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Abstract

In the Abelian sandpile models introduced by Dhar, long-time behavior is determined
by an invariant measure supported uniformly on a set of implicitly defined recurrent con-
figurations of the system. Dhar proposed a simple procedure, the burning algorithm, as a
possible test of whether a configuration is recurrent, and later with Majumdar verified the
correctness of this test when the toppling rules of the sandpile are symmetric. We observe
that the test is not valid in general and give a new algorithm which yields a test correct
for all sandpiles; we also obtain necessary and sufficient conditions for the validity of the
original test. The results are applied to a family of deterministic one-dimensional sandpile
models originally studied by Lee, Liang, and Tzeng.
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1. Introduction

Members of the class of cellular automata known as sandpiles have been much studied
recently as models of “self organized criticality” in nature. The first of these models was
introduced in [1,2], and many others were defined, classified, and studied in [3]. A relatively
tractable class of models, the Abelian sandpiles, was isolated and studied by Dhar in [4]
(see also Section 2). Special classes of Abelian sandpiles were further investigated in [5–7].

In all of these models an idealized sandpile evolves under repeated addition of grains
of sand. Each added grain causes a transition of the sandpile from one stable configuration
to another; during this transition, the sandpile may pass through unstable configurations,
in which columns of sand topple and thereby transfer sand to other columns. Dhar showed
that the long-time behavior of the Abelian models is determined by a simple invariant
measure on the stable configurations of the system: all members of a certain set of recurrent

configurations are equally likely. The recurrent configurations, however, are defined only
implicitly. Dhar suggested that a stable configuration is in fact recurrent if and only if it
passes a certain test; the test is implemented by a simple computation, called the burning

algorithm in [6,7]. (Configurations passing this test were called allowed in [4], but we will
reserve that name for those passing a more stringent test described below.) All recurrent
configurations were shown in [4] to pass the burning algorithm test; conversely, it was
shown in [7] that if the toppling rules in the sandpile are symmetric—if the same amount
of sand is transferred to site j when site i topples as is transferred to i when j topples—
then all stable configurations which pass the test are recurrent. The burning algorithm
test is not valid in general, however: there exist simple asymmetric sandpiles having stable
configurations which pass the test but are not recurrent (see Section 4, in particular, Figure
2).

In Section 3 we define a new algorithm, the script algorithm; we call the test based
on this algorithm the script test. Sandpile configurations which pass the script test are
called allowed, and we show that the set of recurrent configurations is precisely the set
of stable configurations which are allowed in this sense. For certain sandpiles the script
algorithm reduces to the burning algorithm; in Section 4 we give necessary and sufficient
conditions for this to occur and show that the burning algorithm test is correct only when
these conditions are satisfied. This class of sandpiles includes symmetric sandpiles, by [7],
and many asymmetric sandpiles as well.

Section 5 of this paper is devoted to proofs of these results. In Section 6 we discuss
a class of deterministic one-dimensional sandpile models originally studied by Lee, Liang,
and Tzeng ([8,9]). When the dynamics of these models is expressed in terms of local slopes
(differences of heights of adjacent sandpile columns) the models may in fact be regarded as
asymmetric Abelian models. The test based on the burning algorithm correctly predicts
recurrence for these models, and the methods of the Abelian theory may be used to show
that the deterministic dynamics has a unique limit cycle.
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2. Description of the models

To define an Abelian sandpile S we begin with a finite, nonempty set V of sites. A
configuration z of S is an assignment of a nonnegative integer zi to each site i; zi is normally
to be thought of as the height of a column of sand at site i (although in some applications,
as indicated above, it may be identified with a local slope). The configuration z is stable if
each height zi is below some threshold: zi ≤ ti. If z is unstable, so that zk > tk for some
k, then the column at site k can topple, transferring sand to other columns. To picture
this toppling action it is helpful to visualize the sandpile as a directed graph D = D(S),
whose vertices consist of the sites of S together with an additional vertex g, the ground.
We write ∆ii for the number of edges which leave the vertex i ∈ V . A certain number,
by convention denoted −∆ij , of these lead to each vertex j ∈ V which is distinct from i;
the remainder of these edges (there are

∑

j∈V ∆ij of them) lead from i to g. When the
column at site k topples, one grain of sand leaves this site along each edge of D outwardly
oriented from k; those grains which go to g leave the system or “fall off the table.”

