Fα(l) = − 2|J|l(4 − l)
we will omit the subscript α on F and similar quantities when no confusion can arise. The fields
Hl = F(l) − F(l − 1) defined in Sec. III B are H1 = − 6|J|, H2 = − 2|J|, H3 = 2|J|, and H4

= 6|J|. For Hl < h0 < Hl +1 (with H0 = − ∞ and H5 = ∞) the zero temperature limit along the
line (4.2) is independent of λ and the ground state configurations each have exactly l up spins in
each unit, that is, Nα = l for each α. If we take the T → 0 limit of the partition function along a
line (4.2) with h0 = Hl we obtain ground states in which both Nα = l and Nα = l − 1 are possible,
with the total value of N controlled by the fugacity y = eλ. The situation in the h-T plane is shown in
Figure 5, with a typical line (4.2) for h0 = H1 = − 6|J|.

We may interpret the ground state configurations in terms of hard objects by considering dimers
on the new lattice �′ obtained from � by shrinking each unit to a vertex and introducing an edge
joining two of these points when the corresponding units share a site; �′ is again a square lattice
with certain periodic boundary conditions. An occupied site in � corresponds to a dimer covering
the corresponding edge in �′, so that a ground state for Hl < h0 < Hl +1, with Nα = l for each α,
corresponds to a dimer configuration on �′ in which every vertex is covered by exactly l dimers.
In a ground state with h0 = Hl each site of �′ is covered by either l or l − 1 dimers. Thus, for
example, for h0 = H1 = − 6|J| these are monomer-dimer configurations; for h0 = H2 = − 2|J|
they are a restricted class of unbranched subgraphs.17 In each case, Theorem 3.5(a) implies that
all zeros of the partition function lie on the negative real axis, a result originally obtained for the
monomer-dimer system (in much more generality) in Ref. 13.
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V. GRAPH-COUNTING POLYNOMIALS

Consider a graph G with sets V of vertices and E of edges, such that each edge connects a pair
of distinct vertices. Note that such graphs may have several edges joining the same pair of vertices.
We let d0 be the maximum vertex degree in G. A subgraph M of G is a graph with vertex set V
and edge set contained in E; |M| denotes the number of edges of M and for any vertex v ∈ V we let
dM (v) denote the vertex degree of v in M that is, number of edges of M incident on v.

A graph-counting polynomial16 is a polynomial

Q̃C (y) =
∑

M∈(C)

y|M |,

where (C) is the collection of subgraphs of G associated with some set C of non-negative integers
via (C) = {M | dM (v) ∈ C, ∀v ∈ V }. For C = {0, 1}, (C) is the class of dimer subgraphs of G; in
this case it was shown by Heilmann and Lieb13 that all the zeros of Q̃C are real and negative. For C
= {0, 1, 2}, (C) is the set of unbranched subgraphs of G and it is shown in Ref. 17 that the zeros of
Q̃C lie in the left half plane; results for other choices of C are given in Ref. 16. In this section we
study Q̃C for C a nonempty interval Cpq = {p, p + 1, . . . , q} of non-negative integers.

Given the graph G and the set Cpq we introduce a statistical mechanical system of the type
described in Sec. II. In this system � = E; we may think of starting with a geometric realization of
the graph and then putting a site of � at the center of each edge. For each v ∈ V there is a unit αv

which contains those sites of � which correspond to edges of G incident on v. Since in G each edge
is incident on two vertices, this system has the property, assumed in Sec. IV, that every site belongs
to exactly two units. Finally, we introduce a unit energy F(l), l = 0, 1, . . . , d0(G), the same for all
units, which satisfies (3.3) and is such that, with ki the indices defined in Sec. III B, (i) p = ki−1 and
q = ki for some i, and (ii) kj = kj − 1 + 1 for all j �= i. In other words, the ith nonvertical face of the
convex set f* associated with F (see Figure 2) contains the nodes (l, F(l)) for l = p, . . . , q, and all
other faces contain exactly two nodes.

Now consider the limit (4.3) with h0 = Hi = (F(q) − F(p))/(q − p). The ground state
configurations at magnetization Hi are precisely those in which Nαv

∈ C pq for each v, and the
assumption that the system is not frustrated is precisely the assumption that such configurations
exist. Each such configuration, however, has an immediate interpretation as a subgraph of G: an
edge e ∈ E belongs to the subgraph if and only if the corresponding site in � is occupied (using the
lattice gas language). With this identification the ground state configurations then give rise precisely
to the subgraphs belonging to (Cpq), and the limiting partition function Q�(y, Hi ) is the same as the
graph-counting polynomial Q̃C pq (y).

The next result, which describes the behavior of the zeros of QC pq for certain choices of p, q,
follows immediately from Theorem 3.5.

Theorem 5.1: Suppose that p and q are such that (Cpq) is nonempty. Then:

(a) If q = p + 1 then all the nonzero roots of Q̃C pq (y) are real and negative.
(b) If q = p + 2 then all the nonzero roots of Q̃C pq (y) satisfy (2.6) with φ = π /3.
(c) If q = p + 3 then there is an angle φ, which may depend on p, q, and d0(G) but not on the size

of the graph, such that φ < π /2 and such that all the nonzero roots of Q̃C pq (y) satisfy (2.6)
with the angle φ.

(d) If p = 0 and q = 4 or p = d0(g) − 4 and q = d0(G) then there is an angle φ < π /2, which
depends on d0(G) but may be chosen uniformly in the size of G, such that all the nonzero roots
of Q̃C pq (y) satisfy (2.6) with the angle φ.
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