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ABSTRACT. We classify the ergodic invariant random subgroups of inductive
limits of finite alternating groups.

1. INTRODUCTION

A simple locally finite group G is said to be an L(Alt)-group if we can express
G = U,en Gi as the union of a strictly increasing chain of finite alternating groups
G; = Alt(A;). Here we allow arbitrary embeddings G; < G;41. In this paper, we
will classify the ergodic invariant random subgroups of the L(Alt)-groups, and we
will consider the relationship between the existence of “nontrivial” ergodic IRSs,
“nontrivial” characters xy : G — C and “nontrivial” 2-sided ideals I C CG.

Let G be a countably infinite group and let Subg be the compact space of
subgroups H < G. Then a Borel probability measure v on Subg which is invariant
under the conjugation action of G on Subg is called an invariant random subgroup
or IRS. For example, if N < G is a normal subgroup, then the corresponding Dirac
measure oy is an IRS of G. Further examples of IRSs arise from the stabilizer
distributions of measure-preserving actions, which are defined as follows. Suppose
that G acts via measure-preserving maps on the Borel probability space ( Z, ) and
let f: Z — Subg be the G-equivariant map defined by

2= G, ={geG|g-z=2}.

Then the corresponding stabilizer distribution v = f,u is an IRS of G. In fact, by
a result of Abért-Glasner-Virdg [1], every IRS of G can be realized as the stabilizer
distribution of a suitably chosen measure-preserving action. Moreover, by Creutz-
Peterson [2], if v is an ergodic IRS of G, then v is the stabilizer distribution of an
ergodic action G ~ (Z, ).

Definition 1.1. A countably infinite group G is said to be strongly simple if the
only ergodic IRSs of G are d; and d¢.

In other words, a (necessarily simple) group G is strongly simple if G has no
nontrivial ergodic IRSs.

As we pointed out in Thomas-Tucker-Drob [19], if G is a countably infinite
locally finite group and G ~ (Z, ) is an ergodic action, then an application of
the Pointwise Ergodic Theorem for actions of locally finite groups to the associated
character x(g) = p(Fixz(g)) allows us to regard G ~ (Z, 1) as the “limit” of
a suitable sequence of finite permutation groups G, ~ (Q,, ti, ), where u, is the
uniform probability measure on 2,,.
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Definition 1.2. If G is a countable group, then the function y : G — C is a
character if the following conditions are satisfied:
(i) x(hgh™) =x(g) for all g, h € G.
(ii) szzl )\ij\jx(g;lgi) >0forall A\y,--- ;A\, €Cand g1, -+ ,9n €G.
(if) x(1c) = 1.
A character y is said to be indecomposable or extremal if it is impossible to express
x =7x1+ (1 —7)x2, where 0 < r < 1 and x; # X2 are distinct characters.

The set F(G) of characters of G always contains the two “trivial” characters
Xcon and Xreg, Where xcon(g) = 1 for all g € G and xreg(g) =0forall1 # g € G. It
is well-known that ycon is indecomposable, and that X,eg is indecomposable if and
only if G is an i.c.c. group, i.e. the conjugacy class g of every nonidentity element
g € G is infinite. (For example, see Peterson-Thom [12].) We will say that F(G) is
trivial if every x € F(G) is a convex combination of Xcon and Xreg-

Theorem 1.3. If the countably infinite simple group G is not strongly simple, then
F(G) is nontrivial.

Proof. Suppose that v # 61, d¢ is a nontrivial ergodic IRS of G. Then, by Creutz-
Peterson [2, Proposition 3.3.1], we can suppose that v is the stabilizer distribution of
an ergodic action G ~ (Z, ). Let x(g) = u(Fixz(g) ) be the associated character.
Suppose that there exists 0 < r < 1 such that x = 7Xcon + (1 — 7)Xreg- Then, since
v # 01, 0, it follows that 0 < r < 1; and so inf,eq p(Fixz(g) ) = > 0. Applying
Toana-Kechris-Tsankov [6, Theorem 1(i)] in the special case when E is the identity
relation, it follows that there exists a positive integer m < 1/r and a Borel subset
A C Z with u(A) > 0 such that |G-anNA|=m for all a € A. (Here G - a denotes
the G-orbit { g(a) | g € G }.) Fix some Borel linear ordering < of Z and let T'C A
be the subset defined by

teT <= tisthe <-least element of G -t N A.

Then T is a Borel subset of Z such that u(T') = u(A)/m > 0 with the property
that if t £¢ € T, then G-t # G -t'. Since G acts ergodically on ( Z, i), it follows
that there exists a point o € T such that u({tp}) = p(T) > 0; and this implies
that G - tg is a finite orbit and that (G - tg) = 1. Since G is an infinite simple
group, it follows that G acts trivially on the finite set G -ty and hence u({to }) = 1.
But this means that v = dg, which is a contradiction. Consequently, x(g) is not a
convex combination of Xcon and Xreg- O

There exist examples of ergodic actions G ~ ( Z, u) of countably infinite groups
such that the associated character x is mot indecomposable. For example, if the
ergodic action G ~ (Z, ) is essentially free, then X = Xreg, and so x is inde-
composable if and only if G is an i.c.c. group. There also exist more interesting
examples.

Theorem 1.4. There exists an ergodic action AIt(N) ~ (Z,p) such that the
associated character is not indecomposable.

Proof. Suppose that x is an indecomposable character of the infinite alternating
group Alt(N). Then, by Thoma [17, Satz 6], there exists an indecomposable char-
acter 6 of the group Fin(N) of finitary permutations of the natural numbers such
that x = 0 | Alt(N); and hence, by Thoma [17, Satz 1], we have that

(1.1) x((12)(34)(56)(78)) =x((12)(34))x((56)(78)).
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Thus it suffices to find an ergodic action Alt(N) ~ ( Z, 1) such that the associated
character x(g) = pu(Fixz(g)) fails to satisfy the multiplicative property (1.1).

Let m be the usual uniform product probability measure on 2. Then Alt(N)
acts ergodically on (2Y,m ) via the shift action (g-¢)(n) = £(g~!(n)). For each
¢e2Vandi=0,1,let Bf = {n € N|&n) =i} Let f:2¥ — Subayay be
the Alt(N)-equivariant map defined by & — Alt(Bg) x Alt(BS) and let v = f,m be
the corresponding ergodic IRS of Alt(N). Then, by Creutz-Peterson [2], v is the
stabilizer distribution of an ergodic action Alt(N) ~ (Z,u); and the associated
character x is given by

x(9) = n(Fixz(g))
=v({H € Subaym) g€ H})

=m({¢ €2V |geAlt(BS) x Alt(BS) }).

Clearly (12)(34) € Alt(B§) x Alt(BS) if and only if £(1) = £(2) = £(3) = £(4);
and it follows that

X((12)(34)) =x((56)(78))=1/2" +1/2* =1/2°.
On the other hand, we have that

4 4 4
W(12)(34) (56) (78)) = WG T s,

Since the multiplicative property (1.1) fails, it follows that  is not indecomposable.
O

Problem 1.5. Find necessary and sufficient conditions for the associated character
of an ergodic action G ~ ( Z, u) to be indecomposable.

Vershik [21] has proved a very interesting sufficient condition; namely, that if
G ~ (Z,p) is ergodic and Ng(G,) = G, for p-a.e. z € Z, then the associated
character is indecomposable. Using Vershik’s criterion, together with our classi-
fication of the ergodic IRSs of the L(Alt)-groups G 2 Alt(N), we will prove the
following result.

Theorem 1.6. If G 2 Alt(N) is an L(Alt)-group and G ~ (Z,p) is an ergodic
action, then the associated character is indecomposable.

It is clear from Theorems 1.4 and 1.6 that Alt(N) plays an exceptional role within
the class of L(Alt)-groups. In Section 9, adapting and slightly correcting Vershik’s
analysis of the ergodic IRSs of the group Fin(N) of finitary permutations of the
natural numbers, we will state the classification of the ergodic IRSs of Alt(N) and
we will characterize the ergodic actions Alt(N) ~ (Z, p) such that the associated
character x(g) = pu(Fixz(g)) is indecomposable.

The L(Alt)-groups with a nontrivial ergodic IRS will be classified as follows.
Suppose that G = |J;cy Gi is the union of the strictly increasing chain of finite
alternating groups G; = Alt(4;), where |[Ag| > 5. For each ¢ € N, let s;41 be
the number of natural orbits of G; on A;y; and let e; 11 be the number of points
x € A;y1 which lie in a nontrivial non-natural G;-orbit. (Here an orbit Q of
G; = Alt(A;) on A, is said to be natural if |Q] = |A;| and the action G; ~ Q
is isomorphic to the natural action G; ~ A;.) Also for each ¢ < j, let s;; =

Si+18i+2 -+ 8j. Recall that G = UieN G, is said to be a diagonal limit if s;31 > 0
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and e;+1 = 0 for all 7 € N; i.e. if for each i € N, every G;-orbit on A, is either
natural or trivial.

Definition 1.7. G =
and Y77, e;/s0; < 00.

Theorem 1.8. If G is an L(Alt)-group, then G has a nontrivial ergodic IRS if and
only if G can be expressed as an almost diagonal limit of finite alternating groups.

;en Gi 18 an almost diagonal limit if s;41 > 0 for all i € N

We will present an explicit classification of the ergodic IRSs of the L(Alt)-groups
G 2 Alt(N) in Sections 3 and 4. The classification involves a fundamental di-
chotomy which was originally introduced by Leinen-Puglisi [10, 11] in the more
restrictive setting of diagonal limits of alternating groups, i.e. the linear vs sublin-
ear natural orbit growth condition. This dichotomy arose unexpectedly in the work
of Leinen-Puglisi [10, 11] without any natural explanation. By contrast, in this
paper, it will appear as a natural consequence of the Pointwise Ergodic Theorem
for actions of locally finite groups.

In [22], Vershik pointed out that the indecomposable characters of the group
Fin(N) of finitary permutations of the natural numbers were closely connected
with its ergodic IRSs; and in [21], he suggested that this should also be true of
various other locally finite groups. Combining our classification of the ergodic IRSs
of the L(Alt)-groups with the earlier work of Leinen-Puglisi [11], it follows that if
G = ey Gi 1s a diagonal limit of finite alternating groups and G' 2 Alt(N), then
the indecomposable characters of G are precisely the associated characters of the
ergodic IRSs of G.!

Question 1.9. Does there exist a strongly simple locally finite group G such that
F(G) is nontrivial?

If G is a countable group and x € F(G) is a character, then we can extend x to
a linear function x : CG — C and define a corresponding proper 2-sided ideal I, of
the group ring CG by

I, ={ze€C(G) | x(gx) =0forall ge G}.

For example, let w(CG) be the augmentation ideal, i.e. the kernel of the homomor-
phism CG — C defined by > A;g; — >_ A;. Then it is easily checked that if x is
a character of G, then I, = w(CG) if and only if X = Xcon. It is also easily seen
that I, = {0}. In [25], Zalesskii asked whether there exists a simple locally finite
group G with an indecomposable character x # Xreg such that I,, = {0}; and he
conjectured that if G is a simple locally finite group such that w(CG) is the only
nontrivial proper 2-sided ideal of CG, then F(G) is trivial. In Section 3, we will
give an example of a simple locally finite group G such that:

(a) the augmentation ideal w(CG@G) is the only nontrivial proper 2-sided ideal of

CG,; and

(b) G has infinitely many indecomposable characters x such that I, = {0 }.
It should be pointed out that Leinen-Puglisi [10] gave the first examples of simple
locally finite groups G with indecomposable characters x # xreg such that I, = {0}.

1Velry recently, the first author [18] has shown that if G is any inductive limit of finite alter-
nating groups such that G 2 Alt(N), then the indecomposable characters of G are precisely the
associated characters of the ergodic invariant random subgroups of G.
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However, in their examples, the corresponding group rings CG had infinitely many
nontrivial proper 2-sided ideals.

This paper is organized as follows. In Section 2, we will briefly discuss the
pointwise ergodicity and weak mixing properties of ergodic actions of countably
infinite locally finite groups. In Section 3, we will discuss the notion of an almost
diagonal limit of finite alternating groups and the notions of linear /sublinear natural
orbit growth; and we will discuss the ergodic IRSs of the L(Alt)-groups with linear
natural orbit growth. In Section 4, we will discuss the ergodic IRSs of almost
diagonal limits with sublinear natural orbit growth. In Section 5, we will present
a characterization of the almost diagonal limits of finite alternating groups. In
Section 6, we will present a series of lemmas concerning upper bounds for the
values of the normalized permutation characters of various actions Alt(A) ~ Q
of the finite alternating group Alt(A). In Sections 7 and 8, we will present our
proof of the classification of the ergodic IRSs of the L(Alt)-groups G 2 Alt(N); and
in Section 9, we will present the classification of the ergodic IRSs of the infinite
alternating group Alt(N). Finally, in Section 10, we will use the classification of the
ergodic IRSs of the L(Alt)-groups to deduce the classification of their uniformly
recurrent subgroups. (The notion of a uniformly recurrent subgroup was recently
introduced by Glasner-Weiss [4] as a topological analog of the notion of invariant
random subgroup.)

Our probability-theoretic notation is standard. In particular, if E is an event,
then P [E] denotes its probability; and if N is a random variable, then E [IN] denotes
its expectation, Var[N] denotes its variance and o = (Var[N])'/2? denotes its stan-
dard deviation. If v is an IRS of G, then we will sometimes write “let H € Subg be
a v-generic subgroup” as an abbreviation for “let H € Subg be a subgroup which
lies in the countably many v-measure 1 subsets that have been mentioned up to
this point in the proof”.

Throughout this paper, if Aisaset and £ € N, then [A]* = {X | X C A, [X| = ¢}
will denote the set of f-subsets of A. We will occasionally make use of the notation
n={0,1,--- ,n—1}.

If G ~ Z is a group action and g € G, then Fixz(g) ={z€ Z|g-2 =2} and
suppz(9) ={z2€Z|g-z2#z}.

Throughout this paper, a subgroup H < Sym(A) will be said to act imprimitively
on A if H acts transitively on A and preserves a nontrivial partition B of A. (Here
we differ from those authors who allow the notion of an intransitive imprimitive
action.)

2. THE ERGODIC THEORY OF LOCALLY FINITE GROUPS

In this section, we will briefly discuss the pointwise ergodicity and weak mixing
properties of ergodic actions of countably infinite locally finite groups. Throughout,
let G = U,y Gi be the union of the strictly increasing chain of finite subgroups
G; and let G ~ (Z,u) be an ergodic action on a Borel probability space. The
following is a special case of more general results of Vershik [20, Theorem 1] and
Lindenstrauss [9, Theorem 1.3].

The Pointwise Ergodic Theorem. With the above hypotheses, if B C Z is a

p-measurable subset, then for u-a.e. z € Z,

1
B) = lim
'u( ) 1—00 |GZ|

{geGilg-zeB}|
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In particular, the Pointwise Ergodic Theorem applies when B is the y-measurable
subset Fixz(g) ={z2€ Z | g-z =z} for some g € G. For each z € Z and ¢ € N,
let Q;(z) ={g-2z| g € G;} be the corresponding G;-orbit. Then, as pointed out in
Thomas-Tucker-Drob [19, Theorem 2.1], the following result is an easy consequence
of the Pointwise Ergodic Theorem.

