ON THE STEINHAUS AND BERGMAN PROPERTIES FOR
INFINITE PRODUCTS OF FINITE GROUPS

SIMON THOMAS AND JINDRICH ZAPLETAL

ABSTRACT. We study the relationship between the existence of nonprincipal
ultrafilters over w and the failure of the Steinhaus and Bergman properties for

infinite products of finite groups.

1. INTRODUCTION

In this paper, we will investigate the status of the Steinhaus and Bergman prop-
erties for infinite products of finite groups in various axiomatic frameworks. Our
interest in these properties is partially motivated by the automatic continuity prob-
lem for Polish groups. More specifically, we will be interested in the question of
which infinite products G = [[ G,, of nontrivial finite groups have the automatic
continuity property; i.e. have the property that every homomorphism ¢ : G — H
from G into a Polish group H is necessarily continuous. In set theory with the Ax-
iom of Choice, infinite products of finite groups typically fail to have this property;
and, in fact, no examples of infinite products of finite groups with this property are
currently known. The basic example of a non-continuous homomorphism involves

a nonprincipal ultrafilter U over the set w of natural numbers.

Example 1.1. Suppose that there exists a fixed nontrivial finite group F' such that
G, = F for all n € w. Then the corresponding ultraproduct [[,, G, is isomorphic
to F and it is clear that the associated homomorphism ¢ : [[G, — F is not

continuous.

The automatic continuity property for some more interesting infinite products

of finite groups can be shown to fail for more complicated reasons.
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Example 1.2. Let d > 2 and suppose that G,, = SL(d, p,), where (p, | n € w) is
an increasing sequence of primes. If K = [[,,F,, is the corresponding ultraproduct

of the fields F, of order p,,, then

Hu SL(d,p,) = SL(d, Hu F,,) = SL(d, K)

and thus SL(d, K) is a homomorphic image of [[ SL(d,p,). Since K is a field of
characteristic 0 and cardinality 2%°, it follows that K embeds into C and hence
SL(d, K) embeds into SL(d,C). Once again, it is clear that the associated homo-
morphism ¢ : [[ SL(d, p,) — SL(d,C) is not continuous.

Remark 1.3. In Section 3, we will present a more sophisticated construction involv-
ing an embedding of K into the field of Puiseux series over the field Q of algebraic
numbers, which yields a non-continuous homomorphism of [[SL(d,p,) into the

infinite symmetric group Sym(w).

It is natural to ask whether the existence of a nonprincipal ultrafilter U over
w is either necessary or sufficient in the above constructions of non-continuous
homomorphisms. (The existence of a nonprincipal ultrafilter I is clearly sufficient
in Example 1.1. However, the construction in Example 1.2 also makes use of the
existence of an embedding of the field K = [],,F,, into C and the usual proofs
of this result rely on the existence of transcendence bases for both K and C.) Of
course, when considering this kind of question, we cannot work with the usual
ZFC axioms of set theory since these already imply the existence of nonprincipal
ultrafilters over arbitrary infinite sets. Instead we will work with the axiom system

ZF 4+ DC, where DC is the following weak form of the Axiom of Choice.

Axiom of Dependent Choice (DC). Suppose that X is a nonempty set and
that R is a binary relation on X such that for all z € X, there exists y € X with
x Ry. Then there exists a function f : w — X such that f(n) R f(n + 1) for all

ne€w.

The axiom system ZF + DC' is sufficient to develop most of real analysis and
descriptive set theory, but is insufficient to prove the existence of pathologies such
as nonmeasurable sets. (For example, see Moschovakis [22].) In particular, since

nonprincipal ultrafilters over w are nonmeasurable when regarded as subsets of the
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Cantor space 2V, it follows that ZF + DC does not prove the existence of such
ultrafilters.
We will provide a structured answer to the above question. Firstly, the following

result is well-known. (For example, see Rosendal [24, Section 2].)

Theorem 1.4. It is consistent with ZF + DC' that if G, H are any Polish groups,

then every homomorphism ¢ : G — H is continuous.

In fact, assuming the existence of suitable large cardinals, this is true in L(R),
the canonical minimal model of ZF which contains all of the ordinals and all of
the real numbers. Of course, this implies the well-known result that L(R) does not
contain any nonprincipal ultrafilters over w. While it seems almost certain that the
existence of a nonprincipal ultrafilter over w is necessary to prove the failure of the
automatic continuity property for suitably chosen infinite products G = [[ G,, of
finite groups, we have not completely settled this question. However, in Section 4,
we will prove a number of partial results in this direction, including the following

theorem.

Theorem 1.5 (ZF + DC). Suppose that d > 2 and that (p, | n € w) is an
increasing sequence of primes. If there exists a non-continuous homomorphism

v : [[SL(d,p,) — Sym(w), then there exists a nonprincipal ultrafilter over w.

On the other hand, we will show that the existence of a nonprincipal ultrafilter
over w is not sufficient to prove the failure of the automatic continuity property for
suitably chosen infinite products of finite groups. In order to explain this result, it
will be necessary in the remainder of this section to assume the existence of suitable
large cardinals. We will not specify the precise large cardinal hypothesis that we
need until it becomes necessary to do so in Section 7. (This paper has been written
so that the first six sections can be read by mathematicians with no knowledge of
advanced set theory, such as forcing, large cardinals, etc. It is only in the final
section that some knowledge of advanced set theory is needed and this section can
be omitted by mathematicians without the necessary background.) Following the
usual convention [31], we will indicate the use of a large cardinal hypothesis by
writing (LC') before the statement of the relevant theorem. The following result is

a special case of a more general result that we will present in Section 5.
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Theorem 1.6 (LC). It is consistent with ZF + DC' that

(i) there exists a nonprincipal ultrafilter U over w; and
(ii) for each d > 2, if (pn | n € w) is a sufficiently fast growing sequence of

primes, then [[ SL(d, p,) has the automatic continuity property.

In fact, assuming the existence of suitable large cardinals, this is true in L(R)[U],
the minimal model of ZF containing all of the ordinals and real numbers, together
with a Ramsey ultrafilter & over w. Under a suitable large cardinal hypothesis,
L(R)[U] has canonicity features parallel to those of L(R); and, in particular, its
theory does not depend on the choice of the Ramsey ultrafilter &/. Di Prisco-
Todorcevic [7] have shown that many of the regularity properties of L(R) continue
to hold in L(R)[U]. For example, in L(R)[U], every uncountable set of reals has
a perfect subset. Thus it seems natural to regard L(R)[U] as a canonical model
of ZF + DC in which a minimal number of the pathological consequences of the
Axiom of Choice hold, modulo the existence of a nonprincipal ultrafilter U over w.
The results of this paper provide yet more evidence for this point of view.

