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Abstract. We classify the ergodic invariant random subgroups of inductive

limits of finite alternating groups.

1. Introduction

A simple locally finite group G is said to be an L(Alt)-group if we can express
G =

⋃
i∈NGi as the union of a strictly increasing chain of finite alternating groups

Gi = Alt(∆i). Here we allow arbitrary embeddings Gi ↪→ Gi+1. In this paper, we
will classify the ergodic invariant random subgroups of the L(Alt)-groups, and we
will consider the relationship between the existence of “nontrivial” ergodic IRSs,
“nontrivial” characters χ : G→ C and “nontrivial” 2-sided ideals I ⊆ CG.

Let G be a countably infinite group and let SubG be the compact space of
subgroups H 6 G. Then a Borel probability measure ν on SubG which is invariant
under the conjugation action of G on SubG is called an invariant random subgroup
or IRS. For example, if N E G is a normal subgroup, then the corresponding Dirac
measure δN is an IRS of G. Further examples of IRSs arise from the stabilizer
distributions of measure-preserving actions, which are defined as follows. Suppose
that G acts via measure-preserving maps on the Borel probability space (Z, µ ) and
let f : Z → SubG be the G-equivariant map defined by

z 7→ Gz = { g ∈ G | g · z = z }.
Then the corresponding stabilizer distribution ν = f∗µ is an IRS of G. In fact, by
a result of Abért-Glasner-Virág [1], every IRS of G can be realized as the stabilizer
distribution of a suitably chosen measure-preserving action. Moreover, by Creutz-
Peterson [2], if ν is an ergodic IRS of G, then ν is the stabilizer distribution of an
ergodic action Gy (Z, µ ).

Definition 1.1. A countably infinite group G is said to be strongly simple if the
only ergodic IRSs of G are δ1 and δG.

In other words, a (necessarily simple) group G is strongly simple if G has no
nontrivial ergodic IRSs.

As we pointed out in Thomas-Tucker-Drob [19], if G is a countably infinite
locally finite group and G y (Z, µ ) is an ergodic action, then an application of
the Pointwise Ergodic Theorem for actions of locally finite groups to the associated
character χ(g) = µ( FixZ(g) ) allows us to regard G y (Z, µ ) as the “limit” of
a suitable sequence of finite permutation groups Gn y ( Ωn, µn ), where µn is the
uniform probability measure on Ωn.
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Definition 1.2. If G is a countable group, then the function χ : G → C is a
character if the following conditions are satisfied:

(i) χ(h g h−1) = χ(g) for all g, h ∈ G.
(ii)

∑n
i,j=1 λiλ̄jχ(g−1

j gi) ≥ 0 for all λ1, · · · , λn ∈ C and g1, · · · , gn ∈ G.

(iii) χ(1G) = 1.

A character χ is said to be indecomposable or extremal if it is impossible to express
χ = rχ1 + (1− r)χ2, where 0 < r < 1 and χ1 6= χ2 are distinct characters.

The set F(G) of characters of G always contains the two “trivial” characters
χcon and χreg, where χcon(g) = 1 for all g ∈ G and χreg(g) = 0 for all 1 6= g ∈ G. It
is well-known that χcon is indecomposable, and that χreg is indecomposable if and
only if G is an i.c.c. group, i.e. the conjugacy class gG of every nonidentity element
g ∈ G is infinite. (For example, see Peterson-Thom [12].) We will say that F(G) is
trivial if every χ ∈ F(G) is a convex combination of χcon and χreg.

Theorem 1.3. If the countably infinite simple group G is not strongly simple, then
F(G) is nontrivial.

Proof. Suppose that ν 6= δ1, δG is a nontrivial ergodic IRS of G. Then, by Creutz-
Peterson [2, Proposition 3.3.1], we can suppose that ν is the stabilizer distribution of
an ergodic action Gy (Z, µ ). Let χ(g) = µ( FixZ(g) ) be the associated character.
Suppose that there exists 0 ≤ r ≤ 1 such that χ = rχcon + (1− r)χreg. Then, since
ν 6= δ1, δG, it follows that 0 < r < 1; and so infg∈G µ( FixZ(g) ) = r > 0. Applying
Ioana-Kechris-Tsankov [6, Theorem 1(i)] in the special case when E is the identity
relation, it follows that there exists a positive integer m ≤ 1/r and a Borel subset
A ⊆ Z with µ(A) > 0 such that |G · a ∩A | = m for all a ∈ A. (Here G · a denotes
the G-orbit { g(a) | g ∈ G }.) Fix some Borel linear ordering � of Z and let T ⊆ A
be the subset defined by

t ∈ T ⇐⇒ t is the �-least element of G · t ∩A.
Then T is a Borel subset of Z such that µ(T ) = µ(A)/m > 0 with the property
that if t 6= t′ ∈ T , then G · t 6= G · t′. Since G acts ergodically on (Z, µ ), it follows
that there exists a point t0 ∈ T such that µ({ t0 }) = µ(T ) > 0; and this implies
that G · t0 is a finite orbit and that µ(G · t0) = 1. Since G is an infinite simple
group, it follows that G acts trivially on the finite set G · t0 and hence µ({ t0 }) = 1.
But this means that ν = δG, which is a contradiction. Consequently, χ(g) is not a
convex combination of χcon and χreg. �

There exist examples of ergodic actions Gy (Z, µ ) of countably infinite groups
such that the associated character χ is not indecomposable. For example, if the
ergodic action G y (Z, µ ) is essentially free, then χ = χreg, and so χ is inde-
composable if and only if G is an i.c.c. group. There also exist more interesting
examples.

Theorem 1.4. There exists an ergodic action Alt(N) y (Z, µ ) such that the
associated character is not indecomposable.

Proof. Suppose that χ is an indecomposable character of the infinite alternating
group Alt(N). Then, by Thoma [17, Satz 6], there exists an indecomposable char-
acter θ of the group Fin(N) of finitary permutations of the natural numbers such
that χ = θ � Alt(N); and hence, by Thoma [17, Satz 1], we have that

(1.1) χ( ( 1 2 ) ( 3 4 ) ( 5 6 ) ( 7 8 ) ) = χ( ( 1 2 ) ( 3 4 ) )χ( ( 5 6 ) ( 7 8 ) ).
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Thus it suffices to find an ergodic action Alt(N) y (Z, µ ) such that the associated
character χ(g) = µ( FixZ(g) ) fails to satisfy the multiplicative property (1.1).

Let m be the usual uniform product probability measure on 2N. Then Alt(N)
acts ergodically on ( 2N,m ) via the shift action ( g · ξ )(n) = ξ(g−1(n)). For each

ξ ∈ 2N and i = 0, 1, let Bξi = {n ∈ N | ξ(n) = i }. Let f : 2N → SubAlt(N) be

the Alt(N)-equivariant map defined by ξ 7→ Alt(Bξ0)×Alt(Bξ1) and let ν = f∗m be
the corresponding ergodic IRS of Alt(N). Then, by Creutz-Peterson [2], ν is the
stabilizer distribution of an ergodic action Alt(N) y (Z, µ ); and the associated
character χ is given by

χ(g) = µ( FixZ(g) )

= ν( {H ∈ SubAlt(N) | g ∈ H } )

= m( {ξ ∈ 2N | g ∈ Alt(Bξ0)×Alt(Bξ1) } ).

Clearly ( 1 2 ) ( 3 4 ) ∈ Alt(Bξ0) × Alt(Bξ1) if and only if ξ(1) = ξ(2) = ξ(3) = ξ(4);
and it follows that

χ( ( 1 2 ) ( 3 4 ) ) = χ( ( 5 6 ) ( 7 8 ) ) = 1/24 + 1/24 = 1/23.

On the other hand, we have that

χ( ( 1 2 ) ( 3 4 ) ( 5 6 ) ( 7 8 ) ) =

(
4
0

)
+
(

4
2

)
+
(

4
4

)
28

= 1/25.

Since the multiplicative property (1.1) fails, it follows that χ is not indecomposable.
�

Problem 1.5. Find necessary and sufficient conditions for the associated character
of an ergodic action Gy (Z, µ ) to be indecomposable.

Vershik [21] has proved a very interesting sufficient condition; namely, that if
G y (Z, µ ) is ergodic and NG(Gz) = Gz for µ-a.e. z ∈ Z, then the associated
character is indecomposable. Using Vershik’s criterion, together with our classi-
fication of the ergodic IRSs of the L(Alt)-groups G � Alt(N), we will prove the
following result.

Theorem 1.6. If G � Alt(N) is an L(Alt)-group and G y (Z, µ ) is an ergodic
action, then the associated character is indecomposable.

It is clear from Theorems 1.4 and 1.6 that Alt(N) plays an exceptional role within
the class of L(Alt)-groups. In Section 9, adapting and slightly correcting Vershik’s
analysis of the ergodic IRSs of the group Fin(N) of finitary permutations of the
natural numbers, we will state the classification of the ergodic IRSs of Alt(N) and
we will characterize the ergodic actions Alt(N) y (Z, µ ) such that the associated
character χ(g) = µ( FixZ(g) ) is indecomposable.

The L(Alt)-groups with a nontrivial ergodic IRS will be classified as follows.
Suppose that G =

⋃
i∈NGi is the union of the strictly increasing chain of finite

alternating groups Gi = Alt(∆i), where |∆0| ≥ 5. For each i ∈ N, let si+1 be
the number of natural orbits of Gi on ∆i+1 and let ei+1 be the number of points
x ∈ ∆i+1 which lie in a nontrivial non-natural Gi-orbit. (Here an orbit Ω of
Gi = Alt(∆i) on ∆i+1 is said to be natural if |Ω| = |∆i| and the action Gi y Ω
is isomorphic to the natural action Gi y ∆i.) Also for each i < j, let sij =
si+1si+2 · · · sj . Recall that G =

⋃
i∈NGi is said to be a diagonal limit if si+1 > 0
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and ei+1 = 0 for all i ∈ N; i.e. if for each i ∈ N, every Gi-orbit on ∆i+1 is either
natural or trivial.

Definition 1.7. G =
⋃
i∈NGi is an almost diagonal limit if si+1 > 0 for all i ∈ N

and
∑∞
i=1 ei/s0i <∞.

Theorem 1.8. If G is an L(Alt)-group, then G has a nontrivial ergodic IRS if and
only if G can be expressed as an almost diagonal limit of finite alternating groups.

We will present an explicit classification of the ergodic IRSs of the L(Alt)-groups
G � Alt(N) in Sections 3 and 4. The classification involves a fundamental di-
chotomy which was originally introduced by Leinen-Puglisi [10, 11] in the more
restrictive setting of diagonal limits of alternating groups, i.e. the linear vs sublin-
ear natural orbit growth condition. This dichotomy arose unexpectedly in the work
of Leinen-Puglisi [10, 11] without any natural explanation. By contrast, in this
paper, it will appear as a natural consequence of the Pointwise Ergodic Theorem
for actions of locally finite groups.

In [22], Vershik pointed out that the indecomposable characters of the group
Fin(N) of finitary permutations of the natural numbers were closely connected
with its ergodic IRSs; and in [21], he suggested that this should also be true of
various other locally finite groups. Combining our classification of the ergodic IRSs
of the L(Alt)-groups with the earlier work of Leinen-Puglisi [11], it follows that if
G =

⋃
i∈NGi is a diagonal limit of finite alternating groups and G � Alt(N), then

the indecomposable characters of G are precisely the associated characters of the
ergodic IRSs of G.1

Question 1.9. Does there exist a strongly simple locally finite group G such that
F(G) is nontrivial?

If G is a countable group and χ ∈ F(G) is a character, then we can extend χ to
a linear function χ : CG→ C and define a corresponding proper 2-sided ideal Iχ of
the group ring CG by

Iχ = {x ∈ C(G) | χ(g x) = 0 for all g ∈ G }.

For example, let ω(CG) be the augmentation ideal , i.e. the kernel of the homomor-
phism CG → C defined by

∑
λigi 7→

∑
λi. Then it is easily checked that if χ is

a character of G, then Iχ = ω(CG) if and only if χ = χcon. It is also easily seen

that Iχreg = {0}. In [25], Zalesskĭi asked whether there exists a simple locally finite
group G with an indecomposable character χ 6= χreg such that Iχ = {0}; and he
conjectured that if G is a simple locally finite group such that ω(CG) is the only
nontrivial proper 2-sided ideal of CG, then F(G) is trivial. In Section 3, we will
give an example of a simple locally finite group G such that:

(a) the augmentation ideal ω(CG) is the only nontrivial proper 2-sided ideal of
CG; and

(b) G has infinitely many indecomposable characters χ such that Iχ = { 0 }.
It should be pointed out that Leinen-Puglisi [10] gave the first examples of simple
locally finite groups G with indecomposable characters χ 6= χreg such that Iχ = {0}.

1Very recently, the first author [18] has shown that if G is any inductive limit of finite alter-
nating groups such that G � Alt(N), then the indecomposable characters of G are precisely the

associated characters of the ergodic invariant random subgroups of G.
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However, in their examples, the corresponding group rings CG had infinitely many
nontrivial proper 2-sided ideals.

This paper is organized as follows. In Section 2, we will briefly discuss the
pointwise ergodicity and weak mixing properties of ergodic actions of countably
infinite locally finite groups. In Section 3, we will discuss the notion of an almost
diagonal limit of finite alternating groups and the notions of linear/sublinear natural
orbit growth; and we will discuss the ergodic IRSs of the L(Alt)-groups with linear
natural orbit growth. In Section 4, we will discuss the ergodic IRSs of almost
diagonal limits with sublinear natural orbit growth. In Section 5, we will present
a characterization of the almost diagonal limits of finite alternating groups. In
Section 6, we will present a series of lemmas concerning upper bounds for the
values of the normalized permutation characters of various actions Alt(∆) y Ω
of the finite alternating group Alt(∆). In Sections 7 and 8, we will present our
proof of the classification of the ergodic IRSs of the L(Alt)-groups G � Alt(N); and
in Section 9, we will present the classification of the ergodic IRSs of the infinite
alternating group Alt(N). Finally, in Section 10, we will use the classification of the
ergodic IRSs of the L(Alt)-groups to deduce the classification of their uniformly
recurrent subgroups. (The notion of a uniformly recurrent subgroup was recently
introduced by Glasner-Weiss [4] as a topological analog of the notion of invariant
random subgroup.)

Our probability-theoretic notation is standard. In particular, if E is an event,
then P [E] denotes its probability; and if N is a random variable, then E [N ] denotes
its expectation, Var[N ] denotes its variance and σ = (Var[N ])1/2 denotes its stan-
dard deviation. If ν is an IRS of G, then we will sometimes write “let H ∈ SubG be
a ν-generic subgroup” as an abbreviation for “let H ∈ SubG be a subgroup which
lies in the countably many ν-measure 1 subsets that have been mentioned up to
this point in the proof”.

Throughout this paper, if ∆ is a set and ` ∈ N, then [ ∆ ]` = {Σ | Σ ⊆ ∆, |Σ| = ` }
will denote the set of `-subsets of ∆. We will occasionally make use of the notation
n = { 0, 1, · · · , n− 1 }.

If G y Z is a group action and g ∈ G, then FixZ(g) = { z ∈ Z | g · z = z } and
suppZ(g) = { z ∈ Z | g · z 6= z }.

Throughout this paper, a subgroup H 6 Sym(∆) will be said to act imprimitively
on ∆ if H acts transitively on ∆ and preserves a nontrivial partition B of ∆. (Here
we differ from those authors who allow the notion of an intransitive imprimitive
action.)

2. The ergodic theory of locally finite groups

In this section, we will briefly discuss the pointwise ergodicity and weak mixing
properties of ergodic actions of countably infinite locally finite groups. Throughout,
let G =

⋃
i∈NGi be the union of the strictly increasing chain of finite subgroups

Gi and let G y (Z, µ ) be an ergodic action on a Borel probability space. The
following is a special case of more general results of Vershik [20, Theorem 1] and
Lindenstrauss [9, Theorem 1.3].

The Pointwise Ergodic Theorem. With the above hypotheses, if B ⊆ Z is a
µ-measurable subset, then for µ-a.e. z ∈ Z,

µ(B) = lim
i→∞

1

|Gi|
|{ g ∈ Gi | g · z ∈ B }|.
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In particular, the Pointwise Ergodic Theorem applies whenB is the µ-measurable
subset FixZ(g) = { z ∈ Z | g · z = z } for some g ∈ G. For each z ∈ Z and i ∈ N,
let Ωi(z) = { g · z | g ∈ Gi } be the corresponding Gi-orbit. Then, as pointed out in
Thomas-Tucker-Drob [19, Theorem 2.1], the following result is an easy consequence
of the Pointwise Ergodic Theorem.

Theorem 2.1. With the above hypotheses, for µ-a.e. z ∈ Z, for all g ∈ G,

µ( FixZ(g) ) = lim
i→∞

| FixΩi(z)(g) |/|Ωi(z) |.

The normalized permutation character | FixΩi(z)(g) |/|Ωi(z) | is the probability
that an element of ( Ωi(z), µi ) is fixed by g ∈ Gi, where µi is the uniform probability
measure on Ωi(z); and, in this sense, we can regard G y (Z, µ ) as the “limit”
of the sequence of finite permutation groups Gi y ( Ωi(z), µi ). Of course, the
permutation group Gi y Ωi(z) is isomorphic to Gi y Gi/Hi, where Gi/Hi is the
set of cosets of Hi = {h ∈ Gi | h · z = z } in Gi. The following simple observation
will be used repeatedly in our later applications of Theorem 2.1. (For example, see
Thomas-Tucker-Drob [19, Proposition 2.2].)

Proposition 2.2. If H 6 A are finite groups and θ is the normalized permutation
character corresponding to the action Ay A/H, then

θ(g) =
| gA ∩H |
| gA |

=
| {s ∈ A | sgs−1 ∈ H }|

|A|
.

The following consequence of Proposition 2.2 implies that when computing upper
bounds for the normalized permutation characters of actions A y A/H, we can
restrict our attention to those coming from maximal subgroups H < A.

Corollary 2.3. If H 6 H ′ 6 A are finite groups and θ, θ′ are the normalized
permutation characters corresponding to the actions A y A/H and A y A/H ′,
then θ(g) ≤ θ′(g) for all g ∈ A.

