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iWe ask when it is possible to weigh the bases B of a matrqid
. E by noh—negative ?eal numbers Wy so that the sum of 'WB over,all
bases is 1 and, for each element e € E, the sum of WB‘ ove;'all‘
bases B containing e is bounded below and'above by specified real
numbers vke P ue .. In other words, given a matroid E with the iank | |

t

function r and the set of bases B, and given real vectors ()\.e)eeE ;!
{

(1)

Jecg ¢ wish to determine if the linear constraints ' ' i

2 w_ =1,
BEB B

Xe < 2 Wo S g (for each e € E), v , (1)

w_ >0 (for each B € B),

are feasible. We shall fihd the following necessary and Sufficient

conditions for the feasibility of (1):
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Xe = Ho ' (for each e € E),

) A, S x(®) (for each A C E), (2)
e€A

E L = r(E) - r(n) (for each A C E).

efA e ‘

‘We fouﬁd it interesting to compare two diffexent proofs of this fact:

jOne uses only the duality theorem of linear brogramming and the greedy
algorithm for finding an optimal base; the other depends dlrectly on some
jtdeeper results of matroid theory. The question was motivated by a problem
'of qniform estimation of certain Feynman inﬁegral;, [11]; we shall describe
ibriefly this appiication of our theorem. We shall also consider the.
éspecial case Xe = ué = N (for each e € E), especially in the‘conte#t
j!cif‘graf.)hic' matroids, and make an observation relating edge-connectivity

and edge-density.

Theorem. The constraints (1) are feasible if and only if (2)

holds.

It is éasy to see that the conditions (2) are necessary for the

vfeasibility'of,(l). Indeed, if (WB)BEB is a solution of (i), then

clearly Xé = pé' for each e € E, and for each A C E,

it

YA s Ll wy = ) |anBlw, = xr(a) J W, = r(n),
e€a ‘e€A Ble BEB BEB

"

' we = L [BNAlw L (Bl-|anBphw, = r@ -x@).
efn € gmge ‘BeB B geB B

1
.F .
v




Lemma 1. The constraints (1) are feasible if and inyfif for

¥

every pair of vectors (xe) with non-negative coordinates,

e€E ' (Ye)eEE

2 (N x -p vy ) = max z (x -y ). ‘ (3)
ek © % ©° BB ecB €

Proof. This can be easily seen using the Farkas Lemma [3] or
'its.equivalents [7]1, and amounts to an application of the duality theorem

of linear programming. For example, according to [4, Theorem 2.8], the

constraints
) w, s 1, yoo- wy S -1,
BEB . BEB
vz Wy Sk o z - W, = —Xe (for each e € E),
Bde © Bde
Wy 2 0 (for each B € B), ‘ o

(equivalent to (1)) are feasible if and only if the constraints i

z (y -x) +v-t=0 (for each B € B), .
e e :
e€B : C |

Z (u'y -Ax) +v-t<O,
e€E e e e e .

X =0, y =0 (for each e € E),

are not. Setting u = v-t, we obtain the condition that for any vectors

‘(xe)eEE ’ (ye)eEE with non-negative coordinates,



) (xe-ye) < u for all B € B implies Z (Xexe-ueye) < u,
e€B ‘ e€lr

which is equivalent to (3).

; we write z = x -y

Given vectors (x ) v () oex e e ‘e’

e’ etk

The quantlty maxBEB ZeEB ze R whlch‘occurs in (3), can be found by
applying the greedy algorithm, [8, p. 277], which for our purposes may be

described as follows: Let E

[

{el,ez, ... ,em} be an enumeration of the

it

tis Z. =2 Z_ > ... =22z . Let
zei satisfy 12 2%, 2 =2 ‘

AO =g, Ak = {el,ez, ce ,ek} for 1<k =<m and B* = {ek :1 =k =m,

elements of E such that z;

¢ %o T M¥p g Zo

(In fact, we really need only the fact that B* is a base.)

r(Ak) = r(Ak~l) + 1}. Then B* is a base of E and Ze

To complete the first proof of the theorem, it remains to show

ithat (2) implies that for any vectors (xe) of non-negative

e€E ' (ye)eEE
numbers,

2 (Xexe‘aueye) < 2 z .