Up until this point, we have considered two examples of infinite products of finite
groups; namely, infinite products of a fixed finite group F' and infinite products of
the form [[ SL(d,py) for various increasing sequences (p, | n € w) of primes. In
the first example, we have seen that the existence of a nonprincipal ultrafilter U over
w is sufficent to prove the failure of the automatic continuity property; while in the
second example, this is not sufficent. Now we should also consider a third example;
namely, the infinite product [] Alt(n) of the finite alternating groups. In this case,
as we will explain in Section 6, it is natural to conjecture that the automatic
continuity property holds. So what is the essential difference between these three
examples? Perhaps surprisingly, the key to our analysis of the infinite product
[1 G of finite groups turns out to be the “asymptotic representation theory” of
the sequence (G, | n € w). In order to state this more precisely, it is necessary to

introduce the following definitions.

Definition 1.7. Let H be a nontrivial finite group.

(i) If K is a field, then dx (H) denotes the minimal dimension of a nontrivial
K-representation of H; i.e. the least d such that there exists a nontrivial

homomorphism 0 : H — GL(d, K).
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(i) d(H) = min{ dg(H) | K is a field }.

Example 1.8. Suppose that p > 5 is a prime and that H = SL(d, p).

(i) If d =2, then d¢(H) = (p—1)/2 and d(H) = 2.
(i) If d > 2, then dc(H) = (p? —p)/(p — 1) and d(H) = d.

(For example, see Humphreys [12] and Tiep-Zalesskii [30].)

Let (G, | n € w) be a sequence of nontrivial finite groups. In this paper, we

will prove the following results.

(a) If iminf dc(G,) < oo, then the existence of a nonprincipal ultrafilter ¢/
over w is enough to prove that [ G,, does not have the automatic continuity
property.

(b) Assuming (LC), if (d¢(Gy) | n € w) grows sufficiently fast, then [[ G,, has
the automatic continuity property in L(R)[U].

(c) If liminf d(G,) < oo, then [[ G, does not have the automatic continuity

property in the actual set-theoretic universe V.

Furthermore, we conjecture that the converse of (c¢) also holds.

This paper is organized as follows. In Section 2, we will discuss the Steinhaus and
Bergman properties for infinite products of finite groups. In Section 3, working with
the usual ZFC axioms of set theory, we will prove that the Steinhaus and Bergman
properties fail for various infinite products of finite groups. In Section 4, working
with the axiom system ZF + DC, we will prove that the failure of the Bergman
property for suitably chosen infinite products of finite groups implies the existence
of a nonprincipal ultrafilter over w; and we will show that the failure of a weak form
of the Steinhaus property also implies the existence of such an ultrafilter. In Section
5, we will present a partition property PP for products of finite sets with measures;
and we will show that ZF + DC'+ PP implies that various infinite products of finite
groups have both the Bergman property and the Steinhaus property. In Section 6,
we will briefly discuss the questions of which infinite products of nonabelian finite
simple groups have either the Bergman property or the Steinhaus property in the
actual set-theoretic universe V. Finally, in Section 7, assuming the existence of

suitable large cardinals, we will prove that L(R)[U] satisfies PP.
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Notation 1.9. Let (H, | n € w) be a sequence of finite groups and let H = [[ H,,.
Suppose that A C w.
(i) II,.ca Hn denotes the subgroup of H consisting of those elements ( h,, ) € H
such that h, =1 for all n € w ~ A.
(ii) If h = (hn) € H, then h [ A denotes the element (g,) € [],c4 Hn such
that g, = h,, for all n € A.
Recall that H = [ H, is a Polish topological group with neighborhood basis of the

identity given by { ][, .4 Hn | A is a cofinal subset of w }.

neA

Suppose that U is a subset of the group G. Then for each ¢t > 1, U denotes the
set of elements g € G which can be expressed as a product g = wug - - - u4, where each
u; € U. The subset U is said to be symmetric if U = U~! is closed under taking

inverses.

2. THE STEINHAUS AND BERGMAN PROPERTIES

In this section, we will discuss the Steinhaus and Bergman properties for infinite
products of finite groups. The Steinhaus property was introduced by Rosendal-
Solecki [23] in the context of the automatic continuity problem for homomorphisms
between topological groups. In the following definition, a subset W of a group G

is said to be countably syndetic if there exist elements g, € G for n € w such that

G= UnEw g"W‘

Definition 2.1. Let G be a topological group. Then G has the Steinhaus property if
there exists a fized integer k > 1 such that for every symmetric countably syndetic
subset W C G, the k-fold product WF* contains an open neighborhood of the

identity element 14.

Proposition 2.2 (Rosendal-Solecki [23]). If G is a topological group with the Stein-
haus property and ¢ : G — H is a homomorphism into a separable group H, then

@ 1s necessarily continuous.

The class of groups with the Steinhaus property includes Polish groups with
ample generics [15], Aut(Q, <), Homeo(R) [23] and full groups of ergodic countable
Borel equivalence relations [16]. However, no infinite product of finite groups is

currently known to have the Steinhaus property. Of course, by Example 1.2 and
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Proposition 2.2, it follows that if (p, | n € w) is an increasing sequence of primes
and d > 2, then [[ SL(d, p,) does not have the Steinhaus property. We will prove

the following more general result in Section 3.

Theorem 2.3. Suppose that (G, | n € w) is a sequence of nontrivial finite groups.
If liminf d(G,) < oo, then [[ G, does not have the automatic continuity property

and hence does not have the Steinhaus property.

As the reader has probably guessed, the proof of Theorem 2.3 involves the use of
a suitable ultraproduct [[,, G,. However, the following strengthening of Theorem
1.6, which we will prove in Section 5, shows that the existence of a nonprincipal
ultrafilter over w is not always enough to prove that such a product [[ G,, does not

have the Steinhaus property.

Theorem 2.4 (LC). It is consistent with ZF + DC' that

(i) there exists a nonprincipal ultrafilter U over w; and
(ii) for each d > 2, if (pn | n € w) is a sufficiently fast growing sequence of

primes, then [ SL(d, pn) has the Steinhaus property.

Once again, assuming the existence of suitable large cardinals, this is true in
L(R)[U], the minimal model of ZF containing all of the ordinals and real numbers,
together with a Ramsey ultrafilter U over w.

The Bergman property was introduced by Bergman [2] as a strengthening of
the notion of uncountable cofinality which was introduced earlier by Macpherson-

Neumann [20].

Definition 2.5. Suppose that G is a non-finitely generated group.

(a) G has countable cofinality if G = |, ., Gn can be expressed as the union

new
of a countable increasing chain of proper subgroups. Otherwise, G has
uncountable cofinality.

(b) G is Cayley bounded if for every symmetric generating set .S, there exists an
integer n > 1 such that every element g € G can be expressed as a product
g =81-"5p, where each s; € SU{1}.

(¢) G has the Bergman property if G has uncountable cofinality and is Cayley
bounded.
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By de Cornulier [6], a group G has the Bergman property if and only if whenever
G acts isometrically on a metric space, every G-orbit has a finite diameter. For this
reason, groups with the Bergman property are often said to be “strongly bounded”.
The class of groups with the Bergman property includes the symmetric groups
over infinite sets [2], automorphism groups of various infinite structures [9, 13] and
oligomorphic groups with ample generics [15] The following easy observation is

essentially contained in Bergman [2, Lemma 10].