Finally we point out the following straightforward but useful observations.

Theorem 2.4. If G is a countably infinite simple locally finite group, then every
ergodic action Gy (Z, µ ) is weakly mixing.

Proof. Suppose that the ergodic action Gy (Z, µ ) is not weakly mixing. Then, by
Schmidt [15, Proposition 2.2], it follows that G has a nontrivial finite dimensional
unitary representation; and since G is simple, this representation is necessarily
faithful. However, this is impossible since Schur [16] has proved that every locally
finite linear group over the complex field has an abelian subgroup of finite index.
(For a more accessible reference, see Curtis-Reiner [3, Theorem 36.14].) �

Corollary 2.5. If G is a countably infinite simple locally finite group and the action
G y (Z, µ ) is ergodic, then the product action G y (Zr, µ⊗r ) is also ergodic for
every r ≥ 2.

3. Linear natural orbit growth

In this section, we will begin our analysis of the ergodic IRSs of the L(Alt)-
groups G � Alt(N). First we need to introduce some notation. For the remainder
of this paper, suppose that G =

⋃
i∈NGi is the union of the strictly increasing chain

of finite alternating groups Gi = Alt(∆i), where |∆0| ≥ 5. For each i ∈ N, let
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• ni = |∆i|;
• si+1 be the number of natural orbits of Gi on ∆i+1;
• fi+1 be the number of trivial orbits of Gi on ∆i+1;
• ei+1 = ni+1 − (si+1ni + fi+1); and
• ti+1 = ei+1 + fi+1.

Thus ei+1 is the number of points x ∈ ∆i+1 which lie in a nontrivial non-natural
Gi-orbit and ti+1 = ni+1 − si+1ni is the number of points x ∈ ∆i+1 which lie in a
(possibly trivial) non-natural Gi-orbit. For each i < j, let sij = si+1si+2 · · · sj .

Remark 3.1. Clearly Gi has at least sij natural orbits on ∆j . However, it is easy
to construct examples for which Gi has strictly more than sij natural orbits on ∆j .
For example, suppose that:

• ∆i+1 = ∆i ∪ {α }, with Gi acting naturally on ∆i and fixing the point α;
• ∆i+2 = [ ∆i+1 ]2, with Gi+1 acting in the obvious fashion.

Then si+1 = 1 and si+2 = 0, while Gi has the natural orbit { {α, δ } | δ ∈ ∆i } on
∆i+2.

Definition 3.2. G =
⋃
i∈NGi is an almost diagonal limit if si+1 > 0 for all i ∈ N

and
∑∞
i=1 ei/s0i <∞.

Remark 3.3. If si+1 > 0 and ei+1 = 0 for all i ∈ N, then G =
⋃
i∈NGi is a

diagonal limit in the sense of Zalesskĭi [24].

The following observation will be used repeatedly throughtout this paper.

Proposition 3.4. Suppose that G =
⋃
i∈NGi is an almost diagonal limit of the

finite alternating groups Gi = Alt(∆i). If ( ji | i ∈ N ) is a strictly increasing
sequence of natural numbers and G′i = Alt(∆ji), then G =

⋃
i∈NG

′
i is also an

almost diagonal limit.

Proof. For each i < j, let eij be the number of points x ∈ ∆j which lie in a
nontrivial non-natural Gi-orbit. Then an easy induction on j ≥ i+ 1 shows that

eij ≤
j−1∑
k=i+1

skjek + ej .

Let e′i+1, s′i+1 be the corresponding parameters for the increasing union G =⋃
i∈NG

′
i. Then e′i+1 = ejiji+1

and s′i+1 ≥ sji+1 · · · sji+1
. It follows that

s′0i+1 = s′1 · · · s′i+1 ≥ (sj0+1 · · · sj1) · · · (sji+1 · · · sji+1
) = s−1

0j0
s0ji+1

;

and hence we obtain that

e′i+1/s
′
0i+1 ≤

s0j0

s0ji+1

ji+1−1∑
k=ji+1

skji+1ek + eji+1

= s0j0

ji+1∑
k=ji+1

ek/s0k.

The result follows. �

Remark 3.5. Suppose that G =
⋃
i∈NGi is an almost diagonal limit of finite

alternating groups. If si+1 = 1 for all but finitely many i ∈ N, then ei+1 = 0
for all but finitely many i ∈ N, and it follows that G ∼= Alt(N). Hence, applying
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Proposition 3.4, if G � Alt(N), then we can suppose that the almost diagonal limit⋃
i∈NGi has been chosen such that si+1 > 1 for all i ∈ N.

Definition 3.6. The L(Alt)-group G has almost diagonal type if G can be expressed
as an almost diagonal limit of finite alternating groups.

We are now in a position to state the first of the main results of this paper.

Theorem 3.7. If G is an L(Alt)-group, then G has a nontrivial ergodic IRS if and
only if G has almost diagonal type.

The classification of the ergodic IRSs of the groups of almost diagonal type
involves a fundamental dichotomy which was introduced by Leinen-Puglisi [10, 11]
in the more restrictive setting of diagonal limits of alternating groups, i.e. the
linear vs sublinear natural orbit growth condition. The statement and proof of the
following lemma are identical to Leinen-Puglisi [11, Lemma 2.2]. (Note that the
following lemma does not require that G =

⋃
i∈NGi is an almost diagonal limit.)

Lemma 3.8. For each i ∈ N, the limit ai = limj→∞ sij/nj exists.

Proof. If i < j < k, then sik = sijsjk and clearly njsjk ≤ nk. Hence

sik
nk

=
sij
nj

.
njsjk
nk

≤ sij
nj

and the sequence ( sij/nj | i < j ∈ N ) converges to infj>i sij/nj . �

Definition 3.9. G =
⋃
i∈NGi has linear natural orbit growth if ai > 0 for some

i ∈ N. Otherwise, G =
⋃
i∈NGi has sublinear natural orbit growth.

Remark 3.10. Note that in Definition 3.9, we are not assuming that G =
⋃
i∈NGi

is an almost diagonal limit. However, we will soon see that if G =
⋃
i∈NGi has

linear natural orbit growth, then G has almost diagonal type.

Remark 3.11. Note that ai = si+1ai+1. Hence if ai > 0, then si+1 > 0 and
ai+1 > 0. In particular, it follows that G has linear natural orbit growth if and
only if ai > 0 for all but finitely many i ∈ N.

We will next prove that if G =
⋃
i∈NGi has linear natural orbit growth, then

G has a nontrivial ergodic IRS. Note that if G =
⋃
i∈NGi has linear natural orbit

growth, then si+1 > 0 for all but finitely many i ∈ N. Hence, after replacing the
increasing union G =

⋃
i∈NGi by G =

⋃
i0≤i∈NGi for some suitably chosen i0 ∈ N,

we can suppose that si+1 > 0 for all i ∈ N. We will initially work with this strictly
weaker hypothesis. As we will see, the linear vs sublinear natural orbit growth
dichotomy will appear naturally in our analysis via an application of the Pointwise
Ergodic Theorem for actions of locally finite groups. Let t0 = n0 and recall that
ti+1 = ei+1 + fi+1 = ni+1 − si+1ni. Clearly we can suppose that:

• ∆0 = {α0
` | ` < t0 }; and

• ∆i+1 = {σ ̂k | σ ∈ ∆i, 0 ≤ k < si+1 } ∪ {αi+1
` | 0 ≤ ` < ti+1 };

and that the embedding ϕi : Alt(∆i)→ Alt(∆i+1) satisfies

ϕi(g)(σ ̂k) = g(σ)̂k
for each σ ∈ ∆i and 0 ≤ k < si+1. Let ∆ consist of all sequences of the form
(αi`, ki+1, ki+2, ki+3, · · · ), where i ∈ N and kj is an integer such that 0 ≤ kj < sj .
For each i ∈ N and σ ∈ ∆i, let ∆(σ) ⊆ ∆ be the subset of sequences of the
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form σ ̂ ( ki+1, ki+2, ki+3, · · · ). Then the sets ∆(σ) form a clopen basis for a
locally compact topology on ∆. (This is a special case of the “space of paths” of
Lavrenyuk-Nekrashevych [8].) Consider the action Gy ∆ defined by

g · (αi`, ki+1, · · · , kj , kj+1 · · · ) = ( g(αi`, ki+1, · · · , kj), kj+1 · · · ), g ∈ Gj .
Then we will show that there exists a G-invariant ergodic probability measure on
∆ if and only if G =

⋃
i∈NGi has linear natural orbit growth; in which case, the

action Gy ∆ is uniquely ergodic.
Of course, if m is a G-invariant ergodic probability measure on ∆, then m is

uniquely determined by m � A, where A is the algebra of Borel subsets of ∆
generated by the basic clopen sets {∆(σ) | σ ∈

⋃
i∈N ∆i }.

Lemma 3.12. If m is a G-invariant ergodic probability measure on ∆ and σ ∈ ∆i,
then m(∆(σ)) = ai.

Proof. Applying the Pointwise Ergodic Theorem, choose an element z ∈ ∆ such
that

m(∆(σ)) = lim
j→∞

1

|Gj |
|{ g ∈ Gj | g · z ∈ ∆(σ) }|.

Suppose that z = (αr` , kr+1, kr+2, · · · ) and for each j > r, let

zj = (αr` , kr+1, · · · , kj ) ∈ ∆j .

For each j > max{ i, r }, let Sj ⊆ ∆j be the set of sequences of the form

s = σ ̂ ( di+1, · · · , dj ).

Then |Sj | = sij and

{ g ∈ Gj | g · z ∈ ∆(σ) } = { g ∈ Gj | g · zj ∈ Sj };
and it follows that

m(∆(σ)) = lim
j→∞

1

|Gj |
|{ g ∈ Gj | g · zj ∈ Sj }| = lim

j→∞
|Sj |/|∆j | = ai.

�

Corollary 3.13. With the above hypotheses, if G =
⋃
i∈NGi has sublinear natural

orbit growth, then there does not exist a G-invariant ergodic probability measure on
∆.

Proof. If G =
⋃
i∈NGi has sublinear natural orbit growth and m is a G-invariant

ergodic probability measure on ∆, then

1 = m(∆) =
∑
i∈N

∑
0≤`≤ti

m(∆(αi`)) =
∑
i∈N

tiai = 0,

which is a contradiction. �

For each i < j, let tij = nj − sijni. In order to simplify notation, we will
continue to write ti+1 instead of tii+1. Applying Lemma 3.8, it follows that the
limit bi = limj→∞ tij/nj exists and that bi = 1− niai. Thus we obtain:

Lemma 3.14. If m is a G-invariant ergodic probability measure on ∆ and i ∈ N,
then m(

⊔
{∆(αj`) | i < j, ` < tj } ) = bi.

Note that if A ∈ A, then there exists i ∈ N and S ⊆ ∆i such that either

(a) A =
⊔
{∆(σ) | σ ∈ S }; or
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(b) A =
⊔
{∆(σ) | σ ∈ S } t

⊔
{∆(αj`) | i < j, ` < tj }.

Furthermore, by Lemmas 3.12 and 3.14, if m is a G-invariant ergodic probability
measure on ∆, then m0 = m � A must be defined by

(3.1) m0(A) =

{
|S| ai, if (a) holds;

|S| ai + bi, if (b) holds.

Since ai+1 = ai/si+1 and bi = ti+1ai+1 + bi+1, it follows that m0 is well-defined. It
is also clear that m0(∆) = 1 and that m0 is G-invariant. Of course, it still remains
to be proved that m0 is σ-additive. As we will soon see, this is an easy consequence
of the following result.

Lemma 3.15. If si+1 > 0 for all i ∈ N and G =
⋃
i∈NGi has linear natural orbit

growth, then limi→∞ bi = 0.

The proof of Lemma 3.15 will make use of the following result.

Lemma 3.16. If si+1 > 0 for all i ∈ N, then the following are equivalent:

(i) G =
⋃
i∈NGi has linear natural orbit growth.

(ii)
∑∞
k=1 tk/s0k <∞.

Proof. An easy induction shows that if j > 0, then

nj = s0jn0 +

j−1∑
k=1

skjtk + tj

and hence

1 =
s0j

nj
n0 +

s0j

nj

j∑
k=1

tk
s0k

.

Since si+1 > 0 for all i ∈ N, it follows that G =
⋃
i∈NGi has linear natural orbit

growth if and only if a0 = infj>0 s0j/nj > 0. The result follows. �

Remark 3.17. Since ek ≤ tk, it follows that if si+1 > 0 for all i ∈ N and G =⋃
i∈NGi has linear natural orbit growth, then G =

⋃
i∈NGi is an almost diagonal

limit.

Proof of Lemma 3.15. Another easy induction shows that if j > i, then

tij =

j−1∑
k=i+1

skjtk + tj .

It follows that

tij
nj

=
s0j

nj

j∑
k=i+1

tk
s0k

and hence

(3.2) bi = a0

∞∑
k=i+1

tk
s0k

.

Since
∑∞
i=1 ti/s0i <∞, it follows that bi → 0 as i→∞. �

Proposition 3.18. If G =
⋃
i∈NGi has linear natural orbit growth, then the action

Gy ∆ is uniquely ergodic.
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Proof. Since any probability measure µ on ∆ is uniquely determined by µ � A, it is
already clear that there exists at most one G-invariant ergodic probability measure
on ∆. Hence it is enough to show that the function m0, defined by (3.1), can be
extended to a G-invariant probability measure on ∆. Since ak = a0/s0k, equation
(3.2) implies that

bi = a0

∞∑
k=i+1

tk
s0k

=

∞∑
k=i+1

tkak;

and it follows easily that m0 is σ-additive. Thus m0 is a pre-measure on A. By the
Carathéodory Extension Theorem, m0 can be extended to a probability measure
m on ∆; and since m0 is G-invariant, it follows that m is also G-invariant. �

Applying Corollary 2.5, if G =
⋃
i∈NGi has linear natural orbit growth, then the

action G y ( ∆r,m⊗r ) is also ergodic for all r ≥ 2, and hence the corresponding
stabilizer distribution νr is an ergodic IRS of G. We are now in a position to state
the second of the main results of this paper.

Theorem 3.19. If G =
⋃
i∈NGi has linear natural orbit growth, then the ergodic

IRSs of G are { δ1, δG } ∪ { νr | r ∈ N+ }.

In particular, if G =
⋃
i∈NGi has linear natural orbit growth, then the collection

{ νr | r ∈ N+ } is independent of the particular expression of G as a limit with linear
natural orbit growth. From now on, whenever G =

⋃
i∈NGi has linear natural orbit

growth, then we will refer to G y ( ∆,m ) as the canonical ergodic action. The
following observation will be used repeatedly throughtout this paper.

Proposition 3.20. If G =
⋃
i∈NGi has linear natural orbit growth and r ≥ 1, then

Gx̄ is self-normalizing for m⊗r-a.e. x̄ ∈ ∆r.

Proof. Let x̄ = (x1, · · ·xr) ∈ ∆r and let

Gx̄ = { g ∈ G | g · x` = x` for 1 ≤ ` ≤ r }

be the corresponding stabilizer. Then it is easily checked that

Fix∆(Gx̄) = {x` | 1 ≤ ` ≤ r }.

Suppose that g ∈ NG(Gx̄)rGx̄. Then g permutes the elements of the set Fix∆(Gx̄)
nontrivially, and hence there exist 1 ≤ ` < m ≤ r such that g · x` = xm. But this
implies that the sequences x` and xm are eventually equal; and it is clear that for
m⊗r-a.e. x̄ = (x1, · · ·xr) ∈ ∆r, if 1 ≤ ` < m ≤ r, then x` and xm are not eventually
equal. Hence Gx̄ is self-normalizing for m⊗r-a.e. x̄ ∈ ∆r. �

We are now ready to present the proof of Theorem 1.6. So suppose that G is
an L(Alt)-group with G � Alt(N) and that G y (Z, µ ) is an ergodic action. Let
ν be the corresponding stabilizer distribution and let χ(g) = µ( FixZ(g) ) be the
associated character. By Theorem 3.7, if G does not have almost diagonal type,
then ν ∈ { δ1, δG } and so χ ∈ {χreg, χcon }, and it follows that χ is indecomposable.
Hence we can suppose that G has almost diagonal type; and so Theorem 1.6 is a
consequence of the following result.

Theorem 3.21. If G � Alt(N) has almost diagonal type and G y (Z, µ ) is an
ergodic action, then the associated character χ(g) = µ( FixZ(g) ) is indecomposable.
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Proof. Let ν be the stabilizer distribution of the ergodic action Gy (Z, µ ). Then,
as above, we can suppose that ν 6= δ1, δG. Express G =

⋃
i∈NGi as an almost

diagonal limit of finite alternating groups Gi = Alt(∆i). Let τ =
∑∞
i=1 ei/s0i <∞.

By Remark 3.5, since G � Alt(N), we can suppose that si+1 > 1 for all i ∈ N. Of
course, since Gi is simple, this implies that if 1 6= G′i 6 Gi, then G′i also has at
least 2 nontrivial orbits on ∆i+1.

First suppose that G =
⋃
i∈NGi has linear natural orbit growth. Then, applying

Theorem 3.19, it follows that ν = νr is the stabilizer distribution of the ergodic
action Gy ( ∆r,m⊗r ) for some r ≥ 1, where Gy ( ∆,m ) is the canonical ergodic
action. By Proposition 3.20, Gx̄ is self-normalizing for m⊗r-a.e. x̄ ∈ ∆r, and this
implies that Gz is self-normalizing for µ-a.e. z ∈ Z. Applying Vershik [21], it follows
that χ is indecomposable.

Hence we can suppose that G =
⋃
i∈NGi has sublinear natural orbit growth. For

each ` ∈ N, define the subsets ∆`
j ⊆ ∆j and subgroups G(`)j = Alt(∆`

j) for j ≥ `
inductively as follows:

• ∆`
` = ∆`;

• ∆`
j+1 = ∆j+1 r Fix∆j+1

(G(`)j).

Since G(`)j has at least 2 nontrivial orbits on ∆j+1, it follows that each G(`)j is
strictly contained in G(`)j+1. Let G(`) =

⋃
`≤j∈NG(`)j . Then it is easily checked

that if ` < m, then G(`) 6 G(m) and that G =
⋃
`∈NG(`).