etk ; . eE€B* e
Assume that z_ = ... > 2z = 0 = 3z > .02z and write A, = A ’
1 ‘ n n+l ‘ i ei
Hy = ue' . Then
i
n k n
Yz -2z ) 7 N1s ] (z -z )r(a)
k=1 k k+1 i=1 i k=1 k k+1 Ak‘
(where in this inequality only we set Z41 " 0), whence
,§ | Y
z = 2 z (r(A ) -~ r(a, _)) = Z Z
ko1 N7k ey kK k-1 e

Similarly,



-

i= i,
RSe R T

m m m '
k=§1+1 [(z,_,~2) iz_z_}{ bz k=§1+1 (z,_, —2) (x(B) -x@ )
(where again, in this inequality only, we set z = 0), and so
m m
k=§1+l M k=§1+1 BT Ty -eéBz*\An K
. Thus
n m
eZEE e¥e ~ ¥ ) = k—E——l Dyt Oy vy ] +k=§1+l {“.kzkf iy 3 1 =
n m .
= kzl szk + k=§+1 2 = eg;* z,

as required.

For the second proof of the theorem, we observe that, without

loss of generality, the vectors (Xe)t and (ue)

o€E may be assumed to

etk

have rational coordinates. Indeed, if real vectors (Xe) ' (ue)

e€E e€E ]

satisfy (2), then so do any rational vectors (Xz) ' (u:) , where

e€E etE

i , i , : 1
Xe = Xe and ue = ule for each e € E; hence for any rational sequences

(for each e € E) with X: =N, by = uz and

1l i e
. i 4 . i_ ' :
llmi%w Xe = Xe , llmi%w ue Me (for each e € E), the sets
s, = {lu)yp: I w =1, xi = § owysul e cm, W Z0 (B €8}
BEB Ble €

. ) B ) '
are nonempty compact subsets of R . Therefore ni4l Si # @, and (1) is

- feasible.

Let k, Ze (e € E) and me (e € E) be integers such that,

for all e € E, Xe = Ze/k and ue = me/k. It remains to show that



£ =m ‘ (for each e € E),

e e

Yy £ = kr(@) (for each A C E), . ' (4)
e€n © :

) m = k(x(E) -x(a)) (for each A C E),
efh e
cimply that
i
|
' E w_ =k,
BER B
£ = 2 w, <m (for each e € E), (S)
e B
Ble
Wy =0 (for each B € B),

jis feasible.
Consider the sets £ = {(e,i) :e € E, 1 =1i =< me} and B
defined to consist'of all subsets X of E satisfying
(a)‘ for each e € E there is at most one i sucﬁ that (e,i) € X
(b) {e:(e,i) € X for some i} is a base of E.
It is easy fo verify that ﬁ is the set of bases of a matroid on ﬁ; we
shall refer to that matroid as E and its rank function shall be denoted

by ¥. Finally, let T = {(e,i) :e € E, 1 =i = 3e}.

Lemma 2.  (5) has an integer solution if and only if E admits
k -disjoint bases whose union contains T.

Proof. Let X.,¥X., ... ,X

1%, " be §15301nt bases of' E . whose

union contains T. Let Bj = {e :(e,i)féyxﬁy for some i}, 1 =3 < k;

by (b) each 'Bj is a base of E, but the 'Bj's -are not necessarily disjoint,



or even.distinct. Lét, for B € B, W be the number of j's suchvthét

B, = B. Then evidently 2

3 5¢8 "B k; moreover, fo; any e €.E,

b w_ = mé becausevthe X.'s are disjoint;‘fihally, for each e € E}

k _ . L g .
Z >4 because U Xj contains T. Hence’ wB , B € B, are

B?e Y e j=1

integers satisfying (5). Conversely, given integers Wy B € B}
satisfyihg (5), it is easy to construct k disjoint bases of E whose

union contains T.