Lemma 2.6. If G is a non-finitely generated group, then the following conditions

are equivalent.

(a) G has the Bergman property.

(b) If G = U,eco, Un is the union of an increasing chain of symmetric subsets
such that U,U,, C Uy, for all n € w, then there exists an n € w such that
U, =G.

In [6], improving an earlier result of Koppelberg-Tits [17], de Cornulier proved
that if G is a product of infinitely many copies of a fixed finite perfect group,
then G has the Bergman property; and Zalan Gyenis has recently checked that the
arguments of Saxl-Shelah-Thomas [25] can be modified to prove that an infinite
product []S, of finite simple groups has the Bergman property if and only if
[ S» has uncountable cofinality. This yields an explicit classification of the infinite
products ]S, of finite simple groups satisfying the Bergman property, which we
will discuss in Section 6. On the other hand, there are many infinite products of
finite groups which are known not to have the Bergman property. In particular,

the following result holds.

Theorem 2.7. Ifd > 2 and (p, | n € w) is an increasing sequence of primes,

then:

(a) TISL(d,pn) has countable cofinality; and
(b) TI1SL(d,pn) is not Cayley bounded.

Theorem 2.7(a) is essentially contained in Saxl-Shelah-Thomas [25]. However,
for the sake of completeness, we will quickly sketch the very easy proof. (We will

present the proof of Theorem 2.7(b) in Section 3.) Let U be a nonprincipal ultrafilter
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over w and let K =[], F,,. be the corresponding ultraproduct of the fields I, of

order p,. Then K is an uncountable field and

Hu SL(d,p,) = SL(d, Hu F,,) = SL(d, K).

It follows that SL(d, K) is a homomorphic image of [[ SL(d, p,,) and hence Theorem

2.7(a) is an immediate consequence of the following observation.

Proposition 2.8. If F is an uncountable field, then SL(d, F) has countable cofi-
nality.

Proof. Let B be a transcendence basis of F' over its prime subfield. Then B is

uncountable and hence we can express B = |J, . B, as the union of a countable

new
strictly increasing chain of proper subsets. For each n € w, let F), be the algebraic
closure of B, in F'. Then the strictly increasing chain of proper subgroups

SL(d, F) = | J SL(d, F,)

new

witnesses that SL(d, F') has countable cofinality. O

The following result, which will be proved in Section 4, shows that the existence
of a nonprincipal ultrafilter over w is necessary in order to prove either Theorem

2.7(a) or Theorem 2.7(b).

Theorem 2.9 (ZF + DC). Let d > 2 and let (p, | n € w) be an increasing
sequence of primes. If [[ SL(d,p,) does not have the Bergman property, then there

exists a nonprincipal ultrafilter over w.

On the other hand, we will also show that the existence of a nonprincipal ultra-

filter over w is not sufficient to prove either of the parts of Theorem 2.7.

Theorem 2.10 (LC). Ifd > 2 and (p, | n € w) is an increasing sequence of
primes, then [[ SL(d, pn) has the Bergman property in L(R)[U].

Examining the above proof of Theorem 2.7(a), we see that it relies upon the
following three consequences of the Axiom of Choice:
(i) the existence of a nonprincipal ultrafilter U over w;

(ii) the existence of a transcendence basis B of the field [],, F,, ; and
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(iii) the existence of an expression of B as the union of a countable strictly
increasing chain of proper subsets.

Clearly L(R)[U] satisfies (i); and since DC implies that every infinite set has a

denumerably infinite subset, it follows easily that every infinite set can be expressed

as the union of a countable strictly increasing chain of proper subsets in L(R)[U].

Consequently, assuming LC, if (p, | n € w) is an increasing sequence of primes,

then (ii) must fail in L(R)[U].

Corollary 2.11 (LC). If (pn | n € w) is an increasing sequence of primes, then
the field [1,,Fp, does not have a transcendence basis in L(R)[U].

3. ON THE FAILURE OF THE BERGMAN AND STEINHAUS PROPERTIES

In this section, we will first that if (p, | n € w) is an increasing sequence of

primes and d > 2, then:

e There exists a non-continuous homomorphism of [[ SL(d, p,) into Sym(w).

e [[SL(d,p,) is not Cayley bounded.

Then we will prove prove that if (G, | n € w) is a sequence of nontrivial finite
groups such that liminf d(G,,) < oo, then [] G,, does not have the automatic con-
tinuity property and hence does not have the Steinhaus property.

Once again, let U be a nonprincipal ultrafilter over w and let K = [[,, F,, be the
corresponding ultraproduct of the fields F,, of order p,. Our arguments depend

upon the existence of a suitable valuation v: K — QU {0 }.

Definition 3.1. Let F be a field and let ¢ be an indeterminate over F'. Then F((t))
denotes the corresponding field of formal power series; and
P(F) = J F(Y™)
n>1
denotes the corresponding field of Puiseux series. Let vp : P(F) — QU { oo} be
the valuation such that if
0#a= i apt™™ € P(F)
k>M
where ap, € F, apy #0, k, M € Z and n > 1, then vp(a) = M/n. (As usual, we set
vr(0) = 00.)
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It is well-known that if F' is an algebraically closed field of characteristic 0,
then P(F') is algebraically closed. (For example, see Chevalley [4].) In particular,
if Q is the field of algebraic numbers, then P(Q) is an algebraically closed field
of cardinality 2%°. Hence, since K = [],,F,, is a field of characteristic 0 and
cardinality 2%, we can suppose that K is a subfield of P(Q). Furthermore, since
K is uncountable and the automorphism group of P(Q) acts transitively on non-
algebraic elements, we can suppose that ¢t € K. From now on, we let v = vg [ K
denote the corresponding valuation of K and let R = {a € K | v(a) > 0} be the

corresponding valuation ring. We will make use of the following result, which was

proved in Thomas [29, Section 2].
Theorem 3.2. [SL(d,K): SL(d,R)] = w.

Corollary 3.3. There exists a non-continuous homomorphism of [ SL(d, p,) into

Sym(w).

Proof. Let 7 : [[ SL(d, pn) — SL(d, K) be the canonical surjective homomorphism
and let H = 7 Y(SL(d,R)). Then [[[SL(d,p,) : H] = w and the action of
[1SL(d,py) on the cosets of H induces a homomorphism

p: HS’L(d, Pn) — Sym(w)
such that p(H) is the stabilizer of 0 in (][ SL(d, p,,) ). If S is the stabilizer of 0 in
Sym(w), then S is an open subgroup of Sym(w) and ¢ ~1(S) = H. Since H is clearly
not an open subgroup of [[ SL(d, p,), it follows that ¢ is not continuous. |

Next we will prove that [[ SL(d,p,) is not Cayley bounded. By the following
easy observation, it is enough to show that SL(d, K) is not Cayley bounded.