Claim 3.22. G(`) has linear natural orbit growth for all ` ∈ N.

Proof. For each i ≥ `, let n`i = |∆`
i | and let s`i+1 be the number of natural G(`)i-

orbits on ∆`
i+1. Then clearly s`i+1 ≥ si+1 and

n`i+1 ≤ s`i+1n
`
i + ei+1.

If ` ≤ i < j, let s`ij = s`i+1 · · · s`j . Then it follows inductively that

n`j ≤ s`ijn`i +

j∑
k=i+1

s`kjek

= s`ijn
`
i + s`0j

j∑
k=i+1

ek/s
`
0k.

Since s`0k ≥ s0k, it follows that

n`j ≤ s`ijn`i + s`0j

j∑
k=i+1

ek/s0k ≤ s`ijn`i + s`0jτ = s`ij(n
`
i + s`0iτ ).

Thus n`j/s
`
ij ≤ n`i + s`0iτ and it follows that limj→∞ s`ij/n

`
j > 0. �

In particular, it follows that each G(`) is a proper subgroup of G. For each
` ∈ N, let G(`) y ( ∆`,m` ) be the canonical ergodic action and for each r ∈ N+,
let ν(`)r be the stabilizer distribution of G(`) y ( ∆r

` ,m
⊗r
` ). Let νG(`) be the

IRS of G(`) arising from the G(`)-equivariant map SubG → SubG(`) defined by
H 7→ H∩G(`). Then Theorem 3.19 implies that there exist α(`), β(`), γ(`)r ∈ [ 0, 1 ]
with α(`) + β(`) +

∑
r∈N+ γ(`)r = 1 such that

(3.3) νG(`) = α(`)δ1 + β(`)δG(`) +
∑
r∈N+

γ(`)rν(`)r.
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Recall that ν 6= δ1, δG. Thus (3.3), together with Proposition 3.20, implies that
for ν-a.e. H ∈ SubG, there exists an integer `H such that H ∩ G(`) is a (proper)
self-normalizing subgroup of G(`) for all ` ≥ `H , and this implies that H is a self-
normalizing subgroup of G. It follows that Gz is self-normalizing for µ-a.e. z ∈ Z;
and applying Vershik [21] once again, this implies that χ is indecomposable. �

For later use, we record the following recognition theorem, which will play a key
role in the proofs of Theorems 3.7 and 3.19.

Theorem 3.23. Suppose that G =
⋃
i∈NGi has linear natural orbit growth and

that ν is an ergodic IRS of G. If there exists a constant s ≥ 1 such that for
ν-a.e. H ∈ SubG, for all but finitely many i ∈ N, there exists an integer 1 ≤ ri ≤ s
and a subset Σi ∈ [ ∆i ]ri such that Hi = H ∩ Gi = Alt(∆i r Σi), then ν = νr for
some 1 ≤ r ≤ s.

Proof. Recall that ∆i+1 = (∆i × si+1) ∪ {αi+1
` | 0 ≤ ` < ti+1 }. For each i < j, let

Φij = ∆i × si+1 × · · · × sj .
Thus Φij is the union of the “obvious” natural Gi-orbits on ∆j . For each i ∈ N
and 1 ≤ t ≤ s, let pit be the ν-probability that there exists Σi ∈ [∆i]

t such that
Hi = Alt(∆i r Σi). By Lemma 3.15, since G has linear natural orbit growth, we
have that limj→∞ bj = 0, where

bj = lim
k→∞

(nk − sjknj)
nk

.

It follows that for all i ∈ N, if j > i is sufficiently large, then bj is sufficiently small
so that there exists k > j such that

t=s∑
t=1

pkt

[
1−

(
sjknj
t

)(
nk
t

) ] ≤ (1

2

)i+1

.

Hence we can inductively define a sequence of integers ki such that

t=s∑
t=1

pki+1t

[
1−

(skiki+1
nki

t

)(nki+1

t

) ]
≤
(

1

2

)i+1

.

Applying the Borel-Cantelli Lemma, it follows that for ν-a.e. H ∈ SubG, for all
but finitely many i ∈ N, there exists a subset Σki+1 of cardinality 1 ≤ rki+1 ≤ s
such that Hki+1

= Alt(∆ki+1
rΣki+1

) and such that Σki+1
⊆ Φkiki+1

. Furthermore,
by the ergodicity of ν, there exists a constant 1 ≤ r ≤ s such that r = lim inf rki
for ν-a.e. H ∈ SubG. Suppose that H ∈ SubG is such a ν-generic subgroup
and that Σki+1 ⊆ Φkiki+1 is a subset of cardinality rki+1 = r such that Hki+1 =
Alt(∆ki+1 r Σki+1). Using the fact that Σki+1 ⊆ Φkiki+1 is contained in the union
of the natural Gki-orbits on ∆ki+1

, it follows that there exists a subset Σ′ki ⊆ ∆ki

such that rki ≤ |Σ′ki | ≤ |Σki+1 | = r and Alt(∆ki r Σ′ki) 6 Hki . Consequently, it
follows that ki = r for all but finitely many i ∈ N.

Let Sr be the standard Borel space of subgroups H 6 G such that for all but
finitely many i ∈ N, there is a subset Σki ∈ [ ∆ki ]r such that Hki = Alt(∆kirΣki).
Then we have shown that the ergodic IRS ν concentrates on Sr. Since the stabilizer
distribution νr of G y ( ∆r,m⊗r ) also concentrates on Sr, the following claim
completes the proof of Theorem 3.23.

Claim 3.24. The action Gy Sr is uniquely ergodic.
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(The following argument is essentially identical to the proof of Thomas-Tucker-
Drob [19, Proposition 6.8].) In order to prove Claim 3.24, it is enough to show that
if µ is an ergodic probability measure on Sr and B ⊆ SubG is a basic clopen subset,
then µ(B) = νr(B). Let B = {H ∈ SubG | H ∩G` = L }, where ` ∈ N and L 6 G`
is a subgroup. By the Pointwise Ergodic Theorem, there exists H ∈ Sr such that

µ(B) = lim
i→∞

| { g ∈ Gi | gHg−1 ∈ B } |/|Gi|

= lim
i→∞

| { g ∈ Gi | gHig
−1 ∩G` = L } |/|Gi|

= lim
i→∞

| { g ∈ Gki | gHkig
−1 ∩G` = L } |/|Gki |,

where Hi = H ∩Gi. Similarly, there exists H ′ ∈ Sr such that

νr(B) = lim
i→∞

| { g ∈ Gki | gH ′kig
−1 ∩G` = L } |/|Gki |,

where H ′i = H ′ ∩Gi. Since H, H ′ ∈ Sr, there exists i0 ∈ N such that Hki and H ′ki
are conjugate in Gki for all i ≥ i0 and this implies that

lim
i→∞

| { g ∈ Gki | gHkig
−1 ∩G` = L } |/|Gki |

= lim
i→∞

| { g ∈ Gki | gH ′kig
−1 ∩G` = L } |/|Gki |.

�

Finally recall that if G is a countable group and χ ∈ F(G) is a character, then
the corresponding proper 2-sided ideal Iχ of the group ring CG is defined by

Iχ = {x ∈ C(G) | χ(g x) = 0 for all g ∈ G }.

As explained in Section 1, the following result exhibits a counterexample to Zalesskĭi
[25, Conjecture 1.24] and also answers Zalesskĭi [25, Question 5.12].

Proposition 3.25. There exists an L(Alt)-group G such that:

(i) The augmentation ideal ω(CG) is the only nontrivial proper 2-sided ideal
of CG.

(ii) G has infinitely many nontrivial ergodic IRSs.
(iii) G has infinitely many indecomposable characters χ such that Iχ = { 0 }.

Proof. Define Gi = Alt(∆i) and si+1 inductively as follows.

• ∆0 = { 0, 1, 2, 3, 4 };
• ∆i+1 = {σ ̂k | σ ∈ ∆i, 0 ≤ k < si+1 } tGi, where si+1 = 2i |Gi|;

and the embedding ϕi : Alt(∆i)→ Alt(∆i+1) is defined by

• ϕi(g)(σ ̂k) = g(σ)̂k for each σ ∈ ∆i and 0 ≤ k < si+1;
• ϕi(g)(h) = g h for each h ∈ Gi.

Let G =
⋃
i∈NGi. By construction, if i < j, then Gi has a regular orbit on ∆j .

Hence, by Zalesskĭi [24, Lemma 14], it is impossible to express G as a diagonal limit

of finite alternating groups; and so, by Zalesskĭi [24, Theorem 1], the augmentation
ideal is the only nontrivial proper 2-sided ideal of CG. Also si+1 is clearly the
number of natural orbits of Gi on ∆i+1. Furthermore, an easy induction shows
that if i < j, then

|∆j | = sij |∆i|+
j−2∑
k=i

sk+1j |Gk|+ |Gj−1|
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and hence

nj
sij

= |∆i|+
j−2∑
k=i

sk+1j |Gk|
sij

+
|Gj−1|
sij

≤ |∆i|+
j−1∑
k=i

|Gk|
sk+1

= |∆i|+
j−1∑
k=i

1

2k
< |∆i|+ 2.

It follows that ai = limj→∞ sij/nj > 0 and thus G has linear natural orbit growth.
Let Gy ( ∆,m ) be the canonical ergodic action. Then for each r ≥ 1,

χr(g) = m⊗r( Fix∆r (g) )

is an indecomposable character of G; and it is easily checked that if r 6= s, then
χr 6= χs. Since χr 6= χcon, it follows that Iχr 6= ω(CG) and so Iχr = { 0 }. �

4. Sublinear natural orbit growth

In this section, we will discuss the ergodic IRSs of the almost diagonal limits
G =

⋃
i∈NGi with sublinear natural orbit growth. Examining the list of the ergodic

IRSs in the statement of Theorem 3.19, we see that ifG =
⋃
i∈NGi has linear natural

orbit growth and ν 6= δ1, δG is an ergodic IRS, then ν concentrates on the subspace
of subgroups H ∈ SubG such that there exists a fixed integer r ≥ 1 such that for all
but finitely many i ∈ N, there exists a subset Σi ⊆ ∆i of cardinality r such that:

• H ∩Gi = Alt(∆i r Σi); and
• Σi+1 is contained in the union of the natural Gi-orbits on ∆i.

As is suggested by the proof of Theorem 3.21, a similar result holds if G =
⋃
i∈NGi

is an almost diagonal limit with sublinear natural orbit growth, except that in this
case:

• di = |Σi| → ∞ as i→∞; and
• Σi+1 is contained in the union of the natural and trivial Gi-orbits on ∆i+1.

In order to simplify the notation, we will work with the G-invariant probability
measures on the space of corresponding sequences of subsets ( Σi ) rather than
directly with the IRSs on SubG. Of course, such a measure can be identified with
a corresponding IRS via the map

(4.1) σ = ( Σi ) 7→ H(σ) =
⋃

Alt(∆i r Σi).

Throughout this section, we will suppose that G =
⋃
i∈NGi is an almost diagonal

limit of the finite alternating groups Gi = Alt(∆i). Let τ =
∑∞
i=1 ei/s0i < ∞.

Initially we will not assume that G =
⋃
i∈NGi has sublinear natural orbit growth.

Let Σ consist of the infinite sequences of sets ( Σi )i≥i0 for some i0 ∈ N such that
the following conditions are satisfied for all i ≥ i0,

• Σi ⊆ ∆i;
• Alt(∆i+1 r Σi+1) ∩Gi = Alt(∆i r Σi);
• Σi+1 is contained in the union of the natural and trivial Gi-orbits on ∆i+1;
• if i0 > 0, then Σi0 is not contained in the union of the natural and trivial
Gi0−1-orbits on ∆i0 .
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Then the natural action of G on Σ corresponds to the conjugacy action of G on the
subspace of subgroups {

⋃
i≥i0 Alt(∆i r Σi) | ( Σi )i≥i0 ∈ Σ }.

Remark 4.1. For later use, note that if ( Σi )i≥i0 ∈ Σ and i0 ≤ i < j, then
|Σi| ≤ |Σj |; and if |Σi| = |Σj |, then Σj is contained in the union of the natural
Gi-orbits on ∆j .

Fix some β ∈ ( 0,∞ ). Let β0 = β and let γ0 = β0 τ = β0

∑∞
i=1 ei/s0i. For each

i ∈ N, let

• βi+1 = βi/si+1 = β0/s0i+1; and
• γi+1 = γi − βiei+1/si+1 = β0

∑∞
j=i+2 ej/s0j .

For each i ∈ N and X ⊆ ∆i, let Σ(X) be the set of sequences ( Σj )j≥j0 ∈ Σ for
some j0 ≤ i such that Σi = X. Then the sets Σ(X) form a clopen basis for a locally
compact topology on Σ. First define µβ on the basic clopen sets by

(4.2) µβ( Σ(X) ) =
1

eβini+γi
( eβi − 1 )|X|.

Note that (4.2) can be rewritten as:

(4.3) µβ( Σ(X) ) =
1

eγi

(
1− 1

eβi

)|X|(
1

eβi

)ni−|X|
.

Remark 4.2. Consider the special case when G =
⋃
i∈NGi is a diagonal limit.

Then each γi = 0; and for each subset X ⊆ ∆i, the µβ-probability that Σi = X is
the probability of the event that X is the set of selected points given by the binomial
distribution when the probability of selecting each point x ∈ ∆i is pi = 1− (1/eβi).
In the general case, it is necessary to introduce the “correction factor” 1/eγi .

Let A be the algebra of Borel subsets of Σ generated by the basic clopen sets
Σ(X). Note that if A ∈ A, then there exists i ∈ N and S ⊆ P(∆i) such that either:

(a) A =
⊔
{Σ(X) | X ∈ S } or

(b) A =
⊔
{Σ(X) | X ∈ S } t ( ΣrBi ), where Bi =

⊔
{Σ(X) | X ∈ P(∆i) }.

We next extend µβ to the algebra A by defining

µβ(A) =

{∑
X∈S µβ( Σ(X) ), if (a) holds;∑
X∈S µβ( Σ(X) ) + ( 1− (1/e)γi), if (b) holds.

We claim that µβ is a pre-measure on A. Of course, we must first check that µβ
is well-defined. To see this, fix some i ∈ N and for each X ⊆ ∆i, let EX be the
collection of subsets Y ⊆ ∆i+1 such that Alt(∆i+1 r Y ) ∩ Gi = Alt(∆i rX) and
Y is contained in the union of the natural and trivial Gi-orbits on ∆i+1. We will
prove by induction on ` = |X| that µβ(Σ(X)) =

∑
Y ∈EX µβ(Σ(Y )). First suppose

that ` = 0. Then

µβ(Σ(∅)) =
1

eβini+γi
.
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Also Y ∈ E∅ if and only if Y is a subset of the trivial Gi-orbits on ∆i+1. Thus

µβ(E∅) =
1

eβi+1ni+1+γi+1

fi+1∑
t=0

(
fi+1

t

)
( eβi+1 − 1 )t

=
1

eβi+1ni+1+γi+1
eβi+1fi+1

=
1

eβi+1(ni+1−fi+1)+γi+1
.

By definition, we have that

βi+1(ni+1 − fi+1) + γi+1 =
βi
si+1

(si+1ni + ei+1) + γi −
βiei+1

si+1
= βini + γi.

Hence the result holds when ` = 0. Suppose inductively that the result holds for
` ≥ 0 and let X ⊆ ∆i with |X| = `+ 1. Then

µβ( Σ(X) ) =
1

eβini+γi
( eβi − 1 )`+1.

Write X = X0 ∪ {x }, where |X0| = `. Then each Y ∈ EX can be expressed
uniquely as a disjoint union Y = Y0 t Z such that Y0 ∈ EX0 , Z ∈ E{ x } and Z is
contained in the union of the natural orbits of Gi on ∆i+1. Thus

µβ(EX) =
∑

Y0∈EX0

µβ(Σ(Y0))

si+1∑
t=1

(
si+1

t

)
( eβi+1 − 1 )t

=
1

eβini+γi
( eβi − 1 )`( eβi+1si+1 − 1 )

=
1

eβini+γi
( eβi − 1 )`+1.

Thus µβ(A) is well-defined if A =
⊔
{Σ(X) | X ∈ S } for some S ⊆ P(∆i). Also,

since

µβ(Bi) =
1

eβini+γi

ni∑
`=0

(
ni
`

)
( eβi − 1 )` =

1

eγi
,

it follows that µβ(A) is well-defined if A =
⊔
{Σ(X) | X ∈ S } t ( Σ r Bi ); and it

also follows that µβ(Σ) = 1. Finally to check that µβ is σ-additive, it is enough to
show that for all i ∈ N,

∞∑
j=i

µβ(Bj+1 rBj) = µ(ΣrBi) = 1− (1/e)γi .

To see this, note that if k > i, then

k∑
j=i

µβ(Bj+1 rBj) =

k∑
j=i

[ (1/e)γj+1 − (1/e)γj ] = (1/e)γk+1 − (1/e)γi ;

and since γk+1 = β0

∑∞
j=k+1 ej+1/s0j+1 → 0 as k →∞, it follows that

k∑
j=i

µβ(Bj+1 rBj)→ 1− (1/e)γi
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as k → ∞. This completes the proof that µβ is a pre-measure on A. Clearly µ is
G-invariant. Hence, by the Carathéodory Extension Theorem, µβ can be extended
to a G-invariant probability measure µβ on Σ.

Theorem 4.3. If G =
⋃
i∈NGi is an almost diagonal limit of finite alternating

groups and β ∈ ( 0,∞ ), then the action G y ( Σ, µβ ) is ergodic if and only if
G =

⋃
i∈NGi has sublinear natural orbit growth.

We will begin with the easy direction in Theorem 4.3.

Proposition 4.4. If G =
⋃
i∈NGi has linear natural orbit growth, then the action

Gy ( Σ, µβ ) is not ergodic.

Proof. If G =
⋃
i∈NGi has linear natural orbit growth, then

lim
i→∞

βini + γi = lim
i→∞

β0
ni
s0i

+ γi =
β0

a0
> 0.

Hence if σ ∈ Σ is the sequence with constant value ∅ and X0 = {σ }, then

µβ(X0) = lim
i→∞

1

eβini+γi
=

1

eβ0/a0
.