We take the threshold ti to be ∆ii [4], and write Tk for the toppling operator, so that
Tkz is defined when zk > ∆kk, and (Tkz)i = zi − ∆ki. The sandpile is thus completely
specified by the set V of sites and the square matrix ∆ = (∆ij)i,j∈V , which must satisfy
(i) ∆ij ≤ 0 if i 6= j and (ii)

∑

j∈V ∆ij ≥ 0.
To implement the dynamics we will repeatedly add grains of sand to the system. If

there is any site in D from which no (oriented) path leads to the ground, however, then
the repeated addition of sand to that site will cause the total mass of the pile to increase
without bound; we say that the sandpile is blocked. Here we assume that the sandpiles we
discuss are not blocked unless we explicitly specify otherwise. With this understanding, any
configuration z can evolve by repeated topplings to a stable configuration; we denote this
configuration as Tz. Dhar observes [4] that the operators Tk have a weak commutativity
property—TkTjz and TjTkz are both defined and are equal whenever Tkz and Tjz are
defined—and that this implies that the operator T is well defined (the idea behind the
proof is known to mathematicians as the “diamond lemma” [10] and goes back to a paper
of Newmann [11]). If z is any configuration and i any site, we let Ãiz be the configuration
obtained from z by adding one grain of sand to site i ((Aiz)j = zi + δij), and define

Aiz = TÃiz to be the resulting stable configuration. The operators Ai commute (because
the Tk and Ãi jointly have the weak commuativity property), and this commutativity
motivates the name “Abelian” for these sandpiles.

The dynamics of the sandpile is a Markov process on the set of stable configurations:
one step of the dynamics is defined by choosing a site i ∈ V at random and applying
Ai to the current configuration—that is, adding a grain of sand at i and letting the pile
stabilize. A stable configuration z is recurrent if it has nonzero weight in the (unique)
invariant probability measure for this process; equivalently, z is recurrent if

z = Ai1 · · ·AiN
zmax, (1)

for some i1 . . . iN , since the maximal configuration zmax defined by (zmax)i = ∆ii is clearly
recurrent. Dhar proved that there are precisely det ∆ recurrent configurations and that
these configurations are all equally likely in the invariant measure.
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We collect here some notation for configurations, which we think of as row vectors.
If W is any subset of V we write eW for the configuration with (eW )i = 1 if i ∈ W and
(eW )i = 0 otherwise, and we write ei rather than e{i}. In this notation, Ãiz = z + ei and
Tkz = z − ek∆. We let 0 = e∅ and 1 = eV denote the configurations whose components
are identically 0 and 1, respectively. Finally, we write z′ ≻ z if z′i ≥ zi for all sites i,
with strict inequality for at least one site; any configuration z satisfies 0 � z and a stable
configuration z satisfies z � zmax.

3. The script algorithm

We now turn to the characterization of the recurrent configurations of a sandpile S,
and begin by explaining that in certain cases the first step is to decompose S into smaller
sandpiles. This decomposition requires two new definitions. First, with any nonempty
subset W of V we associate a new sandpile S(W ), whose set of sites is W and whose
toppling matrix is given by the restriction of ∆ to these sites. Note that the corresponding
directed graph D(S(W )) is obtained from D by omitting the vertices not in W and all edges
outgoing from them, but rerouting those edges which lead from a vertex in W to a vertex
outside W so that they lead instead to g. Second, calling two sites of S equivalent if they are
the same or if there is an oriented path in D from each to the other, and letting W1 . . .Wm

be the equivalence classes in V under this relation, we call S(W1), . . . , S(Wm) the strong

components of S (see Figure 1); if S has only one strong component we call S strongly

connected. (These latter definitions correspond to the usual notions of strong connectivity
in the directed graph obtained from D by omitting g.) It is easy to verify the following
lemma, which reduces our problem to the characterization of recurrent configurations of
strongly connected sandpiles.