Lemma 3.4. Suppose that G is a group and that N < G is a normal subgroup. If
G is Cayley bounded, then H = G/N s also Cayley bounded.

Proof. Suppose that the symmetric generating set S C H witnesses that H is not
Cayley bounded. Let w : G — H be the canonical surjective homomorphism and

let T = 7=1(S). Then T witnesses that G is not Cayley bounded. O

From now on, in order to simplify notation, we will suppose that d = 2. Recall

that after identifying K with its image under a suitable embedding into the field
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P(Q) of Puiseux series in the indeterminate ¢, we have that ¢ € K. Also note that
v(t) = 1 and that v(¢t~!) = —1. For each k € K* = K ~ {0}, let

1 k 1 0 k0
z(k) = y(k) = d(k) =
0 1 ko1 0 k1

Then it is well-known that T = {xz(k) | k € K*} U{y(k) | k € K*} generates
SL(2,K). (For example, see Lang [18, Lemma XII1.8.1].) Let

U={d®t),dt ) }u{z(k)|0<v(k) <2}U{y(k)|0<v(k) <2}

Since v(—k) = v(k) for all k¥ € K, it follows that U is a symmetric subset of
SL(2,K). We claim that U generates SL(2, K). To see this, note that

d(t)z(k)d(t)™" = z(t*k) d(t)ta(k)d(t) = x(t k)
and that
v(t?k) = v(t?) +v(k) = v(k) + 2 v(t72k) = v(t72) + v(k) = v(k) — 2.

Hence if k € K*, then there exists m € Z such that d(¢)"z(k)d(¢t)~™ € U; and
similarly, there exists m € Z such that d(¢)™y(k)d(t)~™ € U. It follows that
T C (U) and hence (U) = SL(2, K). Next for each matrix

ay a9
A= € SL(2,K),

as ay
we define

7(A) =min{v(a;) |1 <1 <4}
Notice that since

a a by b2)  [aibi +azbs a1y + azbs

as ay bs by asby + agbs  azby + asby
and since, for example,
v(a1by + agbs) > min{ v(a1by),v(agbs) }
=min{v(ar) + v(b1),v(az) + v(bs) },
it follows that 7(AB) > 7(A) + 7(B) for all A, B € SL(2,K). Finally recall that

for each m € N, we have that v(¢~") = —m and so 7(d(t™)) = —m. It now follows

easily that for each n € N, there exists m € N such that d(¢™) is not a product of
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n elements of U U {1}. Thus SL(2, K) is not Cayley bounded and it follows that
[1SL(2,p,) is also not Cayley bounded.

The remainder of this section is devoted to the proof of Theorem 2.3. Suppose
that (G, | n € w) is a sequence of nontrivial finite groups with liminf d(G,) < cc.
Then there exists an infinite subset I C w and a fixed d > 1 such that for each

n € I there exists a nontrivial homomorphism
on: G, — GL(d, F,)

for some field F),. In order to simplify notation, we will suppose that I = w. Let U

be a nonprincipal ultrafilter over w and let

o:I1,6Gn— 11, CGL Fy)
be the homomorphism defined by (g, )u — (¢n(9n))u. Let F = [], Fn and
H = ¢(][,Gn)- By Thomas [29, Theorem 2.1], since F' is a field of cardinality at
most 2% and

1#4H< Hu GL(d, F,) = GL(d, F),

it follows that there exists a proper subgroup Hy < H such that 1 < [H : Hy| < w.
(As with our earlier arguments, the proof of Thomas [29, Theorem 2.1] involves
defining a suitable valuation on F.) Let L = ¢ '(Hy). Then L is a proper
subgroup of [[,, Gy of countable (possibly finite) index. Let 7 : [[G,, — [][, Gn
be the canonical surjective homomorphism and let M = 7=!(L). Then M is a
proper subgroup of [],, G, of countable (possibly finite) index. If M has countably
infinite index, then arguing as in the proof of Corollary 3.3, it follows that there
exists a non-continuous homomorphism of [[ G, into Sym(w). So suppose that
[[IGn : M| = £ > 1 is finite. Since U is nonprincipal, it follows that if P is any
open subgroup of [[ Gy, then 7(P) = [[,,Gn. In particular, M is not an open
subgroup and hence there exists a non-continuous homomorphism from [[ G,, into

the finite group Sym(¢). This completes the proof of Theorem 2.3.

4. ON THE EXISTENCE OF NONPRINCIPAL ULTRAFILTERS

In this section, working with the axiom system ZF + DC, we will prove that the
failure of the Bergman property for suitably chosen infinite products [[ H,, of finite

groups implies the existence of a nonprincipal ultrafilter over w. It is currently
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not known whether failures of the Steinhaus property also imply the existence of a
nonprincipal ultrafilter over w. However, we will show that failures of a weak form

of the Steinhaus property do indeed imply the existence of such an ultrafilter.

Theorem 4.1 (ZF + DC). Let (Hy, | n € w) be a sequence of nontrivial finite

groups which satisfies the following condition:

(f) There is a fixed integer t > 1 such that for all n € w, there is a conjugacy
class C,, C H,, such that Ct = H,.

If [] Hy does not have the Bergman property, then there exists a nonprincipal ul-

trafilter over w.

Proof. Suppose that G = [] H,, does not have the Bergman property. Then we
can express G = J,c,, Ur as the union of a strictly increasing chain of symmetric

proper subsets such that UpUy C Uiy for all k € w. Consider
I={ACuw| Hn€AHn C Uy, for some k € w }.

Then clearly Z is an ideal which contains all the finite subsets of w. Hence it is
enough to prove that there exists a set B ¢ 7 such that Z N P(B) is a prime ideal
over B.

Suppose that no such set B exists. Then for each A ¢ Z, there exists A’ C A
such that A’ ¢ 7 and A~ A’ ¢ T; and hence we can inductively find pairwise
disjoint subsets { Ay | k € w} of w such that Ay ¢ 7 and w \ ;< A¢ ¢ Z for all

ke w.

Claim 4.2. There exists k € w such that for every h € ]
g € Uy, such that g [ Ax = h.

neA, H,,, there exists

Proof of Claim 4.2. If not, then there exists h € G such that for all £ € w and
g € Uy, we have that g [ Ay # h [ Ag. But this means that h ¢ |J, ., Uk, which is

a contradiction. O

Fix some such k € w. For each n € Ag, let C,, be the conjugacy class of H,
given by condition (f) and let h = (hy, ) € [[,c 4, Hn be such that h,, € C), for all
n € Ag. Let h € Uy and let m = max{k,¢}. Then it follows that the conjugacy

class C of h in HnGAk H,, is contained in U,2; and hence [] H,, is contained in

neAg
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U,ff. But this means that Hne AL H, C U, for some s > m, which contradicts the

fact that Ay ¢ Z. This completes the proof of Theorem 4.1. O

Clearly Theorem 2.9 is an immediate consequence of Theorem 4.1, together with

the following result.