Since X0 is a G-invariant Borel subset with 0 < µβ(X0) < 1, it follows that the
action Gy ( Σ, µβ ) is not ergodic. �

Remark 4.5. If G =
⋃
i∈NGi has linear natural orbit growth, then we can calculate

the ergodic decomposition of the action G y ( Σ, µβ ) as follows. Let λ = β0/a0.
For each r ≥ 0, if Xr ⊆ Σ is the Borel subset consisting of the sequences ( Σj )j≥j0
such that |Σj | = r for all but finitely many j ≥ j0, then

µβ(Xr) =
1

eλ
λr

r!
.

To see this, note that

µβ(X1) = lim
j→∞

1

βjnj + γj
· nj(e

β0
nj
s0j

1
nj − 1) =

1

eλ
· λ,

and that if r ≥ 2, then

µβ(Xr) = lim
j→∞

1

βjnj + γj

(
nj
r

)
(e
β0

nj
s0j

1
nj − 1)r

= lim
j→∞

1

βjnj + γj

nrj
r!

(e
β0

nj
s0j

1
nj − 1)r

=
1

eλ
λr

r!
.

If we identify µβ with the corresponding IRS of G, then Xr corresponds to the IRS
νr of Theorem 3.19. Thus, writing δG = ν0, we obtain the ergodic decomposition:

µβ =
1

eλ

∞∑
r=0

λr

r!
νr.

For the remainder of this section, we will suppose that G =
⋃
i∈NGi has sublinear

natural orbit growth. Here the analysis splits into two cases depending on whether
or not G ∼= Alt(N); equivalently, on whether or not si+1 = 1 and ei+1 = 0 for all but
finitely many i ∈ N. First suppose that G ∼= Alt(N). In order to simplify notation,
we will suppose that si+1 = 1 and ei+1 = 0 for all i ∈ N. And we can also suppose
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that G = Alt(N) and that each ∆i = { 0, 1, · · · , ni − 1 }. Let α0 = 1 − (1/eβ) and
α1 = 1/eβ . Let pα be the probability measure on { 0, 1 } defined by pα({`}) = α`
and let µα be the corresponding product probability measure on 2N. Then Alt(N)
acts ergodically on ( 2N, µα ) via the shift action ( g · ξ )(n) = ξ( g−1(n) ). Let

ξ
fα7→ (Σξi )i≥0 be the Alt(N)-equivariant map from 2N to Σ defined by

Σξi = { k ∈ ∆i | ξ(k) = 0 }.

Then µβ = (fα)∗µα and it follows that the action Alt(N) y ( Σ, µβ ) is ergodic.
(Using the notation of Section 9, the stabilizer distribution corresponding to µβ is
the ergodic IRS νEαα of Alt(N).)

Thus we can suppose that G � Alt(N) and hence that limi→∞ βi = 0. In order
to prove that G y ( Σ, µβ ) is ergodic, it is enough to find a G-invariant Borel
subset Σβ ⊆ Σ such that µβ(Σβ) = 1 and such that if m is an ergodic probability
measure on Σβ , then

m(Σ(X) ∩ Σβ) = µβ(Σ(X)).

for all X ∈
⋃
i∈N P(∆i). The definition of Σβ will involve the following sequence of

random variables.

Definition 4.6. For each i ∈ N, let di be the random variable on Σ defined by

di( (Σj)j≥j0 ) =

{
|Σi|, if i ≥ j0;

0, otherwise.

In preparation for an application of Chebyshev’s inequality, we will next compute
the expectation E [di] and the variance Var(di) of the random variable di. Here
we will make use of the observation that modulo the “correction factor” 1/eγi ,
the probability that Σi = X is that given by the binomial distribution when the
probability of selecting each point x ∈ ∆i is pi = 1− (1/eβi).

Lemma 4.7. E [di] = e−γi( 1− e−βi )ni.

Proof. Using equation (4.3), we see that

E [di] = e−γinipi = e−γi( 1− e−βi )ni.

�

Lemma 4.8. Var(di) = ( eγi − 1 )E [di]
2 + e−βiE [di].

Proof. Again using equation (4.3), we see that

E [d2
i ] = e−γi [nipi + ni(ni − 1)p2

i ]

and a routine computation shows that

Var(di) = E [d2
i ]− E [di]

2

= ( eγi − 1 )E [di]
2 + e−βiE [di].

�

Proposition 4.9. There exists an increasing sequence I = ( ik | k ∈ N ) such that
limk→∞ dik/βiknik = 1 for µβ-a.e. (Σi)i≥i0 ∈ Σ.
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Proof. Since βi = β0/s0i → 0, it follows that ( 1 − e−βi )/βi → 1. Since we also
have that γi → 0, it follows from Lemma 4.7 that

(4.4) lim
i→∞

E [di]/βini = 1.

In particular, since G has sublinear natural orbit growth and

E [di] ≈ βini = β0
ni
s0i

,

it follows that E [di] → ∞. Hence, letting σ(di) =
√

Var(di) denote the standard
deviation, applying Lemma 4.8, we see that

(4.5) lim
i→∞

σ(di)/E [di] = 0.

Combining (4.4) and (4.5), there exists an increasing sequence I = ( ik | k ∈ N )
such that for all k ∈ N,

(a) ( 1− 1/2k )βiknik ≤ E [dik ] ≤ ( 1 + 1/2k )βiknik and
(b) σ(dik) ≤ E [dik ]/4k.

Let Ek be the event that |dik − E [dik ]| ≥ E [dik ]/2k. Applying Chebyshev’s in-
equality, since E [dik ]/2k ≥ 2kσ(dik), it follows that P [Ek] ≤ 1/4k. Applying the
Borel-Cantelli Lemma, for µβ-a.e. (Σi)i≥i0 ∈ Σ, for all but finitely many k ∈ N,

( 1− 1/2k)E [dik ] ≤ dik ≤ ( 1 + 1/2k)E [dik ]

and hence

( 1− 1/2k)2 βiknik ≤ dik ≤ ( 1 + 1/2k)2 βiknik .

It follows that limk→∞ dik/βiknik = 1 for µβ-a.e. (Σi)i≥i0 ∈ Σ. �

Definition 4.10. Σβ is the set of (Σi)i≥i0 ∈ Σ such that limk→∞ dik/βiknik = 1

Since µβ(Σβ) = 1, in order to show that Gy ( Σ, µβ ) is ergodic, it is enough to
prove the following result.

Proposition 4.11. If m is an ergodic probability measure on Σβ, then

m(Σ(X) ∩ Σβ) = µβ(Σ(X))

for all X ∈
⋃
i∈N P(∆i).

So suppose that m is an ergodic probability measure on Σβ . Then by the Point-
wise Ergodic Theorem, there exists an element (Σk)k≥k0 ∈ Σβ such that

(4.6) m(Σ(X) ∩ Σβ) = lim
j→∞

1

|Gj |
|{ g ∈ Gj | g · (Σk)k≥k0 ∈ Σ(X) }|

for all X ∈
⋃
i∈N P(∆i). Fix some X ⊆ ∆i. For each j > max{ i, k0 }, let dj = |Σj |

and let

mij = sijni +

j−1∑
k=i+1

skjek + ej

= sijni + s0j

j∑
k=i+1

ek/s0k.
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Then an easy induction on ` = |X| shows that

1

|Gj |
|{ g ∈ Gj | g · (Σk)k≥k0 ∈ Σ(X) }| =

∑̀
t=0

(−1)`−t
(
`

t

)(nj−mij+tsij
dj

)(
nj
dj

) ;

and a second induction using (4.6) shows that for all 0 ≤ t ≤ ni, the limit

(4.7) lim
j→∞

(
nj−mij+tsij

dj

)(
nj
dj

)
exists. We will make repeated use of the following lemma in the remaining sections
of this paper.

Lemma 4.12. Suppose that (nj)j∈N, (mj)j∈N and (dj)j∈N are sequences of natural
numbers such that the following conditions are satisfied:

(a) mj, dj ≤ nj.
(b) mj/nj → 0 and dj/nj → 0 as j →∞.

(c) limj→∞
(
nj−mj
dj

)
/
(
nj
dj

)
exists.

Then limj→∞ djmj/nj exists and

lim
j→∞

(
nj−mj
dj

)(
nj
dj

) =

(
1

e

)limj→∞ djmj/nj

.

Proof. In order to simply notation, we will write n, d, m instead of nj , dj , mj .
Note that, since(

n−m
d

)(
n
d

) =
(n−m)

n

(n−m− 1)

n− 1
· · · (n−m− d+ 1)

(n− d+ 1)
,

it follows that (
n−m− d+ 1

n− d+ 1

)d
≤
(
n−m
d

)(
n
d

) ≤
(
n−m
n

)d
,

and hence that

(4.8)

(
1− m

n− d+ 1

)n−d+1
m

dm
n−d+1

≤
(
n−m
d

)(
n
d

) ≤
(

1− m

n

) n
m
dm
n

.

Since m
n → 0 and m

n−d+1 → 0, it follows that

(4.9)
(

1− m

n

) n
m →

(
1

e

)
and

(
1− m

n− d+ 1

)n−d+1
m

→
(

1

e

)
.

The result follows easily. �

We next check that Lemma 4.12 can be applied to each of the limits (4.7). First
note that if mj = mij − tsij , then

mj

nj
=
sij
nj

(ni − t) +
s0j

nj

j∑
k=i+1

ek/s0k

≤ sij
nj

(ni − t) + s0i
sij
nj
τ ;
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and since G has sublinear natural orbit growth, this implies that mj/nj → 0. Also
note that

lim
k→∞

djk
njk

= lim
k→∞

djk
βjknjk

βjk = lim
k→∞

βjk = 0.

Hence, applying Lemma 4.12, we obtain that

(4.10) lim
j→∞

(
nj−mij+tsij

dj

)(
nj
dj

) =

(
1

e

)limk→∞ djk (mijk−tsijk )/njk

.

Lemma 4.13. For all i ∈ N and 0 ≤ t ≤ ni,
lim
k→∞

djk(mijk − tsijk)/njk = βi(ni − t) + γi.

Proof. First note that since βjtsij = tβi and

βjmij = βjsijni + βjs0j

j∑
k=i+1

ek/s0k = βini + β0

j∑
k=i+1

ek/s0k,

it follows that limj→∞ βj(mij − tsij) = βi(ni − t) + γi. Hence, using the fact that
limk→∞ djk/βjknjk = 1, we obtain that

lim
k→∞

djk(mijk − tsijk)/njk = lim
k→∞

djk
βjknjk

βjk(mijk − tsijk)

= βi(ni − t) + γi.

�

Summing up, we have shown that if X ⊆ ∆i with |X| = `, then

m(Σ(X) ∩ Σβ) =
∑̀
t=0

(−1)`−t
(
`

t

)
lim
j→∞

(
nj−mij+tsij

dj

)(
nj
dj

)
=
∑̀
t=0

(−1)`−t
(
`

t

)(
1

e

)βi(ni−t)+γi
=

(
1

e

)βini+γi ∑̀
t=0

(
`

t

)
eβit(−1)`−t

=

(
1

e

)βini+γi
( eβi − 1 )`

= µβ(Σ(X)),

as desired. This completes the proof that the action Gy ( Σ, µβ ) is ergodic.

Definition 4.14. Let νΣ
β be the stabilizer distribution of the action Gy ( Σ, µβ ).

We can now state the third main result of this paper.

Theorem 4.15. If G =
⋃
i∈NGi is an almost diagonal limit with sublinear natural

orbit growth and G � Alt(N), then the ergodic IRSs of G are

{ δ1, δG } ∪ { νΣ
β | β ∈ ( 0,∞ ) }.

In particular, if G =
⋃
i∈NGi is an almost diagonal limit with sublinear natural

orbit growth and G � Alt(N), then the collection { νΣ
β | β ∈ ( 0,∞ ) } is independent

of the particular expression of G as an almost diagonal limit of finite alternating
groups.
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5. Groups of almost diagonal type

In Section 3, we proved that an L(Alt)-group G =
⋃
i∈NGi has linear natural

orbit growth if and only if there exists a G-invariant ergodic probability measure
on ∆. In this section, we will prove a corresponding characterization of the almost
diagonal limits of sublinear natural orbit growth.

Theorem 5.1. Suppose that G =
⋃
i∈NGi is the union of a strictly increasing chain

of finite alternating groups Gi = Alt(∆i) such that si+1 > 1 for all i ∈ N. Suppose
also that G has sublinear natural orbit growth and that there exists a nonatomic
G-invariant ergodic probability measure µ on Σ. Then:

(a) G =
⋃
i∈NGi is an almost diagonal limit; and

(b) there exists β ∈ ( 0,∞ ) such that µ = µβ.

Proof. Applying the Pointwise Ergodic Theorem, let ( Σj )j≥j0 ∈ Σ be such that
for all i ∈ N and X ⊆ ∆i,

(5.1) µ( Σ(X) ) = lim
j→∞

1

|Gj |
|{ g ∈ Gj | g · ( Σj )j≥j0 ∈ Σ(X) }|.

Let |Σj | = dj .

Claim 5.2. limj→∞ dj =∞.

Proof of Claim 5.2. Suppose not. Then, by Remark 4.1, there exist integers d ≥ 0
and j1 ≥ j0 such that dj = d for all j ≥ j1. Suppose that X ⊆ ∆i with |X| = ` ≥ 1
and that µ( Σ(X) ) 6= 0. Let j ≥ max{ i, j1 } and let

Φij = ∆i × si+1 × · · · × sj .
be the union of the “obvious” natural Gi-orbits on ∆j . Then if g ∈ Gj satisfies
g · ( Σi )j≥j0 ∈ Σ(X), we must have that |g(Σj)∩Φij | ≥ `. Hence (5.1) implies that
` ≤ d and that

µ( Σ(X) ) ≤ lim
j→∞

d∑
t=`

(
sijni
t

)(
nj−mij
d−t

)(
nj
d

)
= lim
j→∞

d∑
t=`

(
d

t

) (
sijni
t

)(
nj−(d−t)

t

) (nj−mijd−t
)(

nj
d−t
)

≤ lim
j→∞

d∑
t=`

(
d

t

) (
sijni
t

)(
nj−(d−t)

t

) .
Since G has sublinear natural orbit growth, it follows that if ` ≤ t ≤ d, then

lim
j→∞

(
sijni
t

)(
nj−(d−t)

t

) = 0.

But this implies that µ( Σ(X) ) = 0, which is a contradiction. Thus no such X ⊆ ∆i

exists and it follows that µ concentrates on the G-invariant sequence σ ∈ Σ with
constant value ∅, which is a contradiction. �

Arguing as in Section 4, we see that if X ⊆ ∆i with |X| = `, then

(5.2) µ( Σ(X) ) = lim
j→∞

∑̀
t=0

(−1)`−t
(
`

t

)(nj−mij+tsij
dj

)(
nj
dj

) ;
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and that the limit

lim
j→∞

(
nj−mij+tsij

dj

)(
nj
dj

)
exists for all 0 ≤ t ≤ ni. We will now work towards verifying that the hypotheses
of Lemma 4.12 are satisfied. For each 0 ≤ t ≤ ni, let mitj = mij − tsij .

Claim 5.3. If i ∈ N and 0 ≤ t ≤ ni, then limj→∞mitj/nj = 0.

Proof of Claim 5.3. Suppose that there exist integers i, t with 0 ≤ t ≤ ni such that
limj→∞mitj/nj 6= 0. Since

mitj

nj
= (ni − t)

sij
nj

+
s0j

nj

j∑
k=i+1

ek/s0k

and limj→∞ sij/nj = 0, it follows that

lim sup
j→∞

mitj

nj
= lim sup

j→∞

s0j

nj

j∑
k=i+1

ek/s0k;

and hence there exists a constant 0 < c ≤ 1 such that lim supj→∞mitj/nj = c for
all 0 ≤ t ≤ ni. Note that if ` < m, then

s0j

nj

j∑
k=`+1

ek/s0k =
s0j

nj

m∑
k=`+1

ek/s0k +
s0j

nj

j∑
k=m+1

ek/s0k

and that limj→∞
s0j
nj

∑m
k=`+1 ek/s0k = 0. It follows that lim supj→∞mitj/nj = c

for all integers i, t with 0 ≤ t ≤ ni. Since(
nj−mitj

dj

)(
nj
dj

) ≤
(
nj −mitj

nj

)dj
=

(
1− mitj

nj

)dj
and limj→∞ dj =∞, it follows that

lim
j→∞

(
nj−mij+tsij

dj

)(
nj
dj

) = lim
j→∞

(
nj−mitj

dj

)(
nj
dj

) = 0

for all integers i, t with 0 ≤ t ≤ ni. But then (5.2) implies that µ( Σ(X) ) = 0 for
all X ∈

⋃
i∈N P(∆i), which is a contradiction. �

Claim 5.4. limj→∞ dj/nj = 0.

Proof of Claim 5.4. Suppose not. Then there exists a constant 0 < c ≤ 1 and an
infinite subset J ⊆ N such that dj/nj ≥ c for all j ∈ J . Let i, t be integers such
that 0 ≤ t ≤ ni. Since limj→∞mitj/nj = 0, there exists a cofinite subset Jit ⊆ J
such that(

nj−mitj
dj

)(
nj
dj

) ≤
(

1− mitj

nj

)dj
≤
(

1− mitj

nj

) nj
mitj

dj
nj
mitj

≤
(

1

2

)cmitj
for all j ∈ Jit. If 0 ≤ t < ni, then

lim
j→∞

mitj = lim
j→∞

[ (ni − t)sij + s0j

j∑
k=i+1

ek/s0k ] =∞,
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and it follows that

lim
j→∞

(
nj−mij+tsij

dj

)(
nj
dj

) = lim
j→∞

(
nj−mitj

dj

)(
nj
dj

) = 0.

But then (5.2) implies that µ( Σ(X) ) = 0 for all X ∈
⋃
i∈N[P(∆i)r {∆i }]; and so

µ concentrates on the G-invariant sequence ( ∆i )i∈N, which is a contradiction. �

Thus the hypotheses of Lemma 4.12 are satisfied; and so for all integers i, t with
0 ≤ t ≤ ni, we have that

lim
j→∞

(
nj−mij+tsij

dj

)(
nj
dj

) =

(
1

e

)λti
,

where λti = limj→∞ dj(mij − tsij)/nj .