1

S S({3,4,5,6})S({1,2})

22
4 6 4 6

53153

Figure 1. A sandpile S and its strong components. Site 4 is selfish in S
but not in the strong component S({3, 4, 5, 6}), so that by Corollary 6, all
configurations which pass the burning algorithm test are recurrent.

Lemma 1: A configuration z of S is recurrent if and only if the restriction of z to each
strong component S(Wi) of S is a recurrent configuration of S(Wi).

The key idea in testing a stable configuration z for recurrence is to look for appropriate
configurations which topple into z. Suppose in particular that we can find a configuration
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z′bb such that z′ ≻ z and Tz′ = z. Let U be a specific (ordered) product of toppling
operators Tk which implements the reduction of z′ to z, so that also Uz′ = z or z′ =
U−1z. Then U−mz is defined for any positive m and TU−mz = UmU−mz = z; moreover,
U−mz ≻ U−(m−1)z ≻ · · · ≻ U−1z ≻ z, so that U−mz is obtained by adding at least m
grains of sand to z. Now by toppling selected columns in U−mz we may redistribute this
extra sand to other columns; specifically (see Section 5), there is a sequence of toppling
operators Tk1

, . . . , TkM
such that if m is sufficiently large,

z′′ ≡ TkM
· · ·Tk1

U−mz � zmax. (2)

Since z = TU−mz = Tz′′, z satisfies (1) and is recurrent.
To find a configuration like z′ above we focus on the set of topplings which make up

the transformation U , ignoring for the moment the order in which they are carried out.
Such a set of topplings is specified by a row vector of nonnegative integers n = (ni)i∈V ,
which we will call a script; the script n is associated with any transformation z → z−n∆
in which, for each k, the toppling operator Tk acts nk times. It turns out that with each
strongly connected sandpile S there is associated a special script N ≡ N(S); N is in a
precise sense the minimal nontrivial script for which N∆ ≻ 0, so that z+N∆ ≻ z for any
z. (The precise characterization of N(S), and a simple algorithm for its construction, is
given in Lemma 7 of Section 5.) We will show that a stable configuration z is recurrent if
and only if (z+N∆) can play the role of z′ in the previous paragraph, that is, if and only
if

T (z + N∆) = z. (3)

The criterion (3) may be restated in language closely corresponding to that of [4] (see
also Section 4); we make a formal definition and will verify its equivalence to (3) shortly.

Definition 2: A configuration z of S is forbidden for the script n if for all i ∈ V with
ni > 0, zi ≤ ∆ii − (n∆)i. A configuration z allowed if it is not forbidden for any script n

satisfying n � N(S).

As in [4], there is a simple test, called the script test and implemented by the script

algorithm, to determine whether or not a configuration z is allowed. The algorithm uses a
recursively defined script n. Take initially n = N and test whether z is forbidden for n;
that is, look for a site i such that

ni > 0 and zi > ∆ii − (n∆)i. (4)

If no such i is found, then z is forbidden for n and is not allowed. On the other hand, if
i satisfies (4), then i will also satisfy (4) if n is replaced by any n′ ≺ n for which n′

i = ni;
thus z can be forbidden only for scripts which have n′

i < ni. Now decrease ni by one—that
is, replace n by n − ei—and repeat. Continue until a script is encountered for which z is
forbidden or until n = 0; in the latter case, z is allowed.

To see that each allowed configuration z satisfies (3), we note that the application of
the script algorithm to z generates a sequence i1, . . . , iK (with K =

∑

i∈V Ni) of sites, and
corresponding scripts n1(=N),n2, . . . ,nK ,nK+1(=0), where

zik
> ∆ikik

− (nk∆)ik
(5)
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and nk+1 = nk − eik
. We claim that

T (z + N∆) = TiK
TiK−1

· · ·Ti1z
′ = z. (6)

To verify (6) we need only to show that, for k = 1, . . . , K, column ik is unstable in
Tik−1

· · ·Ti1(z + N∆) = z + nk∆; this is precisely the content of (5).

We can summarize our discussion in a formal theorem; the remaining details of proof
are given in Section 5.