Proposition 4.3 (Ellers-Gordeev-Herzog [10]). Suppose that K is any field such
that |K| > 5 and that C' is any noncentral conjugacy class of SL(d, K).

(i) If d =2, then C® = SL(2, K).

(ii) Ifd > 2, then O = SL(d, K).

In the remainder of this section, we will consider the following weak form of the

Steinhaus property.

Definition 4.4. The Polish group G is said to have the weak Steinhaus property
if for every symmetric countably syndetic subset W C @G, there exists an integer

k > 1 such that W* contains an open neighborhood of the identity element 1.

For example, if the Polish group G has a non-open subgroup of countable index,
then clearly G does not have the weak Steinhaus property. In particular, if we work
with ZFC, then the results of Section 3 show that [[ SL(d,p,) does not have the
weak Steinhaus property. The rest of this section is devoted to the proof of the

following result.

Theorem 4.5 (ZF + DC). Suppose that d > 2 and that (p, | n € w) is an
increasing sequence of primes. If [[ SL(d,p,) does not have the weak Steinhaus

property, then there exists a nonprincipal ultrafilter over w.

Notice that Theorem 1.5 is an easy consequence of Theorem 4.5. For suppose that
¢ : [[SL(d,pn) — Sym(w) is a non-continuous homomorphism. Then there exists
an open subgroup U < Sym(w) such that ¢! (U) is not open in [ SL(d, p,,). Since
U has countable index in Sym(w), it follows that ¢ ~!(U) is a non-open subgroup
of countable index in [[ SL(d, p,) and hence [[ SL(d, p,) does not have the weak
Steinhaus property.

Most of our effort will go into proving the following special case of Theorem 4.5.
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Theorem 4.6 (ZF + DC). Suppose that d > 2 and that (p, | n € w) is an
increasing sequence of primes. If there exists a subgroup H < [[SL(d,p,) such

that [T] SL(d,py) : H] = w, then there exists a nonprincipal ultrafilter over w.

The proof of Theorem 4.6 makes use of some of the basic properties of primitive
permutation groups. Recall that if  is any nonempty set and G < Sym(2), then
G is said to act primitively on € if:

(i) G acts transitively on §2; and

(ii) there does not exist a nontrivial G-invariant equivalence relation on .
It is well-known that if G < Sym(€?) is a transitive subgroup, then G acts primitively
on  if and only if the stabilizer G, = {g € G | g(a) = a } is a maximal subgroup
of G for some (equivalently every) a € Q. Also if G acts primitively on Q and
1 # N < @ is a nontrivial normal subgroup, then it follows that N must act
transitively on Q. (For example, see Cameron [3, Theorem 1.7].)

The proof of Theorem 4.6 also makes use of the following easy consequence of

Proposition 4.3.

Lemma 4.7 (ZF 4+ DC). Suppose that d > 2 and that (p, | n € w) is an in-
creasing sequence of primes. Then every normal subgroup N of countable index in

[1SL(d,pn) is open.

Proof. Let G = [[SL(d,p,) and let F = {g, = (g-(n)) | 7 € 2} C G be a family

such that for each 7 # o € 2N, there exists an integer N > 0 such that

e g.(n) =g,(n) for all n < n. ,; and

e g-(n)"'g,(n) is a noncentral element of SL(d,p,) for all n > n, ,.
Since [G : N] < w, there exist 7 # o € 2" such that g;N = g,N and hence
g = g-'g, € N. Since N is a normal subgroup, the conjugacy class C' = g% is
contained in N. Applying Proposition 4.3, it follows easily that N contains the

open subgroup [] SL(d,p,) and hence N is open. O

n2>nr s
Proof of Theorem 4.6. Let G = [[SL(d,p,) and let { P; | j € J} be the set of
open subgroups of G such that H < P;. Since H < ﬂje, P; and the intersection
of infinitely many open subgroups of G has index 2%, it follows that J is finite. Let

G'= [ sti.p) < B

n>ng jeJ
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Then after replacing G by G’ and H by its projection H' into G’ if necessary, we
can suppose that H is not contained in any proper open subgroups of G.
Let G = | ], ¢, gnH be the coset decomposition of H in G. Then we can construct

a strictly increasing chain H,, of proper subgroups of G as follows.

e Hy=H.

e Suppose inductively that H,, has been defined and that H < H,, < G. If H,
is a maximal proper subgroup of GG, then the construction terminates with
H,,. Otherwise, let k,, be the least integer k such that H,, < ( Hy,gr) < G
and let Hy,11 = (Hy, gk, )-

First suppose that there exists an integer n such that H,, is a maximal proper
subgroup of G. Then we claim that [G : H,] = w. Otherwise, [G : H,| < w
and hence N = ﬂgec gH,g~ ! is a normal subgroup of G such that N < H,, and
[G: N] <w. Applying Lemma 4.7, it follows that N is an open subgroup of G and
hence H, is also an open subgroup of G. But this contradicts the fact that H is not
contained in any proper open subgroups of G. Next suppose that the construction
does not terminate after finitely many steps and let H, = |J,,c., . Then either
H, = G or else H, is a maximal proper subgroup of G. In the former case, G
has countable cofinality and hence, by Theorem 2.9, there exists a nonprincipal
ultrafilter over w. Thus we can suppose that H,, is a maximal proper subgroup of
G and our earlier argument shows that [G : H, | = w.

In order to simplify notation, we will suppose that H is a maximal subgroup of
G. Hence, by considering the left translation action of G on the set { g, H | n € N},

we obtain a homomorphism
¥ : G — Sym(w)

such that t(G) acts primitively on w. It follows that if N < G is any normal
subgroup, then either ¥)(N) = 1 or else ¥/(N) acts transitively on N. Let

IT={ACw|yv(] _, SL(dpn)) =1}

neA

Then Z is clearly an ideal on w. Furthermore, if FF C w is a finite subset, then
Y([Ihep SL(d,pn)) cannot act transitively on N and so F' € Z. We will show that

7 is a prime ideal.
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So suppose that there exists a subset A C w such that both A ¢ Z and w~A ¢ T.
Let P = [[,ca SL(d,pn) and let Q = [, co, a SL(d, pn). Then both +(P) and
¥(Q) act transitively on N. Suppose that g € P is such that 1(g) fixes some integer
n € N. If £ € N is arbitrary, then there exists h € @ such that ¢(h)(n) = k; and

since g and h commute, it follows that

Thus g € ker. It follows that N = ker ¢ N P is a normal subgroup of P such that
[P: N|=w, which contradicts Lemma 4.7. O

Proof of Theorem 4.5. Let G = [[ SL(d, p,,) and suppose that the symmetric count-
ably syndetic subset W C G witnesses the failure of the weak Steinhaus property.
Let H = (W) be the subgroup generated by W. Then clearly [G : H] < w. If
[G: H] = w, then the result follows from Theorem 4.6 and so we can suppose that
[G: H] < w. Applying Lemma 4.7, it follows easily that H is an open subgroup
of G. Let