Claim 5.5. G =
⋃
i∈NGi is an almost diagonal limit.

Proof of Claim 5.5. Suppose not. Then, since τ =
∑∞
i=1 ei/s0i =∞ and

djmij/nj =
nidjsij
nj

+
djs0j

nj

j∑
k=i+1

ek/s0k

=

[
ni
s0i

+

j∑
k=i+1

ek/s0k

]
djs0j

nj
,

it follows that limj→∞ djs0j/nj = 0 and hence

λ0i = lim
j→∞

djmij/nj = lim
j→∞

djs0j

nj

j∑
k=i+1

ek/s0k.

Also notice that

λ0i = lim
j→∞

djs0j

nj

[
ei+1/si+1 +

j∑
k=i+2

ek/s0k

]

= lim
j→∞

djs0j

nj

j∑
k=i+2

ek/s0k

= λ0i+1.

Thus there exists a constant λ such that λ0i = λ for all i ∈ N. Next notice that if
0 ≤ t ≤ ni, then

λti = lim
j→∞

[
djmij/nj −

t

s0i
djs0j/nj

]
= lim
j→∞

djmij/nj

= λ.
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Hence for all i ∈ N and X ⊆ ∆i, if |X| = `, then

µ( Σ(X) ) =
∑̀
t=0

(−1)`−t
(
`

t

)(
1

e

)λ
=

{(
1
e

)λ
, if ` = 0;

0, otherwise.

It follows that λ = 0 and that µ concentrates on the sequence σ ∈ Σ with constant
value ∅, which contradicts the assumption that µ is nonatomic. �

Summing up, we have shown that τ =
∑∞
i=1 ei/s0i < ∞ and that if X ⊆ ∆i

with |X| = `, then

µ( Σ(X) ) = lim
j→∞

∑̀
t=0

(−1)`−t
(
`

t

)(nj−mij+tsij
dj

)(
nj
dj

)
= lim
j→∞

∑̀
t=0

(−1)`−t
(
`

t

)(
1

e

)λti
,

where λti = limj→∞ dj(mij − tsij)/nj . In particular, the limit

lim
j→∞

djmij/nj = lim
j→∞

[
ni
s0i

+

j∑
k=i+1

ek/s0k

]
djs0j

nj

exists; and this implies that β = limj→∞ djs0j/nj exists. Furthermore, the proof
of Claim 5.5 shows that β 6= 0. Notice that

λti = lim
j→∞

dj [ (ni − t)sij + s0j

j∑
k=i+1

ek/s0k ]/nj

= lim
j→∞

[
1

s0i

djs0j

nj
(ni − t) +

djs0j

nj

j∑
k=i+1

ek/s0k ]

=
1

s0i
β(ni − t) + β

∞∑
k=i+1

ek/s0k

= βi(ni − t) + γi,

where βi = β/s0i and γi = β
∑∞
k=i+1 ek/s0k. It follows that if X ⊆ ∆i with |X| = `,

then

µ( Σ(X) ) =
1

eβini+γi
( eβi − 1 )`.

Thus µ = µβ . This completes the proof of Theorem 5.1. �

Remark 5.6. Examining the proofs of Proposition 4.11 and Theorem 5.1, we see
that if β ∈ ( 0,∞ ) and ( Σj )j≥j0 ∈ Σ with |Σj | = dj , then the following are
equivalent:

(a) limj→∞ djs0j/nj = β.
(b) For all i ∈ N and X ⊆ ∆i,

µ( Σ(X) ) = lim
j→∞

1

|Gj |
|{ g ∈ Gj | g · ( Σj )j≥j0 ∈ Σ(X) }|.
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We have already noted that Theorem 4.15 implies if G =
⋃
i∈NGi is an almost

diagonal limit with sublinear natural orbit growth and G � Alt(N), then the col-
lection { νΣ

β | β ∈ ( 0,∞ ) } is independent of the particular expression of G as an
almost diagonal limit of finite alternating groups. The following special case will
play a key role in the proof of Theorem 4.15.

Theorem 5.7. Suppose that G =
⋃
i∈NGi is an almost diagonal limit of finite

alternating groups Gi = Alt(∆i). Let ( ki | i ∈ N ) be a strictly increasing sequence
of natural numbers, let ∆′i = ∆ki and let Σ′ be the associated space of sequences
( Σ′i )i≥i0 . Then G =

⋃
i∈NG

′
i is also an almost diagonal limit and there exists a

positive λ such that νΣ
β = νΣ′

λβ for all β ∈ ( 0,∞ ). Consequently, we have that

{ νΣ
β | β ∈ ( 0,∞ ) } = { νΣ′

β′ | β′ ∈ ( 0,∞ ) }.

Proof. Of course, by Proposition 3.4, we already know that G =
⋃
i∈NG

′
i is an

almost diagonal limit.
Let σ = ( Σj )j≥j0 ∈ Σ and let i1 = min{ i | ki ≥ j0 }. Then a moment’s thought

shows that if i ≥ i1, then Σki+1
is contained in the union of the natural and trivial

Gki-orbits on ∆ki+1 . Thus there exists a unique σ′ = ( Σ′i )i≥i0 ∈ Σ′ such that
i0 ≤ i1 and Σ′i = Σki for all i ≥ i1. Furthermore, it is clear that

H(σ) =
⋃

Alt(∆j r Σj) =
⋃

Alt(∆′i r Σ′i) = H(σ′).

Thus for every nonatomic G-invariant ergodic probability measure µ on Σ, there
exists a nonatomic G-invariant ergodic probability measure µ′ on Σ′ such that
the corresponding stabilizer distributions coincide. Applying Theorem 5.1(b) to
G =

⋃
i∈NG

′
i and Σ′, it follows that for every β ∈ ( 0,∞ ), there exists β′ ∈ ( 0,∞ )

such that νΣ
β = νΣ′

β′ .

Let n′i, s
′
i be the parameters associated with the union G =

⋃
i∈NG

′
i; and suppose

that β, β′ ∈ ( 0,∞ ) are such that νΣ
β = νΣ′

β′ . Then the Pointwise Ergodic Theorem

and Remark 5.6 imply that there exist corresponding sequences σ = ( Σj )j≥j0 ∈ Σ
and σ′ = ( Σ′i )i≥i0 ∈ Σ′ such that:

• Σ′i = Σki for all but finitely many i ∈ N,
• limj→∞ |Σj |s0j/nj = β, and
• limi→∞ |Σ′i|s′0i/n′i = β′.

It follows that

λ =
β′

β
= lim
i→∞

|Σ′i|s′0i/n′i
|Σki |s0ki/nki

= lim
i→∞

s′0i
s0ki

is independent of the choice of β. �

6. Normalized permutation characters of finite alternating groups

In this section, we will present a series of lemmas concerning upper bounds for
the values of the normalized permutation characters of various actions Alt(∆) y Ω
of the finite alternating group Alt(∆) on a finite set Ω. No attempt will be made
to prove the best possible results: we will be content to prove easy results which
are good enough to serve our purposes in this paper.

Suppose that G =
⋃
i∈NGi has linear natural orbit growth. Let ν 6= δ1, δG be

an ergodic IRS of G. Then, applying Creutz-Peterson [2, Proposition 3.3.1], we can
suppose that ν is the stabilizer distribution of an ergodic action G y (Z, µ ). Let
χ(g) = µ( FixZ(g) ) be the corresponding character. For each z ∈ Z and i ∈ N, let
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Ωi(z) = { g · z | g ∈ Gi }. Then, by Theorem 2.1, for µ-a.e. z ∈ Z, for all g ∈ G, we
have that

µ( FixZ(g) ) = lim
i→∞

| FixΩi(z)(g) |/|Ωi(z) |.

Fix such an element z ∈ Z and let H = {h ∈ G | h · z = z } be the corresponding
point stabilizer. Clearly we can suppose that z has been chosen such that if g ∈ H,
then χ(g) > 0.

For each i ∈ N, let Hi = H ∩ Gi. Then, examining the list of ergodic IRSs in
the statement of Theorem 3.19, we see that it is necessary to show that there exists
a fixed integer r ≥ 1 such that for all but finitely many i ∈ N, there is a subset
Σi ⊆ ∆i of cardinality r such that Hi = Alt(∆i r Σi). We will eventually show
that if this is not the case, then there exists an element g ∈ H such that

µ( FixZ(g) ) = lim
i→∞

| gGi ∩Hi |/| gGi | = | {s ∈ Gi | sgs−1 ∈ Hi }|/|Gi| = 0,

which is a contradiction. For example, Lemma 6.1 will play a key role in the proof
that there do not exist infinitely many i ∈ N such that Hi acts primitively on ∆i;
and Lemmas 6.3 and 6.5 will play key roles in the proof that there do not exist
infinitely many i ∈ N such that Hi acts imprimitively on ∆i.

For the remainder of this section, let ∆ = { 1, 2, · · · , n }.

Lemma 6.1. For each prime p and real number a > 0, there exists np,a ∈ N such
that if n ≥ np,a and

(i) g ∈ Alt(∆) is a product of b ≥ an p-cycles;
(ii) K < Alt(∆) is a proper primitive subgroup;

then the normalized permutation character of the action Alt(∆) y Ω = Alt(∆)/K
satisfies |FixΩ(g)|/|Ω| < 1

n .

Proof. Clearly we can suppose that n has been chosen so that b ≥ an ≥ 2. In
particular, since g contains at least two p-cycles, this implies that the conjugacy
classes of g in Alt(∆) and Sym(∆) coincide and hence

|gAlt(∆)| = n!

pbb!(n− bp)!
.

Applying Stirling’s Approximation and the fact that b ≥ an, it follows that there
exist constants r, s > 0 such that

|gAlt(∆)| > r sn
nn

bb(n− bp)n−bp
> r sn

nn

nbnn−bp
≥ r sn(nn)(p−1)a.

By Praeger-Saxl [13], since K is a proper primitive subgroup of Alt(∆), it follows
that |K| < 4n. By Proposition 2.2, this implies that

|FixΩ(g)|/|Ω| = | gAlt(∆) ∩K |/| gAlt(∆) | ≤ |K |/| gAlt(∆) | ≤ 4n

r sn(nn)(p−1)a
.

The result follows easily. �

Lemma 6.2. Let Ω = [∆]` be the set of `-subsets of ∆ for some 2 ≤ ` ≤ n/2.
Suppose that g ∈ Alt(∆) has prime order p > 2 and that c = |Fix∆(g)| ≤ n/4.
Then the normalized permutation character of the action Alt(∆) y Ω satisfies:

(i) |FixΩ(g)|/|Ω| < 1
2 |Fix∆(g)|/|∆| if c ≥ 16;

(ii) |FixΩ(g)|/|Ω| < 5
n if c < 16.
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Proof. First suppose that ` < p. Then FixΩ(g) = [Fix∆(g)]`. Clearly we can
suppose that c ≥ ` and since c ≤ n/4, it follows that

|FixΩ(g)|
|Ω|

=

(
c
`

)(
n
`

) =
c(c− 1) · · · (c− `− 1)

n(n− 1) · · · (n− `− 1)
≤ c(c− 1)

n(n− 1)
<

c

4n
<
|Fix∆(g)|

2|∆|
.

Next suppose that ` ≥ p > 2. Let A = {S ∈ FixΩ(g) | S ⊆ Fix∆(g) } and let
B = FixΩ(g)rA. If A 6= ∅, then

|A|
|Ω|

=

(
c
`

)(
n
`

) ≤ c(c− 1)(c− 2)

n(n− 1)(n− 2)
<

c

16n
.

For each S ∈ B, let α(S) = min{ s ∈ S | g · s 6= s }. Then, since ` > 2, it follows
that the sets

B ∪ { (S r {α(S) }) ∪ { t } | S ∈ B, t ∈ ∆r (S ∪ Fix∆(g)) }
are distinct. Note that if S ∈ B, then |S ∪ Fix∆(g)| ≤ 3n/4; and it follows that
(1 + n

4 )|B| ≤ |Ω| and so |B|/|Ω| < 4/n. If c ≥ 16, then

|FixΩ(g)|
|Ω|

<
c

16n
+

4

n
≤ c

16n
+

c

4n
<
|Fix∆(g)|

2|∆|
;

while if c < 16, then
|FixΩ(g)|
|Ω|

<
c

16n
+

4

n
<

5

n
.

�

If P is a partition of ∆, then the subsets B ∈ P will be called the blocks of P;
and if s ∈ ∆, then [ s ]P will denote the block of P which contains s.

Lemma 6.3. Let Ω be the set of partitions P of ∆ into `-sets for some fixed divisor
` of n such that 2 ≤ ` ≤ n/2. If g ∈ Alt(∆) has prime order p > 2, then the normal-
ized permutation character of the action Alt(n) y Ω satisfies |FixΩ(g)|/|Ω| < 2/n.

Proof. Let P ∈ FixΩ(g). Then we define the integer α(P) as follows.

(a) If P contains a g-invariant block B such that g � B 6= idB , then α(P) is
the least s ∈ ∆ such that [ s ]P is g-invariant and g · s 6= s.

(b) Otherwise, α(P) is the least s ∈ ∆ such that g · s 6= s.

For each t ∈ ∆r [α(P) ]P , we define P(t) ∈ Ω to be the partition obtained from P
by replacing the block [α(P) ]P by ([α(P) ]P r {α(P) }) ∪ { t } and the block [ t ]P
by ([ t ]P r { t }) ∪ {α(P) }.

Claim 6.4. P(t) /∈ FixΩ(g).

Proof of Claim 6.4. First suppose that P contains a g-invariant block B such that
g � B 6= idB . Then clearly g · [ t ]P(t) 6= [ t ]P(t). Also, since ` ≥ p > 2, it follows
that g · [ t ]P(t) ∩ [ t ]P(t) 6= ∅. Hence P(t) /∈ FixΩ(g).

Thus we can suppose that P does not contain a g-invariant block B such that
g � B 6= idB . For each 0 ≤ i < p, let Si = gi · [α(P) ]P . Since p > 2, there
exists 0 < i < p such that Si ∈ P(t). Since S0 = gp−i · Si /∈ P(t), it follows that
P(t) /∈ FixΩ(g). �

If P, P ′ ∈ FixΩ(g) and P(t) = P ′(t′), then it is easily checked that P = P ′ and
t = t′. Thus (1 + n− `)|FixΩ(g)| ≤ |Ω| and so |FixΩ(g)|/|Ω| < 2/n. �
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The following two results are routine generalizations of Lemmas 5.2 and 5.3 of
Thomas-Tucker-Drob [19].

Lemma 6.5. For any ε > 0 and 0 < a ≤ 1 and r ≥ 0, there exists an integer da,r,ε
such that if da,r,ε ≤ d ≤ (n− r)/2 and H < Alt(∆) is any subgroup such that

(i) there exists an H-invariant subset Σ ⊆ ∆ of cardinality r, and
(ii) H acts imprimitively on ∆rΣ with a proper system of imprimitivity B of

blocksize d,

then for any element g ∈ Alt(∆) satisfying | supp(g)| ≥ an,

|{ s ∈ Alt(∆) | sgs−1 ∈ H }|
|Alt(∆)|

< ε.

Lemma 6.6. For any ε > 0 and 0 < a ≤ 1, there exists an integer ra,ε such that
if ra,ε ≤ r ≤ n/2 and H < Alt(∆) is a subgroup with an H-invariant set Σ ⊆ ∆ of
cardinality |Σ| = r, then for any element g ∈ Alt(∆) satisfying | supp(g)| ≥ an,

|{s ∈ Alt(∆) | sgs−1 ∈ H}|
|Alt(∆)|

< ε.

For the sake of completeness, we will sketch the main points of the proofs of
Lemmas 6.5 and 6.6. As in Thomas-Tucker-Drob [19, Section 5], our approach will
be probabilistic; i.e. we will regard the normalized permutation character

|{s ∈ Alt(∆) | sgs−1 ∈ H}|
|Alt(∆)|

as the probability that a uniformly random permutation s ∈ Alt(∆) satisfies
sgs−1 ∈ H. The proofs of Lemmas 6.5 and 6.6 make use of the following con-
sequence of Chebyshev’s inequality. (See Thomas-Tucker-Drob [19, Lemma 5.1].)

Lemma 6.7. Suppose that (Nk) is a sequence of non-negative random variables
such that E [Nk] = µk > 0 and Var[Nk] = σ2

k > 0. If limk→∞ µk/σk = ∞, then
P [Nk > 0]→ 1 as k →∞.

In our arguments, it will be convenient to make use of big O notation. Recall
that if (am) and (xm) are sequences of real numbers, then am = O(xm) means
that there exists a constant C > 0 and an integer m0 ∈ N such that |am| ≤ C|xm|
for all m ≥ m0. Also if (cm) is another sequence of real numbers, then we write
am = cm +O(xm) to mean that am − cm = O(xm).

Sketch proof of Lemma 6.5. Suppose that m = r + d`, where ` ≥ 2, and that
H < Alt(∆) has an H-invariant set Σ ⊆ ∆ of cardinality |Σ| = r such that H acts
imprimitively on T = ∆ r Σ with a proper system of imprimitivity B of blocksize
d. Let b = a/3 and suppose that g ∈ Alt(∆) satisfies | supp(g)| ≥ an = 3bn.
Then there exists a subset Z ⊆ supp(g) such that g(Z) ∩ Z = ∅ and |Z| = cn for
some b ≤ c ≤ 1/2. Fix an element z0 ∈ Z and let y0 = g(z0). Let s ∈ S be a
uniformly random permutation. If s(z0),s(y0) ∈ T , let B0, C0 ∈ B be the blocks in
B containing s(z0) and s(y0) respectively; otherwise, let B0 = C0 = ∅. Let

J(s) = {z ∈ Z r {z0} | s(z) ∈ B0 and s(g(z)) /∈ C0}.
Note that if J(s) 6= ∅, then sgs−1(B0) intersects at least two of the blocks of B and
thus sgs−1 /∈ H. Hence it is enough to show that P [ |J(s)| > 0 ] > 1 − ε for all
sufficiently large d (depending only on ε, a and r).
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Since we wish to apply Lemma 6.7, we need to compute the asymptotics of the
expectation and variance of the random variable |J(s)|. Arguing as in the proof of
Thomas-Tucker-Drob [19, Lemma 5.2], it can be shown that

(6.1) E [ |J(s)| ] = cd(1− d
m ) +O(1);

and that

(6.2) E [ |J(s)| ]2 = [cd(1− d
m )]2 +O(d);

and that

(6.3) E [ |J(s)|2 ] =
[
cd(1− d

m )
]2

+O(d),

where the implied constants needed to witness the big-O inequalities are only de-
pendent on the parameter r. Combining (6.2) and (6.3) we obtain that

Var(|J(s)|) = E [ |J(s)|2 ]− E [ |J(s)| ]2 = O(d),

and hence Var(|J(s)|)1/2 = O(
√
d). Of course, (6.1) implies that d = O(E [ |J(s)| ]).