Theorem 3: Let S be a strongly connected sandpile which is not blocked. A configuration
z of S is recurrent if and only if it is stable and allowed, that is, is stable and passes the
script test.

We close this section with two peripheral remarks. First, it is natural to make the
convention that blocked sandpiles have no recurrent configurations, since the total mass
of the pile will increase without bound as sand is added to randomly chosen sites. The
convention is consistent with the counting of recurrent configurations given above: det ∆ =
0 for blocked sandpiles, since det ∆ is the number of trees in D in which each site is
connected by an oriented path to g [12]. With this convention it is possible to consider
blocked sandpiles on a par with all others, but this special case often requires awkward
special arguments, and for this reason we will continue to assume that no sandpiles we
consider are blocked unless we explicitly specify otherwise.

Second, combining Theorem 3 with Lemma 1 and the previous remark yields a char-
acterization of recurrent configurations in general, possibly blocked, sandpiles: (i) the set
of recurrent configurations of any sandpile is the product of the sets of recurrent configura-
tions of its strong components; (ii) the set of recurrent configurations in a blocked, strongly
connected sandpile is empty; and (iii) the set of recurrent configurations of a strongly con-
nected sandpile which is not blocked consists of those configurations which pass the script
algorithm. It is possible, but in practice inefficient, to unify these steps by defining a script
N(S) for an arbitrary sandpile S in such a way that recurrent configurations of S are those
which pass the script algorithm defined using this N(S): one simply takes N(S) as above if
S is strongly connected and not blocked, N(S) = 0 if S is strongly connected and blocked,
and N(S)

∣

∣

Wi
= N(S(Wi)) if S has strong components W1, . . . , Wm.
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4. Comparison with the burning algorithm

In this section we discuss the relation of Definition 2 to the definition of an allowed
configuration given in [4], which we now recall. For any subset W of V and site i ∈ W
let din(i; W ) denote the number of edges of the directed graph D which enter i from sites
of W . We say that the restriction of a configuration z to a nonempty subset W is weakly

forbidden if for all i ∈ W , zi ≤ din(i; W ), and that z is weakly allowed if no such restriction
is weakly forbidden (these concepts are called simply “forbidden” and “allowed” in [4].)
A configuration is weakly allowed if it passes the burning algorithm: take initially W = V
and look for a site i ∈ W with

zi > din(i; W ). (7)

If no such i exists, then z is not weakly allowed; otherwise, remove i from W and repeat.
z is allowed if eventually W is empty.

To see the relation between the two algorithms, let us call a site i of S selfish if it has
more incoming edges than outgoing edges in D, that is, if din(i; V ) > ∆ii. If a strongly
connected sandpile S has no selfish sites then the sum of the rows of ∆ is a vector with
nonnegative components; this means that N(S) is the particularly simple script 1 (see
Lemma 7). But then the scripts n with n ≤ N are just the scripts eW for W ⊂ V ,
the configuration z is forbidden for the script eW under Definition 2 precisely when its
restriction to W is weakly forbidden, and a configuration is allowed precisely when it is
weakly allowed. With the identification of W with eW , in fact, the script algorithm reduces
precisely to the burning algorithm. Thus Theorem 3 implies the following result.

Corollary 4: Let S be a strongly connected sandpile which is not blocked. If S has no
selfish sites then a configuration z of S is recurrent if and only if it is weakly allowed, that
is, passes the burning algorithm test.

A sandpile is symmetric if the matrix ∆ is symmetric. Since row sums of ∆ are always
nonnegative, symmetric sandpiles have no selfish sites and thus Corollary 4 implies that,
in symmetric sandpiles, a configuration is recurrent if and only if it passes the burning
algorithm. This result was obtained in [7] through an ingenious correspondence between
recurrent configurations and trees in the graph obtained from D(S) by identifying pairs
of oppositely oriented edges. In the general case there are known [12] to be det ∆ trees in
D(S) in which each site is connected by an oriented path to g; it would be interesting to
find a similar correspondence between recurrent configurations and these trees.