Theorem 2.1. With the above hypotheses, for p-a.e. z € Z, for all g € G,
n(Fixz(g)) = lim | Fixq,2)(9) |/ Q:(2) |
1—> 00

The normalized permutation character | Fixo,(.)(g)|/|€:(2)| is the probability
that an element of (€;(2), p; ) is fixed by g € G;, where p; is the uniform probability
measure on );(z); and, in this sense, we can regard G ~ (Z, ) as the “limit”
of the sequence of finite permutation groups G; ~ (Q;(2),u;). Of course, the
permutation group G; ~ Q;(z) is isomorphic to G; ~ G;/H;, where G;/H; is the
set of cosets of H; = {h € G; | h-z =z} in G;. The following simple observation
will be used repeatedly in our later applications of Theorem 2.1. (For example, see
Thomas-Tucker-Drob [19, Proposition 2.2].)

Proposition 2.2. If H < A are finite groups and 0 is the normalized permutation
character corresponding to the action A ~ A/H, then

ANH s€A|lsgs te H
o= 17 0H|_|{xe 4l il
|94 | |A|

The following consequence of Proposition 2.2 implies that when computing upper
bounds for the normalized permutation characters of actions A ~ A/H, we can
restrict our attention to those coming from maximal subgroups H < A.

Corollary 2.3. If H < H' < A are finite groups and 0, 8’ are the normalized
permutation characters corresponding to the actions A ~ A/H and A ~ A/H’,
then 0(g) < 6'(g) for all g € A.

Finally we point out the following straightforward but useful observations.

Theorem 2.4. If G is a countably infinite simple locally finite group, then every
ergodic action G ~ (Z, ) is weakly mizing.

Proof. Suppose that the ergodic action G ~ ( Z, 1) is not weakly mixing. Then, by
Schmidt [15, Proposition 2.2], it follows that G has a nontrivial finite dimensional
unitary representation; and since G is simple, this representation is necessarily
faithful. However, this is impossible since Schur [16] has proved that every locally
finite linear group over the complex field has an abelian subgroup of finite index.
(For a more accessible reference, see Curtis-Reiner [3, Theorem 36.14].) O

Corollary 2.5. If G is a countably infinite simple locally finite group and the action
G ~ (Z,u) is ergodic, then the product action G ~ (Z",u®") is also ergodic for
every r > 2.

3. LINEAR NATURAL ORBIT GROWTH

In this section, we will begin our analysis of the ergodic IRSs of the L(Alt)-
groups G 2 Alt(N). First we need to introduce some notation. For the remainder
of this paper, suppose that G = | J;cy G is the union of the strictly increasing chain
of finite alternating groups G; = Alt(4;), where |Ag| > 5. For each i € N, let
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n; = |Aql;

Si+1 be the number of natural orbits of G; on A;11;

fi+1 be the number of trivial orbits of G; on A;41;

eiy1 = Nit1 — (Siy1ns + fig1); and

tit1 = €iy1+ fir1.

Thus e;41 is the number of points € A;;1 which lie in a nontrivial non-natural
Gi-orbit and t;11 = n;11 — S;+11; is the number of points € A; 1 which lie in a
(possibly trivial) non-natural G;-orbit. For each ¢ < j, let s;; = s;118;42 - 5;.

Remark 3.1. Clearly G; has at least s;; natural orbits on A;. However, it is easy
to construct examples for which G; has strictly more than s;; natural orbits on A;.
For example, suppose that:

e A1 =A;U{a}, with G; acting naturally on A; and fixing the point «;
o Ao =[A;1]% with Gi41 acting in the obvious fashion.
Then s;11 =1 and s;42 = 0, while G; has the natural orbit {{a,d} |6 € A; } on
AH_Q.
Definition 3.2. G =
and Yo7, €;/s0; < co.
Remark 3.3. If s;;1 > 0 and e;4; = 0 for all i € N, then G = [J;cyG; is a
diagonal limit in the sense of Zalesskii [24].

sen Gi is an almost diagonal limit if 5,41 > 0 for all i € N

The following observation will be used repeatedly throughtout this paper.

Proposition 3.4. Suppose that G = |,y Gi is an almost diagonal limit of the
finite alternating groups G; = AlW(A;). If (ji | ¢ € N) is a strictly increasing
sequence of natural numbers and G = Alt(Ay,), then G = (J;cy G is also an
almost diagonal limit.

Proof. For each ¢ < j, let e;; be the number of points + € A; which lie in a
nontrivial non-natural G;-orbit. Then an easy induction on j > i 4+ 1 shows that
j—1
€ij < Z Skj€k 1 €5.
k=i+1
Let ej,,, sj,, be the corresponding parameters for the increasing union G' =
Uien Gi- Then e, =ej,5,,, and s, > sj,41---8j,,,. It follows that
/ / / -1 .
S0i41 = 517" Sip1 = (5j0+1 e Sjl) to (Sjri-l T Sji+1) = 5050507417
and hence we obtain that

Jit1—1

St E : Skjip1€k T €jig
0ji+1 k=ji+1

5050

IN

/ /
€i+1/501‘+1

Jit1
= S50jo Z ek/s[)k.
k=j;+1
The result follows. O
Remark 3.5. Suppose that G = J;.y G is an almost diagonal limit of finite

alternating groups. If s;y1 = 1 for all but finitely many ¢ € N, then e;y;1 = 0
for all but finitely many ¢ € N, and it follows that G = Alt(N). Hence, applying
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Proposition 3.4, if G 2 Alt(N), then we can suppose that the almost diagonal limit
UieN G; has been chosen such that s;41 > 1 for all + € N.

Definition 3.6. The L(Alt)-group G has almost diagonal type if G can be expressed
as an almost diagonal limit of finite alternating groups.

We are now in a position to state the first of the main results of this paper.

Theorem 3.7. If G is an L(Alt)-group, then G has a nontrivial ergodic IRS if and
only if G has almost diagonal type.

The classification of the ergodic IRSs of the groups of almost diagonal type
involves a fundamental dichotomy which was introduced by Leinen-Puglisi [10, 11]
in the more restrictive setting of diagonal limits of alternating groups, i.e. the
linear vs sublinear natural orbit growth condition. The statement and proof of the
following lemma are identical to Leinen-Puglisi [11, Lemma 2.2]. (Note that the

following lemma does not require that G' = |J,.y G is an almost diagonal limit.)
Lemma 3.8. For each i € N, the limit a; = lim;_,, s;;/n; exists.

Proof. If i < j <k, then s;i = 5455, and clearly n;s;, < ny. Hence

Sik _ Sij NjSjk - Sij
nE  n;  ng N
and the sequence (s;;/n; | i < j € N) converges to inf;s; s;;/n;. O

Definition 3.9. G = UieN G; has linear natural orbit growth if a; > 0 for some
i € N. Otherwise, G = |,y Gi has sublinear natural orbit growth.

Remark 3.10. Note that in Definition 3.9, we are not assuming that G = | J;.y G
is an almost diagonal limit. However, we will soon see that if G = J;.y G has
linear natural orbit growth, then G has almost diagonal type.

i€EN

Remark 3.11. Note that a; = s;y+1a;41. Hence if a; > 0, then s;4; > 0 and
a;+1 > 0. In particular, it follows that G has linear natural orbit growth if and
only if a; > 0 for all but finitely many ¢ € N.

We will next prove that if G = (J;.y G has linear natural orbit growth, then
G has a nontrivial ergodic IRS. Note that if G = | J;cy G has linear natural orbit
growth, then s,41 > 0 for all but finitely many ¢ € N. Hence, after replacing the
increasing union G' = | J;oy Gi by G = UiogieN G; for some suitably chosen iy € N,
we can suppose that s; 11 > 0 for all i € N. We will initially work with this strictly
weaker hypothesis. As we will see, the linear vs sublinear natural orbit growth
dichotomy will appear naturally in our analysis via an application of the Pointwise
Ergodic Theorem for actions of locally finite groups. Let ty = ng and recall that
tiv1 = €i+1 + fir1 = ni+1 — si+1n;. Clearly we can suppose that:

e Ag={ad|l<ty};and
° Ai+1 :{UA]C|J€Ai,0§]€<8i+1}u{az+l | 0§€<ti+1};
and that the embedding ¢; : Alt(A;) — Alt(A;11) satisfies
ei(9)(c"k) =g(0) "k
for each 0 € A; and 0 < k < s;41. Let A consist of all sequences of the form

(b, kiv1, kiyo, kits, -+ ), where ¢ € N and k; is an integer such that 0 < k; < s;.
For each i € N and 0 € A;, let A(c) € A be the subset of sequences of the
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form o = (kit1,kivo, kirs,---). Then the sets A(c) form a clopen basis for a
locally compact topology on A. (This is a special case of the “space of paths” of
Lavrenyuk-Nekrashevych [8].) Consider the action G ~ A defined by

g- (az7ki+17"' vkj7kj+1 ) = (g(aéaki-l-la"' 7kj)’kj+1 )1 g€ Gj'
Then we will show that there exists a G-invariant ergodic probability measure on
A if and only if G = (J;cy G has linear natural orbit growth; in which case, the
action G ~ A is uniquely ergodic.

Of course, if m is a G-invariant ergodic probability measure on A, then m is

uniquely determined by m [ A, where A is the algebra of Borel subsets of A
generated by the basic clopen sets { A(0) | 0 € ;e A }-

Lemma 3.12. Ifm is a G-invariant ergodic probability measure on A and o € A,
then m(A(0)) = a;.

Proof. Applying the Pointwise Ergodic Theorem, choose an element z € A such
that

. 1
m(A(o)) = jIE& @
J

{9€Gjlg-z€Alo)}]
Suppose that z = (aj, kyy1, kry2,---) and for each j > r, let
Zj = (ag,kryr, - 7kj) € A;.
For each j > max{ 1,7}, let S; C A; be the set of sequences of the form
SZO-A(di+1,"' ,dj).
Then |SJ‘ = Sij and
{9eGjlg-zeAlo)}={geGjlg-z €S}
and it follows that

. 1 o o
m(A(0)) = lim o lg € Gyl g2 € ;)| = i [S51/1] = o
(I

Corollary 3.13. With the above hypotheses, if G = ;o Gi has sublinear natural
orbit growth, then there does not exist a G-invariant ergodic probability measure on

A.

Proof. If G = |J;cy Gi has sublinear natural orbit growth and m is a G-invariant
ergodic probability measure on A, then

1=m(A) = Z Z m(A(a})) = Ztiai =0,
ieN 0<e<t; i€N

which is a contradiction. [l

For each ¢ < j, let t;; = n; — s;5m;. In order to simplify notation, we will
continue to write t;4+1 instead of ¢;;4+1. Applying Lemma 3.8, it follows that the
limit b; = lim;_, ¢;;/n; exists and that b; = 1 — n;a,. Thus we obtain:
Lemma 3.14. If m is a G-invariant ergodic probability measure on A and i € N,
then m(| L {A(aq) | i< j, £ <tj})=b.

Note that if A € A, then there exists i € N and S C A; such that either

(a) A=[HA(0) o €S} or
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(b) A=L{A(0) |oeSYulH{A(ag)|i<jl<t;}.
Furthermore, by Lemmas 3.12 and 3.14, if m is a G-invariant ergodic probability
measure on A, then mg = m [ A must be defined by

S|a, if (a) holds;
(3.1) mo(A) = |51 ) (2)
|S| a; + bi, if (b) holds.

Since a;11 = a;/s;+1 and b; = t; 110,41 + biy1, it follows that mg is well-defined. Tt
is also clear that mg(A) =1 and that my is G-invariant. Of course, it still remains
to be proved that mg is o-additive. As we will soon see, this is an easy consequence
of the following result.

Lemma 3.15. If s;y1 >0 for alli € N and G =
growth, then lim; o b; = 0.

sen Gi has linear natural orbit
The proof of Lemma 3.15 will make use of the following result.

Lemma 3.16. If s;11 > 0 for all i € N, then the following are equivalent:

(i) G = U;en Gi has linear natural orbit growth.
(i) Dope tr/sor < 00.

Proof. An easy induction shows that if j > 0, then

j—1
n; = Sp;No + Z Skjtk + 15
k=1
and hence
804 S04 J t
1= ﬂno + 2% AL
n; n; 1 S0k
Since s;+1 > 0 for all 7 € N, it follows that G = UieN G; has linear natural orbit
growth if and only if ap = inf;~¢ so;/n; > 0. The result follows. ]

Remark 3.17. Since e < tg, it follows that if s;2; > 0 for all i € N and G =
Uien Gi has linear natural orbit growth, then G' = J,y G is an almost diagonal
limit.

€N
Proof of Lemma 3.15. Another easy induction shows that if j > ¢, then

j—1
tij = Z Skjtk +1;.
k=i+1
It follows that

J
ij _ Soj L3

nj TLj k—it1 S0k
and hence
=t
k
k=it1 Ok
Since Y2, ti/s0i < 00, it follows that b; — 0 as i — oco. O

Proposition 3.18. IfG =J
G ~ A is uniquely ergodic.

ien Gi has linear natural orbit growth, then the action
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Proof. Since any probability measure p on A is uniquely determined by p [ A, it is
already clear that there exists at most one G-invariant ergodic probability measure
on A. Hence it is enough to show that the function mg, defined by (3.1), can be
extended to a G-invariant probability measure on A. Since ar = ag/sox, equation
(3.2) implies that

o0 t oo
bi=ao Y - = > thax;
k=it1 S0 S
and it follows easily that mg is o-additive. Thus mg is a pre-measure on A. By the
Carathéodory Extension Theorem, mg can be extended to a probability measure
m on A; and since mg is G-invariant, it follows that m is also G-invariant. ([l

Applying Corollary 2.5, if G = |J,cy G has linear natural orbit growth, then the
action G ~ (A", m®") is also ergodic for all 7 > 2, and hence the corresponding
stabilizer distribution v, is an ergodic IRS of G. We are now in a position to state
the second of the main results of this paper.

Theorem 3.19. If G = |J;cy Gi has linear natural orbit growth, then the ergodic
IRSs of G are {81,0¢ } U{v. | re Nt}

In particular, if G = | J,;cy G has linear natural orbit growth, then the collection
{vy | r € NT } is independent of the particular expression of G as a limit with linear
natural orbit growth. From now on, whenever G = UZEN (; has linear natural orbit
growth, then we will refer to G ~ (A, m) as the canonical ergodic action. The
following observation will be used repeatedly throughtout this paper.

Proposition 3.20. If G = |,y Gi has linear natural orbit growth and r > 1, then
Gz is self-normalizing for m®"-a.e. T € A".

Proof. Let T = (z1,---2,) € A" and let
Gy={g9g€eG|g-ap=zpfor1 <l<r}
be the corresponding stabilizer. Then it is easily checked that
Fixa(Gz) ={ae |1 <€ <1}

Suppose that g € Ng(Gz)\ Gz. Then g permutes the elements of the set Fixa (Gz)
nontrivially, and hence there exist 1 < ¢ < m < r such that g - zy = x,,. But this
implies that the sequences x; and x,, are eventually equal; and it is clear that for
m®-a.e. T = (w1, - 2,) € AT, if 1 <€ < m <r, then x; and x,, are not eventually
equal. Hence G; is self-normalizing for m®"-a.e. £ € A". (]

We are now ready to present the proof of Theorem 1.6. So suppose that G is
an L(Alt)-group with G 2 Alt(N) and that G ~ (Z,p) is an ergodic action. Let
v be the corresponding stabilizer distribution and let x(g) = pu(Fixz(g)) be the
associated character. By Theorem 3.7, if G does not have almost diagonal type,
then v € {61,0¢ } and s0 X € { Xreg, Xcon }» and it follows that x is indecomposable.
Hence we can suppose that G has almost diagonal type; and so Theorem 1.6 is a
consequence of the following result.