Thus there exists a constant C > 0 such that σ = Var(|J(s)|)1/2 ≤ C
√
d and

d ≤ C E [ |J(s)| ]) = Cµ for all sufficiently large d. It follows that

µ/σ ≥ C−1d/C
√
d = C−2

√
d→∞ as d→∞.

Applying Lemma 6.7, we conclude that P [ |J(s)| > 0 ] → 1 as d → ∞. This
completes the proof of Lemma 6.5. �

Sketch proof of Lemma 6.6. Let b = a/3. Suppose that H < Alt(∆) has an H-
invariant set Σ ⊆ ∆ of cardinality |Σ| = r ≤ n/2 and that g ∈ Alt(∆) satisfies
| supp(g)| ≥ an = 3bn. Then, once again, there exists a subset Z ⊆ supp(g) such
that g(Z) ∩ Z = ∅ and |Z| = cn for some b ≤ c ≤ 1/2. Let s ∈ Alt(∆) be a
uniformly random permutation and let

I(s) = { z ∈ Z | s(z) ∈ Σ and s(g(z)) /∈ Σ }.

If I(s) 6= ∅, then Σ is not sgs−1-invariant and thus sg s−1 /∈ H. Hence it is enough
to show that P [ |I(s)| > 0 ] > 1− ε for all sufficiently large r (depending only on ε
and a).

Arguing as in the proof of Thomas-Tucker-Drob [19, Lemma 5.2], it can be shown
that

(6.4) E [ |I(s)| ] = cr(1− r
m ) +O(1);

and that

(6.5) E [ |I(s)| ]2 = [cr(1− r
m )]2 +O(r);

and that

(6.6) E [ |I(s)|2 ] =
[
cr(1− r

m )
]2

+O(r),

where the implied constants needed to witness the big-O inequalities are absolute. It
follows that Var(|I(s)|)1/2 = O(

√
r) and r = O(E [ |I(s)| ]); and another application

of Lemma 6.7 shows that P [ |I(s)| > 0 ]→ 1 as r →∞. �
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7. Full limits of finite alternating groups

In this section, we will first prove that a “full limit” of finite alternating groups
G =

⋃
i∈NGi has a nontrivial ergodic IRS if and only if G =

⋃
i∈NGi has linear

natural orbit growth. Then we will classify the ergodic IRSs of the L(Alt)-groups
G =

⋃
i∈NGi with linear natural orbit growth.

Definition 7.1. Suppose that G =
⋃
i∈NGi is the union of the strictly increasing

chain of finite alternating groups Gi = Alt(∆i).
(i) The embedding Alt(∆i) ↪→ Alt(∆i+1) is said to be full if Alt(∆i) has no trivial
orbits on ∆i+1.

(ii) G =
⋃
i∈NGi is a full limit of the finite alternating groups Gi = Alt(∆i) if every

embedding Alt(∆i) ↪→ Alt(∆i+1) is full.

Warning 7.2. A composition of two full embeddings is not necessarily full. For
example, suppose that Gi ↪→ Gi+1 is any full embedding and that ∆i+2 = Gi+1/Gi.
Then the embedding Gi+1 ↪→ Gi+2 is also full, but the embedding Gi ↪→ Gi+2 is
not full. Consequently, if G =

⋃
i∈NGi is a full limit and ( ki | i ∈ N ) is a strictly

increasing sequence of natural numbers, then G =
⋃
i∈NGki is not necessarily a

full limit. The notion of a full limit is a purely technical one, introduced in order
to formulate the following special case of Theorem 3.7, which will be proved in
this section. (Of course, by Proposition 3.18, we already know that if a full limit
G =

⋃
i∈NGi has linear natural orbit growth, then G has a nontrivial ergodic IRS.)

Proposition 7.3. If G =
⋃
i∈NGi is a full limit of finite alternating groups, then

G has a nontrivial ergodic IRS if and only if G =
⋃
i∈NGi has linear natural orbit

growth.

Until further notice, suppose that G =
⋃
i∈NGi is the full limit of the finite

alternating groups Gi = Alt(∆i).

Lemma 7.4. Let p > 2 be an odd prime, let a = 1/(p + 1) and let np,a be the
integer given by Lemma 6.1. Suppose that |∆i0 | ≥ max{np,a, 5(p + 1) } and that
g ∈ Alt(∆i0) is an element of order p such that |Fix∆i0

(g)| ≤ |∆i0 |/(p+ 1). Then

|Fix∆i
(g)| ≤ |∆i|/(p+ 1) for all i ≥ i0.

Proof. Let i ≥ i0 and suppose that |Fix∆i
(g)| ≤ |∆i|/(p + 1). It is enough to

show that if Ω is an orbit of Alt(∆i) on ∆i+1, then |FixΩ(g)|/|Ω| ≤ 1/(p+ 1). Let
ω ∈ Ω and let H = {h ∈ Alt(∆i) | h · ω = ω } be the corresponding stablizer.
Let K be a maximal proper subgroup of Alt(∆i) such that H 6 K and let θK be
the normalized permutation character of the action Alt(∆i) y Alt(∆i)/K. Then,
applying Corollary 2.3, we have that |FixΩ(g)|/|Ω| ≤ θK(g).

First suppose that K acts primitively on ∆i. Let g be a product of ai p-cycles
when regarded as an element of Alt(∆i). Since |Fix∆i(g)| ≤ |∆i|/(p+ 1), it follows
that ai ≥ |∆i|/(p+ 1). Hence, by Lemma 6.1, we have that

θK(g) < 1/|∆i| < 1/(p+ 1).

Next suppose that K acts imprimitively on ∆i, preserving a system of imprimitivity
P of blocksize 2 ≤ ` ≤ n/2. Then Alt(∆i) y Alt(∆i)/K is isomorphic to the action
of Alt(∆i) on the set P of partitions of ∆i into `-sets. Applying Lemma 6.3, we
obtain that

θK(g) < 2/|∆i| < 1/(p+ 1).
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Finally suppose that K acts intransitively on ∆i, fixing set-wise a subset S ⊆ ∆i

of size 1 ≤ ` ≤ n/2. Then Alt(∆i) y Alt(∆i)/K is isomorphic to the action of
Alt(∆i) on [∆i]

`. If ` = 1, then θK(g) = |Fix∆i
(g)|/|∆i| ≤ 1/(p + 1). Hence we

can suppose that ` ≥ 2. Applying Lemma 6.2, either

θK(g) < 5/|∆i| ≤ 1/(p+ 1),

or else

θK(g) <
1

2
|Fix∆i

(g)|/|∆i| ≤ 1/2(p+ 1).

�

Corollary 7.5. lim sup |Fix∆i
(g)|/|∆i| < 1 for all 1 6= g ∈ G.

Proof. Applying Lemma 7.4, it follows that there exists an element g ∈ G of order
3 such that lim sup |Fix∆i

(g)|/|∆i| ≤ 1/4. On the other hand, it is easily checked
that if ( ki | i ∈ N ) is a strictly increasing sequence of natural numbers, then
N = { g ∈ G | limi→∞ |Fix∆ki

(g)|/|∆ki | = 1 } is a normal subgroup of G. Since G
is simple, the result follows. �

For the rest of this section, suppose that ν 6= δ1, δG is an ergodic IRS of G.
Applying Creutz-Peterson [2, Proposition 3.3.1], we can suppose that ν is the sta-
bilizer distribution of an ergodic action Gy (Z, µ ). Let χ(g) = µ( FixZ(g) ) be the
corresponding character. For each z ∈ Z and i ∈ N, let Ωi(z) = { g · z | g ∈ Gi }.
Then, by Theorem 2.1, for µ-a.e. z ∈ Z, for all g ∈ G, we have that

µ( FixZ(g) ) = lim
i→∞

| FixΩi(z)(g) |/|Ωi(z) |.

Fix such an element z ∈ Z and let H = {h ∈ G | h · z = z } be the corresponding
point stabilizer. Clearly we can suppose that the element z ∈ Z has been chosen
such that H /∈ { 1, G } and also such that χ(g) > 0 for all g ∈ H. For each i ∈ N, let
Hi = H ∩Gi and let ni = |∆i|. Clearly Gi y Ωi(z) is isomorphic to Gi y Gi/Hi.

Lemma 7.6. There exist only finitely many i ∈ N such that the action Hi y ∆i

is primitive.

Proof. Since H 6= G, there exist only finitely many i ∈ N such that Hi = Alt(∆i).
Suppose that I = { i ∈ N | Hi is a proper primitive subgroup of Alt(∆i) } is infi-
nite. Since H 6= 1, there exists an element g ∈ H of some prime order p. Let
g ∈ Gi0 and for each i ≥ i0, let g be a product of ai p-cycles when regarded as
an element of Gi. Then, by Corollary 7.5, there exists a constant a > 0 such that
ai ≥ ani for all i ≥ i0. Let np,a be the integer given by Lemma 6.1. Then if i ∈ I
and ni ≥ np,a, since Hi is a proper primitive subgroup of Alt(∆i), it follows that
| FixΩi(z)(g) |/|Ωi(z) | < 1/ni and hence we obtain that

χ(g) = lim
i→∞

| FixΩi(z)(g) |/|Ωi(z) | = 0,

which is a contradiction. �

Lemma 7.7. For each integer d > 1, there exist only finitely many i ∈ N such that
Hi acts imprimitively on ∆i preserving a maximal system Bi of imprimitivity of
blocksize d.

Remark 7.8. Recall that in this paper, by definition, an imprimitive action is
necessarily transitive.
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Proof of Lemma 7.7. Suppose that there exists a fixed d > 1 and an infinite subset
I ⊆ N such that for all i ∈ I, the subgroup Hi acts imprimitively on ∆i preserving
a maximal system Bi of imprimitivity of blocksize d. Then Hi is isomorphic to a
subgroup of the wreath product Sym(d) wr Sym(ni/d) for each i ∈ I. Applying
Stirling’s Approximation, it follows that there exist constants c, k such that for all
n,

|Sym(d) wr Sym(n/d)| < cknnn/d.

Claim 7.9. For all but finitely many i ∈ I, the induced action of Hi on Bi contains
Alt(Bi).

Proof of Claim 7.9. Suppose not and let g ∈ H be an element of some prime order
p. Let g ∈ Gi0 and for each i ≥ i0, let g be a product of ai p-cycles when regarded
as an element of Gi. Applying Corollary 7.5, there exists a constant a > 0 such
that ai ≥ ani for all i ≥ i0. Arguing as in the proof of Lemma 6.1, it follows that
there are constants r, s such that

|gGi | > r sni(nnii )(p−1)a.

Let i ∈ I and let Γi 6 Sym(Bi) be the group induced by the action of Hi on
Bi. Since Bi is a maximal system of imprimitivity, it follows that Γi is a primitive
subgroup of Sym(Bi). Hence, by Praeger-Saxl [13], if Γi does not contain Alt(Bi),
then |Γi | < 4ni/d. Since Hi is isomorphic to a subgroup of Sym(d) wr Γi, it follows
that

|Hi | < ( d! )ni/d4ni/d = tni ,

where t = ( d! 4 )1/d, and so

| gGi ∩Hi |
| gGi |

<
|Hi |
| gGi |

<
tni

r sni(nnii )(p−1)a

It follows that

χ(g) = lim
i→∞

| FixΩi(z)(g) |/|Ωi(z) | = lim
i→∞

| gGi ∩Hi |/| gGi | = 0,

which is a contradiction. �

Let a = 1/6 and let n5,a be the integer given by Lemma 6.1. Let i0 ∈ I be
such that |∆i0 | ≥ max{n5,a, 24d } and such that the induced action of Hi0 on Bi0
contains Alt(Bi0). Then there exists an element g ∈ Hi0 of order 5 such that g
fixes setwise at most 4 blocks of Bi0 and so |Fix∆i0

(g)| ≤ 4 d ≤ |∆i0 |/6. Applying

Lemma 7.4, it follows that |Fix∆i
(g)| ≤ |∆i|/6 for all i ≥ i0. For each i ≥ i0, let

g be a product of ai p-cycles when regarded as an element of Gi. Then it is easily
checked that ai ≥ ni/6. Hence, arguing as above, there exist constants r, s such
that

|gGi | > r sni(nnii )4/6.

Hence, if i0 ≤ i ∈ I, we have that

| gGi ∩Hi |
| gGi |

<
|Hi |
| gGi |

<
cknin

ni/d
i

r sni(nnii )4/6
.

Since 4/6 > 1/2 ≥ 1/d, it follows that χ(g) = 0, which is a contradiction. �

Lemma 7.10. There exist only finitely many i ∈ N such that the action Hi y ∆i

is transitive.
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Proof. Suppose not. Then, by Lemma 7.6, for all but finitely many i ∈ N, the
subgroup Hi acts imprimitively on ∆i with a maximal system of imprimitivity Bi
of blocksize di. Furthermore, by Lemma 7.7, we have that di →∞ as i→∞. Let
1 6= h ∈ H; say, h ∈ Hi. Then, by Corollary 7.5, there exist a constant a > 0 such
that | supp∆j

(g)| ≥ a|∆j | for all j ≥ i. But then Lemma 6.5 (in the case when

r = 0) implies that

χ(g) = lim
j→∞

| {s ∈ Gj | sgs−1 ∈ Hi }|
|Gj |

= 0,

which is a contradiction. �

Lemma 7.11. There exists a constant s such that for all but finitely many i ∈ N,
there exists a unique Hi-invariant subset Σi ⊆ ∆i of cardinality 1 ≤ ri ≤ s such
that Hi induces at least Alt(Ωi) on Ωi = ∆i r Σi.

Proof. Combining Lemmas 7.6, 7.7 and 7.10, we see that there exists i0 ∈ N such
that Hi acts intransitively on ∆i for all i ≥ i0. For each such i, let

ri = max{ |Σ| : Σ ⊆ ∆i is Hi-invariant and |Σ| ≤ 1
2 |∆i| }.

Then, applying Lemma 6.6, we see that there exists s such that 1 ≤ ri ≤ s for all
i ≥ i0. Furthermore, choosing i0 so that |∆i0 | ≥ 4s, it follows that for all i ≥ i0,
there exists a unique Hi-invariant subset Σi ⊆ ∆i of cardinality ri and that Hi

acts transitively on Ωi = ∆i r Σi. Let H̄i be the subgroup of Sym(Ωi) induced
by the action of Hi on Ωi. Then, arguing as above, we first see that H̄i must act
primitively on Ωi for all but finitely many i ≥ i0, and then that Alt(Ωi) 6 H̄i for
all but finitely many i ≥ i0. �

In particular, it follows that for every prime p, there exists arbitarily large i ∈ N
such that there exists an element g ∈ Hi of order p with |Fix∆i

(g)| ≤ |∆i|/(p+ 1).

Lemma 7.12. If g ∈ H has prime order p > s, then lim inf |Fix∆i
(g)|/|∆i| 6= 0.

Proof. Suppose that lim inf |Fix∆i(g)|/|∆i| = 0 for some element g ∈ H of prime
order p > s. Let θi, ψi be the normalized permutation characters of the actions
Gi y Gi/Hi and Gi y [∆i]

ri . Since p > s ≥ ri, it follows that

Fix[∆i]ri (g) = [Fix∆i
(g)]ri .

Hence, combining Lemma 7.11 and Corollary 2.3, we obtain that

θi(g) ≤ ψi(g) =
| [Fix∆i(g)]ri |
| [∆i]ri |

and it follows that χ(g) = limi→∞ θi(g) = 0, which is a contradiction. �

The following lemma completes the proof of Proposition 7.3.

Lemma 7.13. G has linear natural orbit growth.

Proof. Let p be a prime with p > s, let a = 1/(p+1) and let np,a be the integer given
by Lemma 6.1. Then there exists i0 such that |∆i0 | ≥ max{np,a, 5(p+1) } and such
that Hi0 contains an element g of order p such that |Fix∆i0

(g)| ≤ |∆i0 |/(p + 1).

Applying Corollary 7.5, it follows that |Fix∆i
(g)| ≤ |∆i|/(p + 1) for all i ≥ i0.

Furthermore, by Lemma 7.12, we can assume that |Fix∆i
(g)| ≥ 10 for all i ≥ i0.
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Suppose that Φ is a non-natural orbit of Gi = Alt(∆i) on ∆i+1. Then, applying
Corollary 2.3 and Lemmas 6.1, 6.2 and 6.3, it follows that

|FixΦ(g)|
|Φ|

< max

{
5

|∆i|
,
|Fix∆i(g)|

2|∆i|

}
=
|Fix∆i(g)|

2|∆i|
;

and it follows that

|Fix∆i+1
(g)| ≤ si+1ni

|Fix∆i
(g)|

|∆i|
+ (ni+1 − si+1ni)

|Fix∆i
(g)|

2|∆i|

= (2ni+1 − ei+1)
|Fix∆i(g)|

2|∆i|
.

It follows that for all i ≥ i0,

|Fix∆i+1
(g)|/|∆i+1| ≤

(
1− ei+1

2ni+1

)
|Fix∆i

(g)|/|∆i|.

Since lim inf |Fix∆i
(g)|/|∆i| 6= 0, it follows that the infinite product

(7.1)

∞∏
i=i0

(
1− ei+1

2ni+1

)
converges to a nonzero real. Hence the same is true of the infinite product

∞∏
i=i0

(
1− ei+1

2ni+1

)−1

=

∞∏
i=i0

(
1 +

ei+1

2ni+1 − ei+1

)
,

and this implies that
∞∑
i=i0

ei+1

2ni+1 − ei+1
<∞.

