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FORWARD

In the sumer of 1972 Seminars on renormalization theory were held
at the University of Maryland under the auspices of the Center for .
Iheoretical Physics. The aim was to study rigorous renoiﬂ@lization
theory and, in this respect, the topics of analytic renormalization
and additive renormalization in momentum space were selected out. The
present volume consists of the lectures of E. R. Speer on analytic re-
normalization. Volume 2 will consist of lectures on additive renormali-
zation and normal product methods by John Lowenstein.

I wish to thank John Lowenstein and Gene Speer for their cocperation,
my colleagues, especially Dan Fivel, for their support and Sheila

Rodriguez for her help in the drganization.
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Analytic Renormalization

I. Introduction

if we study (in perturbation theory) a field theary governed by a

lagrangian L(x) = L (x) { glo(x), where LO is the free Iagrangian of the

‘fields involved and gl is the interaction Lagrangian, then the S-matrix

is given,by

1gxd“<x)LI(x>)

5 =™ @

‘T'is the operation of tims-ordering, and (1) is to be understocd as a formal

pcwer-sefies in the»couplihg constant .g. If, for example,.L(x) =

= :¢"(x):, where ¢ is a hermitian scalar field, then

§ =1+ (-ig) [ :¢u(x):dx + L:1%—)-——1”1‘[@4(}(1):

. . \I
:¢u(x2):]dxldx2 + oo i:i%l~'JdX1...den¢[:¢u(xl):°"]
+n.- . " (2)

The time ordered products in (2), however, are th well defined,
To see this, we may expand them using Wick's theorem, so that the third

term becames, for example,
T[:¢u(x1)::¢u(x2);] = ;¢u(x1)¢g(x2): + i6=¢3(xl)¢3(xg)}
x’éoth¢<xl>¢(x2>Jlo>.+ 72:0% ()47 (x,) :<0| T16 (D0 () 1| 07

+96:0(x )b (x,): <0|T[¢(xl)¢(x2)310>3 + 24<OIT[¢(X1)¢(X2)]|0>M-



Unfortunately, the propagator

bp(xq=%5) = <O|T[¢(xq)d(x,)1[0>

is actually a distribution with singularities on the ligho_oone (gl:xa)g:o?
and its powers (higher than the first) are not well defined.

In higher orders of the preturbation expansion we deal not only with
powers of the propagatar, but also with other products of propagators.

To each term in the Wick expansion of

T[:¢a(xl): :¢u(x2): e :¢u(xn):]

there is associated a Feyrman graph G(¥,Ll). Here V'='{Vi,

set of vertices of G; L = {1, *++ L} the set of lines. In an arbitrary

e Vn} is the

fashion we call one end of each line £ the initial vertex Vi R the othef
L

the final vertex Vf 5 the incidence matrix
£

1 , if i=f
ir 1=1

0 R otherwise

then completely describes the graph. The coefficient of the corresponding

~term in the Wick expansion is formally

el

(Here we are using the summation convention.)

The problem of renormalization is to appropriately define (3) as

a tempered distribution 1(21, x) #.115). A theorem of Bogoliubov

m AF(sz_Xiz> = zgl.AFCGi Xi)- L F3)

P N

P Y



-3
[1] then assures us that the term in the Wick expansion,
o o
. l v * 0 n .
T(g_g-) o T(xy) e ¢ (x ) | (4

is well defined as an -operator valued distribution. (There does remain
the problem of integrating (4) over all x, as required by (2). We will
return to this later.)

In these lectures we will study in detall one method of defining (3),

called snalytic renormalization [2,3]. We will then show the relation of

this method to the usual subtractive schemes for renormaliiation, and to

‘the axiomatic treatment given by Hepp [4]. For simplicity we will deal -

primarily with spinless particles, but will occasionally point out the-

modifications introduced by spin.



IT. Analytic Renormalization
A. Analytic Regularization.

The propagator in momentum space is

Kﬁ(p) = (on)"2 J 1P x Ap(x) dx

= i (mg—pg—iO)_l,

where m 1s the mass of the scalar field. We define a generalized Qrepagator
K(up) = 4 (- p? - 10)7, (2.1)

with A a new complex variable, so that’&f(p) = Ké(l,p). We will see'that;
if Re X is sufficiently large, we may multiply the generalized propagators
at wili_ The resulting analytic function of A mey be analytically continued
to the physical point A = 1, where it has a singularity. Removal of this
singularity is analytic renormalization.

The distribution (2.1) is well defined according to
Theorem 1: ILet Ql, Q2 be real quadratic forms on H{k, with Q2 positive
semidefiﬁ%%g?/gL;tQi geigzéomplex variable with Re ¢ >a >0, Imc < 0

(for some a). For Re v > 0 define the function.f(Q,c,v) on (k™ by

£f(Qev) (v) = (e -V v.Q..7.)"
1,5

where, for Im gz <0, z¥ = exp{v[lnlzl +1argz]}l, with - 7 < arg z < Q.
Then £(Q,c,v) may be analytically continued as a tempered distribution to

all values of v; the resulting distribution is holomorphic in v and continuous

in Q and c.
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Proof: Note first that, for Im ¢ < 0 or for Q2 strictly positive definite,

(c—yiQijyi) cannot vanish,ﬂSO'that £(Q,c,v) is defined and analytic for

a1l v, For general c,Q, f is differentiable (in y) for Re v > 1 and

satisfies

P@,e) = 3 [ - gy [y - 16@ev + 1), (2.2)

If f i1s smeared with a tesf function the derivatives in (2.2) can be
transferred to the test function by integration by parts (2.2) then gives
an extension of the region of definition of f td Re v >-1, or, by .
iteration, to all v. The distribution defined in this manner has apparent .
poles at v = -1, -2, ***, due o the factor 5;];—]: in (2.2). But £(Q,c,v)

is continuous in Q, ¢ for Re v > 0 end hence, using (2.2), for éil

v # -1,-2, ***. Since the poles are not present for Im ¢ < 0 we may choose

‘a contour C circling v = -k and write, for v' ingide the cqntour,

£(Q,ctie,v') = é W avs (2.3)
=

The € + 0 Hmit of (2.3) shows that the poles are not present for any

values of Q,c; g.e.d.
N .
-AF(A,p) in (2.1) is obtained from Theorem 1 by taking k = 4, ¢ = m2,

qu = guv' To assure'convergence oflcertain integrals it will'be convenient

to consider

2 -
KFm (A,p) = -1(m"~in-p Qp) >‘.,
where Qﬁv = Qﬁv(n) = guv % in Guv' By the con?inuity shown in Theorem 1,

(A,p) = 1i Asp).
Kae) = 1im by Oup)



To investigate multiplication of propagators we Fourdier transform

back to configuration space. From [5,3] we have

F 2<F,n f@% i 2(Fm(p)

1-), 2-A
_ (=1)2™ A2 A2

= (}-xq ) (b V=xq~ X)
r( A vlal R

*,n

Here K

A=2
Re B> 0, and 0 < arg V-xa 1x < &; y]q[ is defined so that lim y|Q| = —i.
n>0
Thus ‘
' 1-A . 2-A '
. oM S RS ]/_2.‘
AF = ;L]ij(r)l AF,n = STy (V -x"+i0) _K)\-—2<m x~+i0).

Lemma 1: For Re A > mt2, Ap and Ag , ave in (™ (m~times continously
3

differentiable functions).
Proof: K \)(z) has a power series of the form
K (z) = 295 A, #) + 2(5 B, £7)
v - i
0 0
and therefore,

l>\

b =y 1T

5 Ai(mgxg)l b (—x2410)M2 3 Bi(mgxg)i}.

For Re_(k—-E) > m this may be continuously differehtiated n times. The
argument for AF,n is the same.

Definition 1: For Re A > 2 the generalized Feynman amplitude for the

graph G(V,L) is -

is the "Bessel function of imaginary argument", b= mg-—in, with

P
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713359 = g Ap(hgs e %) = %i% ? Ap n(hgs &4 xi)i

It is important to note.that we introduce a separate. >‘5L parameter for

each line. We also remark that, if we were deali_ng with particles having

spin, the propagator becomes
d . .
205 Bp(x),

with Z a polynomial. By Lemma 1, the generalized propagators

2,(5) dp(hy%)

may also be multiplied freely if Re A, > 2 + deg Z

2 L.

We now prceed to calculate T as an integral over Feynman parameters.
At first we will keep n > 0; this will make all integrals involved absolutely
convergent. |

Using the integral representation [1]

X, - _ =1’ ] do o1 SLO(PAp-mHin), (2.1)
N i)t T o

we may calculate the Fourier transform AF n from the formula
2

f dy exp 1 [y Ry +y * B]
m

K e o |
i [det (-1R)]Y2 exp('%B ) | - (@5

[In (2.5) Ris a quadratic form with positive definite imaginary part.