G¢'= |[ SL(d,pn) <H

n>no
and let 7 : G — G’ be the canonical projection. Consider the set W' = 7(W) of
generators of G'. If W’ witnesses that G’ is not Cayley bounded, then the result
follows from Theorem 2.9. Hence we can suppose that there exists an integer k > 1
such that (W’)* = G’. Let g = (g9,) € G’ be such that g,, is a noncentral element of
SL(d,p,) for all n > ng. Then g € W* for some ¢ > 1; and Proposition 4.3 implies
that
G C WFWIWE .. WEWEW — py2kmtm

m times

where m = 8 if d = 2 and m = 2d if d > 2. But this contradicts the assumption

that W witnesses the failure of the weak Steinhaus property. O

5. THE BERGMAN AND STEINHAUS PROPERTIES IN L(R)[U]

In this section, we will present a partition property PP for products of finite sets
with measures; and we will show that ZF+ DC+ PP implies that if (H, | n € w) is
a sequence of nontrivial finite groups such that (dc(H,) | n € w) grows sufficiently

fast, then [ H, has both the Bergman property and the Steinhaus property.
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The Partition Property (PP). If ({an, tn) | n € w) is a sufficiently fast growing
sequence of finite sets a,, with measures ,,, then for every partition
Han = |_| va
mew
there exists an integer m € w such that [[ b, € X,,, for some sequence of subsets

bn, C a,, such that lim,— o pin (by) = c0.

Here the words “sufficiently fast growing” should be interpreted in the sense that
there is a fized function f that assigns a natural number to every finite sequence
of finite sets with measures ((am,tm) | m < n) and that an infinite sequence

({an, pn) | n € w) is sufficiently fast growing if

pin(an) > f(({am; pm) | m < 1))

for all n € w. The exact formula for the function f is immaterial for the purposes
of this paper. We will only mention that it is primitive recursive with a growth
rate approximately that of a tower of exponentials of linear height.

The partition property PP fails in ZFC, since the Axiom of Choice can be
used to construct highly irregular partitions. However, it does hold in ZFC' if we
restrict our attention to partitions into Borel sets; and it also holds for arbitrary
partitions in many models of set theory in which the Axiom of Choice fails. In
particular, in Section 7, we will prove the following result, which extends the work

of Di Prisco-Todorcevic [8, Section 7].
Theorem 5.1 (LC'). L(R)[U] satisfies PP.

We will also make use of the following recent result of Babai-Nikolov-Pyber [1]
in the newly flourishing area of “arithmetic combinatorics”. Recall that if H is a
nontrivial finite group and K is a field, then di (H) denotes the minimal dimension
of a nontrivial K-representation of H; i.e. the least d such that there exists a

nontrivial homomorphism 0 : H — GL(d, K).

Theorem 5.2 (Babai-Nikolov-Pyber [1]). Let H be a nontrivial finite group and
let k be an integer such that 1 < k® < dc(H). If A C H is a subset such that
|A| > |H|/k, then A3 = H.



20 SIMON THOMAS AND JINDRICH ZAPLETAL

Proof. By Babai-Nikolov-Pyber [1, Corollary 2.6], if 1 < k% < dg(H) and A C H
with |A| > |H|/k, then A®> = H. Since d¢(H) < dg(H), the result follows. O

Remark 5.3. If H is a nontrivial finite group, then either dg(H) = dc(H) or else
dr(H) = 2dc(H). For the purposes of this paper, it does not matter whether we
work with d¢(H) or dr(H). Since most of the literature on the representation
theory of finite groups deals with complex representations, we have chosen to state

our results in terms of d¢(H).

Theorem 5.4 (ZF+DC+ PP). If (H, | n € w) is a sequence of nontrivial finite
groups such that (dc(Hy) | n € w) grows sufficiently fast, then [ H,, has both the

Bergman property and the Steinhaus property.

Proof. For each n € w, let k, = |dc(H,)"?] and let p, be the measure on H,
defined by wn(A) = k, (|A|/|Hn|). To see that G = [[ H, has the Steinhaus
property, suppose that W C G is a symmetric countably syndetic subset and let
G = Uew 9mW. Since py,(H,) = k,, grows sufficiently fast, PP implies that there
exists m € w such that [[ A, C ¢, W for some sequence of subsets A,, C H,, such
that lim,, oo pn(Ay) = oo; and after replacing [] A, by g,,! [] A, we can suppose
that [[ A, € W. Let ng € w be such that u,(A,) > 1 and hence |A,| > |H,|/kn
for all n > mng. Clearly we can suppose that A, = {a, } is a singleton for each
n < ng. Applying Theorem 5.2, it follows that W3 D gG’, where
e g=(a3, - ,a’ 1,1,---) and

nog—17r - -
e (' is the open subgroup [] H,.

n>ngo
Since W is symmetric, it follows that W° D (¢G’')"1gG’ = G’. This completes the
proof that [] H,, has the Steinhaus property.

To see that G = ] H, has the Bergman property, suppose that G = |J Un

mew
is the union of an increasing chain of symmetric subsets such that U,,U,, C U, 41
for all m € w. Arguing as above, it follows that there exists m € w such that US
contains an open subgroup G’ and hence G’ C U,,43. Since [G : G'] < w, this

implies that there exists k € w such that G = Uy, as required. (I

It is perhaps worth pointing out that the proof of following corollary does not

make use of the classification of the finite simple groups.
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Corollary 5.5 (LC). If (S, | n € w) is a sufficiently fast growing sequence of
nonabelian finite simple groups, then [[S, has both the Bergman property and the
Steinhaus property in L(R)[U].

Proof. By Jordan’s Theorem, there exists a function ¢ : N — N such that if H is a
finite subgroup of GL(n,C), then H contains an abelian normal subgroup N with
[H: N] < ¢(n). (For example, see Curtis-Reiner [5, Theorem 36.13].) Hence if
|Sn| grows sufficiently fast, then d¢(S,) also grows sufficiently fast. O

Corollary 5.6 (LC). If d > 2 and (p, | n € w) is a sufficiently fast growing
sequence of primes, then [ SL(d, p,) has both the Bergman property and the Stein-
haus property in L(R)[U].

Proof. Recall that if p > 5 is a prime, then d¢(SL(2,p)) = (p — 1)/2; and that if
d > 2, then dc(SL(d,p)) = (p! —p)/(p = 1).
O

The next result suggests that the fast growth conditions in the statements of

Corollary 5.5 and Corollary 5.6 are almost certainly not necessary.

Theorem 5.7 (ZF + DC + PP). Suppose that (H, | n € w) is a sequence of
nontrivial finite groups which satisfies the following conditions:

(i) limy,— oo dc(Hy) = 0.

(ii) There is a fixed integer t > 1 such that for all n € w, there exists a conju-

gacy class C,, C H,, such that C! = H,,.

Then [] Hy, has both the Bergman property and the weak Steinhaus property.
The proof of Theorem 5.7 makes use of the following two simple observations.