Theorem 3.21. If G 2 Alt(N) has almost diagonal type and G ~ (Z,p) is an
ergodic action, then the associated character x(g) = p(Fixz(g)) is indecomposable.
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Proof. Let v be the stabilizer distribution of the ergodic action G ~ ( Z, ). Then,
as above, we can suppose that v # d1, dg. Express G = (J;cy Gi as an almost
diagonal limit of finite alternating groups G; = Alt(A;). Let 7 = Y2, €;/50; < 00.
By Remark 3.5, since G 2 Alt(N), we can suppose that s;11 > 1 for all i € N. Of
course, since G; is simple, this implies that if 1 # G} < Gy, then G} also has at
least 2 nontrivial orbits on A;1.

First suppose that G' = (J,cy Gi has linear natural orbit growth. Then, applying
Theorem 3.19, it follows that v = v, is the stabilizer distribution of the ergodic
action G ~ (A", m®") for some r > 1, where G ~ (A, m ) is the canonical ergodic
action. By Proposition 3.20, Gz is self-normalizing for m®"-a.e. T € A", and this
implies that G, is self-normalizing for p-a.e. z € Z. Applying Vershik [21], it follows
that y is indecomposable.

Hence we can suppose that G' = ;. G has sublinear natural orbit growth. For
each £ € N, define the subsets A? C A; and subgroups G(¢); = Alt(Aﬁf) for j > ¢
inductively as follows:

L] Z&giillﬁ

.‘A§+1::‘Aj+1\\PHXAyH(CK€L)'
Since G(¢); has at least 2 nontrivial orbits on Aji4, it follows that each G(¢); is
strictly contained in G(€)j41. Let G(£) = Uy<jen G(€);. Then it is easily checked
that if £ < m, then G(¢) < G(m) and that G = |J,cy G(£).

Claim 3.22. G({) has linear natural orbit growth for all £ € N.

Proof. For each i > £, let n{ = |Af| and let s!,, be the number of natural G(£);-
orbits on Af-&—l' Then clearly sf_H > ;41 and

¢ /.
Miy1 < Sip1My 1 €ig1.

Ife<i<y,let sfj =i sf. Then it follows inductively that

J
¢ 00 ¢
njgsijni—i— E Sgj€k
k=i+1
J
b ¢ ¢
= 83,1 + So; g ek/Sok-
k=i+1

Since sf;k > Sok, it follows that

J
ol L A €l L
n; < spn; + S, E er/sok < sing + S, = Si;(ng 4 s,T).-
k=i+1

Thus nf/st; < nf + si,7 and it follows that lim;_,o s¢;/n% > 0. O

In particular, it follows that each G({) is a proper subgroup of G. For each
¢ e N, let G(£) ~ (Ag,myg) be the canonical ergodic action and for each r € N,
let v(¢), be the stabilizer distribution of G(¢) ~ (A}, m{"). Let vg(y be the
IRS of G(¢) arising from the G(f)-equivariant map Subg — Subg(s defined by
H + HNG(£). Then Theorem 3.19 implies that there exist a(¢), 3(£), v(¢), € [0,1]
with a(f) + B(€) + >, cn+ Y(£)r = 1 such that

(3.3) vay = a(l)dr + B(l)da) + Z V() v (£)y.

reN+
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Recall that v # d1, dg. Thus (3.3), together with Proposition 3.20, implies that
for v-a.e. H € Subg, there exists an integer £z such that H N G({) is a (proper)
self-normalizing subgroup of G(¢) for all £ > ¢y, and this implies that H is a self-
normalizing subgroup of G. It follows that GG, is self-normalizing for p-a.e. z € Z;
and applying Vershik [21] once again, this implies that y is indecomposable. |

For later use, we record the following recognition theorem, which will play a key
role in the proofs of Theorems 3.7 and 3.19.

Theorem 3.23. Suppose that G = |J,cy Gi has linear natural orbit growth and
that v is an ergodic IRS of G. If there exists a constant s > 1 such that for
v-a.e. H € Subg, for all but finitely many i € N, there exists an integer 1 <r; <s
and a subset ¥; € [A;]" such that H; = H N G; = Alt(A; N\ X;), then v = v, for
somel <r <s.

Proof. Recall that A; 11 = (A; X 8;41) U {a?‘l |0 <¢<tit1}. Foreachi < j, let
(I)”:AZ X 841 X o0 XSj.

Thus ®;; is the union of the “obvious” natural G;-orbits on Aj;. For each i € N
and 1 < ¢ < s, let p; be the v-probability that there exists ; € [A;]* such that
H; = Alt(A; \ %;). By Lemma 3.15, since G has linear natural orbit growth, we
have that lim;_,, b; = 0, where
b; = lim M
k—00 N

It follows that for all ¢ € N, if j > ¢ is sufficiently large, then b; is sufficiently small
so that there exists & > j such that

t=s SikN; i+1
S
= (%) 2
Hence we can inductively define a sequence of integers k; such that
i=s Skikiq1Th; i+1
o [
t=1 t
Applying the Borel-Cantelli Lemma, it follows that for v-a.e. H € Subg, for all
but finitely many ¢ € N, there exists a subset Xj,,, of cardinality 1 < rg,,, < s
such that Hy,,, = Alt(Ag,,, ~ 3k, ,) and such that ¥, C @y, ,. Furthermore,
by the ergodicity of v, there exists a constant 1 < r < s such that r = liminf ry,
for v-a.e. H € Subg. Suppose that H € Subg is such a v-generic subgroup
and that ¥y, , C ®p.p,., is a subset of cardinality r, , = r such that Hy, , =
Alt(Ag,,, ~ Xg,.,). Using the fact that ¥, , C ®p,p,,, is contained in the union
of the natural G,-orbits on Ay, ,, it follows that there exists a subset X C Ay,
such that ry, < [¥) | < [Xg,,,| = r and Alt(Ag, \ X)) < Hy,. Consequently, it
follows that k; = r for all but finitely many ¢ € N.
Let S, be the standard Borel space of subgroups H < G such that for all but
finitely many ¢ € N, there is a subset Xy, € [ Ay, |” such that Hy, = Alt(Ag, \3y,).
Then we have shown that the ergodic IRS v concentrates on S,. Since the stabilizer

distribution v, of G ~ (A", m®") also concentrates on S,, the following claim
completes the proof of Theorem 3.23.

Claim 3.24. The action G ~ S, is uniquely ergodic.
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(The following argument is essentially identical to the proof of Thomas-Tucker-
Drob [19, Proposition 6.8].) In order to prove Claim 3.24, it is enough to show that
if 41 is an ergodic probability measure on S, and B C Subg is a basic clopen subset,
then u(B) = v,.(B). Let B={H € Subg | HNGy; = L}, where { € Nand L < Gy
is a subgroup. By the Pointwise Ergodic Theorem, there exists H € S, such that

u(B) = lim | {g € G, | gHg™ € BY|/|C|
~ lim |{g€ G |gHg™ NGe = L} /|G
= lim [{g € Gy, | gHr,g~ NGy = L}|/|Gyl,
1—> 00
where H; = H N G;. Similarly, there exists H' € S, such that
9Hi.97 NGy =L} /|G,

)

v(B) = lim [{g € G,

where H = H'NG;. Since H, H' € §,, there exists ig € N such that Hy, and H,gi
are conjugate in Gy, for all ¢ > iy and this implies that

gHw9g ' NGy =L} |/|Gy,

‘lim | {g S Gki
71— 00

gH; g7 NGy = L}|/|Gy,].
O

= lim |{g € Gy,
1— 00

Finally recall that if G is a countable group and x € F(G) is a character, then
the corresponding proper 2-sided ideal I, of the group ring CG is defined by

I, ={zeC(G) | x(gx) =0forall ge G}.

As explained in Section 1, the following result exhibits a counterexample to Zalesskii
[25, Conjecture 1.24] and also answers Zalesskii [25, Question 5.12].

Proposition 3.25. There exists an L(Alt)-group G such that:

(i) The augmentation ideal w(CQ) is the only nontrivial proper 2-sided ideal
of CG.
(ii) G has infinitely many nontrivial ergodic IRSs.
(i) G has infinitely many indecomposable characters x such that I, = {0}.

Proof. Define G; = Alt(A;) and s;11 inductively as follows.

e Ag=1{0,1,2,3,4};

e Ajy1={0"k|oeA;,0<k<si1}UG;, where s;41 = 20 |Gyl;
and the embedding ¢; : Alt(4A;) = Alt(A;11) is defined by

e 0i(9)(c"k)=g(oc) kfor each 0 € A; and 0 < k < s;41;

e ©;(g)(h) = gh for each h € G;.

Let G = U,y Gi- By construction, if 4 < j, then G; has a regular orbit on A;.
Hence, by Zalesskii [24, Lemma 14], it is impossible to express G as a diagonal limit
of finite alternating groups; and so, by Zalesskii [24, Theorem 1], the augmentation
ideal is the only nontrivial proper 2-sided ideal of CG. Also s;41 is clearly the

number of natural orbits of G; on A;;;. Furthermore, an easy induction shows
that if ¢ < j, then

j—2
A1 = sig| Al + Y sk4151Gel + 1G4
k=i
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and hence

j—2
n; se+151Gr| | |G-
il R

i = S Sij

|G|
< |A;| +
1Al Z % Sk+1
Jj—1
|A|+Z2k < || +2.
It follows that a; = lim;_,+ $;;/n; > 0 and thus G has linear natural orbit growth.
Let G ~ (A, m) be the canonical ergodic action. Then for each r > 1,

xr(g) = m®"(Fixar(g))

is an indecomposable character of G; and it is easily checked that if r # s, then
Xr 7# Xs- Since Xy # Xcon, it follows that I, # w(CG) and so I, = {0}. O

4. SUBLINEAR NATURAL ORBIT GROWTH

In this section, we will discuss the ergodic IRSs of the almost diagonal limits

G = |J;en Gi with sublinear natural orbit growth. Examining the list of the ergodic
IRSs in the statement of Theorem 3.19, we see that if G = |, G has linear natural
orbit growth and v # §1, ¢ is an ergodic IRS, then v concentrates on the subspace
of subgroups H € Subg such that there exists a fized integer r > 1 such that for all
but finitely many ¢ € N, there exists a subset 3; C A; of cardinality r such that:

e HNG; = Alt(Az N Zi); and

e Y,.1 is contained in the union of the natural G;-orbits on A;.
As is suggested by the proof of Theorem 3.21, a similar result holds if G = UleN
is an almost diagonal limit with sublinear natural orbit growth, except that in thls
case:

e d; =|3;| — o0 as i — oo; and

e X, is contained in the union of the natural and trivial G;-orbits on A;41.
In order to simplify the notation, we will work with the G-invariant probability
measures on the space of corresponding sequences of subsets (X;) rather than
directly with the IRSs on Subg. Of course, such a measure can be identified with
a corresponding IRS via the map

(4.1) o= (%) H(o) = JAlt(A; N %))

Throughout this section, we will suppose that G = [ J;.y G is an almost diagonal
limit of the finite alternating groups G; = Alt(A;). Let 7 = Y7, e;/s0; < 00.
Initially we will not assume that G' = (J;.y G has sublinear natural orbit growth.
Let X consist of the infinite sequences of sets (3; );>4, for some i € N such that
the following conditions are satisfied for all ¢ > i,

Yi C A

Alt(Ai+1 N Zi+l) N Gi = Alt(Az N Zz)a

3i+1 is contained in the union of the natural and trivial G;-orbits on A;41;
if 39 > 0, then 3;, is not contained in the union of the natural and trivial
G;,—1-orbits on A;,
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Then the natural action of G on X corresponds to the conjugacy action of G on the
subspace of subgroups {U;>;, Al6(A; N %) | (£;)i>i, € 2}

Remark 4.1. For later use, note that if (X;);>, € ¥ and ip < ¢ < j, then
|Z;] < |%,]; and if |¥;] = |Z;|, then X; is contained in the union of the natural
Gj-orbits on A;.

Fix some 8 € (0,00). Let 8y = 8 and let 7o = Bo 7 = Bo Y_.o; €i/S0i- For each
i1 €N, let

o Bit1 = Bi/si+1 = Bo/Soi+1; and
oo
® Yit1 =i — Bi€i+1/8it1 = Bo X ;—i12€j/S0;-

For each i € N and X C A;, let ¥(X) be the set of sequences (X;);>;, € X for
some jo < ¢ such that ¥3; = X. Then the sets X(X) form a clopen basis for a locally
compact topology on ¥. First define pg on the basic clopen sets by

(42) po(S(X)) = (e~ )X

Note that (4.2) can be rewritten as:

(43) (200 = = (1- ;)Xl (2)'}(|

Remark 4.2. Consider the special case when G = J;cy G is a diagonal limit.
Then each 7; = 0; and for each subset X C A;, the pug-probability that ¥; = X is
the probability of the event that X is the set of selected points given by the binomial
distribution when the probability of selecting each point z € A; is p; = 1 — (1/€).
In the general case, it is necessary to introduce the “correction factor” 1/e%:.

Let A be the algebra of Borel subsets of ¥ generated by the basic clopen sets
3(X). Note that if A € A, then there exists i € N and S C P(A;) such that either:

(a) A= {2(X)| X eS}or
(b) A= {2(X)| X eS}U(XNB;), where B; = [{Z(X) | X € P(A;) }.

We next extend pg to the algebra A by defining

() = {Sxesns(30)), if (a) holds;

> xestp(X(X)) + (1= (1/e)™), if (b) holds.
We claim that pg is a pre-measure on A. Of course, we must first check that ug
is well-defined. To see this, fix some ¢ € N and for each X C A;, let Ex be the
collection of subsets Y C A, such that Alt(A; 11 NY)NG; = Alt(A; N X) and
Y is contained in the union of the natural and trivial G;-orbits on A;11. We will
prove by induction on £ = | X| that ug(X(X)) = > ycp, #p(2(Y)). First suppose
that £ = 0. Then

- 1
T eBiniti

ps(X(0))
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Also Y € Ejp if and only if YV is a subset of the trivial G;-orbits on A;4;. Thus

1 2 (fin
- - i+ Bi _ t
ns(Ey) = g Z( . )(e T

_ 1 eﬁz‘+1fi+1

eBi+init1+vit1
1
T eBiti(niyi—fir1)Fyivr

By definition, we have that

4

Bieit1
(Siv1mi +e€iv1) +9i — ——
Si+1 Si+1

Bit1(nit1 — fixr) +Yig1 = = Bing + ;.

Hence the result holds when ¢ = 0. Suppose inductively that the result holds for
¢>0and let X CA; with | X|=¢+1. Then

1

_ Bi _ 1 \¢+1
_eﬁmﬁ'ﬁ(e 1),

ns(E(X))

Write X = Xo U {z}, where |Xo| = ¢. Then each Y € Ex can be expressed
uniquely as a disjoint union Y = ¥y U Z such that Yy € Ex,, Z € F(, and Z is
contained in the union of the natural orbits of G; on A;y;. Thus

Hﬁ(EX) = Z HB(E(YO)) 72 (Siz_l)(eﬂiJrl -1 )t

Yo€EX, t=1

1 ,
) W(eﬁi - 1)[(66i+15i+1 — 1)
eBiniti
1 .
- W(em _1)HHL,

Thus ug(A) is well-defined if A = | [{Z(X) | X € S} for some S C P(4;). Also,

since
1 (i, 5 v 1
uﬂ(Bi):eﬁmﬁwZ(g>(el_1) = o
£=0

it follows that pg(A) is well-defined if A = | {3(X) | X € S} U(X N B;); and it
also follows that pg(X) = 1. Finally to check that ug is o-additive, it is enough to
show that for all ¢ € N,

> ns(Bjyai N Bj) = p(EN By) = 1—(1/e)".

j=i

To see this, note that if & > 4, then

k k
S ua(Bian~ By) = 3 [(1/e)+ = (1/e)] = (1)t = (1/e)

j=i
and since vx11 = Bo Z;’;k_ﬂ ej+1/50j41 — 0 as k — oo, it follows that

k
> up(Bjpai~ Bj) = 1—(1/e)

j=i
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as k — oo. This completes the proof that ug is a pre-measure on A. Clearly p is
G-invariant. Hence, by the Carathéodory Extension Theorem, pg can be extended
to a G-invariant probability measure pg on X.