Of course, since the infinite product (7.1) converges to a nonzero real, it follows
that limi→∞ ei+1/ni+1 = 0; and hence there exists i1 ≥ i0 such that for all i ≥ i1,

2ni+1 − ei+1 ≤ 3(ni+1 − ei+1).

It follows that
∞∑
i=i1

ei+1

ni+1 − ei+1
= 3

∞∑
i=i1

ei+1

3(ni+1 − ei+1)
≤ 3

∞∑
i=i1

ei+1

2ni+1 − ei+1
<∞;

and, arguing as above, this implies that the infinite product
∞∏
i=i1

(
1− ei+1

ni+1

)
converges to a nonzero real. Next notice that if i < j, then

sij
nj

=
1

ni
· si+1ni
ni+1

· si+2ni+1

ni+2
· · · sjnj−1

nj

and hence

ai1 = lim
j→∞

si1j
nj

=
1

ni1

∞∏
i=i1

si+1ni
ni+1

.

Finally, since si+1ni = ni+1 − ei+1, it follows that

ai1 =
1

ni1

∞∏
i=i1

si+1ni
ni+1

=
1

ni1

∞∏
i=i1

(
1− ei+1

ni+1

)
> 0.
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�

In the remainder of this section, via a slight modification of the above argument,
we will prove that if G =

⋃
i∈NGi has linear natural orbit growth, then the ergodic

IRSs of G are { δ1, δG } ∪ { νr | r ∈ N+ }, where νr is the stabilizer distribution of
the ergodic action Gy ( ∆r,m⊗r ).

For the remainder of this section, suppose that G =
⋃
i∈NGi has linear natural

orbit growth. Note that we are not assuming that G =
⋃
i∈NGi is a full limit. Let

ν 6= δ1, δG be an ergodic IRS of G. As usual, for each H ∈ SubG, we will write
Hi = H ∩Gi.

Lemma 7.14. There exists a constant s such that if H ∈ SubG is a ν-generic
subgroup, then for all but finitely many i ∈ N, there exists a unique Hi-invariant
subset Σi ⊆ ∆i of cardinality 1 ≤ ri ≤ s such that Hi induces at least Alt(Ωi) on
Ωi = ∆i r Σi.

Before sketching the proof of Lemma 7.14, we will first complete the proof of
Theorem 3.19. Suppose that H ∈ SubG is a ν-generic subgroup. Let i0 be an
integer such that for all i ≥ i0, there exists a unique Hi-invariant subset Σi ⊆ ∆i

of cardinality 1 ≤ ri ≤ s such that Hi induces at least Alt(Ωi) on Ωi = ∆i r Σi
and such that |Alt(Ωi0)| � s!. For each i ≥ i0, let πi : Hi → Sym(Σi) be the
homomorphism defined by g 7→ g � Σi and let Ki = kerπi. Since [Hi : Ki ] ≤ s!,
it follows that Ki = Alt(Ωi). Also note that since [Hi+1 : Ki+1 ] ≤ s!, it follows
that [Ki : Ki ∩ Ki+1 ] ≤ s! and hence Ki 6 Ki+1. Let K =

⋃
i≥i0 Ki. Since Ki

is the unique largest factor of the socle of Hi, it follows that the map H 7→ K is
G-equivariant and hence there is an associated ergodic IRS ν̃ which concentrates on
the corresponding subgroups K 6 H. Applying Theorem 3.23, it follows that there
exists 1 ≤ r ≤ s such that ν̃ is the stabilizer distribution νr of G y ( ∆r,m⊗r ),
where Gy ( ∆,m ) is the canonical ergodic action. Hence, in order to complete the
proof of Theorem 3.19, it is enough to show that H = K for ν-a.e. H ∈ SubG. To
see this, let H ∈ SubG be such that the corresponding subgroup K is the stabilizer
of the sequence (x1, · · ·xr) ∈ ∆r. For each j ∈ N, let Σj = {x` � ∆j | 1 ≤ ` ≤ r }.
Then

Kj = Alt(∆j r Σj) E Hj 6 Sym(∆j r Σj)× Sym(Σj),

and hence K E H. By Proposition 3.20, the stabilizer Gx̄ is self-normalizing for
m⊗r-a.e. x̄ ∈ ∆r and this means that H = K for ν-a.e. H ∈ SubG. This completes
the proof of Theorem 3.19.

The proof of Lemma 7.14 is almost identical to that of Lemma 7.11, so we will
only sketch the main points. First the following argument shows that Corollary 7.5
also holds when G =

⋃
i∈NGi has linear natural orbit growth.

Lemma 7.15. For each ε > 0, there exists iε ∈ N such that if iε ≤ i < j and
g ∈ Gi, then | supp∆j

(g)|/|∆j | ≥ (1− ε)| supp∆i
(g)|/|∆i|.

Proof. If i < j and g ∈ Gi, then

| supp∆j
(g)|/|∆j | ≥

sij
nj
| supp∆i

(g)| ≥ ai| supp∆i
(g)|.

Since Lemma 3.15 implies that limi→∞(1− niai) = 0, the result follows. �

Corollary 7.16. lim sup |Fix∆j
(g)|/|∆j | < 1 for all 1 6= g ∈ G.
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Using Corollary 7.16, we can now repeat the proofs of Lemmas 7.6, 7.7, 7.10 and
7.11, except for the final paragraph of the proof of Lemma 7.7, where we require
that there exists an element g ∈ H such that lim inf | supp∆i

(g)|/|∆i| ≥ 5/6. To
see that such an element exists, first note that the proof of Claim 7.9 goes through
in this setting. Thus we can suppose that there exists an integer i0 such that the
following conditions hold:

(a) Hi0 acts imprimitively on ∆i0 preserving a maximal system Bi0 of imprim-
itivity of blocksize d.

(b) The induced action of Hi0 on Bi0 contains Alt(Bi0).
(c) (ni0 − 4d)/ni0 ≥ 99/100.

Furthermore, by Lemma 7.15, we can suppose that i0 has been chosen so that if
i ≥ i0 and g ∈ Gi, then

| supp∆i
(g)|/|∆i| ≥

99

100
| supp∆i0

(g)|/|∆i0 |.

Let g ∈ Hi0 be an element of order 5 such that g fixes setwise at most 4 blocks of
Bi0 . Then

| supp∆i0
(g)|

|∆i0 |
≥ ni0 − 4d

ni0
≥ 99

100
;

and it follows that for all i ≥ i0,

| supp∆i
(g)|

|∆i|
≥ 99

100
·
| supp∆i0

(g)|
|∆i0 |

≥ 99

100
· 99

100
>

5

6
.

This completes our sketch of the proof of Lemma 7.14.

8. Arbitrary limits of finite alternating groups

In this section, we will first prove that if G is an L(Alt)-group with a nontrivial
ergodic IRS, then G can be expressed as an almost diagonal limit of finite alternat-
ing groups. Then we will classify the ergodic IRSs of the almost diagonal groups
G =

⋃
i∈NGi with sublinear natural orbit growth such that G � Alt(N). The er-

godic IRSs of Alt(N) will be described in Section 9. Throughout this section, let
G =

⋃
i∈NGi be the (not necessarily full) union of the increasing chain of finite

alternating groups Gi = Alt(∆i) and suppose that G � Alt(N).

Lemma 8.1. For each i ∈ N, the number cij of nontrivial Gi-orbits on ∆j is
unbounded as j →∞.

Proof. By Hall [5, Theorem 5.1], if there exist i, c ∈ N such that Gi has at most c
nontrivial orbits on ∆j for all j > i, then G ∼= Alt(N), which is a contradiction. �

Hence, after passing to a suitable subsequence, we can suppose that each Gi has
at least 2 nontrivial orbits on ∆i+1. Of course, since Gi is simple, this implies that
if 1 6= G′i 6 Gi, then G′i also has at least 2 nontrivial orbits on ∆i+1. For each
` ∈ N, we define sequences of subsets ∆`

j ⊆ ∆j and subgroups G(`)j = Alt(∆`
j) for

j ≥ ` inductively as follows:

• ∆`
` = ∆`;

• ∆`
j+1 = ∆j+1 r Fix∆j+1

(G(`)j).
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Clearly each G(`)j is strictly contained in G(`)j+1 and G(`) =
⋃
`≤j∈NG(`)j is the

full limit of the alternating groups G(`)j = Alt(∆`
j). It is also easily checked that

if ` < m and i < j, then

G` 6 G(`)i 6 G(m)i < G(m)j .

It follows that if ` < m, then G(`) 6 G(m) and that G =
⋃
`∈NG(`). For the rest

of this section, suppose that ν 6= δ1, δG is an ergodic IRS of G.

Lemma 8.2. G(`) =
⋃
`≤j∈NG(`)j has linear natural orbit growth for all but

finitely many ` ∈ N.

Proof. Otherwise, by Proposition 7.3, there exists an infinite subset I ⊆ N such
that for each ` ∈ I, the only ergodic IRS of G(`) are δ1 and δG(`). For each ` ∈ I,
let f` : SubG → SubG(`) be the Borel map defined by H 7→ H ∩ G(`). Then the
map f` is G(`)-equivariant and hence νG(`) = (f`)∗ν is a (not necessarily ergodic)
IRS of G(`). It follows that for ν-a.e. H ∈ SubG, for all ` ∈ I, either H ∩G(`) = 1
or G(`) 6 H. Since G =

⋃
`∈I G(`), this implies that for ν-a.e. H ∈ SubG, either

H = 1 or H = G, which is a contradiction. �

Hence we can suppose that G(`) =
⋃
`≤j∈NG(`)j has linear natural orbit growth

for all ` ∈ N. Let G(`) y ( ∆`,m` ) be the canonical ergodic action and for each
r ∈ N+, let ν(`)r be the stabilizer distribution of G(`) y ( ∆r

` ,m
⊗r
` ). Let νG(`)

be the (not necessarily ergodic) IRS of G(`) arising from the G(`)-equivariant map
SubG → SubG(`) defined by H 7→ H ∩G(`). Then Theorem 3.19 implies that there
exist α(`), β(`), γ(`)r ∈ [ 0, 1 ] with α(`) + β(`) +

∑
r∈N+ γ(`)r = 1 such that

(8.1) νG(`) = α(`)δ1 + β(`)δG(`) +
∑
r∈N+

γ(`)rν(`)r.

Let H ∈ SubG be a ν-generic subgroup and let `0 ∈ N be the least integer such that
1 < H ∩ G(`0) < G(`0). Then equation (8.1) implies that for each ` ≥ `0, there
exist i` ≥ ` and r` ≥ 1 such that for all j ≥ i`, there exists Σ`j ∈ [∆`

j ]
r` such that

H ∩G(`)j = H ∩Alt(∆`
j) = Alt(∆`

j r Σ`j)

and such that Σ`k is contained in the union of the natural G(`)j-orbits on ∆`
k for

all k > j. Define i` = ` for 0 ≤ ` < `0 and let fH ∈ NN be the function defined by
fH(`) = i`. Applying the Borel-Cantelli Lemma, it follows that there exists a fixed
function f ∈ NN such that for ν-a.e. H ∈ SubG, for all but finitely many ` ∈ N,
we have that fH(`) ≤ f(`). Let ( j` | ` ∈ N ) be a strictly increasing sequence of
integers such that j` ≥ max{ f(k) | k ≤ ` }. For each ` ∈ N, let ∆′` = ∆`

j`
and

let G′` = Alt(∆′`). Then it is easily checked that if k < `, then G′k < G′` and that
G =

⋃
`∈NG

′
`.

Suppose that H ∈ SubG is a ν-generic subgroup. Then there exists an integer
`H ∈ N such that i` = fH(`) ≤ f(`) and for all ` ≥ `H . Let ` ≥ `H . Then, since

j`+1 ≥ max{ f(`), f(`+ 1) } ≥ max{ i`, i`+1 }

and ∆`
j`+1
⊆ ∆`+1

j`+1
⊆ ∆j`+1

, it follows that there exist subsets Σ`j`+1
∈ [∆`

j`+1
]r`

and Σ`+1
j`+1
∈ [∆`+1

j`+1
]r`+1 such that

Alt(∆`
j`+1

r Σ`j`+1
) = H ∩Alt(∆`

j`+1
) 6 H ∩Alt(∆`+1

j`+1
) = Alt(∆`+1

j`+1
r Σ`+1

j`+1
).



40 SIMON THOMAS AND ROBIN TUCKER-DROB

This implies that Σ`j`+1
= Σ`+1

j`+1
∩ ∆`

j`+1
. Since j` ≥ f(`) ≥ i`, it follows that

Σ`j`+1
is contained in the union of the natural G(`)j` -orbits on ∆`

j`+1; and since

∆`+1 r∆`
j`+1 ⊆ Fix∆`+1

(G(`)j`), it follows that Σ`+1
j`+1

is contained in the union of

the natural and trivial G(`)j`-orbits on ∆`+1
j`+1

. In other words, writing Σ′` = Σ`j` ,

we have shown that for all ` ≥ `H ,

(i) H ′` = H ∩G′` = Alt(∆′` r Σ′`); and
(ii) Σ′`+1 is contained in the union of the natural and trivial G′`-orbits on ∆′`+1.

First suppose that G =
⋃
`∈NG

′
` has linear natural orbit growth with the asso-

ciated parameters n′`, s
′
`k, etc. Then we can suppose that a′` = limk→∞ s′`k/n

′
k > 0

for all ` ∈ N; and it follows by Remark 3.17 that G =
⋃
`∈NG

′
` is an almost diagonal

limit.
Hence we can suppose that G =

⋃
`∈NG

′
` has sublinear natural orbit growth.

Let Σ′ be the associated space of sequences ( Σ′` )`≥`0 , as defined in Section 4; and
let f : Σ′ → SubG be the injective G-equivariant map defined by

( Σ′` )`≥`0
f7→
⋃
`≥`0

Alt(∆′` r Σ′`).

Then ν concentrates on f(Σ′) and it follows that µ = f−1
∗ ν is a nonatomic G-

invariant ergodic probability measure on Σ′. Applying Theorem 5.1, it follows that
G =

⋃
`∈NG

′
` is an almost diagonal limit. This completes the proof that if G is an

L(Alt)-group with a nontrivial ergodic IRS, then G can be expressed as an almost
diagonal limit of finite alternating groups. For use in the next paragraph, also note
that by Theorem 5.1, there exists γ ∈ ( 0,∞ ) such that ν = νΣ′

γ .
Finally we will prove that if G =

⋃
i∈NGi is an almost diagonal limit with

sublinear natural orbit growth and G � Alt(N), then the ergodic IRSs of G are

{ δ1, δG } ∪ { νΣ
β | β ∈ ( 0,∞ ) }.

Note that the above analysis shows that if ν 6= δ1, δG is an ergodic IRS of G, then
there exists

• a strictly increasing sequence of integers ( j` | ` ∈ N ), and
• subsets ∆′` ⊆ ∆j`

such that, letting G′` = Alt(∆′`), we have that

• G =
⋃
`∈NG

′
` is an almost diagonal limit, and

• there exists γ ∈ ( 0,∞ ) such that ν = νΣ′

γ , where Σ′ is the associated space
of sequences ( Σ′` )`≥`0 .

We must show that there exists β ∈ ( 0,∞ ) such that νΣ
β = νΣ′

γ . Note that

G′` ⊆ Gj` for each ` ∈ N. By Theorem 5.7, after passing to a suitable subsequence
of ( j` | ` ∈ N ) if necessary, we can suppose that Gj` ⊆ G′`+1 for each ` ∈ N. By a
second application of Theorem 5.7, we can suppose that j` = ` for all ` ∈ N. (We
only make this assumption in order to simplify notation.) Appealing twice more to
Theorem 5.7, we now see that it is enough to show that the increasing chain

G′0 ⊆ G0 ⊆ G′1 ⊆ G1 ⊆ · · · ⊆ G′` ⊆ G` ⊆ · · ·

is an almost diagonal limit. Let ∆′′2i = ∆′i and let ∆′′2i+1 = ∆i. Let G′′i = Alt(∆′′i ).
Let s′′i , e′′i be the parameters associated with the union G =

⋃
i∈NG

′′
i . Then clearly

s′′2i+1 = 1 and e′′2i+1 = 0. Also, since supp∆i+1
(Gi) ⊆ supp∆i+1

(G′i+1) = ∆′i+1, it
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follows that s′′2i+2 = si+1 and e′′2i+2 = ei+1. Thus
∑∞
i=1 e

′′
i /s
′′
0i =

∑∞
i=1 ei/s0i <∞.

This completes the proof of Theorem 4.15.

9. The ergodic IRS of Alt(N)

In this section, adapting and slightly correcting Vershik’s analysis of the ergodic
IRSs of the group Fin(N) of finitary permutations of the natural numbers, we
will state the classification of the ergodic IRSs of the infinite alternating group
Alt(N) and we will characterize the ergodic actions Alt(N) y (Z, µ ) such that the
associated character χ(g) = µ( FixZ(g) ) is indecomposable.

Recall that Fin(N) = { g ∈ Sym(N) | | supp(g)| <∞}. Throughout this section,
if g ∈ Fin(N), then cn(g) denotes the number of cycles of length n > 1 in the
cyclic decomposition of the permutation g and sgn : Fin(N) → C = {±1 } is the
homomorphism defined by

sgn(g) =

{
1, if g ∈ Alt(N);

−1, otherwise.

Vershik’s analysis of the ergodic IRSs of Fin(N) is based upon the following two
insights.

(i) If H 6 Fin(N) is a random subgroup, then the corresponding H-orbit
decomposition N =

⊔
i∈I Bi is a random partition of N, and these have

been classified by Kingman [7].
(ii) The induced action of H on an infinite orbit Bi can be determined via an

application of Wielandt’s theorem [23, Satz 9.4], which states that Alt(N)
and Fin(N) are the only primitive subgroups of Fin(N).

With minor modifications, the same ideas apply to the ergodic IRSs of Alt(N), which
can be classified as follows. Suppose that α = (αi )i∈N ∈ [ 0, 1 ]N is a sequence such
that:

• α1 ≥ α2 ≥ · · · ≥ αi ≥ · · · ≥ 0 ; and
•
∑∞
i=0 αi = 1.