(2.5) is first. proved for R=1 P, P> 0, by diagonalization of P ; in this



case the square root of the determinant is positive.. For general R the
formula is established, and the correct sign of [det'(-‘-iﬁ)]l/2 determined,

by analytic continuation in R.1 Now

b g () = 2 [P E ). | (2.6)

If we insert (2.4) into (2.6), the order of integration may be interchanged
(for n > 0).

[To check this we verify absolute convergence of the double integral:

2
J i J o o1 0 ni]lpl|© + 11

= d p
nt L p?) [+
Thus, i e AT e

= . 2,.
A 2 J do o1 J alp otle(pQp-m+intp-x]
0

B om2r( a)

Applying (2.5) with R = ioQ gives

-1

9 X - i(m?—in)],

_ 1 M2 Juk3 gt
o

Fan T roovmar

since the analytic continuation procedure gives[det(-iR)]l/2= - a2¢[Q|,

| do exp[- ﬁ~x
0.

with,le] defined as above..
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-

Therefore
AT/ 7 a3
T(AX)—H[le' J ;J‘noc,f dat,
L U:I'()\)V ! 0} C
1 ) | |
exp i [~ T z x,€] o €5 J - (m -:m)Zoc 1. (2.7)
' 1,J,% L

€,.:€p .
Writing Ay = 522:, ——%—f’i s the exponential in (2.7) becomes’

. - 2 .
exp i[- %1' x(A @Q bz ~(u —m)Eocz]- _ (2.8)
L_ 8,8 R R
Now note that e/ = e, + e, = 0, hence I Ai = 0. From this, for any
;1 fg’ i, i

ke{l,---n}.

@Ax QG x= = (xi—xk)(Aij Q’l)(xj—xk)-

1,57
Let A' be the matrix A with k'th row and colum deleted, and let

&y = XKy (i# k), so that (2.8) becomes

exp 1[- T E(A' @ Q" D)E-(nf-1n)za 1. | (2.9)

We now take the Fourler transform of (2.7):

. n o
fdgi dx, T (A.8)e 17k 1 (2.10).

?J ()\;E> = -
Cem®

The x, integration yields the 8-function expressing conservation of
mamentum.  If we insert (2.7) and (2.9) into (2.10), the double integral

over o and & is absolutely convergent whenever the graph G is connected.
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[Proof: If the integrand in .(2.7) is replaced by.its: absolute value,
the integral retains a product structure: »f F(]] ei'xillg), with

F(t) exponentially decreasing for large t. By conmnectivity, the product
is exponentially decreasing as a function of €, hence the & integration

is convergent.] Thus

. Ami/2 A3
?_‘n(_x_,p_) =T[5 —\ (on2(spi) jf Hocz'z
L\wTar ro )
(2.11)
dg R R -3
J z;;;§(5:15' exp i[- 7 £(A' @ Q@ 7)&-E-p-(m -in)Za,].
The & integral is done by another application of (2.5), taking
R=-14@Q . Then
2 n-1
y11/2 _ (Get AV (/]Q])
[det (-iR)] = Mg(n_l) >
and K1 = 4arl g Q. Since det A' = A(S), and
A k 1,
-y ) A (j) A, J.)
T adky
‘ k
we finally have
N fos AT/2
T, p) =T %-?——————-——> (U /AN (2m° 6 (2p,) (2.12)
e L \WTQ[ T(A))

: A=l K
: _,HOI‘ dOI‘ . ) ‘.P.-D-.QP.
3"5"';—¥é¥ée———£ exp i = d (m2 - in)Zo
P Xp . 5l 2

d(a) 1,7k
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Here
k
ae) = (M ay) AG)

(2.13)
Kk _ k i

(2.12) is our desired form of the generalized Feyrman amplitude. As a
preliminary to its analytic continuation we now turn o the evaluation of the
Symanzik polynomials d(a), D?j (a). We remark that it may be converted to the
usual Feynman-parametric form by the change of variables oy = ¢ BZ’ LBy=1
followed by ‘an explicit evaluation of the t integral. In this form the n -+ 0
limit is easily taken using Théorem 1.

B. Symanzik Functilons.
~ We wish to relate the functions d(a), D?j (a) to the structure of the

graph; We will first work out several examples. Note that

Lt _ 1 if i #
A_.=Z ....;1.._..4._= OLQ,
oo 9y
% joining
1,J
<
_E 1 if 1= j
OL,Q, .
% dincident
on i
\.
1
Exemple 1: V, €=3=> V,. Take k = 2
-1, -1, -1 -1, -1, -1
. : ot oy F 0 *(ul + as + O )
- _
O -1, -1, -1
R og ) (0™ + 0" + oy )



2y _ -1, -1, -1 _ .
A (2) =, + o, + a3 3 d (o) = a2a3 + ala3 + 00y 5‘
Take k = 3: }
oot oot T g
3 2 ,
—at ot 4 oot —ot
el I R
L % 1 O T O

]

- 3 -1 -1 -1 -1 -2 “
d(a) = ala2a3 A(B) ula2a3 [}ag + a3 ) (al + a3 ) - a3 ] ;i

]

al + ag + QB 2

| | |
Dil = a0y + Qs DiE = 0q0, 3 Dgg = 0q0, t 0 0q '
We will see that, in general, d(o) is independent of the choice of k.

To derive general formulas we introduce some notation from graph theory. l‘
A tree is a set of n-1 lines of G which form no loops; a 2-tree is a similar ‘
set of n-2 lines. Note that all vertices of G are connected by a tree, while
a 2-tree divides the vertices into 2 disjoint sets, ¢ach of which is connected 3}
by the 2-tree.

We now study minors of the n x L incidence matrix ei . If S is a set of | _ {

n-k lines at the graph, and Vi ...Vi are k vertices, we will let e(il,...i 3 S)
1 k
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denote the (n—k)‘SQuare determinant

'1,...ik;S) =

£ . . .
{e:il Le8S,1# l?;"lk}

Lemma 2: If T, T2 are sets of n-1 and n-2 lines, respectively, then

e(i; T) = ri 1; if T is a tree,
) 0, if T is not a tree;
L
e(1,d; T,) = (+1,if T, is a 2;tre¢ and 1,J are
| | < not connécted in T25 R
| 0, otherwise;‘

.

Proof: "If T is not a tree it must contain a loop:

We may (by multiplying colums of the determinant by (-1), if necessary)
arrange the orientation of the lines as in the figure. In that case,

% egs = 0, and this linear relation on the columns of the determinant implies
s=1

that it must vanish.

If T is a tree we may, as above, assume that the lines of T are oriented

awdy from i in T:




~1h~

The complete expansion of the determinant is e(i; T) = () 1 et . 5 Where 7
T

(L)
is a 1~1, onto map =w:T - {1;.;.i,...n}; To contribute, a term must have
m(R) = iloi%(z) = fQ, for each Q e T. If & is a line with i, =1, then m(%)
must equal fg. But then if &' is a line with ig, = Vfg’ m(2') must equal fg,.

Continuing, we see that there is only one non-zero term, that with w(g) = fg,

for all 2. This proves (a), the proof of (b) is similar.

Lenmma 3: (a) d(a) =2 I Qs
T ¢T

k -
(b) Dij (a) = % E o

,Q,’
2 ¢ TE

the sums running respectively over all trees T of G and all 2-trees T2 of G

which do not connect k with either i or J.

Proof: Set e'% = a_l e%, so that A = e'et (here et = transpose of e). Applying
—— 1 L 1

the Binet-Cauchy theorem for the determinant of g product matrix gives

ky _ '/ X

k) = I e'(1, T) e(i, T).
TC L,

T containing n-1 lines

A(

By Lemma 2 only terms in which T is a tree contribute, and since e'(i, T) =
Mot e(i, 1),
o

A(i) = 3 B azl | (2.14)

trees ' T L €T

Multiplying (2.14) by Il a, gives (a); (b) is proved similarly.
L _

e,



e
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We recampute the Symanzik functions for the graphs discussed above.