Theorem 4.3. If G = |J,c Gi is an almost diagonal limit of finite alternating
groups and § € (0,00), then the action G ~ (3, ug) is ergodic if and only if
G = U;en Gi has sublinear natural orbit growth.

We will begin with the easy direction in Theorem 4.3.

Proposition 4.4. If G =, . G: has linear natural orbit growth, then the action

G~ (X, pg) is not ergodic.

€N

Proof. If G = |J;cy Gi has linear natural orbit growth, then
Bo

lim Bin; +v; = lim Bp— + v = — > 0.
71— 00 71— 00 SOi CLO

Hence if o € ¥ is the sequence with constant value () and Xy = { ¢ }, then

: 1 1
/’LB(XO) = Zli)]:lgo 6ﬁ1n7+7, - eﬁo/ao :
Since Xy is a G-invariant Borel subset with 0 < pg(Xo) < 1, it follows that the
action G ~ (X, ug ) is not ergodic. O

Remark 4.5. If G = |J,cy G has linear natural orbit growth, then we can calculate
the ergodic decomposition of the action G ~ (X, ug) as follows. Let A = Sy /ao.
For each r > 0, if X, C X is the Borel subset consisting of the sequences (X; );>,
such that |X;| = r for all but finitely many j > jo, then

1 A"
IJ’B(XT‘) = GTF
To see this, note that
- Bosl L 1
X)=lm — -n;(e" 05" —1)= — - ),
pa(X0) = Jim ooy )=

and that if » > 2, then

1 n; Bo—d 1
X)) = lim ———— (7 ) ("0 —1)"
wo(Xr) =00 Bin; +; (7“>( )

. 1 n "1
= lim 7? (660 s0j nj 1)7‘
Jj—roo ﬁjnj +; T
LA
Cerrl’

If we identify p1g with the corresponding IRS of G, then X, corresponds to the IRS
v, of Theorem 3.19. Thus, writing dg = 1, we obtain the ergodic decomposition:

1 &\
Hp = GTZOFVT.
r=

For the remainder of this section, we will suppose that G' = |J, .y G has sublinear
natural orbit growth. Here the analysis splits into two cases depending on whether
or not G = Alt(N); equivalently, on whether or not s;21 = 1 and e;41 = 0 for all but
finitely many ¢ € N. First suppose that G = Alt(N). In order to simplify notation,
we will suppose that s;11 =1 and e; 11 = 0 for all i € N. And we can also suppose
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that G = Alt(N) and that each A; = {0,1,--- ,n; —1}. Let ag = 1 — (1/€?) and
ay = 1/eP. Let p, be the probability measure on {0,1} defined by p,({¢}) =
and let p, be the corresponding product probability measure on 2. Then Alt(N)
acts ergodically on (2, p, ) via the shift action (g-¢)(n) = &(g7'(n)). Let

13 /3 (Ef)izo be the Alt(N)-equivariant map from 2 to 3 defined by
5= {k e Ai|£(h) =0},

Then pg = (fo)sfta and it follows that the action Alt(N) ~ (X, ug) is ergodic.
(Using the notation of Section 9, the stabilizer distribution corresponding to ug is
the ergodic IRS v of Alt(N).)

Thus we can suppose that G 2 Alt(N) and hence that lim; o, 8; = 0. In order
to prove that G ~ (X, ug) is ergodic, it is enough to find a G-invariant Borel
subset £5 C 3 such that pg(X5) = 1 and such that if m is an ergodic probability
measure on g, then

m(X(X) NXg) = pp(3(X)).

for all X € (J;cny P(A;). The definition of ¥z will involve the following sequence of
random variables.

Definition 4.6. For each i € N, let d; be the random variable on ¥ defined by

0, otherwise.

di((X;)5>j,) = {

In preparation for an application of Chebyshev’s inequality, we will next compute
the expectation E[d;] and the variance Var(d;) of the random variable d;. Here
we will make use of the observation that modulo the “correction factor” 1/e7i,
the probability that ¥; = X is that given by the binomial distribution when the
probability of selecting each point z € A; is p; = 1 — (1/e%).

Lemma 4.7. E[d;] = e (1 —ePi)n,.
Proof. Using equation (4.3), we see that
E[di] = e Yingp; = e V(1 —e P )n,.

(]

Lemma 4.8. Var(d;) = (e — 1)E[d;]? + e #E[d;].

Proof. Again using equation (4.3), we see that

E[d7] = e [nip; + ni(ni — 1)p; ]
and a routine computation shows that
Var(d;) = E [d7] — E [di]*
= (e —1)E[d]? + e PE[d,).

(]

Proposition 4.9. There exists an increasing sequence I = (iy | k € N) such that
limy o0 diy, / Biy iy = 1 for pg-a.e. (£;)i>i, € X.
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Proof. Since B; = Bo/s0; — 0, it follows that (1 — e~ )/B; — 1. Since we also
have that v; — 0, it follows from Lemma 4.7 that

71— 00
In particular, since G has sublinear natural orbit growth and
n;
E[d;] =~ Bin; = Bo—,
50i

it follows that E[d;] — oo. Hence, letting o(d;) = 1/ Var(d;) denote the standard
deviation, applying Lemma 4.8, we see that

1—+00
Combining (4.4) and (4.5), there exists an increasing sequence I = (i | k € N)
such that for all k£ € N,

(a) (1—1/2%)B;ni, <E[d;] < (1+1/2%)Bi,n;, and

(b) o(ds,) < Eds ]/
Let Ej be the event that |d;, — E[d;,]| > E[d;.]/2*. Applying Chebyshev’s in-
equality, since E [d;,]/2% > 2¥0(d;,), it follows that P [Ey] < 1/4%. Applying the
Borel-Cantelli Lemma, for pg-a.e. (2;)i>i, € X, for all but finitely many k € N,

( 1- I/Zk)E [dlk] < dik < ( 1+ 1/2k) E [dlk]
and hence
( 1- 1/2k)2 /sznlk < dik < (1 + 1/2k)2 5%”%

It follows that limy_,o0 diy, /Biy 1y, = 1 for pg-ae. (£;)i>i, € Z. O

Definition 4.10. X3 is the set of (¥£;);>, € ¥ such that limy_,o0 d;, /55,15, =1

Since pug(Xg) = 1, in order to show that G ~ (X, g ) is ergodic, it is enough to
prove the following result.

Proposition 4.11. If m is an ergodic probability measure on L3, then
m(X(X) NXg) = pp(X(X))
for all X € ;e P(A).

So suppose that m is an ergodic probability measure on ¥g. Then by the Point-
wise Ergodic Theorem, there exists an element (Xg)g>x, € X such that

1
= lim —
j—eo |Gy

for all X € J;cny P(Ai). Fix some X C A;. For each j > max{ i, ko }, let d; = |%]
and let

(4.6) m(%(X) N p) KgeGjlg (Er)ezk, € E(X)}

j—1
mij = sijni + E skjek —+ ej
k=i+1
J
= $ijN; + Soj E ek/SOk.
k=i+1
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Then an easy induction on ¢ = |X| shows that
(nj—m;,j-&-tsij)

1 : e 4 .
o€ Gl (B € 50} = 301 ( >()

t=0 ¢ d;
and a second induction using (4.6) shows that for all 0 <t < n;, the limit

(nj —mij—i-ts,yj)

(4.7) lim —— %~
Jmree (d;)

exists. We will make repeated use of the following lemma in the remaining sections
of this paper.

Lemma 4.12. Suppose that (n;)jen, (m;)jen and (dj)jen are sequences of natural
numbers such that the following conditions are satisfied:
(a) my, dj <nj.
(b) mj/n; =0 and dj/n; — 0 as j — oco.
(c) im0 ("j;jmj)/(gj) exists.
Then lim;_,o djm;/n; exists and
(nj;jmj) B (1>limjﬁoo djm;/n;

i

im0 )
Proof. In order to simply notation, we will write n, d, m instead of nj, d;, m;.
Note that, since

") (n—-m)(n-m-1) (n—m—d+1)

€

™ n n—-1  (n—d+1)
it follows that
d n—m d
(n—m;j;—l) <((z))<(n—m) 7
n— i n
and hence that
":’ffl —dm n—m n dm
(4.8) (1_m> o < ( g ) < (1_@),” n
n—d+1 (d) n

Since 7 — 0 and =4 — 0, it follows that

1D w (o)

The result follows easily. O

We next check that Lemma 4.12 can be applied to each of the limits (4.7). First
note that if m; = m;; — tSz'j, then

J

me S sns

o B0 2 5
I I T k=it1
< Sﬂ(nz —t)+50i%7'§

nj J
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and since G has sublinear natural orbit growth, this implies that m;/n; — 0. Also
note that
lim By L 2, = lim §;
im — 11m = 1m =
k— o0 Ny k— o0 ﬁjknjk Ik Ik

Hence, applying Lemma 4.12, we obtain that

(nj*mz‘jHSij) limp 00 djy, (Mg, —tsiz, )/mj,
. d; 1
Jj—o0 (dj) e

Lemma 4.13. For alli € N and 0 <t < n;,,
klggo djk (mijk - tsijk)/njk =B (nl - t) + Y-
Proof. First note that since 3;ts;; = t3; and

J J
Bimij = Bisimi + Biso; > en/son = Bini+Bo Y er/sok,
k=i+1 k=i+1

it follows that lim;_,o B;j(m;; — tsi;) = Bi(n; —t) + ;. Hence, using the fact that
limy_ 00 dj, /Bjumj, = 1, we obtain that

lim dJk (m'LJk tsl]k )/njk = lim Bjk (mljk tsijk)

k— o0 k— o0 ﬁ]kn]k
= Bi(ni —t) + .
O
Summing up, we have shown that if X C A; with |X| = ¢, then
n]—m”—&-ts”)
m(E(X)NXg) = ( ) lim ————
j—)OO )

> [ t(f)( )B(m—t)m
inity L
()5 (e

= pp(2(X)),
as desired. This completes the proof that the action G ~ (3, g ) is ergodic.
Definition 4.14. Let 1/5E be the stabilizer distribution of the action G ~ (X, g ).

(e}

Q|

—

We can now state the third main result of this paper.

Theorem 4.15. If G = |,y G is an almost diagonal limit with sublinear natural
orbit growth and G 2 Alt(N), then the ergodic IRSs of G are

{01,6cYU{v5 | B e (0,00)}.
In particular, if G = |J;cy G is an almost diagonal limit with sublinear natural

orbit growth and G 2 Alt(N), then the collection { VBE | B € (0,00)} is independent
of the particular expression of G as an almost diagonal limit of finite alternating
groups.
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5. GROUPS OF ALMOST DIAGONAL TYPE

In Section 3, we proved that an L(Alt)-group G = |J;cy G has linear natural
orbit growth if and only if there exists a G-invariant ergodic probability measure
on A. In this section, we will prove a corresponding characterization of the almost
diagonal limits of sublinear natural orbit growth.

Theorem 5.1. Suppose that G = | J;cy G is the union of a strictly increasing chain
of finite alternating groups G; = Alt(A;) such that s;y1 > 1 for all i € N. Suppose
also that G has sublinear natural orbit growth and that there ezists a nonatomic
G-invariant ergodic probability measure . on 3. Then:

(a) G =,y Gi is an almost diagonal limit; and

(b) there exists € (0,00) such that p = pg.

Proof. Applying the Pointwise Ergodic Theorem, let (X;),>;, € ¥ be such that
foralli € Nand X C A;,

(1) a(R(X)) = lim = {g € Gyl g+ (%)) € S(X) )

Let |Ej| = dj.
Claim 5.2. lim;_, d; = co.

Proof of Claim 5.2. Suppose not. Then, by Remark 4.1, there exist integers d > 0
and ji1 > jo such that d; = d for all j > ji. Suppose that X C A, with |[X|=/(>1
and that p(3(X)) # 0. Let j > max{ 1,71 } and let

(I)ijZAiXSiJrlX---XSj.

be the union of the “obvious” natural G;-orbits on Aj;. Then if g € G; satisfies
g-(X;)j>j, € X(X), we must have that [g(X;) N ®;;| > £. Hence (5.1) implies that
¢ < d and that

d . Ni—ms
- d\_ () ()
= lim ( ) T .
j—o0 ; t (”.7 (d t)) (d—Jt)
s”nl)
JIEEOZ ( > =0y
Since G has sublinear natural orbit growth, it follows that if £ <t < d, then

C)
]151.30 (nj—(td—t)) =0.

But this implies that p( 3(X) ) = 0, which is a contradiction. Thus no such X C A;
exists and it follows that p concentrates on the G-invariant sequence o € ¥ with
constant value (), which is a contradiction. O

Arguing as in Section 4, we see that if X C A; with | X| = ¢, then

14 (nj—m”.»-&-tsij)
5.2 Y(X)) = lim et R N
(5.2 H(500) = fim 32 ;) &
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and that the limit
(nj—mij-‘rtsij)

lim dj,
e ()

exists for all 0 <t < n;. We will now work towards verifying that the hypotheses
of Lemma 4.12 are satisfied. For each 0 <t < n;, let my; = myj — tsq;.

Claim 5.3. Ifi € N and 0 <t < n;, then lim;_, o my,;/n; = 0.
Proof of Claim 5.3. Suppose that there exist integers ¢, t with 0 < ¢ < n; such that

lim; o Mg /m; # 0. Since

J
it _ gy — )24 4 200 3 en/son

7 J 7 k=i+1
and lim;_, o s;;/n; = 0, it follows that
m s J
. iti 1. 0j
lim sup —2 = lim sup —~ E e/ S0k;
j—oo My j—oo Ny k—it1

and hence there exists a constant 0 < ¢ < 1 such that limsup;_, ., mit;/n; = c for
all 0 <t < n;. Note that if £ < m, then

s J s o s J

0j 0j 0j

— g er/Sok = — g er/sox + —= E er/Sok
n n; n;

T k=ey1 T k=41 ]
and that lim;_,o %J > heor1 €k/Sox = 0. Tt follows that limsup; . miy/n; = ¢
for all integers 4, t with 0 <t < n;. Since

(nj_d';nitj) _ (’I’LJ _ mitj>dj _ (1 B W)dj
() ~\ n nj

and lim;_, o, d; = oo, it follows that

(nj—mij+tsq;j) (nj—m“,j)
N (. I
dj dj

for all integers 4, ¢t with 0 < ¢ < n;. But then (5.2) implies that u(X(X)) = 0 for
all X € J;en P(Ai), which is a contradiction. O

Claim 5.4. hmj_mo dj/nj =0.