Lemma 3. There exist in E k disjpint baséé whose union
.contains T if'and only if there exist in E k disjoint bases and.there
exist in E Xk baseskwhose union contains T.
. Proof. Lemma 3 holds for an arbitrary matroid E and any

subset T. Accordingly, in this proof no use shall be made of the specific
- . o -

form of E and T. We first construct a new matroid E(k) on E, . whose
|

independent sets are precisely the sets that can be written as unions of

k sets, independent in E. (In other words, X C E is independént in

ﬁ(k) if and only if X = Il U 12 U .o U Ik" with each Ij independent

(k)

in E.) It follows from [9] that E is indeed a matroid. Assume

that E has k disjoint bases X, ... /X . Then U?_l Xi is an

~ o wlk ~
independent set in E(k) and hence the rank of E( ) is kxr(E). 1In

(k)

other words, every base of E is the union of k disjoint bases of

E. . If at the same time E admits k bases Y o, ... ,Yk such that

1772
k _ . : . 2(k)
Tc Ui—l Yi + then T 1is also an independent set in E . Therefore
T can be extended to a base of N(k% i.e., some k disjoint bases of

~

E contain T in their union. The converse is obvious.

Our second proof is now completed by an application of the



'

coveriﬁg and packing theorems of Edmonds, [2]. They imply that E has.

k disjoint bases if and only if I%\A] 3_k((}(ﬁ)-}(A)) for all A ¢ E;

this is easily seen equivalent to Zeﬂh mo> k((x(E) ~r(A)) for all

A ¢ E. They also imply that T

can be covered by k bases (or,

equivalently, independent sets) of E if and only if |A[ <k ¥(A) for

all 'AC %; this is easily seen equivalent to ZeEA
AC E.

that (5) admits an integer solution.

; Corollary 1.

(4) holds.

£
e

< k r(a) for all

Hence conditions (4) are, by Lemmas 2 and 3, sufficient to assure

There is an integer solution to (5) if and only if

Proof. The necessity of (4) follows from the Theorem: Letting

he = Bé/k' e T

‘thus (2) holds, which is equivalent to (4).

hé/k, feasibility of (5) implies feasibility of (1) and

There is an obvious interpretation of an integer solution to (5)

as a set of k bases (with possible repetition) with the property that

each e € E belongs to at least 88 and at most me

Corollary 2. (a) The constraints

E w, = il

B€R B

Lowy 2 A (for each e € E),
Ble

WB =0 (for each e € E),

are feasible if and only if

of these bases.



L A = r(a) (for each A C E).
e
e€A

(b) The constraints

2 w, =1,
BER B

2 w_ =W (for each e € E),
Bde B ev
W >0 (for each B € B),

are feasible if and only if

2 U = r(E) ~r(d) (for each A C E).

efA e

Proof. These results follow from our theorem by choosing, in
(é), ue = lv for all e € E, and in (b), Xe = 0 for all e € E,‘ We
remark that (a) and (b) are related by duality, that is, (a) for E is
equivalent to (b) for the matroid dual to E and vicé.vefsa. ~We also
remark that similar oﬁe~sided integral versions ofv(5) may be dedﬁcea frém
Corollary l'byvtaking m, = k; respectively Ee =0, for ail e € E.

Corollary 2(b) for gfapﬁic matroids has been applied in [10] to

estimate the magnitude of the Feynman amplitudes which are associated with-

(Feynman) graphs in perturbative quantum field theory. The essential idea
_may be described in the context of an arbitrary matroid as follows. To

the matroid E and positive real numbers a and (be)eEE we associate

the amplitude
-1 bem1 , |
I {'(b) "a  exp(-a )da }, (6)
e e e e
e€E :

T(ab) = f ... U@’
0 0

a



10

where

U@ = J T «

BEB e€B

"Note that IE(O,b) = 1; on the other hand, if (be) is fixed and a is
sufficiently large, the integral diverges. 1In fact, the condition for
‘convergence is known to be
Y} b - alr(E) ~r(ma)l > 0 _ (7
e€A :
'for each A € E.
The sufficiéncy of (7) for convergence follows from the argument

below. We briefly sketch a standard argument (see, e.g., [11]) showing

‘neceSsity'also. Consider the integral (6) taken over a sector

1A

‘a = ...
€1 m k

with the Jacobian I t?—l. Let A, = {e., ... ,e.} and
‘ j=1 73 ] 1 J
* = L1 < o< =
B {ek rl=k=m, r(a) r(a ;) + 1},

as in the first proof of the theorem. Now

v m ]A,ﬂB] m [r(E)~-r(E\A,)]
U(a(t)) = It 3 =1 ¢, 7 vy,
BEB j=1 1 j=1
where, siqce IAj N B] > r(E) - r(E\Aj), V(t) is a polynomial. Moreover,
. m [r(E)-x(BE\A.)]
ula(t)) = I a (£) = t, I,
0 eex © j=1 7

so V(t) 21, and, since V(t) is independent of tm ¢ it is uniformly

]