Example 3
_vg,.

fo

+ | u2u3 = a(a)

o)
DS (o, =1 Oy = Obo b0k
1 2 172
| 240 3
‘Examglé b N,
: ’ }
Trees: . N |
; | 2
_ o 3 ,
1 o o + 0. + o = d(a)
2 ¢ 7 2 3 2 1 .
Fof D3 2-trees: | jy// 3
v Dyg @ oertrees: | -
I ap ' a0 + Yalaz = D3 (o)
2T, . 3 - 11
For D3, 3 | (ohl o—free)
or D15 B

L _ 3 :
M T Dyp(e)
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Example 5: / 2 2

| + a2a3 + = lm +

DPrees:

R iy

C. Analytic Continuation.

We now wish to show that the integral in (2.12),

(00 (00 k
Mo, et o, Py Diy By )
ce —_——= exp 1 |Z —— - (m” - in) Io (2.15)
2 A d - )
0 0 d(a) _ i,J fk o

which we know to converge for Re Xz > 2, may be analyficélly éontiﬁued to a
function mercmorphic in @L, the space of the ) variables: Divergence difficulties
arise because thé'functioﬁ d(a)‘éénishes when certain.a's vanish. To study this
‘behavior of d(a) we will introduce-écaling transformations in the o variables.
First note that d(a) = 0 if ap = 0 for all lines & in some locp. [This
follows from Lemma 3, since no tree T can contain the loop and hence II ap = 0,
for any T.1 If 21...2P are the lines of'the loop, we make - the vaﬁiibge |
change oy = t B'2 s With the normalization Bz .
S . k |
t d', where d' § 0 unless the a's vanish around some other loop as well. We

= 1, for some k. Then d(a) =

have isolated the zero of d in the factor t.

Suppose now that the o's vanish for iihés which form two loops. If these

Pr——
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loops have no line in common; we may scale the variables for the two loops -

separately;
ag =T By Ogr = 8By 3
1 1 i 1
B, =1 ;3 B,, =1
lk 23
Then d(a) = s t &', with d' + 0 (unless the o's vanish for another loop).

‘However, if the two loops overlap, we must first scale everything by one

variable, then one loop by another:

=t By =Y @ 1,2,3)
1 L 1 1 R

- 1, some j.

O
s
w
=
‘_l
AY ]
<2
P
1l

Then d(u) = tzs’d',:with d'" % 0 as above; t appears to the power two since it

is a scaling variable for two loops.

Two further remarks are necessary First, 'it‘is never necessary to -

lnclude in the scallng a line % which is not part of a 1oop on which the da's

vanish, even if ug = O; Secondly, since in the integration region { 02 > O}

the:uz 's whlch vanlsh can Torm-loops in many ways, We make a glven scaling

transformation onlj in‘a region'of u—space 4n which a partial orderlng of the

varlables limits the 1oops which can be formed.

As an example consider the graph of Example 1, with' d(a) = 005 + 00 +

u2u3. d vanishes whenever any two o's vanish, and vanishes to second order
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when all o's. are zero. In the region. 0 < a, < 0y 3 Gy, We may transform to

new variables

as =t , 0.< t R
a2 =ts , 0.<s <1,
a0 =t s B, 0<B<1,

A (@) =t°s (1+8+ s8).

Thus the vanishing of d is isolated in the factors tg,s, assoclated respectively
with a; = o, = a3 = 0 and a; = o, = 0. The remaining factor 1 + 8 +‘sB is
strictly positive in the integration region. | |

We will now formalize these considerafions. A Feynman graph is:2—connected

if it cannot be disconnectediby removing any‘vertex. Every graph G, is the

0
union of its maximal 2—connected subgraphs and of single lines; these are

called the pieces of @ (Example:

o

We will in the. future assume that our basig Eéynmanjgraph‘g'i§~2rconnected.

This represents no loss Qngenerality, since the amplitu@e‘for a general
graph is the product of the amplitudes of its pieces. Two subgraphs of G are

disjoint if they.have'no‘common,line; subgraphs are nonoverlapping if they are

disjoint or if one .is a subgraph of the other.
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Definition 2: A singularity family (s-family) is a max1mal family E of

nonoverlapping - subgraphs of G, each.2—connected or con51st1ng of a ulngle
line, and satisfying
(A) no union of two or more disjoint elements of E is 2—coﬁneéted; (We remark
that this definition differs slightly from that of [3], corresponding to the .
definition of 1abeled-s;fémi1y given there.)

We need some facts about any s-family E.
(1) G -belongs to E, by maximality, since.if it did not, its addition to E
would violate none of the conditions of Definition 2.
(2) For each He E, there is precisely one line of H, called o(H), which lies
in no subgraph of H in E.
Proof': There must be at least one such 1ine g since otherwise the union of fhe
maximal subgraphs of Hin E would equal H, and hence be 2—connected contradlcb—
ing (A). If we remove % from.H all pleces of the graph which remain must be
in € by maximality (as in (l)).b Thus % is uniQue. |
Examéle 6:

H: L= Maximal subgraphs of H in E:

%\-
\ >

(3) For each E we define the domain P(E) in a~space by D(E) = {él > 0|

> a, if 2 € H}, Then U D (E) = {él > O}, and if a €D (e)N D (e"),

% (1)
then a, = o,, for some & $ 2'. Thus we can write
B
‘ ’ jot J dgc__f(oc) =7 [ [dgc_ (o) (2.16)
a, 20 - D(E)

for any f(a).
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Example 7: If G = , a typical s-family is E =/ LR

with D(E) = o 2 05 > ai}. The decamposition (2.16) corresponds to separste

integration over such region in which the order of the a, is coﬁpletely

2
specified. , .
3 N
If G = s a typical S—family is E = {y § ) | "\\_'5' ,jr
N
% .
with D(E) = {oy 2 oy, oy 2 @3}- Here (2.16) is a separation into 3 integrals

according to which oy is largest.

Proof: If o is & point for which no two coordinates agree, so that (say)

QRL > GQL > +.. >0, , then o belongs to a unique domain D(E). For certainly
“L-1 1

we must have ZL = 0(G). The pieces of the graph obtained by removing QL from G
are then also in E (see Example 6). Let H be such a piece. Among the lines of

H is one, say ﬁk, which 1s maximal in the ordering given'above. Then &, = o(H),

k
arnd the pieces of H - {kk} must be in E. Continuing, we generate a unique -

s-family E with o € D (E).

(4) In D(E) we may introduce scaling variables ty, HeE, by
a, = I t, ; (2.17)
4 2eH H2 :
3(a)

with ta 2 0, 1>ty > 0 for other H. Tbe Jacobian ﬁi%f'Of this transformation

is

CV L -1
§(§).= Hgg‘tH (2.18)
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(Here L(H) is the number of lines in H. We will similarly write n(H) for thé "
nunber of vertices in H, so that L = L(G), n = n(&), etec.)

Proof: The function o (see (2)) gives a 1-1 correspondence between lines of

G and graphs in E, so we have the correct number of t varlables ungj '

o0
depends on tH* only if H' contains H; thus the matrixr{atg(H) is triangular

3 (o) H' .
and its determinant ~T~7 is the product of the diagonal entries. Since
aug(H) . .

31— = H'?

H'Ji H

because H' has L(H') -1 proper subgraphs, by (2).

(5). Under the change of variables (2.17),

: HeE 4
ok =t Hv‘ LD = () + 1 gk kt) - (2.20)
1. Ggeg 8 S B I o e

with E, Fk polynomlals and E(t) + 0 for tH 0. . } B N
Remark: Thls is the key result: all the zeros of d(a) in the reglon D(E) are.
isolated in the factors tH in (2519). Note alsq»tha@ only factors tH_for_

H 2-connected actually occur in (2.19), (2.20), since L(H) - n(H) + 1=0 for

H a single line.
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Proof: From Lemma 3,

the sum running over all trees T of G. Now a tree can intersect any subgraph
H in at most n(H) - 1 lines, since otherwise it would contain a loop in H.
The complement of T must therefore intersect H in at least L(H) - n(H) + 1
lines, so that I ay éontains-at least L(H) - n(H) + 1 féctors tH. This

L¢T

proves (2.19). (2.20) follows similarly, the extra factor of t expresses the

G
fact that D?ﬁ is homogeneous of degree L = n + 2 in the a's.

To show that E does not vanish we need
Lemma 4: The set TO of lihes which are themselves‘graphs in t forms a tree in
G.
Example: In the two cases in Example 7., {i} and {?,3}, respectively, are
trees.
Eggggf TO cannot contain a loop, Since the union of lines in the Lloop would
be a 2-connected subgraph, contradicting (A) of Def. 2. It suffices then to
prove that TO commects all vertices. If not, fhere exist disjoint subéets
u, ur c{&i’.w. Vn}:mxﬂlthat no line %, jpining a vertex in U with a vertex in
ur, ig in TO. Therefore each such line must be a a(Hi), where Hl,"'Hk e E
are 2~cornected. Suppose Hj’ 1 <Jj <k, is minimal among these graphs.
Because Hj is 2-connected it must contain at least two lines Jjoining U with u',
say G(Hi) and G(Hj). But by the coherence of E we must have Hj ? Hi’ S0 G(Hi)

cannot lie in Hj. This contradiction proves the lemma.