Proof of Claim 5.4. Suppose not. Then there exists a constant 0 < ¢ < 1 and an
infinite subset J C N such that d;/n; > ¢ for all j € J. Let ¢, ¢t be integers such
that 0 < t < mn,;. Since lim;_, o m;;;/n; = 0, there exists a cofinite subset J;; C J
such that

ni dj
g~ Mty d; e e Mt CMitj
. Myt Miss Mt ", 1
() e ()T ()
(dj) U n;j

for all j € Ji. If 0 <t < n;, then

J
lim mg; = lm [(n; — t)s;; + so; Z er/Sok | = 00,
j—o0 j—o00 eyl
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and it follows that

(nj—mdi_7~+ts7:j) (ny—dmm)
lim nij = lim nij =0.
Jree (d;) Jreo (dj)

But then (5.2) implies that p(X(X)) = 0 for all X € (J;cn[P(A:) ~ { Ai }]; and so
& concentrates on the G-invariant sequence (A; );en, which is a contradiction. O

Thus the hypotheses of Lemma 4.12 are satisfied; and so for all integers ¢, ¢ with
0 <t < n;, we have that

)

_hm niJ = - 5
Jmree (dj> €

where )\ti = limj_mo dj (mij — tSij)/n]'.

Claim 5.5. G = |J;cy Gi is an almost diagonal limit.

Proof of Claim 5.5. Suppose not. Then, since 7 = .~ e;/s0; = oo and

J

’I’LidjSij djSoj
djmij/nj = — + — Z ek/SOk

n; n;
J T k=it
J
Tn; djSOj
= 57—’_ E ek/SOk‘| .
00 p=i+1 J

it follows that lim;_,~ d;s0;/n; = 0 and hence

dso
Aoi = lim djmi;/n; = lim 22 Z €k/ S0k

j—o0 Jj—oo Ny

Also notice that

J
diSoi
: 7207
Aoi = lim ir1/Siv1 + E ex/Sok
J—00 nj -
k=i+2

j
. djso;
= llm - Z €k/80k

k=i+2

Thus there exists a constant A such that \g; = A for all i € N. Next notice that if
0 <t < ng, then

. t
/\ti = .hm l:djmij/’l’bj — 7dj80j/nj
j—o0 S04

= .hm djmij/nj
J—00

=\
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Hence for all i € N and X C A, if | X| = ¢, then

=2 () )

t=0
@), ie=o;
0, otherwise.

It follows that A = 0 and that ;1 concentrates on the sequence o € ¥ with constant
value ), which contradicts the assumption that p is nonatomic. O

Summing up, we have shown that 7 = Zfil e;/s0i < oo and that if X C A,
with | X| = ¢, then

nj—Mij +ts,-j)

u@uwzg%§;4v(9(é)
~pm () ()

where A\y; = lim;_,o, d;(m;; —ts;;)/n;. In particular, the limit

J
n; djSOj
— +

> /] s

S
O p=it1 J

lim d;m;j/n; = lim
J—00 J]—00

exists; and this implies that § = lim;_, d;jsoj/n; exists. Furthermore, the proof
of Claim 5.5 shows that § # 0. Notice that
J

A = lim d;[(n; —t)ss5 + So; Z ex/sok | /1

k=i+1
. 1 djS()j djS()j d
= lim[———(n; — ) + —= E er/Sok ]
Jmee S0i My " S

Zsi,@(m—t)‘h@ > ex/sox

0i k=it1
= Bi(ni — t) + v,

where 8; = 8/s0; and v; = BZ;;._H er/sok- It follows that if X C A; with | X| = ¢,

then )
_ Bi _ 1)\¢
B(2(X0) = (P = 1)

Thus i = pg. This completes the proof of Theorem 5.1. O

Remark 5.6. Examining the proofs of Proposition 4.11 and Theorem 5.1, we see
that if 8 € (0,00) and (X;);>j, € ¥ with |¥;] = d;, then the following are
equivalent:
(a) limj_mo djS()j/nj = ﬁ
(b) For all i e Nand X C A,
1

n(E(X)) :}LH;@‘{QGGJ‘ 19 (%5250 € 5(X) }.
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We have already noted that Theorem 4.15 implies if G = (J,cy G is an almost
diagonal limit with sublinear natural orbit growth and G 2 Alt(N), then the col-
lection {1/%3 | B € (0,00)} is independent of the particular expression of G as an
almost diagonal limit of finite alternating groups. The following special case will
play a key role in the proof of Theorem 4.15.

Theorem 5.7. Suppose that G = |J;cn G s an almost diagonal limit of finite
alternating groups G; = Alt(A;). Let (k; | i € N) be a strictly increasing sequence
of natural numbers, let A, = Ay, and let ¥/ be the associated space of sequences
(X5 )izio- Then G = J;en G} is also an almost diagonal limit and there exists a

positive X such that 1/5Z = Vﬁ; for all B € (0,00). Consequently, we have that

{v5|Be(0,00)}={vy | €(0,00)}.

Proof. Of course, by Proposition 3.4, we already know that G = |J
almost diagonal limit.

Let 0 = (X;);>j, € ¥ and let ¢y = min{4 | k; > jo }. Then a moment’s thought
shows that if ¢ > iy, then Xy, is contained in the union of the natural and trivial
G,-orbits on Ay, . Thus there exists a unique o' = (X );>;, € X’ such that
ip <41 and ) = Xy, for all ¢ > 4. Furthermore, it is clear that

H(o) = JAI(A; %)) = [ JAI(A] X)) = H(o).

Thus for every nonatomic G-invariant ergodic probability measure p on X, there
exists a nonatomic G-invariant ergodic probability measure ' on ¥’ such that
the corresponding stabilizer distributions coincide. Applying Theorem 5.1(b) to
G = ;en G and X, it follows that for every 3 € (0, 00), there exists 5" € (0,00)
such that v3 = 1/52,/.
Let nj, s} be the parameters associated with the union G = | J,.y G7; and suppose
that 3, ' € (0,00) are such that 1/? = I/%:,,. Then the Pointwise Ergodic Theorem
and Remark 5.6 imply that there exist corresponding sequences 0 = (X; );>j, € &
and o’ = (X} );>;, € ¥’ such that:
o ¥ =5, for all but finitely many i € N,
o lim;_, |¥;|s0;/n; = S, and
o lim; o |3]sh,/nt =06

It follows that

sen G 1 an

ﬁ i— 00 |Zk1 ‘SOk:i /’I’L]CI 1—00 S0k,
is independent of the choice of f. ([l

6. NORMALIZED PERMUTATION CHARACTERS OF FINITE ALTERNATING GROUPS

In this section, we will present a series of lemmas concerning upper bounds for
the values of the normalized permutation characters of various actions Alt(A) ~ Q
of the finite alternating group Alt(A) on a finite set 2. No attempt will be made
to prove the best possible results: we will be content to prove easy results which
are good enough to serve our purposes in this paper.

Suppose that G = J,cy Gi has linear natural orbit growth. Let v # 01, d¢ be
an ergodic IRS of G. Then, applying Creutz-Peterson [2, Proposition 3.3.1], we can
suppose that v is the stabilizer distribution of an ergodic action G ~ ( Z, ). Let
x(g9) = n(Fixz(g)) be the corresponding character. For each z € Z and i € N, let
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Q(2) ={g-z]g € G;}. Then, by Theorem 2.1, for y-a.e. z € Z, for all g € G, we
have that

u(Fixz(g)) = lm | Fixo,()(9) /1 24(2) |

Fix such an element z € Z and let H = {h € G | h- z = z } be the corresponding
point stabilizer. Clearly we can suppose that z has been chosen such that if g € H,
then x(g) > 0.

For each ¢ € N, let H; = H N G;. Then, examining the list of ergodic IRSs in
the statement of Theorem 3.19, we see that it is necessary to show that there exists
a fized integer v > 1 such that for all but finitely many ¢ € N, there is a subset
3, C A; of cardinality r such that H; = Alt(A; N X;). We will eventually show
that if this is not the case, then there exists an element g € H such that

u(Fixz(g)) = lim | g% OV H;[/|g% | = |{s € Gi | sgs™" € Hy }|/|Gi| =0,

which is a contradiction. For example, Lemma 6.1 will play a key role in the proof
that there do not exist infinitely many i € N such that H; acts primitively on A;;
and Lemmas 6.3 and 6.5 will play key roles in the proof that there do not exist
infinitely many ¢ € N such that H; acts imprimitively on A,.

For the remainder of this section, let A = {1,2,--- ,n}.

Lemma 6.1. For each prime p and real number a > 0, there exists ny, € N such
that if n > ny, , and

(i) g € Alt(A) is a product of b > an p-cycles;

(ii) K < Alt(A) is a proper primitive subgroup;
then the normalized permutation character of the action Alt(A) ~ Q = Alt(A)/K
satisfies | Fixq(g)]/|Q] < +.

Proof. Clearly we can suppose that n has been chosen so that b > an > 2. In
particular, since g contains at least two p-cycles, this implies that the conjugacy
classes of g in Alt(A) and Sym(A) coincide and hence

- pPbl(n — bp)!”
Applying Stirling’s Approximation and the fact that b > an, it follows that there
exist constants r, s > 0 such that

‘gAlt(A) | n!

Alt(A n'" " -
|gMHA) | > sn D bp) > rs”nbnn_bp > s (n") P~

By Praeger-Saxl [13], since K is a proper primitive subgroup of Alt(A), it follows
that |K| < 4™. By Proposition 2.2, this implies that
471
: _ | SAIE(A) Alt(A) Alb(A) | <
[Fixa(o)l/[0] = |4 N K |/]gS) | < K |19 < — o

The result follows easily. O

Lemma 6.2. Let Q = [A]* be the set of (-subsets of A for some 2 < £ < n/2.
Suppose that g € Alt(A) has prime order p > 2 and that ¢ = |Fixa(g)| < n/4.
Then the normalized permutation character of the action Alt(A) ~ Q satisfies:

(i) |Fixa(9)l/19] < 3|Fixa(g)|/|A] if ¢ > 16;

(i) |Fixa(9)|/19| < 2 if c < 16.
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Proof. First suppose that £ < p. Then Fixq(g) = [Fixa(g)]*. Clearly we can
suppose that ¢ > ¢ and since ¢ < n/4, it follows that

|[Fixa(g)l _ (o) _ ele=1)-(c=€=1) _cle=1) _ c _ |Fixa(g)|

Q] (") nn—1)-(m—0-1) " nn-1) 4n 2|A|

Next suppose that £ > p > 2. Let A = {S € Fixq(g) | S C Fixa(g) } and let
B = Fixq(g) ~ A. If A # 0, then
A _ () _ ele-1e-2) _

Q" () S an—Dn-2) " o0’

For each S € B, let a(S) = min{s € S| g-s # s}. Then, since £ > 2, it follows
that the sets

BUu{(S~{a(S)Hu{t}|SeB,te AN (SUFixa(g))}

are distinct. Note that if S € B, then |S UFixa(g)| < 3n/4; and it follows that
(14 3)|B| < 19| and so |B|/|Q| < 4/n. If ¢ > 16, then

[Fixa(g)l _ ¢ 4 _ ¢ ¢ _|Fixa(g)|
| Bl LA A R T G TRl Bt LA
19] < Ton LS 16n T s 21A 7
while if ¢ < 16, then
|Fixo(g)| _ ¢ 4
19] 16n  n
(]

If P is a partition of A, then the subsets B € P will be called the blocks of P;
and if s € A, then [s]p will denote the block of P which contains s.

Lemma 6.3. Let §2 be the set of partitions P of A into £-sets for some fixed divisor
¢ of n such that2 < ¢ <n/2. If g € Alt(A) has prime order p > 2, then the normal-
ized permutation character of the action Alt(n) ~ § satisfies | Fixq(g)|/|Q] < 2/n.

Proof. Let P € Fixq(g). Then we define the integer a(P) as follows.

(a) If P contains a g-invariant block B such that g [ B # idp, then a(P) is
the least s € A such that [s]p is g-invariant and g - s # s.
(b) Otherwise, a(P) is the least s € A such that g - s # s.

For each t € A\ [a(P)]p, we define P(t) € Q to be the partition obtained from P
by replacing the block [a(P)]p by ([a(P)]p ~ {a(P)})U{t} and the block [t]p
by ([t]p ~{t} U{a(P)}.

Claim 6.4. P(t) ¢ Fixq(g).

Proof of Claim 6.4. First suppose that P contains a g-invariant block B such that
g | B # idp. Then clearly g - [t]pw) # [t]p@). Also, since £ > p > 2, it follows
that g - [t]pw) N[t]pw) # 0. Hence P(t) ¢ Fixa(g).

Thus we can suppose that P does not contain a g-invariant block B such that
g | B #idg. For each 0 < i < p, let S; = g* - [a(P)]p. Since p > 2, there
exists 0 < i < p such that S; € P(t). Since Sy = gP~*-S; ¢ P(t), it follows that
P(t) ¢ Fixa(g). O

If P, P’ € Fixq(g) and P(t) = P’(t’), then it is easily checked that P = P’ and
t =1t'. Thus (14 n — ¢)|Fixq(g)| < || and so | Fixqa(g9)|/|2] < 2/n. O
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The following two results are routine generalizations of Lemmas 5.2 and 5.3 of
Thomas-Tucker-Drob [19].

Lemma 6.5. For anye >0 and 0 <a <1 andr > 0, there exists an integer d, , .
such that if dgre <d < (n—71)/2 and H < Alt(A) is any subgroup such that

(i) there exists an H-invariant subset ¥ C A of cardinality v, and
(ii) H acts imprimitively on A X with a proper system of imprimitivity B of
blocksize d,
then for any element g € Alt(A) satisfying | supp(g)| > an,
[{s € Alt(A) | sgs™t € H}|
| Alt(A)]
Lemma 6.6. For any e > 0 and 0 < a < 1, there exists an integer ro such that
if rae <r<n/2 and H < Alt(A) is a subgroup with an H-invariant set ¥ C A of
cardinality |X| = r, then for any element g € Alt(A) satisfying |supp(g)| > an,
[{s € Alt(A) | sgs—t € H}|
| Alt(A)]

For the sake of completeness, we will sketch the main points of the proofs of
Lemmas 6.5 and 6.6. As in Thomas-Tucker-Drob [19, Section 5], our approach will
be probabilistic; i.e. we will regard the normalized permutation character

[{s € Alt(A) | sgs—! € H}|
| Alt(A)]
as the probability that a uniformly random permutation s € Alt(A) satisfies

sgs~' € H. The proofs of Lemmas 6.5 and 6.6 make use of the following con-
sequence of Chebyshev’s inequality. (See Thomas-Tucker-Drob [19, Lemma 5.1].)

<e

Lemma 6.7. Suppose that (Ni) is a sequence of non-negative random variables
such that E[Ng] = pr > 0 and Var[Ng] = o7 > 0. If limg_eo pr/or = 00, then
P[N;>0]—1 as k — 0.

In our arguments, it will be convenient to make use of big O notation. Recall
that if (a,,) and (x,,) are sequences of real numbers, then a,, = O(x,,) means
that there exists a constant C' > 0 and an integer my € N such that |an,| < C|zp,|
for all m > mg. Also if (¢,,) is another sequence of real numbers, then we write
G = Cm + O(x,) to mean that a,, — ¢y = O(zy,).