1A

t, =1:j

bounded above on the compact set {0 3 1, ... ,m~1}. Thus

ae and make the variable change ae =11, t. , k=1, ... ,m,



11

the integral over this sector becomes
1 1 m c(m,)-1

-1, a '
M I'e) fatfat . ... fat O ¢, 7 v Pexpl-Z a_(v)],
e€e ¢ o mjo nd j=1 I efE ©

and the upper and lower bounds on V imply that (8) converges if and only
if c(Aj) >0, j=1, «ue. ,m.
The problém in [10] is to give an estimate for IE of the

special form

IE(a,b) < K*E‘ (9)

where the constant K does not depend on E. Such a uniform estimate will
not‘of course hold in the entire convergence region specified by (7),'but‘
only on compact subregions; here we specify such a subregion by a parametér
e > 0 and by the condition
Y b_ - alr(E) -r(E\A)] = ¢|a| : ‘ - (10)
e o ' ‘
e€A :

(the specification in [10] is slightly different). Then we have

Corollary 3: For all matroids E and non-negative parameters
a, (be)eEE satisfying (10), there is a constant K depending only on €

such that (9) holds.

Proof: By Corollary 2(b) there are non-negative Weights"(wB)BEB

with g g% = lana

(8)
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1

From the standard'inequality between arithmetic and geometric meéns}

U@ 2 ) w, I a

BEB ° ee ©
' W (Z_., w)
> I (1 a) ®=1 a PP,
B€B e€B e€E
Thus
1 e de—l —-Q ,
I(ap) = I T) ™ [ a e ®da, = I T(a)/Tb)
e€E 0 etk

i
|
'where d =b -a 2 w satisfies b = d = g¢. Since for t > 0,
R e e B3e B - e

e
IT(t) 4is convex with a minimum at t = 1, we have

. F(B)/F(l)=r(5), ) if 4 = ll
I@)/Tb) = ' : e

1 =T(e), if de = 1.

Thus (9) holds with X = T'(eg).
Next we explore the theorem in the special case Xe = Me , e € E,

It implies that the system of linear equations

1,

-
I

~1
=
w
1
>
o

(for each e € E),

admits a non-negative solution We oo B €B, if and only if

r(E) - r(E\A) = ) .A_ = x(d)  (foreach ACE.  (11)
KR : - e€n T : . »

i

Note that fdt ‘A = B, (11) implies that ‘EéEE Xé = r(E).. In particular,
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where -each Xe = ue =X (e €E), (1l1) implies that X\ = r(E)/IE[.‘ In

= x and Z w_ =Y (for each e € E), then either

fact, if ZBEB WB Bye VB

one of X, Y determines the other, since

v|e] = § y Wy, = Y Y wy = r(® ) wy = xr(E).
e€fE Ble B€B e€B BER

Hence if y = r(E)/IEl then x = 1, and the feasibility of (1) with all

A =‘ue = r(E)/lE[ (é ¢ E), is equivalent to the feasibility of |

E w __r(E)

B = —TET (for each e € E),

WB >0 (for each B € B),
or of
2 w_ =1 (for each e € E) : (12)-
B
Ble ;
Wy >0 (for each B € B).

The system (12) is particularly interesting. We are trying to weigh the
bases of E by non-negative reals so that the sum of weights of all bases
containing each fixed element e is 1. Matroids in which this is possible,

i.e., in which (12) is feasible, shall be called baseable.

Corollary 4. A matroid E is baseable if and only if any of

the following conditions holds:

(a) _léi.< —lEl. (for each A C E),

r(p) 7 r(E)
(b) —lEl'> _lEL (for each contraction K of E),

£(® ~ T(E)

(c) There exist bases Bl’BZ’ .. 'BIE| of E (not necessarily
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distinct), such that each e € E belongs to precisely r(E) bases among
Bl'Bz' » e ,B'El-

(d} (12) is solvable by integer multiples of 1/r(E).