Now d(a) contains a term II a,. For each H in E, the graphs of E which

R N |
are subgraphs of H form an s-family in Hj applying Lemma 4 to this s—-family

PO,
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1 implies that TOfintersects.H-in a tree, i.e., in n(H) = 1 lines. The above

1 : y ‘
' term is then precisely I tﬁ(H) - n(f) + 1, S0
H

ao) = 1 B - nE g,
| :
} ‘ : We now return to the integral (2.15), writing it as a sum of integrals

over the domains D(E), then making the substitutions (2.17). Using (2.18),

(2.19), and (2.20), (2.15) becomes

| " 1 1 A(H) - p(H) _ 1 -2 |
T | dt | I dt,, I t 2~ T E) (2.21)
G H H =
} E’O 0 ‘0OHFG HeE ~
“‘ N
| FY (6 '
X exp 1 tG Z TR piQPJ (m - ln)(ZBZ £)

z j Here A(H) = Z(A - 1) (w1th L(H) the set of llnes of H) u(H) 2L(H) - 4(n (H) - 1)
! SLEL(H) ,
is the superficial dlvergence of H, and B, (t) = t (t) (2.21) now indicates

L clearly the divergences of the generalized Feynman integral: the tH integration
}; is convergent at the-physicalApoint‘(AZ = 1, for all &) only if the graph H
has negétive‘superficial divergence;
ﬁj o We may now analytically continue T(A,p) to all values of A. Consider
first the ty (H + G) 1ntegratlons in (2.21). If f(t) is any 1nf1n1tely

| |
{F differentiable function for 0 < t < 1, the integral

) v 1

ll‘ B

| 1) J £~ L e(e) a,
| - Jo .
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convergent for Re v > 0, may be analytically continued by writing-

' (1)
£(t) = z —-—1923—

+ g (£),
i=0 K

where gk(t) has a zero of order (k + 1) at t = 0 [5]. Thus

and (2.22) provides an analytic continuation of I(v) valid for Re v > - (k + 1).

Stated differently: on [0,1] we may write the distribution t° ~ % in the

(2.22)

form

Y~ 1. ? 6(1)(t) + |term analytic for Re v > - (k + 1) (2.23)
0 it(v + 1) J )
so that t¥ ~ 1 is meromorphic in v with ulmple poles at v=-1(i>0) of
residue 6(1)/1!. The factors tHA<H) = 1/2 u(H) - in (2.21) are to be inter-

preted as distributions in this sense.

- The tG integral in (2.21) may be done explicitly, using the formula

_ VI

J LV - 1 e—ltX gt = & . T(v)
0 XV ;

valid for Re v > 0 and Im X <‘O (See’(é.u)). From (2.13) and (2.21),
T = (——————-—~—-—

L\W/TRT F(XZ)

1 1

' A(H) - -ﬁ(ﬂ) 2 .

X . I d -

1z Jo JO it o Ty t E(t)72 (m in)(28,) (

)( A" = (2 sny) riace) < Q)

2.24)
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‘In the form (2.24) we may let n ~+ 0, according to Theorem 1, since (T By) > 1.

(note B,y = 1. In this limit /[@] » -1, so

;“ . 2] n-1 H(G)
¥ (Lp) = 1 (Hf?i;7> (- ul>‘v | (21?2 s (zn) TAE) - >.

1.1 L |
7 J { R LG U CO Rl L “(18,) - % E-l—%l-w (2.25)

We emphasize that the powers of ty are defined in the sense of (2.23). We have

thus proVed

Theorem 3: The-generalized Fejnman ampiitude T(A;p) is a meromorphic function

. on GL, w1th possible 31mple poles on the- varletles

AGH) = S u(H) = 0,-1,-2,. -

Ir G contalns dlvergent subgraphs, T will have a compllcated 31ngu1ar1ty
at the‘p01nt AZ =1, all &. We how discuss methods of remov1ng this 31ngular1ty

in order to define a finite, renormalized amplitude.

D. * Renormalization

The most obvious procedure for removing the Singularity is to set all
variables A equal to a single complex varisble z. The resulting fudetion of
v has a pole (of order at most L - n + l) at z = 1, so that one could take the
constant term.ln the Laurent series at z = las a renormallzed amplltude We

give an example to show why this procedure is unacceptable.
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Example 8: Let G, G' be the graphs

W > T
o . -

The amplitude TG(Al,A2)(Xl,x2) depends only on & = X, = Xy, 50 that

A

| To(2,2) (ky5%y) = £(2,6) = 22+ b(E) + o(E)(z-1) + . . . (2.26)

Here a is a ﬁon—zero constant; and.b, ¢ are non-trivial functions qf £, In
this case b(E) is a correctly renormalized amplitude for G.
Exercise: Verify these properties of a, b, and c. Use the remark following
Theorem 5. | | '

The amplitude for G' is the product of the amplitudes for its pérts.

Thus if n= %X, - X

3 2°

To (2,2,2,2) (), %5,%5) = £(2,) £(z,n) (2.27)

Expanding each factor in (2.27) according to (2.26) gives constant term

o(8) bn) + ale(®) + ] - (228

However, (2.28) is not a correctly renormalized amplitude for G', which must

have the form
b(E) b(n) + (constant)
(see Section:III). The proposed rule fails. -

This difficulty is not dssociated with'the-reducibility of G'.. The

problem is that, under the proposed rule, poles’.associated with one part of
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the diagram cause unwanted higher z—der;ygtives_assgc;ayedwwith other parts;

the problem will arise whenever a proper subgraph 1s superficially divergent;
We now give an acceptable method of remeing the singularity. It is con-

venient to axiomatize this process to emphasiié thé essential features.

Definition 3: Let J(A) be the‘fUnction

j0 = T AE,

~the product taken over all nonempty subgraphs of G. -Iet A be the space of

a1l functions f, meromorphic in a neighborhood of A = (1,1,...1), such that
J(A) £(A) is analytic at AO, i.e., [ has at most simple poles on the varieties

A(H) = 0. An evaluator is amap W : A~ € satisfying:

(W1) Tdinearity. W is Jinear.

(W2) Conbinuity. If {fn} e A are such ﬁhaﬁ”{jEA} are analytic in a Pixed

" neighborhood of A° and jf, > 0 uniformly in that neighbornood, then W L > 0.

(W3) Bxtension. If f e A is analybic at A%, then Wf = £(1%)
(W4) Symmetry. If m is a permutation of {1,...L}, and U defined by

fw(kl...kL) = f(kﬂ(l),...Aﬂ(L)),,then wa = Wf.

* # - *
(W5) Reality. If fe A, and f e A is defined by f (A) = (1), then Wf = f.

(W6) TFactorization. If f,,f, depend on disjoint sets of A's (e.g., fl =

1°72
fl(xl,...kk), f, = fg(kk+l,...AL)), then W f,f, = (Wfl)(WfZ)'

Since T(A) is clearly in A, we may define an analytically renormalized

amplitude by WT. [Technically, T is a distribution in p (or x), and WT 1is
the distribution (WT)(y) = WIT(Y)1, where ¥ is a test functions. This causes
no‘conquion in what follows; for a somewhat fuller discussion see [31.) It
should be noticed that the rule discussed in Example 8 fails to satisfy (W6).
The standard example of an evaluator is to take the constant term in an

iterated Laurent series, then symmetrize over the orders of iteration. This
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process may be given as a contour integral. ILet Rl < R2 <. < RL Satiéfy‘

i-1
'R, > ¥ R, , | - (2.29)
tog=1

and let Cy be the contour lz - 1] = Rj’ oriented counterclockwise. Then for

fe A,
1 £(2)
WE = oy Iry L farg.. far, - = (2.30)
T o c ()\11) ...()\L )
m(1) (L)
the sum running over all permutations m of {1, ... L}. The integral in (2.30)

is well defined, because by (2.29) f is not singular on the contour. Moreover,
(2.30) is independent of the specific choice of {Ri}. (2.30) is easily seen

to satisfy (W1) - (W6).




ITI. The Renormalization Properties

We have now given a natural definition of a "renormalized" ampliﬁqde for
a Peynman graph, using analytic continuatlon and . discarding the resulting singu-
larities. The surprising thing is that this pfoéesé haé a relation to physics.
We will show that the analytically renormalized amplitude satisfies properties
of causality, unitarity, etc; in addition, we show that;it»nﬁy“Qe obtained by

the "infinite subtractions" characteristic of the usual renormalization theory.

A, Axioms of Renormalization.

In [4],.Hepp gives a beautiful axiomatié charécﬁerizatioﬁ of renormaliza—
tion, which we now discuss. Suppose that, corresponding to every graph G(v,L)
in a theory, we have defined a tempefed distribution written éymbolically_as :

FUT agxp = )1 6y
Becéuse anti-time ordering (in which the propagator is replaced by 1ts complex
conjugate) is necessary in the discussion of unitarity and causallty, we sSup~ .
pose also that we have defined a tempered distribution

FII (%X, - % )] | (3.2)
} B fg 12 . ‘

corresponding to the graph in which each line is assigned an antl-propagator

KF. )

[For a complete dlSCUSSlOn of the equivalence of dlfferent renormaliza-~
tion schemes it 1s necessary to define renormalized amplitudes for "generallzed
graphs". We will return to this point in Section IV.]