Sketch proof of Lemma 6.5. Suppose that m = r + df, where ¢ > 2, and that
H < Alt(A) has an H-invariant set 3 C A of cardinality |3| = r such that H acts
imprimitively on "= A \ ¥ with a proper system of imprimitivity B of blocksize
d. Let b = a/3 and suppose that g € Alt(A) satisfies |supp(g)| > an = 3bn.
Then there exists a subset Z C supp(g) such that g(Z) N Z = 0 and |Z| = cn for
some b < ¢ < 1/2. Fix an element zg € Z and let yo = g(z9). Let s € S be a
uniformly random permutation. If s(zy),s(yo) € T, let By, Cy € B be the blocks in
B containing s(zg) and s(yg) respectively; otherwise, let By = Cy = ). Let

J(s) ={z€ Z~{2}]|s(z) € By and s(g(z)) ¢ Co}.

Note that if J(s) # 0, then sgs~1(By) intersects at least two of the blocks of B and
thus sgs™! ¢ H. Hence it is enough to show that P[|J(s)| > 0] > 1 — ¢ for all
sufficiently large d (depending only on £, a and r).
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Since we wish to apply Lemma 6.7, we need to compute the asymptotics of the
expectation and variance of the random variable |J(s)|. Arguing as in the proof of
Thomas-Tucker-Drob [19, Lemma 5.2], it can be shown that

(6.1) E[]J(s)]] = cd(1 - &) + O(1);
and that
(6.2) E[]J(s)|]? = [ed(1 — )2 + O(d);
and that
(6.3) E[[J(s)?] = [ed(1 — 4)]* + O(d),

where the implied constants needed to witness the big-O inequalities are only de-
pendent on the parameter r. Combining (6.2) and (6.3) we obtain that

Var(lJ(s)]) = E[|J(s)]] = E[|J(s)|]* = O(d),

and hence Var(|J(s)|)*/? = O(v/d). Of course, (6.1) implies that d = O(E[|J(s)|]).
Thus there exists a constant C' > 0 such that o = Var(|J(s)|)}/? < CVd and
d < CE[|J(s)]]) = Cp for all sufficiently large d. It follows that

plo > C7d/CVd = C3Vd — o as d — 0o.

Applying Lemma 6.7, we conclude that P[|J(s)] > 0] — 1 as d — oo. This
completes the proof of Lemma 6.5. (|

Sketch proof of Lemma 6.6. Let b = a/3. Suppose that H < Alt(A) has an H-
invariant set ¥ C A of cardinality |X| = r < n/2 and that g € Alt(A) satisfies
|supp(g)| > an = 3bn. Then, once again, there exists a subset Z C supp(g) such
that g(Z)NZ = 0 and |Z| = cn for some b < ¢ < 1/2. Let s € Alt(A) be a
uniformly random permutation and let

I(s)={z€Z]|s(z) € ¥ and s(g(z)) ¢ X}

If I(s) # (), then ¥ is not sgs~!-invariant and thus sg s~! ¢ H. Hence it is enough
to show that P [|I(s)| > 0] > 1 — ¢ for all sufficiently large r (depending only on ¢
and a).

Arguing as in the proof of Thomas-Tucker-Drob [19, Lemma 5.2], it can be shown
that

(6.4) E[|I(s)]] = er(1— &)+ O(1);
and that
(6.5) E[|I(s)|]? = [er(1 = £)] + O(r);
and that
(6.6) E([|I(s)P]) = [er(1 - £)]” + O(r),

where the implied constants needed to witness the big-O inequalities are absolute. It
follows that Var(|I(s)|)*/? = O(y/7) and r = O(E[|I(s)|]); and another application
of Lemma 6.7 shows that P[|I(s)] > 0] — 1 as r — oo. O
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7. FULL LIMITS OF FINITE ALTERNATING GROUPS

In this section, we will first prove that a “full limit” of finite alternating groups
G = U,en Gi has a nontrivial ergodic IRS if and only if G = (J,oy G has linear
natural orbit growth. Then we will classify the ergodic IRSs of the L(Alt)-groups
G = U,y Gi with linear natural orbit growth.

Definition 7.1. Suppose that G = J,;cy G is the union of the strictly increasing
chain of finite alternating groups G; = Alt(4;).

(i) The embedding Alt(A;) < Alt(A; 1) is said to be full if Alt(A;) has no trivial
orbits on A;41.

(ii) G = U,;en G is a full limit of the finite alternating groups G; = Alt(4;) if every
Cmbcdding Alt(Az) — Alt(AH_l) is full.

Warning 7.2. A composition of two full embeddings is not necessarily full. For
example, suppose that G; < G;41 is any full embedding and that A; 15 = G;1+1/G;.
Then the embedding G;+1 — G412 is also full, but the embedding G; — G;42 is
not full. Consequently, if G = ;o G is a full limit and (k; | i € N) is a strictly
increasing sequence of natural numbers, then G' = J;cy G, is not necessarily a
full limit. The notion of a full limit is a purely technical one, introduced in order
to formulate the following special case of Theorem 3.7, which will be proved in
this section. (Of course, by Proposition 3.18, we already know that if a full limit
G = ;e Gi has linear natural orbit growth, then G has a nontrivial ergodic IRS.)

Proposition 7.3. If G = U,y Gi is a full limit of finite alternating groups, then
G has a nontrivial ergodic IRS if and only if G = U,y G:i has linear natural orbit
growth.

€N

Until further notice, suppose that G = |J, . G; is the full limit of the finite

alternating groups G; = Alt(A;).

€N

Lemma 7.4. Let p > 2 be an odd prime, let a = 1/(p+ 1) and let n,, be the
integer given by Lemma 6.1. Suppose that |A;,| > max{ny ., 5(p + 1)} and that
g € Alt(A;,) is an element of order p such that | Fixa, (9)| < [Ai|/(p+1). Then
[Fixa, (6)] < [Add/(p +1) for alli > io.

Proof. Let i > ip and suppose that | Fixa,(g)] < |A;|/(p +1). It is enough to
show that if © is an orbit of Alt(A;) on A;41, then |Fixq(g)|/| <1/(p+1). Let
we Qandlet H={h € Alt(A;) | h-w = w} be the corresponding stablizer.
Let K be a maximal proper subgroup of Alt(A;) such that H < K and let 0k be
the normalized permutation character of the action Alt(A;) ~ Alt(A;)/K. Then,
applying Corollary 2.3, we have that | Fixq(g)|/|Q| < 0k (g).

First suppose that K acts primitively on A;. Let g be a product of a; p-cycles
when regarded as an element of Alt(A;). Since | Fixa,(g)] < |A:|/(p+1), it follows
that a; > |A;|/(p+ 1). Hence, by Lemma 6.1, we have that

Ok (9) < 1/|A;| <1/(p+1).

Next suppose that K acts imprimitively on A;, preserving a system of imprimitivity
P of blocksize 2 < ¢ < mn/2. Then Alt(A;) ~ Alt(4A;)/K is isomorphic to the action
of Alt(A;) on the set P of partitions of A; into f-sets. Applying Lemma 6.3, we
obtain that

Ok (9) < 2/|A| <1/(p+1).
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Finally suppose that K acts intransitively on A;, fixing set-wise a subset S C A,
of size 1 < ¢ < n/2. Then Alt(A;) ~ Alt(A;)/K is isomorphic to the action of
Alt(A;) on [A)°. If £ = 1, then Ok (g) = |Fixa,(9)|/|A:] < 1/(p + 1). Hence we
can suppose that £ > 2. Applying Lemma 6.2, either

0k (9) <5/|A: <1/(p+1),

or else )
O (9) < 5| Fixa, (9)I/1A] < 1/2(p +1).

Corollary 7.5. limsup | Fixa,(g)|/|A:| <1 for all1# g € G.

Proof. Applying Lemma 7.4, it follows that there exists an element g € G of order
3 such that limsup | Fixa,(g)|/|A:| < 1/4. On the other hand, it is easily checked
that if (k; | ¢ € N) is a strictly increasing sequence of natural numbers, then
N ={g € G |lim; |Fixa,, (9)|/|Ar;| = 1} is a normal subgroup of G. Since G
is simple, the result follows. ([l

For the rest of this section, suppose that v # d;1, dg is an ergodic IRS of G.
Applying Creutz-Peterson [2, Proposition 3.3.1], we can suppose that v is the sta-
bilizer distribution of an ergodic action G ~ ( Z, ). Let x(g) = p( Fixz(g) ) be the
corresponding character. For each z € Z and i € N, let Q;(2) ={g-2| g € G, }.
Then, by Theorem 2.1, for p-a.e. z € Z, for all g € G, we have that

u(Fixz(g)) = lm | Fixo,()(9) /1 24(2) |

Fix such an element z € Z and let H = {h € G | h- z = z } be the corresponding
point stabilizer. Clearly we can suppose that the element z € Z has been chosen
such that H ¢ {1, G } and also such that x(g) > 0 for all g € H. For each i € N, let
H; = HNG,; and let n; = |A,;|. Clearly G; ~ Q;(2) is isomorphic to G; ~ G;/H,.

Lemma 7.6. There exist only finitely many i € N such that the action H; ~ A;
18 primitive.

Proof. Since H # @G, there exist only finitely many ¢ € N such that H; = Alt(A;).
Suppose that I = {i € N | H; is a proper primitive subgroup of Alt(A;) } is infi-
nite. Since H # 1, there exists an element g € H of some prime order p. Let
g € G;, and for each ¢ > i, let g be a product of a; p-cycles when regarded as
an element of GG;. Then, by Corollary 7.5, there exists a constant a > 0 such that
a; > an; for all ¢ > 4y. Let ny o be the integer given by Lemma 6.1. Then if ¢ € 1
and n; > nyp 4, since H; is a proper primitive subgroup of Alt(A;), it follows that
| Fixq,(2y(9) /] €:(2) | < 1/n; and hence we obtain that

x(g) = lim | Fixa, () |/194(2) | =0,
which is a contradiction. O

Lemma 7.7. For each integer d > 1, there exist only finitely many i € N such that
H; acts imprimitively on A; preserving a maximal system B; of imprimitivity of
blocksize d.

Remark 7.8. Recall that in this paper, by definition, an imprimitive action is
necessarily transitive.
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Proof of Lemma 7.7. Suppose that there exists a fixed d > 1 and an infinite subset
I C N such that for all 4 € I, the subgroup H; acts imprimitively on A; preserving
a maximal system B; of imprimitivity of blocksize d. Then H; is isomorphic to a
subgroup of the wreath product Sym(d) wr Sym(n;/d) for each i € I. Applying
Stirling’s Approximation, it follows that there exist constants ¢, k such that for all
n,

| Sym(d) wr Sym(n/d)| < ¢k"n™/4.

Claim 7.9. For all but finitely many i € I, the induced action of H; on B; contains
Alt(B;).

Proof of Claim 7.9. Suppose not and let g € H be an element of some prime order
p. Let g € G;, and for each i > i, let g be a product of a; p-cycles when regarded
as an element of G;. Applying Corollary 7.5, there exists a constant a > 0 such
that a; > an; for all ¢ > iy. Arguing as in the proof of Lemma 6.1, it follows that
there are constants r, s such that

95 > 157 (nf) 12,
Let i € I and let T'; < Sym(B;) be the group induced by the action of H; on
B;. Since B; is a maximal system of imprimitivity, it follows that I'; is a primitive
subgroup of Sym(8;). Hence, by Praeger-Saxl [13], if T'; does not contain Alt(5;),
then |T; | < 4™/?. Since H; is isomorphic to a subgroup of Sym(d) wr Ty, it follows
that
[ H | < (/o =

where t = (d!4)Y4, and so

g% NH;| _ |H] t

e < a7 < N (p—1
|9 [gGe| " rsmi(ng)emha

It follows that

x(g) = lim | Fixa, () (9) /1 Qi(2) | = lim g% N H;|/|g% | =0,
which is a contradiction. O

Let a = 1/6 and let ns, be the integer given by Lemma 6.1. Let ip € I be
such that |A;,| > max{ns 4,24d } and such that the induced action of H;, on B;,
contains Alt(B;,). Then there exists an element g € H;, of order 5 such that g
fixes setwise at most 4 blocks of B;, and so | Fixa, (g9)| < 4d < |A;|/6. Applying
Lemma 7.4, it follows that | Fixa, (g)] < |A;|/6 for all ¢ > iy. For each i > i, let
g be a product of a; p-cycles when regarded as an element of G;. Then it is easily
checked that a; > n;/6. Hence, arguing as above, there exist constants r, s such
that

lg%| > 7 8™ (n) 46,
Hence, if ig < i € I, we have that
(9% N H| _ |Hi| _ ckmn}/
[T S 1ge S v
Since 4/6 > 1/2 > 1/d, it follows that x(g) = 0, which is a contradiction. O

Lemma 7.10. There exist only finitely many i € N such that the action H; ~ A;
18 transitive.
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Proof. Suppose not. Then, by Lemma 7.6, for all but finitely many ¢ € N, the
subgroup H; acts imprimitively on A; with a maximal system of imprimitivity B;
of blocksize d;. Furthermore, by Lemma 7.7, we have that d; — oo as i — oco. Let
1# h € H; say, h € H;. Then, by Corollary 7.5, there exist a constant a > 0 such
that |suppa,(9)| > alAj| for all j > 4. But then Lemma 6.5 (in the case when
r = 0) implies that

. |{s€Gj|sgs~t € H}|
= lim =

which is a contradiction. O

Lemma 7.11. There exists a constant s such that for all but finitely many i € N,
there exists a unique H;-invariant subset ¥; C A; of cardinality 1 < r; < s such
that H; induces at least Alt(Q;) on Q; = A; N X,

Proof. Combining Lemmas 7.6, 7.7 and 7.10, we see that there exists iy € N such
that H; acts intransitively on A; for all i > ig. For each such i, let

r; = max{ |3| : ¥ C A; is H;-invariant and |X| < %|Az| }.

Then, applying Lemma 6.6, we see that there exists s such that 1 < r; < s for all
i > 1p. Furthermore, choosing ig so that |A;, | > 4s, it follows that for all i > 4o,
there exists a unique H;-invariant subset ¥; C A; of cardinality r; and that H;
acts transitively on €; = A; N\ X;. Let H; be the subgroup of Sym(;) induced
by the action of H; on ;. Then, arguing as above, we first see that H; must act
primitively on Q; for all but finitely many i > iy, and then that Alt(€;) < H; for
all but finitely many ¢ > 4. ]

In particular, it follows that for every prime p, there exists arbitarily large i € N
such that there exists an element g € H; of order p with | Fixa, (9)| < |As|/(p+1).

Lemma 7.12. If g € H has prime order p > s, then liminf | Fixa, (9)|/|A:] # 0.

Proof. Suppose that liminf | Fixa,(g)|/|Ai] = 0 for some element g € H of prime
order p > s. Let 6;, 1; be the normalized permutation characters of the actions
G; ~ G;/H; and G; ~ [A;]™. Since p > s > ry, it follows that

T4

Fix(a, - (9) = [Fixa, (9)]

Hence, combining Lemma 7.11 and Corollary 2.3, we obtain that

| [Fixa, (9)]"]
0i(9) < vilg) = N
A"
and it follows that x(g) = lim;_, 6;(g) = 0, which is a contradiction. O

The following lemma completes the proof of Proposition 7.3.
Lemma 7.13. G has linear natural orbit growth.