Lemma 5.8. If Hy,- - Hg are nontrivial finite groups and H = Hy X --- X Hy, then
de(H) =min{dc(H;) |1 <i < s}.

Proof. Let m = min{dc(H;) | 1 < i < s}. Then it is clear that dc(H) < m. So
suppose that d < m and that § : H — GL(d,C) is a homomorphism. Then 6 | H;

is the trivial homomorphism for each 1 <7 < s and hence 6 is trivial. O
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Lemma 5.9. Let (H, | n € w) be a sequence of nontrivial finite groups such
that lim,, o dc(Hy) = oco. Then there exists an increasing sequence of integers
O=ag<a; <---<ap<--- such that if
Po= [ Hi and Q.= 11 Hi,
agn <i<azn41 azn41<i<azn42

then both (dc(Pp) |n€w) and (de(Qn) | n € w) grow sufficiently fast.

Proof. First let a; = 1. Now suppose that n > 1 and that a, has been defined
for all £ < n. Suppose, for example, that n = 2m + 1 is odd, so that the groups
Py,---, P, have already been determined. Then we can choose ag,,+2 so that

de(H,

a2m+2 )

that d C (H

a2m 42

is sufficiently large with respect to (dc(Py), - ,dc(Pm)) and such
) < dc(H;) for all i > agpmy2. Applying Lemma 5.8, it follows that
for any choice of azy,43, we will have that dc(Ppy1) = dc(Ha,,,,.) is sufficiently

large with respect to (d¢(FPo), -+ ,dc(Pn)). O

Proof of Theorem 5.7 (ZF + DC + PP). Let (H, | n € w) be a sequence of non-
trivial finite groups which satisfies conditions (5.7)(i) and (5.7)(ii). First suppose
that [ H,, does not have the Bergman property and express [[ H,, = ¢, Ur as
the union of a strictly increasing chain of symmetric subsets such that UpUy C U1

for all k£ € w. Then
I:{Agw|Hn€AHnQUk for some k € w }.

is a proper ideal over w. Let (a, | n € w) be the increasing sequence of natural

numbers given by Lemma 5.9. Then we can suppose that
A={i]ag, <i<agys forsomencw} ¢ 7.
Since (dc(FPy) | n € w) grows sufficiently fast, it follows that
H P = HnGA Hy
has the Bergman property. For each k € w, let
= - .
Wi={glAlgets} <] _, Ha

Then there exists k € w such that Wy, =[], . 4 Hn. Let t > 1 be the integer given

neA
by condition (5.7)(ii). Then for each n € A, there exists a conjugacy class C,, C H,,
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such that C!, = H,,. Let h = (h,) € [1,.c4 Hn be such that h,, € C,, and let £ > k

be such that h € Uy. Then clearly

I, , Hn S UklUels - UplUsUy C U}

t times

and so [[,,c 4 Hn C U, for some s > £, which contradicts the fact that A ¢ Z. Thus
[1 H: has the Bergman property.

To show that H,, has the weak Steinhaus property, we will first prove that [[ H,,
has no subgroups H such that [[[ H,, : H] = w. So suppose that such a subgroup H
exists. Then, arguing as in the proof of Theorem 4.6 and using the fact that [[ H,
has the Bergman property, we can suppose that H is a maximal proper subgroup.
Hence, by considering the left translation action of [[ H,, on the set of cosets of H

in [] H, , we obtain a homomorphism

(U HH" — Sym(w)

such that ¢ (][ H,) acts primitively on w. In particular, it follows that if N < [[ H,,
is any normal subgroup, then either ¥(N) = 1 or else ¥(N) acts transitively on w.

Clearly

I:{AQW“/)(H Hp) =1}

neA
is a proper ideal over w. Arguing as in the previous paragraph, it follows that
there exists a subset A ¢ 7 such that ], ., H, has the Steinhaus property. But
since Y([][,c4 Hn) acts transitively on w, there exists a subgroup K such that
[I1,,c4 Hn : K] = w, which is a contradiction.

At this point, we know that [[ H,, has the Bergman property and that [[ H,,
has no subgroups H with [[[H, : H] = w. Arguing as in the proof of Theorem
4.5, it follows easily that [] H, has the weak Steinhaus property. O

Corollary 5.10 (LC). Ifd > 2 and (p, | n € w) is an increasing sequence of
primes, then [[ SL(d, p,) has both the Bergman property and the weak Steinhaus
property in L(R)[U].

Proof. We have already seen that ( SL(d,p,) | n € w) satisfies conditions (5.7)(i)
and (5.7)(ii). O
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In contrast to Corollary 5.5, the proof of the following result does make use of
the classification of the finite simple groups. (More precisely, the proof of Shalev

[26, Corollary 2.3] makes use of the classification.)

Corollary 5.11 (LC). If (S, | n € w) is a sequence of distinct nonabelian finite
simple groups, then [[ S, has both the Bergman property and the weak Steinhaus
property in L(R)[U].

Proof. Arguing as in the proof of Corollary 5.5, it follows that (.S, | n € w) satisfies
condition (5.7)(i). By Shalev [26, Corollary 2.3], there exists a constant N such
that if S is a nonabelian finite simple group with |S| > N, then there exists a
conjugacy class C' C S such that C3 = S. It follows that (S, | n € w) also satisfies
condition (5.7)(ii). O

We will conclude this section with a result which shows that it is necessary to
impose some condition on the growth rate of the sequence (dc(H,,) | n € w) if we

wish to obtain the conclusion of Theorem 5.4.

Theorem 5.12 (ZF + DC). Suppose that there exists a nonprincipal ultrafilter
over w. Then whenever (H, | n € w) is a sequence of nontrivial finite groups
such that liminf dc(H,) < oo, then [[ Hy, does not have the automatic continuity

property and hence does not have the Steinhaus property.

Proof. Recall that every complex representation of a finite group is similar to a
unitary representation. (For example, see Curtis-Reiner [5, Exercise 10.6].) Hence
there exists an infinite subset I C w and a fixed integer d > 1 such that for each
n € I, there exists a nontrivial homomorphism ¢,, : H,, — U(d, C), where U(d, C)
denotes the compact group of d X d unitary matrices. In order to simplify notation,
we will suppose that I = w.

For each g, € H, and 1 < 4,5 < d, let ¢, (gn)i; denote the ij entry of the matrix
©n(gn) € U(d,C). Then if U is a nonprincipal ultrafilter over w, we can define a

homomorphism

¢ [ Ha — U, C)

(gn) = (2i),
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where z;; = limy ¢, (gn)ij. We claim that ¢ is not continuous. To see this, sup-
pose that ¢ is continuous and let W C U(d,C) be an open neighborhood of the
identity element which contains no nontrivial subgroups. (For the existence of such
a neighborhood, see Helgason [11, I1.B.5].) Then there exists an open subgroup
H C ] H, such that ¢»(H) C W and hence H < ker+. In particular, there exists a
cofinite subset A C w such that erA Hy < ker. For each k € A, choose g, € Hy,
such that ¢ (gr) ¢ W. Then, letting g = (gr) € [[,ca Hr, we have that ¢(g) ¢ W,

which is a contradiction. O

Remark 5.13. Recall that de Cornulier [6] has shown that if G is a product of
infinitely many copies of a fized finite perfect group H, then G has the Bergman
property. Thus the analogue of Theorem 5.12 is false for the Bergman property.