The distributions (3.1) and (3.2) are renormalized amplitudes for G(V,L)
if the following ﬁhree axioms hold. First note that I Ay 1s itself well de-

L
fined on test functions in the space SO = S?(lRmn); i.e. those which vanish

_29_'
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in a neighborhood of the set {x | Xi=xj for some i # j}. ‘Then we require:

(F1) F(HAF) is a Lorentz invariant extension of TAg from S° to S, and
! ) ‘

F(na.) = F(ui.) |
L F L F

We now impose unitarity. If (3.1) is to be the renormalized amplitude,

then the S-matrix, say in a :@k: theory, will be given by a formal power series

in g:
S = g “"ﬁ%""’ T\ [ F(lag) s ¢ “(x).ec9 T(x )edxy ...dx s (3.3)
n=0 =1 G L _
k—ul
the sum rumning over all ways of contracting pairs of the fields :¢ (xl):,
k-0,
1o n(xn): . The adjoint s* will ve given by a similar sum, with (-ig)"

replaced by (ig)", and with amplitude F(HKF). If we now write down the uni-
tarity equation S+S = 1, reduce the resulting products of normal products by
Wick's theorem, and regroup terms according to the total power of g, we find

a series identical to (3.3) except that F(HAF) is replaced by

]U' I A "
u!Uu"._._.V ("1) F(“ AF)F<H AF) CIOIm A‘*‘(Xa—Xb) (3.}4)
unu=¢ '

In (3.4), 1I' runs over those lines of G(V,L) connecting two vertices of
ur ™ over lines connecting two vertices of U"; 1T over lines comecting
1 .

‘ - conn |
V, el' to Ve U"; |U']| is the number of elements in U', and we have written

b (x =) = <0fo(x de(x )]0 . - (3.5)

The unitarity axiom is:

(F2) (3.4) must vanish for each graph G(V,L) containing one or more vertices.




g1

Finally, we impose:causality;by.requifing the retarded funetions to:have
appropriate support properties. . When. the retarded functions :are: expressed in
terms of the time-ordered functions, this becomes

(F3) For each graph G(V,L) and each vbev, the distribution

Loty (-1) F(H'AF)F(H"AF) ol A+(Xa—xb) (3.6)
U=
Jjeu'

vanishes unless'xj-xi is,in‘v4 (the fbrward_light:qone) for each VieV.

Tt is relatively easy to verify that analytié renormalization satisfies
these axioms. For (Fl), the Lorentz invariance is immediate. The property of
extending TA, from $%is an’ immediate consequence of the cOuntérﬁérm'interpretér
tion given in Section B, so we defer its discussion unbil that time. Finally,

we Introduce an anti-propagator, depending on 2, by

n
A¥(A,p)

1
=
8
|
o
+
g

1]
B>
—~
>
~
'O
~
-

. |
and a corresponding amplitude T (A,p) defined for large Re A, by

* ¥
T (A,x)=14a (A

i ¥ ¥y )

Lot

T may be analytically continued to all A and has the same singularity struc-

ture as T, so we define
- *
F(r ag) =WT .
L
(Fl) then requires that

WT* = Wt

3
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and this follows from (W5), the reality property of the evaluator.
We will prove (F2) and (F3) by defining a function A'+(>\) which is related

to AFO‘) much as A, is.to AF’ For large.Re Az we will verify that

u’ 1 ¥ n _
u*?u" 01T ko) wmag0,) I 8,00) =0 (3.7)

(compare 3.4), and that

u,' ! * n
U’gu" (—1)| | & Ap(r,) TAR(R,) cgnn by (xy) (3.8)
Jel’

has support iﬁ{xj - x,e V, , all 1}. Analytically continuing (3.7) and (3.8)
to the physical point A?, and applying the evaluator, will establish (E2) and
(E3).

‘ . . . 2 2\=A 2 2\=A s

- The distributions (m~ - p )+ » (m™ = p%)"" [5] are defined for Re A < 1 by

2 2=\ ‘
|wf” - p7] if m°(2)p?
i pg)"k =
TE ) T

0 otherwise
and by analytic continuation for other A. (This andlytic continuation may be

accanplished as in Theorem 1; however, the poles at A = 1,2,... are actually

present in this case.) These distributions agree with (m2 - p2 + iO)"", in
appropriate regions, up to a phase, so that ‘

- A, -2
(m2 _ p2 + lO) A = (m2 _ p2>+>\+ e l'ﬂ')\(m2 _ pg)_ .
We now argue in analogy to the relatim

A L& =AM +A
pt e T
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ny o,>
where supp A<i) C {p (<)0}. Thus

ny * . —- -
A (A) +’X () = —i[elw\ — e :erX](mE _ p2) A
F F -
5 o |
= 2 8i A -
in (-7 (3.9)
and since (m? e-pg):k has support-in the region p? > m?,- 

v

8, (0) = o+ p9)2 sin m (if - p9)_) . (3a0)

is a well defined tempered distributiom.

Lemma 5: 4,(3) is in ¢™ for Re'A > m + 2, and

8030 = 8G9) 8,03 + 0(-x%) 5 (1)

(3.11)

i

A;(A,X) o(x°) A (A,x) + o(=x°) 2, (0x)

hold (as identities between measurable functions).

Remark: The equations (3.9), (3.10), and (3.11) show that the relations among
E— ~ _

AF(X),AF(A), and Ai(x) completely parallel those among Ap, Ap, and A0 Al-

though it is implicit in (3.9), (3.10) that 4, (1) = A, this may also be seen

directly: (nf - p°)

~ has a pole at A = 1 with residue cS(p2 - m?), so that

1im e(+p®) 2 sin wk(m? - pg)zx _

A (1)
A (1
* A1

1l

21 §(p° - 1°) 0 (+p°)

as expected,

Proof of Lemma 5: The Fourier transform of (3.10) may be calculated to give
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Ai(x,X) = W (l/——};d + iO’(XO)O )}\—2

X K}\__2 (m/:&% + 10(x2)0 )

[where c(xo) = gign of xo]. The argument of Lemma 1 shows that this is C™ for
Re A > m + 2, and direct comparison with the Fourier transform of AF yields (3.11).
Lemma 6: With A, defined by (3.10), and Re A, > 2, (3.7) holds, and (3.8) has
the proper support properties.

Proof: Insert (3.11) and the obvious decomposition
= o(x° o | | |
3,(x) = o(x%) 8,(x) + o(=x°) 4, (x) ()

into (3.7), producing a sum of products in which each line is associated with

a factor of the form o(+ xo) Ai(x). It is convenient to répresent such a factor
by an orientation for the line, corresponding to the time-ordering imposed by
the e(ixo), and a sign corresponding to the A, involved:

Vé + VE

‘e(xg—xg)Ai(xa—xb) S S

The decompositions (3.8) and (3.10) are thus

AF(Xa - xb) R —— + 3

- a - D a - b
Mp(xy = %) = —<&— 4 ; (3.13)

1
i

(g = %)

Now consider a typical term arising from (3.9), with each line oriented

and signed. We must identify from which U',U" term in (3.7) it could have come.




s

let W' CV be the set of vertices with an outgoing positive line, W" the: ver-

tices W1th an outgoing negative 11ne and W = V - (WLJW') the vertices with
only incoming lines. By (3.13) we see that necessarlly
wc wywoo
C T S (3.14)
urc W"U'W

Now if W is empty, so that every ve:tex has aﬁ oufgoiﬁg line, the product of
® functions wili imply that the term has support in somg‘variety xi ='x§ and -
hence vanishes as a distribution (recall that all distributions here are lo-
cally integrable functions). If W is not empty, the sum over‘U',U" corres—
ponding to (3.14) will Vanish due to‘the factor (—l)‘u" in (3.7).' This com-
pletes the verlflcatlon of (3. 7)

To check the support propertles of (3. 8) we agaln insert (3.11) and (3.12).
Tn this instance all terms cancel, by the above mechanism, except those in whlch '
w' = v ~{Vj} , W={V} . But the e-functions force this term to have sup-
port in the region {X? > xg, for all i}; since (3.8) is Lorentz invariant the
support must actually be in'{i - X € V‘ all i}.