On the other hand, there are many asymmetric sandpiles in which some configurations
which pass the burning algorithm are not recurrent. An example is given in Figure 2. In
fact, in strongly connected sandpiles the condition that no selfish sites exist is not only
sufficient but also necessary for all configurations which pass the burning algorithm to be
recurrent. We state this as a theorem; the proof is given in Section 5.

Theorem 5: Let S be a strongly connected sandpile which is not blocked. Then every
weakly allowed, stable configuration of S is recurrent if and only if no site of S is selfish.

The condition of strong connectedness is important in Theorem 5, for in general a
sandpile may have selfish sites which are not selfish in the strong component to which
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1 2

Figure 2. A strongly connected sandpile in which site 2 is selfish. The
recurrent configurations are (1,3), (1,4), (2,2), (2,3), and (2,4); (1,2) passes
the burning algorithm test but is not recurrent.

they belong, and such sites do not give rise to weakly allowed stable configurations which
are not recurrent (see Figure 1). The most general statement, which follows easily from
Theorem 5, is the following.

Corollary 6: Let S be any sandpile. Then every allowed, stable configuration of S is
recurrent if and only if either no strong component of S contains a selfish site or some
strong component of S contains no selfish site and is blocked.

5. Proofs of the main results

In this section we give (or complete) the proofs of the results of Sections 3 and 4. We
begin by establishing the existence and some properties of the special script N(S).

Lemma 7: : Let S be a strongly connected sandpile which is not blocked. Then there
exists a unique script N ≡ N(S) for S such that (i) N ≻ 0, (ii) N∆ � 0, and (iii) any
script n satisfying (i) and (ii) also satisfies n � N. Moreover (iv) N∆ ≻ 0, (v) N � 1,
and (vi) (N∆)i < ∆ii for all i. Finally, (vii) N = 1 if and only if no site of S is selfish.

Proof: We construct N by a “greedy” algorithm. Fix a site l and construct recursively
scripts 0 ≺ n(1) ≺ n(2) ≺ · · ·, with n(1) = el and n(k) for k > 1 defined by n(k) =
n(k−1) + ej , where j is any site such that (n(k−1)∆)j < 0. We claim that the algorithm
eventually terminates at a script n(K) for which n(K)∆ � 0. For otherwise, let W be the

set of sites i for which n
(k)
i ր ∞ as k → ∞. Because S is not blocked,

∑

j∈W ∆ij ≥ 0 for

all i ∈ W , with strict inequality for at least one i; thus
∑

j∈W (n(k)∆)j ր ∞ as k → ∞.

This is a contradiction, since clearly n(k)∆ � zmax for all k. We now define N ≡ n(K).
N clearly satisfies (i) and (ii), and any script satisfying (i) and (ii) satisfies (v), by

the strong connectedness of S. If n also satisfies (i) and (ii), and hence (v), then we see
inductively that n � n(k) for all k, verifying (iii); (iii) in turn implies the uniqueness of
N. N satisfies (iv) since N∆ = 0 is impossible because S is unblocked and hence ∆ is
invertible. Again inductively, each n(k) satisfies (vi) for all i except possibly for i = l, and
does for i = l as soon as (n(k))j > 0 for some j 6= l with ∆jl 6= 0. Finally, if no site of S is
selfish then 1 satisfies (i)–(ii) and hence N = 1 by uniqueness, while if some site is selfish
then 1 does not satisfy (ii).
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We can now complete the proof, begun in Section 3, of our main result.

Proof of Theorem 3: Suppose first that the configuration z is allowed and stable. We proved
in Section 3 that this implies that T (z + N∆) = z, and from this it follows immediately
that T (z + mN∆) = z for any m > 0. Since (N∆)j > 0 for some j ∈ V , the column of
sand at site j in the configuration z+mN∆ contains at least m grains of sand. It remains
only to verify (2), that is, that there exists a sequence of toppling operators Tk1

, . . . , TkM

such that if m is sufficiently large,

z′′ ≡ TkM
· · ·Tk1

(z + mN∆) � zmax, (8)

since then z is recurrent by (1). Now for i ∈ V let ρ(i) be length of the shortest (oriented)
path in D(S) from j to i. We claim that for any q, L ≥ 0 and for m sufficiently large
there is configuration z′′′ ≡ TkM′

· · ·Tk1
(z+mN∆) in which all sites i with ρ(i) ≤ q satisfy

(z′′′)i ≥ L. The claim is easily verified by induction on q, while (8) follows immediately
from the claim by taking q maximal and L ≥ maxi ∆ii.