Then we can define a probability measure pα on N by pα( { i } ) = αi. Let µα be the
corresponding product probability measure on NN. Then Alt(N) acts ergodically on
(NN, µα ) via the shift action ( γ · ξ )(n) = ξ( γ−1(n) ). For each ξ ∈ NN and i ∈ N,

let Bξi = {n ∈ N | ξ(n) = i }. Then for µα-a.e. ξ ∈ NN, the following statements
are equivalent for all i ∈ N.

(a) αi > 0.

(b) Bξi 6= ∅.
(c) Bξi is infinite.

(d) limn→∞ |Bξi ∩ { 0, 1, · · · , n− 1 }|/n = αi.

In this case, we say that ξ is µα-generic.
First suppose that α0 6= 1, so that I = { i ∈ N+ | αi > 0 } 6= ∅. Let Sα =⊕
i∈I Ci, where each Ci = {±1 } is cyclic of order 2, and let Eα 6 Sα be the

subgroup consisting of the elements ( εi )i∈I such that |{ i ∈ I | εi = −1 }| is even.
Then for each subgroup A 6 Eα, we can define a corresponding Alt(N)-equivariant
Borel map

fAα : NN → SubAlt(N)

ξ 7→ Hξ
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as follows. If ξ is µα-generic, then Hξ = s−1
ξ (A), where sξ is the homomorphism

sξ :
⊕
i∈I

Fin(Bξi )→
⊕
i∈I

Ci

(πi ) 7→ ( sgn(πi) ).

Otherwise, if ξ is not µα-generic, then we let Hξ = 1. Let νAα = (fAα )∗µα be the
corresponding ergodic IRS of Alt(N). Finally, if α0 = 1, then we define Eα = ∅ and
νEαα = δ1.

Theorem 9.1. If ν is an ergodic IRS of Alt(N), then there exists α, A as above
such that ν = νAα .

There exist examples of sequences α and distinct subgroups A, A′ 6 Eα such
that νAα = νA

′

α . However, since for µα-a.e. ξ ∈ NN,

lim
n→∞

|Bξi ∩ { 0, 1, · · · , n− 1 }|/n = αi,

it follows that if α 6= α′ and A, A′ are subgroups of Eα, Eα′ , then νAα 6= νA
′

α′ . The
remainder of this section is devoted to the proof of the following result.

Theorem 9.2. If Alt(N) y (Z, µ ) is an ergodic action and ν is the corresponding
stabilizer distribution, then the following are equivalent.

(i) The associated character χ(g) = µ( FixZ(g) ) is indecomposable.
(ii) There exists α such that ν = νEαα .

The proof of Theorem 9.2 makes use of the following results of Thoma [17].

Theorem 9.3. (Thoma [17, Satz 6]) The indecomposable characters of Alt(N) are
precisely the restrictions χ � Alt(N) of the indecomposable characters χ of Fin(N).

Theorem 9.4. (Thoma [17, Satz 1]) If χ is a character of Fin(N), then χ is
indecomposable if and only if there exists a sequence ( sn | n ≥ 2 ) of real numbers

with each |sn| ≤ 1 such that χ(g) =
∏
n≥2 s

cn(g)
n .

Lemma 9.5. If Alt(N) y (Z, µ ) is an ergodic action and there exists α such
that the corresponding stabilizer distribution is νEαα , then the associated character
χ(g) = µ( FixZ(g) ) is indecomposable.

Proof. If α0 = 1, then νEαα = δ1 and the associated character χreg is indecompos-
able. Hence we can suppose that α0 6= 1 and so I 6= ∅.

With the above notation, Fin(N) acts ergodically on (NN, µα ) and we can define
a Fin(N)-equivariant Borel map

ϕα : NN → SubFin(N)

ξ 7→
⊕
i∈I

Fin(Bξi ).

Let ν+
α = (ϕα)∗µα be the corresponding ergodic IRS of Fin(N) and let χ+

α be the
character of Fin(N) defined by

χ+
α (g) = µα( { ξ ∈ NN | g ∈

⊕
i∈I

Fin(Bξi ) } ).
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Then it is easily checked that

χ+
α (g) =

∏
n>1

(
∑
i∈I

αni )cn(g).

Hence, by Theorem 9.4, it follows that χ+
α is an indecomposable character of Fin(N).

Notice that if g ∈ Alt(N), then

χ(g) = µ( FixZ(g) )

= νEαα ( {H ∈ SubAlt(N) | g ∈ H } )

= µα( {ξ ∈ 2N | g ∈ Alt(N) ∩
⊕
i∈I

Fin(Bξi ) } ) = χ+
α (g).

Applying Theorem 9.3, it follows that χ is an indecomposable character of Alt(N).
�

Proof of Theorem 9.2. Let Alt(N) y (Z, µ ) be an ergodic action and suppose that
associated character χ(g) = µ( FixZ(g) ) is indecomposable. Let ν be the corre-
sponding stabilizer distribution. If ν = δ1, then ν = νEαα , where α0 = 1 and
Eα = ∅. Hence we can suppose that ν 6= δ1. Applying Theorem 9.1, there exist α,
A as above with I 6= ∅ such that ν = νAα and hence

χ(g) = µα( { ξ ∈ NN | g ∈ Hξ } ).

If |I| = 1, then Eα = 0 is the trivial group and so A = Eα. Thus we can suppose
that |I| ≥ 2. For each element a = (εi)i∈I ∈ A, let σ(a) = { i ∈ I | εi = −1 }.
If A 6= 0, let mA be the least integer m such that there is an element 0 6= a ∈ I
such that |σ(a)| = m. If A = 0, then let mA = 0. Let g = ( 1 2 ) ( 3 4 ) ) and
h = ( 1 2 ) ( 3 4 ) ( 5 6 ) ( 7 8 ). Then Theorem 9.4 implies that χ(h) = χ(g)2.

Case 1: Suppose that mA > 2. Then it is easily seen that χ(g) =
∑
i∈I α

4
i

and that χ(h) ≥
∑
i∈I α

8
i +

(
4
2

)∑
{i,j}∈[I]2 α

4
iα

4
j . On the other hand, we have that

χ(g)2 =
∑
i∈I α

8
i +2

∑
{i,j}∈[I]2 α

4
iα

4
j and so χ(h) > χ(g)2, which is a contradiction.

Case 2: Suppose that mA ∈ { 0, 2 }. Let Γ = ( I, E ) be the graph with vertex
set I and edge set E such that { j, k } ∈ E if and only if there exists a ∈ A with
σ(a) = { j, k }. Then it is enough to show that E = [ I ]2.

In this case, it is clear that χ(g) =
∑
i∈I α

4
i + 2

∑
{i,j}∈E α

2
iα

2
j and so

χ(g)2 =
∑
i∈I

α8
i + 2

∑
{i,j}∈E

α4
iα

4
j + 4

∑
i∈I

α4
i

∑
{j,k}∈E

α2
jα

2
k + 4

∑
{i,j}∈E
{k,`}∈E

α2
iα

2
jα

2
kα

2
` .

After rearranging the terms, we obtain that

χ(g)2 =
∑
i∈I

α8
i + 6

∑
{i,j}∈E

α4
iα

4
j + 4

∑
{i,j}∈E

α6
iα

2
j + 4

∑
i/∈{j,k}∈E

α4
iα

2
jα

2
k

+ 8
∑
{i,j}∈E
{i,k}∈E

α4
iα

2
jα

2
k + 8

∑
{i,j}∈E
{k,`}∈E

i,j,k,` distinct

α2
iα

2
jα

2
kα

2
` .
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On the other hand, we have that

χ(h) =
∑
i∈I

α8
i + 6

∑
{i,j}∈[I]2

α4
iα

4
j + 4

∑
{i,j}∈E

α6
iα

2
j

+ 12
∑

i/∈{j,k}∈E

α4
iα

2
jα

2
k + 24

∑
{i,j,k,`}∈T

α2
iα

2
jα

2
kα

2
` ,

where T is the set of {i, j, k, `} ∈ [ I ]4 such that there exists a ∈ A with σ(a) =
{i, j, k, `}. Note that if {i, j}, {k, `} ∈ E are disjoint edges, then {i, j, k, `} ∈ T .
Also, each {i, j, k, `} ∈ T can be partitioned into two disjoint edges in at most 3
ways. It follows that

(9.1) 8
∑
{i,j}∈E
{k,`}∈E

i,j,k,` distinct

α2
iα

2
jα

2
kα

2
` ≤ 24

∑
{i,j,k,`}∈T

α2
iα

2
jα

2
kα

2
` .

Clearly we also have that

(9.2) 6
∑
{i,j}∈E

α4
iα

4
j ≤ 6

∑
{i,j}∈[I]2

α4
iα

4
j .

Since χ(h) = χ(g)2, the inequalities (9.1) and (9.2) must both be equalities and it
follows that E = [ I ]2, as desired. �

10. Uniformly recurrent subgroups

In [4], Glasner-Weiss introduced the notion of a uniformly recurrent subgroup as
a topological analog of the notion of an invariant random subgroup. In this final
section, we will use the classification of the ergodic IRSs of the L(Alt)-groups to
deduce the classification of their uniformly recurrent subgroups.

Suppose that G is a countably infinite group. Then G acts as a group of homeo-

morphisms of SubG via the conjugation action, H
g7→ gHg−1. A subset X ⊆ SubG

is said to be a uniformly recurrent subgroup or URS if X is a minimal G-invariant
closed subset of SubG. For example, if N E G is a normal subgroup, then the single-
ton set {N} is a URS of G. As expected, these singleton URSs will be called trivial .
Examples of nontrivial URSs arise as the stabilizer URSs of minimal actions. (It is
an open question whether every URS of every countable group G can be realized
as the stabilizer URS of a suitably chosen minimal G-action.) The definition of the
stabilizer URS of an arbitary minimal action is a little subtle. (See Glasner-Weiss
[4, Section 1].) However, the stabilizer URSs which arise in our setting are easily
described as follows.

Definition 10.1. The L(Alt)-group G =
⋃
i∈NGi is said to be the strictly diagonal

limit of the finite alternating groups Gi = Alt(∆i) if ei+1 = fi+1 = 0 for all i ∈ N.

In other words, G =
⋃
i∈NGi is a strictly diagonal limit if for each i ∈ N, every

Gi-orbit on ∆i+1 is natural. In this case, si+1 = |∆i+1|/|∆i| is the number of
natural Gi-orbits on ∆i+1; and letting s0 = |∆0|, we can suppose that each

∆i = s0 × s1 × · · · × si
and that the embedding Gi ↪→ Gi+1 is defined by

g · ( `0, · · · , `i, `i+1 ) = ( g · (`0, · · · , `i), `i+1 ).
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Equip ∆ =
∏
i≥0 si with the usual product topology. Then G acts as a group of

homeomorphisms of the compact space ∆ via

g · ( `0, · · · , `i, `i+1, `i+2, · · · ) = ( g · (`0, · · · , `i), `i+1, `i+2, · · · ), g ∈ Gi,
and it is clear that every G-orbit is dense in ∆. Thus Gy ∆ is a minimal G-action.
Let f : ∆→ SubG be the G-equivariant map defined by

x 7→ Gx = { g ∈ G | g(x) = x }
and let X∆ = f(∆). Then f is a continuous injection and it follows that X∆ is
a URS of G. As expected, X∆ is called the stabilizer URS of the minimal action
Gy ∆.

Remark 10.2. Of course, we can also define X∆ directly as the set of subgroups
H ∈ SubG such that for every i ≥ 0, there exists a point xi ∈ ∆i such that
H ∩Gi = Alt(∆i r {xi }).

If G =
⋃
i∈NGi is the strictly diagonal limit of the finite alternating groups

Gi = Alt(∆i), then we will refer to Gy ∆ as the canonical minimal action.

Theorem 10.3. If G is an L(Alt)-group and X ⊆ SubG is a nontrivial URS, then
G can be expressed as a strictly diagonal limit of finite alternating groups and X is
the stabilizer URS of the corresponding canonical minimal action Gy ∆.

The proof of Theorem 10.3 makes use of an observation that is potentially use-
ful in the setting of arbitary countable amenable groups; namely, that if G is a
countable amenable group and X ⊆ SubG is a URS, then there exists a G-invariant
ergodic Borel probability measure ν on SubG which concentrates on X. Conse-
quently, measure-theoretic techniques (such as the Pointwise Ergodic Theorem for
countable amenable groups [9]) can be employed in the study of the URSs of count-
able amenable groups.

The remainder of this section will be devoted to the proof of Theorem 10.3. So
suppose that G is an L(Alt)-group and that X ⊆ SubG is a nontrivial URS. Then
there exists an ergodic IRS ν of G which concentrates on X. Since 1, G /∈ X, it
follows that ν is a nontrivial ergodic IRS. Hence, by Theorem 3.7, we can express
G as an almost diagonal limit

⋃
i∈NGi of finite alternating groups Gi = Alt(∆i).

Lemma 10.4. G � Alt(N).

Proof. Suppose that G = Alt(N). Applying Theorem 9.1, since ν 6= δ1, it follows
that for ν-a.e. H ∈ SubAlt(N), there exists an infinite subset B ⊆ N such that
Alt(B) 6 H. Hence there exists such a subgroup H ∈ X. But it is now clear that
Alt(N) is in the closure of { g H g−1 | g ∈ Alt(N) }, which is a contradiction. �

Applying Theorems 3.19 and 4.15, it follows that there exists a subgroup H ∈ X
such that for all but finitely many i, there exists a nonempty subset Σi ⊆ ∆i such
that H ∩Gi = Alt(∆i r Σi) and such that:

(a) if G =
⋃
i∈NGi has linear natural orbit growth, then there exists an integer

r ≥ 1 such that |Σi| = r for all but finitely many i;
(b) if G =

⋃
i∈NGi has sublinear natural orbit growth, then limi→∞ |Σi| = ∞

and limi→∞ |Σi|/ni = 0.

After deleting a finite initial segment from the sequence (Gi | i ∈ N ), we can
suppose that such a subset Σi ⊆ ∆i exists for all i ≥ 0.
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Lemma 10.5. There exists an integer n0 such that for all i ≥ n0, the embedding
Gi ↪→ Gi+1 is diagonal.

Proof. Suppose not. Then, by Praeger-Zalesskii [14, Theorem 1.7], for all i ≥ 0,
there exists j > i such thatGi has a regular orbit Φ on ∆j . Let g ∈ Gj be an element
such that g(Σj) ∩ Φ 6= ∅. Then g H g−1 ∈ X and g H g−1 ∩Gj = Alt(∆j r g(Σj));
and this implies that g H g−1 ∩ Gi = 1. Since i ≥ 0 was arbitrary, it follows that
1 ∈ X, which is a contradiction. �

Hence, after deleting a finite initial segment from the sequence (Gi | i ∈ N ), we
can suppose that G =

⋃
i∈NGi is a diagonal limit.

Lemma 10.6. There exists an integer n1 such that for all i ≥ n1, the embedding
Gi ↪→ Gi+1 is strictly diagonal.

Proof. Suppose not. Let i ≥ 0. Then for each j > i, the group Gi has sij natural
orbits on ∆j and fixes the remaining nj − sijni points. Let Φij ⊆ ∆j be the union
of the sij natural Gi-orbits.

Claim 10.7. For each i ≥ 0, there exists j > i such that |Φij | ≤ |∆j r Σj |.

Assuming that Claim 10.7 holds, let g ∈ Gj be such that Φij ⊂ g(∆j r Σj).
Then g H g−1 ∈ X and g H g−1 ∩ Gj = Alt(g(∆j r Σj)); and this implies that
g H g−1 ∩ Gi = Gi. Since i ≥ 0 was arbitrary, it follows that G ∈ X, which is a
contradiction.

Thus it only remains to prove Claim 10.7. First suppose that G =
⋃
i∈NGi has

linear natural orbit growth. Then there exists an integer r ≥ 1 such that |Σj | = r
for all j ≥ 0. Also, assuming Lemma 10.6 does not hold, it follows that for each
i ≥ 0, there exists j > i such that Gi fixes at least r points on ∆j and thus
|Φij | ≤ |∆j r Σj |. Next suppose that G =

⋃
i∈NGi has sublinear natural orbit

growth. Then we have that

lim
j→∞

|Φij |
nj

= lim
j→∞

ni
sij
nj

= 0;

and also that limj→∞ |Σj |/nj = 0. The result follows easily. �

Thus, after deleting a finite initial segment from the sequence (Gi | i ∈ N ), we
can suppose that G =

⋃
i∈NGi is the strictly diagonal limit of the finite alternating

groups Gi = Alt(∆i). Let G y ∆ be the corresponding canonical minimal action
and let m be the unique G-invariant ergodic probability measure on ∆. Then, by
Theorem 3.19, there exists an integer r ≥ 1 such that ν is the stabilizer distribution
νr of the ergodic action G y ( ∆r,m⊗r ). Suppose that r > 1, so that H is the
pointwise stabilizer of r elements x1, · · · , xr ∈ ∆. For each 1 ≤ ` ≤ r, let

x` = (x`(0), x`(1), · · · , x`(i), · · · );
and for each 1 ≤ ` ≤ r and i ≥ 0, let xi` = (x`(0), x`(1), · · · , x`(i) ) ∈ ∆i be the
corresponding restriction. Then Σi = {xi1, · · · , xir }. Fix some i ≥ 0. Then if
j > i is sufficiently large, there exist distinct elements y1, · · · , yr ∈ ∆j , all of which

restrict to the same element z ∈ ∆i. Let g ∈ Gj be such that g(xj`) = yj` for all
1 ≤ ` ≤ r. Then g H g−1 ∈ X and g H g−1 ∩Gi = Alt(∆i r { z }). Since i ≥ 0 was
arbitary, it follows that X also contains the stabilizer URS X∆of G y ∆, which
contradicts the minimality of X. Thus r = 1 and X = X∆ is the stabilizer URS of
Gy ∆. This completes the proof of Theorem 10.3.
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[16] I. Schur, Über Gruppen periodischer Substitutionen, Sitzber. Preuss. Akad. Wiss. (1911),
619–627.

[17] E. Thoma, Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen,
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