We have now verified (3.7), and the support properties of (3.8), for Re A
sufficiently large. However, these equations are easily continued to all values
of A: the functions A+(AZ) may be multiplied, for all values of AZ, because the
support properties in momentum space imply that the convolution integrals are
taken over a finite region (see [1] for a discussion of the same argument for‘

the usual A+). If for U V we write Tu for the generic amplitude corresponding

to all lines joining vertices of U, the analytic continuation of (3,7)‘is

lurfs* - .
u'§u" (W T Ty Iy A_‘(H 0 > . (3.15).
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and of (3.8)

' * ) : ’ :
MU W a0 1o . (3.16)
U'?U” ur = (T conn‘+’g’ ‘
jeu'

Analytic continuation does not affect the support properties of (3.16).
To complete the proof of (F2) and (F3), apply the evaluator W to (3.15)

and (3.16). The factors Tu,, TU"’ and T A+vdepend on disjoint sets of A's,
cann

and T A, 1s analytic at &9. Thus from the factorization and extension pro-

camn
perties of W, (3.15) becomes

W ) wr,) 1 os =0
U'?U” u u com T

which is the desired unitarity property. Similarly, applying W to (3.16) shows
that

I ol wr 1 s,
Jeu! ‘ conn

has the desired support properties. This completes the verification of the

axioms.,

B. ‘Couhterterm Interpretation

Here we relate analytic renormalization to the original idea of renormali-

zation theory: that the divergences represent unobservable effects and may be
removed by appropriate'redefinition of parameters like maSs, charge, ete. In
a more general context the idea is as fbllows."Suppose one has a rule for
regularizing the amplitudes (e.g., analytic regularization, Pauli-Villars

regularization, etc;) with a regularization parameter r, so that




—
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Ao, = 1im A
B o F,r
‘ 0
while
T =14A, (X, - X, )
r P,r fl 1,

is well defined. In a theory arisihg from a‘ Lagranglan denéity L= LO + gLI,

we say that a renormalization rule is jjgpi_ementable by counterterms in the
Lagrangian if we can find a new density, of higher order in g and depending on

r,

Ly = ] gLC<>

» Cod=20 :
so that the rencrmalized series formed with L is the T - r 1imit of the regu--
larized seriés formed with L + LC(r). Since the r - TS 1imit of LC itself
does not exist, the terms in LC are often called "infinite" counterterms. In
a renormalizable theory the new Lagrangian L + Lé may be interpreted as the
Lagrangian of bare filelds, involving the bare mass and charge.

'Ihe condition that a renormalization be J_mplementable by countertems
forces it to have a certain subtractlve structure Wthh Wwe now descrlbe (for
details of the relation of thls structure to the counte:r'ter'ms, see [1,3,61).
We will work with ana,lytlc reg;ularlzatlon throughout a.lthough the dlscu551on

is independent of the par'tlcular form of reg;ularlzatlon

Definition 4: A graph G is one par'tlcle 1:r=:r’edu<31b1e (IPI) if. :Lt cannot be dlS-—

connected by removing a single 1ine. A generalized vertex in a graph G = G(V,L),

with vertices V = {Vl,.. . Vn}’ is a subset UCV; the graph G(U) is the subgraph
of G with vertices U and with all lines & e L for which iz,fz el. A vertex

part for U = {V'

‘ ,
1w Vm} is a distribution X(l;U)eS(Rl}m) having the form
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1, difm= 1

X U) 0, if m > 1 and G(U) not IPI

1
A

!

! ] 1
D[s(xl--x2 .. 8(x

mpl—xm>]’ otherwise.

Here D is a translation invariant constant (in x) coefficient differential

operator, so that in p-space, if G(U) is IPI,

X3 = 8§ 01205 by mp)

with P a polynomial. Moreover, for a minimal renormalization, the degree of
P (or D) is at most nu(G(U)), the superficial divergence of G(U).
. Suppose now that we haye assigned a vertex part to each generalized ver-

tex in the graph G(V,L). For any partition Q of V into generalized vertices

ul.ﬂ._uk(Q),
k(Q)

where i} is over 1inee connecting different generalized vertiees. [(3.17) 15
well dgﬁgged, for Re xz sufficiently 1arge,.according to Lemma 1, since the
differential operatore in the vertex parts can act on the propagators. For
other X's it is defined by analytic continuation.]

Definition 6: A tempered distribution F(HAQ) is an additively renormalized

Feynman amplitude for G(V,L) if there exists a set of vertex parts X(asW)

such that

i

F(ma,) = Xlimoé 'TQ’X(_X_) . T (3.18)

We remark that the sum in (3.18) is over all partitions Q. In particular,

PR

P R P
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if Q is the partition‘{Vi}, ..;{Vh}, LK ® =T, the generallzed amplltude for
G(V,L). The other terms in (3.18) are subtractions to kill the'singularity
ofTat}_o. | | - |
We now show that the analytically renormalized ampliﬁude WT has the struc-
ture (3.18)[7]. A naturel subtractive structure”fer w‘as an’operator on A
will first be developed and then these subtractlons will be related to the
form in (3.18). We must first extend the notion of an evaluator. |

Definition 7: An analytic evaluator is a map V : A > A (where A — A is the

subspace of functions analytic at l?) satisfying
(V1) ILinearity.
(V2) Continuity; If {f} e A,‘and £, » oin the sense of (W2); then Vﬁﬁd4 o
unifofmlyvin.the‘neighbofhoed of 5?. | | | | |
(V3) Extension. Vf =1 if fe A,
(V4) Symmetry. If f_is as in (Wh), then V(fﬁ) = (Vf)TT
(V5) Reality. (VD) = U(£") -
(V6) Factorization. If fl’f2 depend on disjoint sets of A's, then V[flf2]’=
Vf1Vf2 , and an additional technical assumption
(V7) If £ e A is independent of A , so is ve.

Conditions (V1) - (V6) should be compared with (W1) - (W6); in particular,
(v2) shows that the operator U retains more 1nformat10n about f than the oper-
ator W. Note that if V is an analytic evaluator, then W defjned,by wf = Vf(xo)
is an evaluator. The specific example of an evaluator given earlier is easily
extended to define an analytic evaluator, by modeling the definition on the ex-
traction of the regular part of a Laurent series of a fdnction.of a single com-

plex variable:

() = —L— ] fdu o [ ) : (3.19)
(21ri)LL' T o 1 L ('ul-e)nl)...(uL—)\L).

Cr(1) . r)
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where in (3 19) it is assumed that IA - 1| is less than the. radlus R, of the

1
smallest con’cour |
Glven an analytlc evaluator v, .we may def’lne ’che operation of removjng

the smgularl’cy assoua’oed with some subse’c‘ of thev A varlablss. 'Ihus for H a
subgraph of G, let V bs the opera’cor obtained by applying v "co feA whlle
keeping the AQ, L e} H, constant and away from s:mgularl’cles VHf’ will not be )
singular when the AQ, L e H, appr'oach 1, but may have smg;ularlmes on A(H') = O‘,
if H' is not a subset of H. By conventlon we def’me Vs for H the empty gr*aph, |

to be the 1dent1ty operator on A. Note also that Vy = V.

a -
We need one preliminary result.

Lemma Lemma 7: Let H,H' be subgraphs with H'CH. Suppose feA is such that all

smgularl’cles of f in H actually lie in H‘, spe01f1cally, f’ is not s:mgular

on any {A(H") = 0} with H'CH but H"CI:H' Then
Uyl = Vg £ ' _ | (3.20)
Proof: From the hypotheses, the function

g = m AH") FQ) - (3.21)
- H'cH - ; . :

is not singular on the variety {A . = 0] all 2 e H}, except at points where some

sum of .lg‘s; for & 4; H, vériishés.' 'A’c othér points on the \}arié’cy gma;y be éx—

panded in a muiltiple Taylor series, so that g is an infinite sum of products

St o - (3.22)

where f’K depends only on the A for £ € K. From (3. 2l), £ will also be a sum
of’ terms of the form ( 3. 22)/- By the contmulty and linearity of V, it suffices

’co verlfy (3.20) on each individual term; but (3. 20) follows immediately on
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(3.22) from the factorlzatlon and extensmn proper’tles of V q e. d

Definition 8: If H is any subgraph of G, define the operator S(H) on A by

s@) = J (-1 1B Vg | ; (323)
where the sum includes the empty gr’aph (H' =), and IHfH'I = nunber of 1j1_q_es
in H not also in H'. | | | |
For f ¢ A, S(H)f is called the singular part of f associated with H. This
terminology is justified by the first part of the next 1emrﬁa.
Lerma 8:  (a) S(H)f = 0, unless f is singular on some varieties A(H;), with
. Hy = H. (b) If £ = flfgs where f, depends only on’ >\ >4 e Hy, and

Hl’HE are disjoint, then -

0o , unless HCH1UH2
SH)f =

(S(Hnﬂl)fl)<S(HnH2)f_2) » Otherwise. |

Example: If L =5, and £ ¢ A has the form

g(A)

£(A) = , ,
(xl-l) (x2+x3—2) (>‘1+>‘2”LF3>

with g analytic at A°, then Lemma 8(a) implies that S(H)f = 0 unless the set

of lines of H is one of ¢, {1}, {2,3}, {1,2,3}, {1,2,4}, {1,2,3,4}.