To establish the converse we simply modify the proof of the similar result in [4]. Thus
observe from Definition 2 that if z is an allowed configuration then so is Ãiz, and so is
Tkz, when defined. To see the latter, suppose that n � N; since z is allowed there exists
a site i with zi > ∆ii − (n∆)i. If i 6= k then also (Tkz)i > ∆ii − (n∆)i, while if i = k,
letting n′ = n − ek and choosing i′ to satisfy zi′ > ∆i′i′ − (n′∆)i′ , we have

(Tkz)i′ = zi′ − ∆ki′ > ∆ii′ − ∆ki′ − (n′∆)i = ∆ii′ − (n∆)i ;

in either case we see that Tkz is not forbidden for n. Thus Aiz is allowed for any i and
any allowed z. Since zmax is clearly allowed it follows from the characterization (1) that
so is every recurrent configuration.

We finally prove that lack of a selfish site is a necessary and sufficient condition
on a strongly connected sandpile in order that the original burning algorithm correctly
characterize recurrent configurations.

Proof of Theorem 5: By Corollary 4 we need only show that if S has a selfish site then
there is a configuration of S which is stable and weakly allowed but not recurrent. Let
z = zmax − N∆. z is a stable configuration but is not allowed, since it does not satisfy
(3), and hence is not recurrent. But z does satisfy the burning algorithm. For if not then
there is a nonempty subset W of V such that no i ∈ V satisfies (7), or equivalently, since
din(i; W ) = ∆ii − (eW ∆)i,

(N∆)i ≥ (eW ∆)i (9)

for all i ∈ W . But (9) holds also for i /∈ W , since the right hand side is then nonpositive;
thus N∆ � eW ∆. Let n = N − eW ; we have shown that n∆ � 0, and n ≻ 0 by (v) and
(vii) of Lemma 7, so that by (iii) of that lemma, n � N, contradicting the assumption
that W is nonempty.
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6. A family of deterministic, one-dimensional sandpiles.

In [8], [9] Lee, Liang, and Tzeng discuss a family of one-dimensional, deterministic
sandpile models (limited, nonlocal models in the terminology of [3]) parameterized by
a positive integer m, the maximum local slope that a stable sandpile configuration will
support. Intuitively, a sandpile in these models is an array of L columns of sand, with
heights h1, h2, . . . , hL; there is an infinitely high wall to to the left of the first column and
a table edge to the right of the Lth column. The system is driven by adding grains of
sand, one at a time, with each addition increasing some column height by one. When a
column becomes unstable, that is, when hk−hk+1 > m for some k, m grains of sand topple
from it, one to each of the m columns immediately to the right—or off the edge of the
table, if some of these columns do not exist. If other columns become unstable as a result,
they then topple in the same fashion; the process continues until a stable configuration is
reached, after which another grain is dropped. Here, as in [8], [9], we drop sand only on
the first column. Under this driving mechanism the column heights may consistently be
assumed to satisfy h1 ≥ h2 ≥ · · · ≥ hL ≥ 0.

As described, this system is not in the class of Abelian sandpile models. Consider,
however, the representation in terms of local slopes:

xk =

{

hk − hk+1, if k < L,
hL, if k = L.

Here column j topples when xj > m; the resulting configuration Tjx is given by

(Tjx)i =











xi + m, if i = j − 1,
xj − m − (1 − δiL), if i = j,
xi + 1, if i = min(L, j + m),
xi, otherwise.