Proof. Let p be a prime with p > s, let a = 1/(p+1) and let n,, , be the integer given
by Lemma 6.1. Then there exists ig such that |A; | > max{n, q,5(p+1) } and such
that H;, contains an element g of order p such that |Fixa, (9)] < [A|/(p +1).
Applying Corollary 7.5, it follows that |Fixa,(g)] < |A:|/(p + 1) for all i > .
Furthermore, by Lemma 7.12, we can assume that | Fixa,(g)| > 10 for all ¢ > 4.
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Suppose that @ is a non-natural orbit of G; = Alt(A;) on A;+1. Then, applying
Corollary 2.3 and Lemmas 6.1, 6.2 and 6.3, it follows that

| Fixg (g)| { 5 |Fixa,(9)] } | Fixa, (9)|
— 0 <max R = ;
|®| 1Al 2]A] 2|Aq]
and it follows that

I FiXAi (g)l
1A

Fixa, (9)]
+ (nig1 — 5i+1ni)|2|Ai|
| Fixa, (9)|
2|14

| Fixa, 1 (9)] < sigan

= (20441 — €i41)

It follows that for all ¢ > ig,
. €it+1
Fixa,(0))/18ml < (1= 52 ) [Fixa 011
Ni+
Since liminf | Fixa, (¢)|/|A:| # 0, it follows that the infinite product
- €i+1
7.1 1-—
( ) H ( 2n1+1 )
1=10
converges to a nonzero real. Hence the same is true of the infinite product
o] —1 o5}
€i+1 €it+1
1— = 14—,
11;[0 ( 271;+1> 11;[() ( 2ni41 — €i+1>

and this implies that

o0

€i+1
§:$<oo.
i=io 27%_‘_176744_1

Of course, since the infinite product (7.1) converges to a nonzero real, it follows
that lim; o €;41/n;41 = 0; and hence there exists i1 > ig such that for all i > iy,
2141 — €41 < 3(nigp1 — €i41)-

It follows that

i €it+1 —3 Z €it+1 <3 Z €it+1 < o0;
7 Mkl — i 3(nit1 — €it1) ot 2Ni41 — €41
and, arguing as above, this 1mphes that the infinite product
-5
i—iy i+1

converges to a nonzero real. Next notice that if ¢ < j, then

Sij 1 Sipani  Sigoniy1 8inj—1
n; n; Ni+1 Nit+2 u%
and hence
o0
Silj 1 sH_lni
a;, = lim = — .
Jj—o0 n; s Ni+1

i=iy
Finally, since $;41m; = n;41 — €;41, it follows that
(oo}

R 1 €it1
RN, EHUEE, (RS
ni, ni,

n n
i=iy L i=i i+l
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d

In the remainder of this section, via a slight modification of the above argument,
we will prove that if G = (J;cy G has linear natural orbit growth, then the ergodic
IRSs of G are {41,0¢ } U{v, | r € NT }, where v, is the stabilizer distribution of
the ergodic action G ~ (A", m®").

For the remainder of this section, suppose that G = |J, .y G has linear natural
orbit growth. Note that we are not assuming that G' = |, G is a full limit. Let
v # 01, 0g be an ergodic IRS of G. As usual, for each H € Subg, we will write

€N

Lemma 7.14. There exists a constant s such that if H € Subg is a v-generic
subgroup, then for all but finitely many ¢ € N, there exists a unique H;-invariant
subset 3; C A; of cardinality 1 < r; < s such that H; induces at least Alt(Q;) on

Before sketching the proof of Lemma 7.14, we will first complete the proof of
Theorem 3.19. Suppose that H € Subg is a v-generic subgroup. Let ig be an
integer such that for all ¢ > ip, there exists a unique H;-invariant subset 3; C A;
of cardinality 1 < r; < s such that H; induces at least Alt(€;) on Q; = A; N\ 3,
and such that | Alt(2;,)| > s!. For each i > ig, let m; : H; — Sym(X;) be the
homomorphism defined by g — ¢ [ £; and let K; = kerm;. Since [H; : K;] < sl
it follows that K; = Alt(€2;). Also note that since [H;y1 : K;+1] < s, it follows
that [K; : K; N K;41] < s! and hence K; < K;11. Let K = Ui>i0 K;. Since K;
is the unique largest factor of the socle of H;, it follows that the map H — K is
G-equivariant and hence there is an associated ergodic IRS 7 which concentrates on
the corresponding subgroups K < H. Applying Theorem 3.23, it follows that there
exists 1 < r < s such that 7 is the stabilizer distribution v, of G ~ (A", m®"),
where G ~ (A, m) is the canonical ergodic action. Hence, in order to complete the
proof of Theorem 3.19, it is enough to show that H = K for v-a.e. H € Subg. To
see this, let H € Subg be such that the corresponding subgroup K is the stabilizer
of the sequence (z1,---x,) € A". Foreach j € N, let ¥; = {z, [ A; |1 <¢<r}.
Then

Kj = Alt(A] AN ZJ) < Hj < Sym(A] AN Z]) X Sym(Z]),
and hence K < H. By Proposition 3.20, the stabilizer Gz is self-normalizing for
m®-a.e. T € A" and this means that H = K for v-a.e. H € Subg. This completes
the proof of Theorem 3.19.

The proof of Lemma 7.14 is almost identical to that of Lemma 7.11, so we will
only sketch the main points. First the following argument shows that Corollary 7.5

also holds when G = J;.y G has linear natural orbit growth.

Lemma 7.15. For each € > 0, there exists ic € N such that if i < i < j and
g € G, then [suppp (9)|/18;] = (1 —¢€)|suppa, (9)|/1A]-

Proof. If i < j and g € G, then
Sij
|suppa, (9)I/1A;] = —[suppa, (9)] = aif suppa, (9)]-
j
Since Lemma 3.15 implies that lim;_, o (1 — n;a;) = 0, the result follows. O

Corollary 7.16. limsup | Fixa,(g)|/|A;| <1 forall1# g€ G.
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Using Corollary 7.16, we can now repeat the proofs of Lemmas 7.6, 7.7, 7.10 and
7.11, except for the final paragraph of the proof of Lemma 7.7, where we require
that there exists an element g € H such that liminf|suppy,(g)|/|A:| > 5/6. To
see that such an element exists, first note that the proof of Claim 7.9 goes through
in this setting. Thus we can suppose that there exists an integer iy such that the
following conditions hold:

(a) H;, acts imprimitively on A;, preserving a maximal system B;, of imprim-
itivity of blocksize d.
(b) The induced action of H;, on B;, contains Alt(5;,).
(¢) (ni, —4d)/n;, > 99/100.
Furthermore, by Lemma 7.15, we can suppose that iy has been chosen so that if
1> 10 and g € Gy, then

99
[suppa, (9)I/184] = 1o

Let g € H;, be an element of order 5 such that g fixes setwise at most 4 blocks of
Big- Then

[ suppa, (9)1/18]-

[supPa,, (D] nyy —4d 99
Al T mg T 1007
and it follows that for all i > i,

[suppa, (9)| 99 |suppa, (9)] S99 99 5

—_— —_— >
|A;] — 100 |A;,] — 100 100~ 6
This completes our sketch of the proof of Lemma 7.14.

8. ARBITRARY LIMITS OF FINITE ALTERNATING GROUPS

In this section, we will first prove that if G is an L(Alt)-group with a nontrivial
ergodic IRS, then G can be expressed as an almost diagonal limit of finite alternat-
ing groups. Then we will classify the ergodic IRSs of the almost diagonal groups
G = U, ey Gi with sublinear natural orbit growth such that G 2 Alt(N). The er-
godic IRSs of Alt(N) will be described in Section 9. Throughout this section, let
G = U;en Gi be the (not necessarily full) union of the increasing chain of finite
alternating groups G; = Alt(A;) and suppose that G 2 Alt(N).

Lemma 8.1. For each i € N, the number c;; of nontrivial G;-orbits on A; is
unbounded as j — co.

Proof. By Hall [5, Theorem 5.1], if there exist i, ¢ € N such that G; has at most ¢
nontrivial orbits on A; for all j > ¢, then G = Alt(N), which is a contradiction. O

Hence, after passing to a suitable subsequence, we can suppose that each G; has
at least 2 nontrivial orbits on A;11. Of course, since G; is simple, this implies that
if 1 # G < G;, then G} also has at least 2 nontrivial orbits on A,;;;. For each
¢ € N, we define sequences of subsets Ag C A; and subgroups G(¢); = Alt(Af) for
j > ¢ inductively as follows:

° Ag = Ay;
[ A§+1 = Aj+1 N FiXAj_*_1 (G(@)j)
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Clearly each G(£); is strictly contained in G(¢);4+1 and G(£) = U< ey G(€); is the
full limit of the alternating groups G(¢); = Alt(A?). It is also easily checked that
if £ <m and i < j, then

G < G(0); < G(m); < G(m);.
G

It follows that if £ < m, then G(¢) < G(m) and that G = (J,cy G(£). For the rest
of this section, suppose that v # d1, dg is an ergodic IRS of G.

Lemma 8.2. G({) = UycjenG(€); has linear natural orbit growth for all but
finitely many £ € N. a

Proof. Otherwise, by Proposition 7.3, there exists an infinite subset I C N such
that for each £ € I, the only ergodic IRS of G(¢) are 0; and d¢(y). For each £ € I,
let f; : Subg — Subg(s) be the Borel map defined by H — H N G({). Then the
map fr is G(¢)-equivariant and hence vy = (fr)«v is a (not necessarily ergodic)
IRS of G(¢). It follows that for v-a.e. H € Subg, for all £ € I, either HNG({) =1
or G(¢) < H. Since G = {J,c; G(¢), this implies that for v-a.e. H € Subg, either
H =1 or H= G, which is a contradiction. [

Hence we can suppose that G(£) = |J,< ey G(€); has linear natural orbit growth
for all £ € N. Let G(¢) ~ (Ag,my¢) be the canonical ergodic action and for each
r € N*, let v(f), be the stabilizer distribution of G(£) ~ (A}, m{"). Let vg )
be the (not necessarily ergodic) IRS of G(¢) arising from the G(¢)-equivariant map
Subg — Subgs) defined by H — H NG(¢). Then Theorem 3.19 implies that there
exist a(£), B(£), v(£), € [0,1] with a(f) + B(£) + >, cn+ Y(£)r = 1 such that

(8.1) vag) = (061 + B)dcy + > 1 O)rv (L),

reN+

Let H € Subg be a v-generic subgroup and let £y € N be the least integer such that
1 < HNGly) < G(£p). Then equation (8.1) implies that for each ¢ > ¢y, there
exist iy > £ and 7, > 1 such that for all j > i;, there exists E? € [Af]” such that

HNG(0); = HNAIL(AS) = Alt(A] \ 5F)

and such that ¢ is contained in the union of the natural G(¢);-orbits on A% for
all k > j. Define i, = £ for 0 < £ < £y and let fz € NY be the function defined by
fu () = ig. Applying the Borel-Cantelli Lemma, it follows that there exists a fized
function f € NN such that for v-a.e. H € Subg, for all but finitely many ¢ € N,
we have that fi(¢) < f(£). Let (je | £ € N) be a strictly increasing sequence of
integers such that j, > max{ f(k) | k < £}. For each £ € N, let A} = Af and
let G}, = Alt(A}). Then it is easily checked that if k& < ¢, then G) < G} and that
G = UZeN Gy

Suppose that H € Subg is a v-generic subgroup. Then there exists an integer
¢y € N such that iy = fg(¢) < f(¢) and for all £ > £y. Let ¢ > . Then, since

Jewr = max{ f(£), f(£ 4+ 1) } = max{ i, ir41}

and AL C AL C A it follows that there exist subsets ¥t € [Af ]

Je+1 = T et Je41 Je+1 Je+1
and XM € [ASTL )70 such that
Jet1 Jet1

AlG(A], | NS5, ) = HNAIR(AS,, ) < HNAI(ASH) = Al(ATS S0,

Je+1 Je+1 Je+1 Je+1 Je+1
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This implies that % == X7 N Af . Since jo > f(€) > i, it follows that

Z§£+1 is contained in the union of the natural G(¢);,-orbits on Agﬁl; and since

IAVARTEN A§z+1 C Fixa,,,(G(£);,), it follows that 25211 is contained in the union of
‘

the natural and trivial G(¢),;,-orbits on Aﬁ.:}l. In other words, writing ¥ = ¥ ,
we have shown that for all £ > (g,
(i) Hy= HNG) = Alt(A}, \ ); and
(ii) X}, is contained in the union of the natural and trivial G-orbits on Ay .
First suppose that G = (J,cy G, has linear natural orbit growth with the asso-
ciated parameters nj, sy, etc. Then we can suppose that aj = limy_, sy /n;, > 0
for all £ € N; and it follows by Remark 3.17 that G = (J,cy G is an almost diagonal
limit.
Hence we can suppose that G = J,cy G} has sublinear natural orbit growth.
Let ¥’ be the associated space of sequences ( X} )¢>¢,, as defined in Section 4; and
let f: ¥ — Subg be the injective G-equivariant map defined by

(S))esto U At(a; ~5)).
>0

Then v concentrates on f(¥') and it follows that u = f, v is a nonatomic G-
invariant ergodic probability measure on ¥’. Applying Theorem 5.1, it follows that
G = Uyen G is an almost diagonal limit. This completes the proof that if G is an
L(Alt)-group with a nontrivial ergodic IRS, then G can be expressed as an almost
diagonal limit of finite alternating groups. For use in the next paragraph, also note
that by Theorem 5.1, there exists v € (0,00) such that v = VE/.

Finally we will prove that if G = |J,cGi is an almost diagonal limit with
sublinear natural orbit growth and G 2 Alt(N), then the ergodic IRSs of G are

{01.0c}U{vy | Be(0,00)}

Note that the above analysis shows that if v # §1, dg is an ergodic IRS of G, then
there exists

e a strictly increasing sequence of integers (j; | £ € N), and
e subsets A; C A,
such that, letting G, = Alt(A}), we have that
o G = ey G is an almost diagonal limit, and
e there exists v € (0,00) such that v = 1/?/, where X/ is the associated space
of sequences (X} )r>z,-

We must show that there exists 8 € (0,00) such that Z/E = V,%y. Note that
G} C€ G, for each £ € N. By Theorem 5.7, after passing to a suitable subsequence
of (j¢ | £ € N) if necessary, we can suppose that G;, C G, for each £ € N. By a
second application of Theorem 5.7, we can suppose that j, = ¢ for all £ € N. (We
only make this assumption in order to simplify notation.) Appealing twice more to

Theorem 5.7, we now see that it is enough to show that the increasing chain
GoCGCGICGiC---CG G-

is an almost diagonal limit. Let AY; = Aj and let AY; | = A;. Let G} = Alt(A7).
Let s}, ej be the parameters associated with the union G' = (J,c G7. Then clearly
541 = 1 and ey, = 0. Also, since suppy,,, (Gi) C suppy,,, (Giq) = Ay, it
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follows that s4;,, = s;41 and €4, 5 = €;41. Thus > .2 € /s, = 3721 ei/s0i < 0.
This completes the proof of Theorem 4.15.

9. THE ERGODIC IRS oF Alt(N)

In this section, adapting and slightly correcting Vershik’s analysis of the ergodic
IRSs of the group Fin(N) of finitary permutations of the natural numbers, we
will state the classification of the ergodic IRSs of the infinite alternating group
Alt(N) and we will characterize the ergodic actions Alt(N) ~ ( Z, 1) such that the
associated character x(g) = pu(Fixz(g)) is indecomposable.

Recall that Fin(N) = { g € Sym(N) | | supp(g)| < oo }. Throughout this section,
if g € Fin(N), then ¢,(g) denotes the number of cycles of length n > 1 in the
cyclic decomposition of the permutation g and sgn : Fin(N) — C = {£1} is the
homomorphism defined by

1, if g € Alt(N);
sgn(g) —{ g ®)

—1, otherwise.

Vershik’s analysis of the ergodic IRSs of Fin(N) is based upon the following two
insights.