Proof. The feasibility of (12) is equivalent to (11) with each

Xe = r(E)/lE], i.e., to

r(E) - r(E\A) < r(g)

[a] = r(a) (for each A C E).

'Since a contraction K of E has r(K) = r(E) - r(ENK), [13, p. 63],
E is baseable if and only if (a) and (b) hold. On the other hand, (a)
.;and (b) are algebraically equivalent, so either is equivalent to the

baseability of E. Condition (c) is equivalent to the integer feasibility

of

B3R
) wy = r(E) (for each e € E), (13)
Ble :
W =0 (for each. B € B).
(Given Bl’BZ' .. 'BIE‘ ¢ let wB equal the number of times B occurs
among Bl’B2'_"' 'BIE‘ ;. given wB , take eéch B wb times to form
Bl'BZ' .. ,BIE, .} Since we have already observed that the first equation

.in (13) is redundant, tc) and (d) are equivalent. Moreover, according to
Corollary 1, (13) has an integer solution if and only if (a) and (b) hold.

We define a graph to be arboreal if its cycle matroid is baseable.
The density of a connected graph G = (V,E) is the ratio lél/('vl—l).
Using condition (a) of Corollary 4 and the fact that .

(IE1|‘+IEZI)/((I,vl|—cl)+(lv2|—c2)) lies between IElI_/(IVlI-Cl) and
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lE2|/(|V2|-C2), we can see thaf G is arboreal if and only if all
components of G are arboreal and have the same density. Thgréfore we
shall confine our remarks to connected arboreal graphs. There is the
obvious interpretation of Corollary 4, where "base" is repiaced by
"spanning. tree," "matroid E" by "connected graph G==(V;E),“ and  "baseable"
by "arboreal." it is easy to see that (a) and (b) can be weakened to

(a’) No connected subgraph of G has greater density thén G,

(b’) No contraction of G has smaller density than G.

Corollary 4(a) has led us to wonder when can (12) be solved by
)

a constant vector ( (i.e., when can all wB be chosen the same).

Ys'BeB
Tn [12] we asked for connected graphs having the property that each edge
‘lies in the same nﬁmber of spanning trees. E. Mendelsohn suggested that
éUch graphs be called equiarboreal. Equiarboreal graphs are necessarily )

arboreal. Obviously trees and edge-transitive graphs are equiarboreal.
Also, equiarboreal graphs with the same density can be attached together 1
at a vertex to form another equiarboreal graph. C. Godsil, [51, hés showﬁ
that any colour class in an association scheme is equiarboreal. This meané
that any distance regular graph, [1], and in particular any strongly

regular graph is eguiarboreal. Even more generally, he defines a graph

to be 1l-homogeneous if, for every £, the number of closed walks of

length £ through a vertex v 1is thé same for every v, and the number
of closed walks of length £ through an edge vww 'is the same for every
vw. Godsil gave an elegant proof showing that l-homogeneous gfaphs are
equiarboreal, and observed_that colour classes of association schemes ére
1-homogeneous, and that l-homogeneous graphs are closed under- conjunction.

Thus there is a wide supply of equiarboreal graphs.
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Godsil also noticed that the edge-connectivity of a connected
equiarboreal graph is at least as large as its density, and was led to a
number of interesting results and conjectures about the edge-connectivity
of highly regular graphs, [5,6]. He later extended his observation on
edge-connectivity to all regular arboreal graphs (private communication).
In our last corollary, we show how Corollary 4(c) ‘can be used to extend

Godsil's proof to all arboreal graphs:

Corollary 5. The edge-~connectivity of a connected arboreal
graph is at least as large as its density.

Proof. By Corollary 4(c), a connected arboreal graph G = (V,E)
~admits spanning trees Tl’T2' .o ’TIE! with the property that each edge
%of G belongs to precisely IVI-—l of them. Consider a set of ¢

edges whose removal disconnects G. Each spanning tree of G must

contain one of the ¢ edges, and hence
|E| < ¢ (Jv] -1).
Therefore the edge-connectivity of G is at ‘least IE|/(!VI~1).

It may also be fruitful to study "equibaseable" matroids, i.e.,

matroids in which each element belongs to. the same number of bases.
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