This is an Abelian toppling rule, but for the first L − 1 columns the threshold does not
satisfy the convention tk = ∆kk, since tk = m for all k but ∆kk = m+1 for 1 ≤ k ≤ L−1.
The configuration variable z given by zi = xi + 1− δiL, however, does satisfy the toppling
rule of a standard Abelian sandpile S. For L > m the toppling matrix is

∆(L) =



































m+1 0 · · · 0 −1 0 · · ·
−m m+1 0 · · · 0 −1 0 · · ·
0 −m m+1 0 · · · 0 −1 0 · · ·
...

. . .
. . .

. . .
. . . · · ·

. . .
. . .

. . .

· · · 0 −m m+1 0 · · · 0 −1
· · · 0 −m m+1 0 · · · −1

· · ·
. . .

. . .
. . .

. . .
...

· · · 0 −m m+1 −1
· · · 0 −m m



































, (10)
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1 L−1L−2m+3 Lm+1 m+232

Figure 3. The directed graph of the Abelian sandpile associated with a one-
dimensional limited nonlocal model, in the case L > m. m edges join site 1
to ground and join each site i to site i− 1, for i > 1; one edge joins each site
i to site i + m if i + m ≤ L and to site L if L−m < i < L, so that one edge
enters site L from each of the preceding m sites.

and the directed graph D(S) is shown in Figure 3; for L ≤ m the toppling matrix is the
lower right L × L block of (10) and the directed graph is obtained by the corresponding
modification of Figure 3.

It is important to observe that the model is Abelian only when appropriately driven,
that is, driven in such a way that the variables zi increase when sand is dropped. The
fundamental operator Ãi given by Ãiz = z+ ei corresponds in the original physical model
to dropping one grain of sand onto each of the first i columns of the sandpile. The driving
mechanism studied in [8] is just iteration of Ã1 and thus fits into the Abelian formalism,
but driving by dropping sand on a single column other than the first does not.

From (10) or Figure 3 it is clear that S has no selfish sites, so that by Corollary 4 the
burning algorithm correctly predicts the recurrent configurations. These are easily seen to
be precisely those observed in [8]: z is recurrent if (i) zk ≥ 1, for all k, and (ii) at least one
element of the sequence zL−xL

, . . . , zL−2, zL−1, and of every sequence zj , . . . zj+m−1 with
1 ≤ j ≤ L − m, is equal to m + 1. The number of such configurations may be calculated
directly or obtained from (10) by expanding det ∆ along the first column, leading to

det ∆(L) =

{

(m + 1) det∆(L−1) − mL−1, if 2 ≤ L ≤ m + 1,

(m + 1) det∆(L−1) − mm det ∆(L−m−1), if L > m + 1.

Since det ∆(1) = m, this recursion implies that det ∆(L) = mL.

Of course, the general theory implies only that these configurations are recurrent
under the joint action of A1, . . . , AL. For the deterministic model, driven by iteration of
A1, what is relevant is the structure of orbits within the set of recurrent configurations
under the action of A1. It is shown in [9] that there is in fact a single orbit, that is, that
A1 acts transitively on the recurrent configurations. We give in the next paragraph an
alternative proof based on the Abelian sandpile interpretation.

Dhar shows in [4] that the Ai, as operators on the recurrent configurations, form a
group which is generated precisely by the commutativity relations AiAj = AjAi and the
relations

L
∏

j=1

A
∆ij

j = 1, i = 1, . . . , L. (11)

Let p be the order of A1 in this group; to prove transitivity of A1 we must show that
p = mL. The relation Ap

1 = 1 must be a consequence of (11), that is, there must exist a

10



row vector q with integer entries such that

Ap
1 = 1 ⇔ 1 =

L
∏

i=1





L
∏

j=1

A
∆ij

j





qi

=
L

∏

j=1

A
(q∆)j

j . (12)

Thus (q∆)j = pδ1j and hence qi = p∆−1
1i ; in particular qL = p(−1)L+1X/ det∆, where X

is the determinant of the (L− 1)× (L− 1) block in the upper right hand corner of ∆. But
X is relatively prime to m, since reducing all elements of this block modulo m leads to
a block whose entries are all 0 or ±1 and whose determinant involves a single product of
the nonzero entries (keeping track of signs we find that (−1)L+1X ≡ 1 mod m). Since q1

must be an integer, p = mL.
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