‘Proof of Lemma 8: (a) If f does not have the structure indicated, there must

be some line % € H such that, if H'CH and f is singular on A(H"), then & ¢ H".

By Lemma 7, if H'CH but & ¢ H', then

VH'f = VH' U {,Q,}f .
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so that the H' mmsz{z}femBin(ses)caméLﬁénempuedtbf.'ﬂﬁs
verifies (a). | | |
(b) 1If H41H1l1H2, then S(H)f = 0 by (a)(since the singularities of £, being
contained in Hl and H2, could not have union H). Otherwise, the result follows
from (3.23) and the factorization properties of V.

Theorem U: The analytic evaluztor V has the deéomposition

HCG
Proof: If one inserts (3.23) into the right hand side of (3.24) and’ rearranges,

the coefficient of UH vanishes unless VH = UG = |, qg.e.d.

We remark that since S(¢) = 1 (the identity on A) (3.24) expresses Vf as

a sum of f itself together with counterterms corresponding to singularities of

f' associated with various subgraphs.

Example: If L= {1}, $(¢) =1, S(1) = (V- 1). If L= {1,2}, S(4) = 1,

1

$(1) =V, - 1, S(2) = 02.- 1, $(1,2) = ¥, - vy = Uy + 1.

We now relate (3.24) to the desired decomposition (3.17), and begin by
defining the vertex parts appéaring there. Suppose that U = {Vi...V;} is a
generalized vertex of G(V,L), and write G = G(Vj,...V;) (see Definifion uy,
An TIPI graph H is subordinate to G'(H-<G') if H also has vertices'{vj,...vg}.

Then define
Xs) = ] SETe(n) , - (3.25)
H=<G

. | P
where Té, is the generalized amplitude for G . Note that (3.25) vanishes un-

1
less G is IPI, since each H in the sum is required to be IPI.
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Example: If G(V,L) is.the graph

then somé of the graphs subordinate to G<V1-=V2=V3) are
> > & o

|
Lemma 9: The dlstrlbutlon (3.25) is a vertex part for {Vi, ..V 1.

Proof: Recall the spe01f1c form of Tg,(x) glven in (2 23), Whlch we now wrlte

as
TGy = riacary - BEy v 1o o (3.26)
G~ ) 3 Ef” A o .
T_(A) = §(Zp,")E(N) fl fl t A u<§‘) ) 1‘dt E(t)™°
A) = 8(zp, PN | ... T , :
B T o mee B | ‘ T .
HAG (3.27)

‘ kap u(G‘)‘_ At
x [ zg, ~ § —=2dg o ME)

1,J
where f()) is an entire function. We will show that for each H<G' and each E,

S(H) [T(A(G" “<g') £l = ; ;pi...p;n) , (3.28)

with P a polynomlal of degree ab most u(G')

Suppose flrst that H=G'. TE has 81ngular1t1es A(H‘) = O where H' does



Ul

not contain ¢(G'), therefore, if u(G) < 0 so that the gamma function is not
singular of ﬁ?, (3.28) will vanish, by Lemma 8 (a). If u(G) 3 0 , we use

Iz - k) = [(—1)k(k!)—l(z - k)_l + regular part] to write

u(@")
T(A(G') - EigilJTE = =1 [T:] ' + remainder (3.29)
A3 i@y Pogan T

The remainder in (3.29) does not contaln .the 51ngular1ty {aar) = O} and hence
is annlhllated by S(G'), while the first term is already at the fbrm (3.28),
and this form will be preserved under the application of S(G').

For a term H=<G', H # @' in (3.25), we suppose that H has 2-comected
pieces Hl"“Hk‘ By Lemma 8 (a), (3728) will vanish unless HieE,i =1,...k.

In the neighborhood of A? the distributions in (3.27) have the form

(U(Hi)
a) - B8 1 T e ) |
ty = (H.)l + reg. part. (3.30)

i

If this decomposition (for all Hi,...Hk)'is inserted into (3.27), Lemma 8 (a)

implies that every term in the resulting sum is annihilated by S(H), except

ko () ' »
the one involving I s 2 i (ﬁ ) We will prove below that
: H '

i=1 i

Fl:.fj(t) |,CH ) =0 . | (3.31)

- ...=»tﬂk= 0

This implies that the surviving term is actually a polynomial in the pi of
, k _ o
degree at most X u(Hi) < u(@), multiplied by S(Zpi), so that (3.28) is
i=1 D S . L L
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again satisfied.

To prove (3.31), recall that ng is related to a certain sum over 2 trees:

£, 1 £LE)EDL F?

G ¢ @ =3 1 oe L (3.32)

Since the Hi are the pieces of_a 2-connected graph H whose vertices afe'{Vi;}..
V;}, each 2-tree in G', in order not to comnect all vertices of G', must fail
to connect all vertices of some Hi‘ Thus T2 can intersect that(Hi in at most
n(Hi) - 2 lines, and the corresponding term og‘tbe right ﬁand side of (3.32)

will have a factor

i

The corresponding term in Fﬁj(t) wlll have a factor tH 5 this completes the
proof of (3.31) and of Lemma 9, '

It is convenient to extend the notion of subordinacy. Let Q be a parti-

tion of {Vl,...Vh} into k generalized vertices {Vl,...Vi(i)}, with r(i) = 2

1 : !
for i=1,...k and r(i) =1 fori=k + 1,...k. A subgraph H is subordinate
. R |
ton{Q)lth%(mmmdedcmpmamsHy.“%w,mw}§<%ﬁ-ﬂvr.ﬂﬂiﬂ,
for 1 =1, ...k'.

Example: In the graph \h

2 b 5 N

v3 2 i YA

the subgraph H containing lines 1,2,3,4,6, and 8, is subordinate to
Q ='{vi,v?,v3,vu}, Vi, Vgl
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Lemma 10: With vertex parts X defined by (3.25),

T = Y S(H)T

VX gy G

(see 3.17), with TG the generalized amplitude for the graph G = G(V,L).
Proof: lLet Gl,...Gk' be related to Q as above; let Lconn be those lines in L
not contained in any Gi' If Re AZ, ZELconn, is sufficiently large, TG has a

product structure (Lemma 1)

Te= T Tg T a(x) . (3.33)
conm

We may apply S(H) (H<Q) to (3.33) since in defining S(H) the Ay» RH, are
held constant, and this constant may be taken with 1arge real part. Then us-—
ing Lemma 8 (b),

kl
Y SET,= ¥ m(SHEIT.) 1 AL)
H<Q 0 E<q 1=1 1 G b
k'
=T () SHIT,) 10 AK)
. &, 17 G, L
=1 Hi<Gi‘ T Loomn
= TQ,X

We are now ready for our main theorem.
Theorem 5: Analytic renormalization is additive in the sense of Definition 6.
Proof: Suppose that the analytic renormalization is defined by an évaluator
W. Then there is an analytic evaluator V with Wf = (V£)(1°) (this has been

shown by the example (3.19) for the standard W; for a general proof the reader

is referred to [1]). Then
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1

0O
T, = () (1)

= 13 S(H)T
Aggp éHg& Q)Gﬂy'

Ao : Ta,x 2

using Theorem 4 and Lemma 10. It should be noted that if a subgraph H is not
subordinate to any Q, then necessarlly same connected component of H is not
IPT, and S(H)TG = 0 by Lemma 8 (a).
Remark: (a) In section ITITA we omitted the proof that WT is an extension of
(HAF) from S°, This follows immediately from Theorem 5, however. For if Q
is any partition other than {V, , ... V. }, say Q =I{u1,...uk} with U; =
{Vi,...Vi(i)} and r(1) > 1, then T, X is a distribution concentrated on

1

X = e = Xi(l) and vanishes on SO. If weSO, then, Theorem 5 implies
(WM (W) =\2m, (T9)

= (M),

g.e.d.

(b) It should be noted that both in checking the axioms and verifying the
counterterm structure, the factorization property of W was crucial. This
underscores the failure of the simpler method of evaluation alréadyﬁrejected
in Section IID. It is easily seen, however, that the proofs gb through if
the same A parameter is assigned to all lines joining a given pair of vertices.

This procedure has been used in [8].



TV. FHinite Renormalization

In this section we will give a brief discussion of the equivalence of
different forms of renormalization, together with an example showing the equi-
valence of analytic renormalization with the usual Bogoliubov;ParasinkeHepp
formulation.