(i) If H < Fin(N) is a random subgroup, then the corresponding H-orbit
decomposition N = | |;_; B; is a random partition of N, and these have
been classified by Kingman [7].

(ii) The induced action of H on an infinite orbit B; can be determined via an
application of Wielandt’s theorem [23, Satz 9.4], which states that Alt(N)
and Fin(N) are the only primitive subgroups of Fin(N).

With minor modifications, the same ideas apply to the ergodic IRSs of Alt(N), which
can be classified as follows. Suppose that o = (; )ien € [0, 1] is a sequence such
that:

e > > >aq; > >0;and

o Y X =1
Then we can define a probability measure p, on N by p,({i}) = ;. Let u, be the
corresponding product probability measure on NY. Then Alt(N) acts ergodically on
(NN p ) via the shift action (7 -€)(n) = £(y~!(n)). For each ¢ € NN and i € N,
let Bf ={n e N|&mn)=1i}. Then for u,-a.e. & € NV the following statements
are equivalent for all 7 € N.

(a) oy > 0.

(b) BS #0.

(c) Bt is infinite.

(d) lim, oo |[BEN{0,1,--- ,n—1}|/n = ay.

In this case, we say that & is py-generic.

First suppose that g # 1, so that I = {i € NT | a; > 0} # 0. Let S, =
@,c; Ci, where each C; = {£1} is cyclic of order 2, and let E, < S, be the
subgroup consisting of the elements (&; );es such that [{i € I | e; = —1}] is even.
Then for each subgroup A < E,, we can define a corresponding Alt(N)-equivariant
Borel map

£ NN = Subayy
f —> Hg
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as follows. If £ is pq-generic, then He = sgl(A), where s¢ is the homomorphism
Se @Fin(Bf) — @C’i
iel iel
(i) — (sgn(m)).
Otherwise, if £ is not p,-generic, then we let He = 1. Let v = (f2).pa be the

corresponding ergodic IRS of Alt(N). Finally, if og = 1, then we define E, = () and
1/5“ = (51.

Theorem 9.1. If v is an ergodic IRS of Alt(N), then there exists o, A as above
such that v = v

o

There exist examples of sequences a and distinct subgroups A, A’ < E, such
that v2 = v . However, since for p,-a.e. £ € NV,

lim [BSN{0,1,---,n—1}|/n =,
n—oo

it follows that if o # o/ and A, A’ are subgroups of Eq, E,s, then v4 # v4'. The
remainder of this section is devoted to the proof of the following result.

Theorem 9.2. If Alt(N) ~ (Z, 1) is an ergodic action and v is the corresponding
stabilizer distribution, then the following are equivalent.

(i) The associated character x(g) = u(Fixz(g)) is indecomposable.

(ii) There ewists a such that v = v,

The proof of Theorem 9.2 makes use of the following results of Thoma [17].

Theorem 9.3. (Thoma [17, Satz 6]) The indecomposable characters of Alt(N) are
precisely the restrictions x | Alt(N) of the indecomposable characters x of Fin(N).

Theorem 9.4. (Thoma [17, Satz 1]) If x is a character of Fin(N), then x is
indecomposable if and only if there exists a sequence (s, | n > 2) of real numbers

with each |s,| <1 such that x(g) = anz sn(@),

Lemma 9.5. If Alt(N) ~ (Z, ) is an ergodic action and there exists « such
that the corresponding stabilizer distribution is vE«, then the associated character
x(g9) = u(Fixz(g)) is indecomposable.

Proof. If ag = 1, then uf“ = 07 and the associated character X eg is indecompos-
able. Hence we can suppose that ag # 1 and so I # 0.

With the above notation, Fin(N) acts ergodically on (NY, y,, ) and we can define
a Fin(N)-equivariant Borel map

P NN Subpin ()
¢ — EPFin(B).
iel
Let v = (¢a)«/ta be the corresponding ergodic IRS of Fin(N) and let x be the
character of Fin(N) defined by

X5(9) = na({€ €N | g € @D Fin(B;) }).
el
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Then it is easily checked that

=TI o).

n>1 1€l

Hence, by Theorem 9.4, it follows that x is an indecomposable character of Fin(N).
Notice that if g € Alt(N), then

x(9) = u(Fixz(g) )
= vl ({H € Subanqy g€ H})

= ta({& €2V | g € A(N) N @D Fin(B}) }) = XL (9)-
iel
Applying Theorem 9.3, it follows that x is an indecomposable character of Alt(N).
|

Proof of Theorem 9.2. Let Alt(N) ~ (Z, 1) be an ergodic action and suppose that
associated character x(g) = p(Fixz(g )) is indecomposable. Let v be the corre-
sponding stabilizer distribution. If v = §;, then v = v where agp = 1 and
E, = (. Hence we can suppose that v # §;. Applying Theorem 9.1, there exist a,

A as above with I # ) such that v = v and hence

X(9) = na({€ €N [ g€ He }).

If |I| = 1, then E, = 0 is the trivial group and so A = E,. Thus we can suppose
that |I| > 2. For each element a = (g;)ier € A, let o(a) ={i €I |eg = -1}
If A0, let my be the least integer m such that there is an element 0 # a € [
such that |o(a)] = m. If A = 0, then let my = 0. Let ¢ = (12)(34)) and
h=(12)(34)(56)(78). Then Theorem 9.4 implies that x(h) = x(g)*.

Case 1: Suppose that m4 > 2. Then it is easily seen that x(g9) = > ;c; o
and that x(h) > 3,.; a8 + (3) > tigen: @i@j. On the other hand, we have that
X(9)? = Yier A +23 1 jyepe @i and so X(h) x(g)?, which is a contradiction.

Case 2: Suppose that my € {0,2}. Let T' = (I, E) be the graph with vertex
set I and edge set E such that {j,k} € E if and only if there exists a € A with
o(a) ={j,k}. Then it is enough to show that E=[I).

In this case, it is clear that x(g) = >, o + 2> (iirer ajad and so

—Yaf2Yalal+4Yal 3 alai+a ) alatatal
i€l {i.j}€E i€l {jk}eE {i.j}€E
{kL}eE

After rearranging the terms, we obtain that

=Za§+62afo¢?+42a?a§+4 Z afa?oﬁ

iel {i,j}eE {i,j}€E i¢{j,k}cE
+8Za4 2 2+82a akaf.
{i,j}€E {i,j}eE
{i.k}eE {kL}eE

i,5,k,£ distinct
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On the other hand, we have that

x(h) = Za? +6 Z a?a§+42a?a§
icl {ig}elr]? {ijteE
+ 12 Z a?a?ai + 24204?04?0[,%0[?,
i¢{j,k}eE {i.3,k,L}€T
where T is the set of {i,j, k,¢} € [I]* such that there exists a € A with o(a) =
{i,J4,k,¢}. Note that if {i,5}, {k,£} € E are disjoint edges, then {i,j, &k, ¢} € T.
Also, each {i,j,k,¢} € T can be partitioned into two disjoint edges in at most 3
ways. It follows that

(9.1) 8 Z ajodoiay < 24204304?04%@?.
{i,j}€E {i,d,kL}eT
{k,l}eE

i,7,k,¢ distinct

Clearly we also have that

(9.2) 6 Z ozfa;l» <6 Z oz?oz;*.

{i.j}eE {i.gyell]?

Since x(h) = x(g)?, the inequalities (9.1) and (9.2) must both be equalities and it
follows that E = [I]?, as desired. O

10. UNIFORMLY RECURRENT SUBGROUPS

In [4], Glasner-Weiss introduced the notion of a uniformly recurrent subgroup as
a topological analog of the notion of an invariant random subgroup. In this final
section, we will use the classification of the ergodic IRSs of the L(Alt)-groups to
deduce the classification of their uniformly recurrent subgroups.

Suppose that G is a countably infinite group. Then G acts as a group of homeo-
morphisms of Subg via the conjugation action, H ¥ gHg~'. A subset X C Subg
is said to be a uniformly recurrent subgroup or URS if X is a minimal G-invariant
closed subset of Subg. For example, if N < G is a normal subgroup, then the single-
ton set { N} is a URS of G. As expected, these singleton URSs will be called ¢rivial.
Examples of nontrivial URSs arise as the stabilizer URSs of minimal actions. (It is
an open question whether every URS of every countable group G can be realized
as the stabilizer URS of a suitably chosen minimal G-action.) The definition of the
stabilizer URS of an arbitary minimal action is a little subtle. (See Glasner-Weiss
[4, Section 1].) However, the stabilizer URSs which arise in our setting are easily
described as follows.

Definition 10.1. The L(Alt)-group G = [ J,.y G is said to be the strictly diagonal
limit of the finite alternating groups G; = Alt(A;) if e;11 = fiy1 =0 for all i € N.

In other words, G' = | J;.y Gi is a strictly diagonal limit if for each 7 € N, every
G;-orbit on A;y; is natural. In this case, s;01 = |A;r1]/|A;| is the number of
natural G;-orbits on A;11; and letting so = |Agl|, we can suppose that each

Ai=$0><81><---><8i
and that the embedding G; — G;41 is defined by
g- (Lo, lisliz1) = (g- (Lo, -+ ,4i), liy1).
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Equip A = [],~, s with the usual product topology. Then G acts as a group of
homeomorphisms of the compact space A via

g- (603”' 7€i7£i+17‘€i+27"') = (g (803"' 7‘€i)7€i+1;€i+27"')7 g € Gia

and it is clear that every G-orbit is dense in A. Thus G ~ A is a minimal G-action.
Let f: A — Subg be the G-equivariant map defined by

=G, ={geG|glx)=x}

and let XA = f(A). Then f is a continuous injection and it follows that Xa is
a URS of G. As expected, X is called the stabilizer URS of the minimal action
G~ AL

Remark 10.2. Of course, we can also define X directly as the set of subgroups
H € Subg such that for every ¢ > 0, there exists a point x; € A; such that
HNG,; = Alt(Az N {Qii })

If G = U,y Gi is the strictly diagonal limit of the finite alternating groups
G; = Alt(A;), then we will refer to G ~ A as the canonical minimal action.

Theorem 10.3. If G is an L(Alt)-group and X C Subg is a nontrivial URS, then
G can be expressed as a strictly diagonal limit of finite alternating groups and X is
the stabilizer URS of the corresponding canonical minimal action G ~ A.

The proof of Theorem 10.3 makes use of an observation that is potentially use-
ful in the setting of arbitary countable amenable groups; namely, that if G is a
countable amenable group and X C Subg is a URS, then there exists a G-invariant
ergodic Borel probability measure v on Subg which concentrates on X. Conse-
quently, measure-theoretic techniques (such as the Pointwise Ergodic Theorem for
countable amenable groups [9]) can be employed in the study of the URSs of count-
able amenable groups.

The remainder of this section will be devoted to the proof of Theorem 10.3. So
suppose that G is an L(Alt)-group and that X C Subg is a nontrivial URS. Then
there exists an ergodic IRS v of G which concentrates on X. Since 1, G ¢ X, it
follows that v is a nontrivial ergodic IRS. Hence, by Theorem 3.7, we can express
G as an almost diagonal limit | J, . G; of finite alternating groups G; = Alt(A,).

Lemma 10.4. G 2 Alt(N).

Proof. Suppose that G = Alt(N). Applying Theorem 9.1, since v # ¢7, it follows
that for v-a.e. H € Subpy(y), there exists an infinite subset B C N such that
Alt(B) < H. Hence there exists such a subgroup H € X. But it is now clear that
Alt(N) is in the closure of { g H g=! | g € Alt(N) }, which is a contradiction. O

€N

Applying Theorems 3.19 and 4.15, it follows that there exists a subgroup H € X
such that for all but finitely many 4, there exists a nonempty subset ¥; C A; such
that H N G; = Alt(A; N X;) and such that:

(a) if G = ey Gi has linear natural orbit growth, then there exists an integer
r > 1 such that |X;| = r for all but finitely many 4
(b) if G = ;e Gi has sublinear natural orbit growth, then lim; . [X;] = oo
and lim; oo |X;|/n; = 0.
After deleting a finite initial segment from the sequence (G; | i € N), we can
suppose that such a subset ¥X; C A, exists for all 7 > 0.
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Lemma 10.5. There exists an integer ng such that for all i > ng, the embedding
G; — G;41 is diagonal.

Proof. Suppose not. Then, by Praeger-Zalesskii [14, Theorem 1.7], for all i > 0,
there exists j > ¢ such that G; has a regular orbit ® on A;. Let g € G; be an element
such that g(X;)N® #0. Then gH g ' € X and g H g~ NG, = Alt(A; ~ g(5));
and this implies that ¢ H g~ N'G; = 1. Since 1 > 0 was arbitrary, it follows that
1 € X, which is a contradiction. O

Hence, after deleting a finite initial segment from the sequence (G; | i € N), we
can suppose that G = (J;cy G is a diagonal limit.
Lemma 10.6. There exists an integer ny such that for all i > ny, the embedding
G; — G111 is strictly diagonal.

Proof. Suppose not. Let ¢ > 0. Then for each j > i, the group G; has s;; natural
orbits on A; and fixes the remaining n; — s;;n; points. Let ®;; C A; be the union
of the s;; natural G;-orbits.

Claim 10.7. For each i > 0, there exists j > i such that |®;;| < |A; N Ej).

Assuming that Claim 10.7 holds, let g € G; be such that ®;; C g(A; N X;).
Then gHg ' € X and gHg ' NG; = Alt(9(A; \ %;)); and this implies that
gHg ' NG; = G;. Since i > 0 was arbitrary, it follows that G € X, which is a
contradiction.

Thus it only remains to prove Claim 10.7. First suppose that G = | J;cy G has
linear natural orbit growth. Then there exists an integer © > 1 such that |X;| = r
for all j > 0. Also, assuming Lemma 10.6 does not hold, it follows that for each
i > 0, there exists j > 4 such that G; fixes at least r points on A; and thus
|®i;| < |Aj N X;|. Next suppose that G = |J;cy Gi has sublinear natural orbit
growth. Then we have that

D, y
lim M = lim nzs—7 =0;
J—o0 le J—00 le
and also that lim;_, [3;|/n; = 0. The result follows easily. O

Thus, after deleting a finite initial segment from the sequence (G; | i € N), we
can suppose that G = (J;cy Gi is the strictly diagonal limit of the finite alternating
groups G; = Alt(4;). Let G ~ A be the corresponding canonical minimal action
and let m be the unique G-invariant ergodic probability measure on A. Then, by
Theorem 3.19, there exists an integer » > 1 such that v is the stabilizer distribution
v, of the ergodic action G ~ (A", m®"). Suppose that 7 > 1, so that H is the
pointwise stabilizer of r elements x1,--- ,x, € A. For each 1 </ < r, let

ze = (20(0), we(1), -+ yze(i), -+ );

and for each 1 < ¢ <7 and i > 0, let z) = (24(0),z¢(1),--- ,2¢(i)) € A; be the
corresponding restriction. Then ¥; = {z%,--- 2L }. Fix some ¢ > 0. Then if
j > i is sufficiently large, there exist distinct elements y1,--- ,y, € A;, all of which
restrict to the same element z € A;. Let g € G; be such that g(xz) = yg for all
1<¢<r. ThengHg'e X and gH g ' NG; = Alt(A; ~ {2 }). Since i > 0 was
arbitary, it follows that X also contains the stabilizer URS Xaof G ~ A, which
contradicts the minimality of X. Thus r = 1 and X = X is the stabilizer URS of
G ~ A. This completes the proof of Theorem 10.3.
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