To discuss the equivalence it is necessary to broaden the general dis-
cussion of renormalization given in IIT A. (see [U4]). Suppose that, in addi-
tion to our graﬁh G(V,L), we also specify a partition Q of* V into (disjoint)
generalized vertices Ul,...Uk. Suppose further that to each Lli we have
assigned a generalized vertex part R(ui), whete X is a distribution with the

form
1, m=1

&(ui) = < 0, if G(U) not IPT (4.1)

D[G(X%-x%)..G(xi(i)_l—xi(i))]

when Lli ='{Vi ...Vi<i)}, and D 1s a constant coefficient differential operator
of degree at most ﬁ(G(Ui)). This form is the same as that of Def. 4 except

that there is no A dependence. 2 is sometimes called a finite vertex part, as
compared to vertex parts which become singular as a regularization is removed.

(G, L), Q,X) is called a generalized Feynman graph; we require that a renor-

malization F assign a finite value to the corresponding amplitude :

o . | |
F(iglxwi)cogn a,) | ‘ (4.2)

(compare 3.1). The renormalized amplitudes for the generalized graphs are then
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required to satisfy Lorentz invariance, unitarity, and causality axioms °
parallel to those discussed in IIT A.

Definition 9: A finite renormalization is a map assigning to every gener-

alized graph (G(V,L), Q,X) a finite vertex pa.r"c X (V) (with structure (4.2)),
with the restriction that if Q is the partltlon {V} then X (V) X(V) Two

renormalization operatlons F,F' are sald to differ ’QX a fmlte r'enomallzatlon

if for some finite renormalization XO and every generalized graph (G( V, L),Q,X),

'F'(HX(ui)nA) = ; F(n&o(wj) Cogn a,) | | (4.3)

In (4.3) the sum is over all partitions P = {W,,...0_ } of V vhich are at least
as coarse as Q (for all i, there is a J with uici wj).

It should be noted that one term on the right hand side of (4.3)
(the P = Q term) is

F(HX(Ui)HA).

The structure of (4.3) is similar to that of (3.18). 'There is a similar inter—
pretation in terms of counterterms in the Lagrangian: (4.3) says that the re-
normalization F' may be implemented by adding finite counterterms (correspond-
ing to the >A(O), then corriputing renormalized amplitudes ﬁsing F and the new
Lagrangian.

We quote w1thout proof [Ll] |
Theorem 6: Any two renormallzatlons dlff’er by a flnlte renomallzatlon More-
over, given a renormalization F and f’m1te r'enormallzatlon XO, F' as deflned‘
by (4.3) is a renormalization. ‘

Let us now take up some specific examples. First, note that analytic

renormalization extends :'imriediétely to a definition of quantities such as (4.2).
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For by Lemma 1,

k A
T o= 1T X(U) 1 alr)
Q,X i=1 1 corin .

1s well defined for Re Al sufficiently large. TQ x May then be analytically
3
continued to the physical point 5?, Jjust as in IT C., and is found to lie in

A, so that (4.2) is defined to be

WTQ’&

Just as in IiI A, this rule is shown to satisfy the generalized invariance,
unitarity and causality axioms.

Another example is BPH renormalization [1,6]. This scheﬁe is explicitly
subtractive in the sense of Definition 6, the counterterms being defined re-
cursively. We again adopt analytic regularization, although Pauli-Villars or
Hepp regularization is more usually used.

Definition 10: Let (G(V,L),Q,%) be a generalized Feynman graph, with

1
Q= {ul""uk}' For each subset {Ul

R, V:

1
...Um}, define inductively quantities
3

- 1

' J 1 1 |
R(AsUp, .. U ) = 123 izl VQ,ul,...Ur(i)) Cofm AN (4.1)

‘ . S N TT S |
where the sum is over ali partitions P of {ul,...um} into {ul""ur(i)}’
i=1,...0,with j > 1, and 1T as usual runs over lines Joining vertices

conn :
lying in distinct sets of this partition;
f‘.A
X(ul), if m=1

1 1 t 1
V(A}Ul...um) = P, o if G(Ul ...Um) is not IPI (4.5)

! 1
mMU(G(V},...V;))R(Aﬁula---Um) otherwise
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. . . '{ 1. T
Here {V' ses .V;} are the vertices in the peneralized vertices {Ul,'. . .Um'}”,' and
1 1 [ T T S
G(U'l ... U)) is ootained from GV, ...Vy) (Definition 4) by collapsing edch

ui to a single point. Mu is the operation of replacing f(_x_;pl v ps’)' inh -

— 1 1 1
R = 8(Zp)f(Aspy «v. DY)
1 1 8

by its Taylor series in p up to order u.

Finally, the renormalized amplitude for (G(v, L),Q,)A() is

= R(A;U (4.6)

R(A3Uy, ... U »

k) .uk) + V(A,ul...u

100

The main theorem [1,9,3] is

1 .
Theorem 7: R(}_;Ul...uk) is analytic when Re A, > 1 == (where L = |L|), and

R(A% Uy, )

as a renormalized amplitude for (G(V, L),Q,)AO.

We note that if (4.4) is inserted in (&.6); it is clear that the renor—
malization bperation R has the subtractive structure of Definition 6.

It will now be showﬁ exp]icitly thaf énalytic and subfractive renormali-
zation differ by a finite'renomalization. For simplicity we will chec_k_ this
property on graphs rather than generallzed graphs. Then we wish to find a

finite renormalization )A<O such that, for G = G(V,L),

_ 0. | .
WTy = RY(AVy 5.0 V) | | (D

with

(4.8)
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where P partitions V:into U,y...t , and R(A?,U

l’k

for(G(VL)PX) -
Equation (4,8) is a d:Lrect transcmptlon of (4, 3) However, it is pd_ss.;
ible to define R' in a different but equivalent way. Spe‘cifically, we may

modify (4.4)-(4.6) (again, we work with an ordinary graph here):

-— 1 1 ] . . . . .
R'(A3V,,... V) =1 nV(xV LDVEN) T A) (4.9)
SR O =R T Y o

. )
1 if m=1
1 1 1 1
VgV V) = ] 0 Af G(Vy...V,) not IPT (L.10)
Moot ROV
RGN DL S EERY
+ f(o({V" s .VI;}) » Otherwise,
R'(g:,vl...vn) = R'(A;V ,.v..Vn) YTV, ) (4.;1)

That is, we add in the finite renormalization as we go along, .in (4.10). .'Ihe |
equivalence of (4.9)- (M 11) with (4. 8) is an easy exercise in r*earrangmg terms
[2,31. The phy51cal interpretation is :mterest:mg in (4. 8), as pointed out
above, we are consistently us:mg the rule R for renomallzatlon, but have |
modified our interaction Lagrangian by the addition of finite terms. However,
R itself may be implemented by "infinite" counterterms; (4.10) says that if we
modify those infinite terms by the correct finite addition, we produce R' in-
stead. Thus R' may be viewed as arising from the same (infinite) Lagranian in
each case. |

In proving (4.7) it is convenient to use (4.9)-(L.11) instead of (4.8).
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Theorem ‘8: TIf the finhite renomalization;;(o in. (4. 1_O),:'Ls defined to-be. -+ .o

~

X (V.

o(V1a+ V) = W Ty 'y () 12)

Ve eV,

' L ot v 1
whenever m > 1 and G(V:'L ...Vm) is IPI, (where in (4.12) u = u(G(Vl ...Vm)))

then

o p O" . ) . : . o : S ! - )
WTy = R (2 ,vl,...vn)‘ - | o (4.13)

Proof: As a preliminary result we show that for m > 2,
1. =
W'V L.V =0 ,(_Ll‘.lh)__

The proof is by induction on m. From (4.10) and (4.12), (4.14) becomes

WMu["f, iil y (375\’:{ e Vpegy) e a(n,) + TG(V:'L"'V;)] . (4.15)
The P = {{V]'_},. ..{V;n}} term in (4.15) precisely cancels the TG(V' V') term,
’ l . o8 m

so (because W and Mu commute) it suffices to show that

J ) .
Wl movrOosvE L) T Al
i=1 =L r(1) conn

Q=0 (4.16)
where r(i) > 1 for some 1. But the factors in (4.16) depend on disjoint A's,
so the factorization property of W, and the induction assumption (4,14) applied
to that factor for which r(i) > 1, implies (4.14).

The proof of the theorem is similar. From (4.11),

R' (37

J X . .
LoV =IO VGV L Vgegy)  Ta0y) (4.17)
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where the sum is now over all partitions P of‘{Vi;,‘,vh},- Apply W to both -

sides of (4.17). By Theorem 7 and the extension property of W , the left hand

gide becomes

R(&PN& . Vn%,
On the right hand side, all terms in which r(i) > 1 for same i vanish, using
(4.14) and the same argument which established (4.16). The only remaining term,
with P ='{{Vi}, e {Vh}}, is equal to TG, so that on application of W (4.17)
becomes precisely (4.13). This completes the proof. v
For an argument showing the construction of a finite renormalization glv-

ing R from W, the reader may consult [101].
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