6. THE BERGMAN AND STEINHAUS PROPERTIES IN V'

Suppose that (S, | n € w) is a sequence of distinct nonabelian finite simple
groups. Then, in the previous section, assuming the existence of suitable large
cardinals, we proved that []S, has the Bergman property in L(R)[U]; and we
proved that if (S, | n € w) is sufficiently fast growing, then []S, also has the
Steinhaus property in L(R)[U]. In this section, we will briefly discuss the question
of when []S,, has either the Bergman property or the Steinhaus property in the
actual set-theoretic universe V. In particular, throughout this section, we will work
with the usual ZFC axioms of set theory.

Recall that the classification of the finite simple groups says that if .S is a non-
abelian finite simple group, then one of the following cases must hold.

(i) S is one of the 26 sporadic finite simple groups.
(ii) S is an alternating group Alt(n) for some n > 5.
(iii) S is a group L(q) of (possibly twisted) Lie type L over a finite field F, for
some prime power g.
The following condition is the key to understanding when the product [] S,, has

countable cofinality.

Definition 6.1. A sequence (S, | n € w) of nonabelian finite simple groups satisfies
the Malcev condition if there exists an infinite subset I of w such that the following

properties hold.
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(a) There exists a fixed (possibly twisted) Lie type L such that for all n € I,
Sn = L(gy,) for some prime power g,,.

(b) If n, m € I and n < m, then ¢, < ¢pm.

Arguing as in the proof of Theorem 2.7(a), it follows easily that if (S, | n € w)
satisfies the Malcev condition, then [] .S, has countable cofinality. Conversely, by
Saxl-Shelah-Thomas [25, Theorem 1.9], if (S, | n € w) does not satisfy the Malcev
condition, then [ [ S,, has uncountable cofinality. Furthermore, as we mentioned ear-
lier, Zalan Gyenis has recently checked that the arguments of Saxl-Shelah-Thomas
[25] can be modified to prove that an infinite product [] S, of finite simple groups
has the Bergman property if and only if [] .S, has uncountable cofinality. Conse-
quently, we have the following classification of the infinite products [[ S, satisfying
the Bergman property.

Theorem 6.2. If (S, | n € w) is a sequence of nonabelian finite simple groups,
then the following are equivalent:
(a) (Sp |n € w) does not satisfy the Malcev condition.

(b) T1Sn has the Bergman property.

The proof of Theorem 2.3 shows that if (S, | n € w) satisfies the Malcev condi-
tion, then there exists a subgroup H < [[ S, with [[[ Sy : H] = w and hence [[ Sy,
does not have the Steinhaus property. Also, it is clear that if (S, | n € w) satisfies
the following condition, then J] S, has a non-open subgroup of finite index and so

once again the Steinhaus property fails. (See Example 1.1.)

Definition 6.3. A sequence (S, | n € w) of nonabelian finite simple groups satisfies
the Sazl- Wilson condition if there exists an infinite subset I of w and a fixed group

S such that S,, = S for all n € I.

In Thomas [29], it was shown that [] S, has a non-open subgroup H such that
[TISn : H] < 2% if and only if (S, | n € w) satisfies either the Malcev condition
or the Saxl-Wilson condition. Consequently, it seems natural to make the following

conjecture.

Conjecture 6.4. If (S, | n € w) is a sequence of nonabelian finite simple groups,

then the following are equivalent:
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(a) (Sn | n € w) satisfies neither the Malcev condition nor the Saxl-Wilson
condition.

(b) TISn has the Steinhaus property.

Remark 6.5. Using the classification of the finite simple groups, it is easily seen

that condition (a) is equivalent to:

(a)’ liminfd(S,) = oco.

7. THE PARTITION PROPERTY (PP)

Suppose that the Ramsey ultrafilter I/ is L(R)-generic for for the notion of forcing
P(w)/Fin. In this section, assuming the existence of suitable large cardinals, we
will prove that the Partition Property (PP) holds in L(R)[U]. More specifically,

we will make use of the following large cardinal assumption.
(LC) There ezist infinitely many Woodin cardinals below a measurable cardinal.

If we merely want to prove the consistency of ZF + DC + PP, then it is only
necessary to assume the existence of an inaccessible cardinal. In more detail, sup-
pose that k € V is an inaccessible cardinal and that Coll(w, < k) is the usual Lévy
collapse. (For the basic properties of the Lévy collapse, see Jech [14, Chapter 26].)
Let G C Coll(w, < k) be a V-generic filter and let R be the set of reals in the generic
extension V[G]. Then the corresponding Solovay model V(R) consists of the sets
z € V[G] which are hereditarily definable in V[G] from parameters in RU V. Let
the Ramsey ultrafilter & be V[G]-generic for P(w)/Fin. Then clearly U is also

V(R)-generic for P(w)/Fin. Most of our effort in this section will be devoted to

proving the following result.

Theorem 7.1. With the above hypotheses, V(R)[U] satisfies PP.

To transfer this result from V(R)[U] to L(R)[U], we will make use of the fact
that, assuming LC, if k € V is the least inaccessible cardinal, then the theory
of L(R)[U] is not altered by forcing with Coll(w, < ). In more detail, assuming
LC, the theory of L(R) is not altered by forcing with Coll(w, < k); i.e. L(R) is
elementarily equivalent to L(R). (For example, see Larson [19, Corollary 3.1.16].)

Since P(w)/Fin is a homogeneous notion of forcing, it follows that if ¢ is any
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sentence in the language of set theory, then

LRUEFy <= LR)E Pw)/Finl ¢

<~ LR)F Pw)/FinlF ¢

= LR)UFe.

Proof of Theorem 5.1 (LC). Let k be the least inaccessible cardinal and let V (R)[U]
be as in Theorem 7.1. Then the Ramsey ultrafilter I is also L(R)-generic for

P(w)/Fin. Working inside L(R)[U], suppose that ((an,u,) | n € w) is a suffi-

ciently fast growing sequence of finite sets a,, with measures yu,, and that

Han: |_| X

mew

is any partition. Since V(R)[U] satisfies PP, there exists an integer m € w and
a sequence of subsets (b, C a, | n € w) € V(R)U] such that [[b, C X, and
lim,, o0 pin(bn) = 0o. Since L(R)[U] and V(R)[U] have the same reals, it follows
that (b, C a, | n € w) € L(R)[4]. Thus L(R)[U] satisfies PP. Finally since the
theory of L(R)[U] is not altered by forcing with Coll(w, < ), it follows that L(R)[U/]
satisfies also PP. O

The remainder of this section will be devoted to the proof of Theorem 7.1.
As usual, we will identify the notion of forcing P(w)/Fin with the quasi-order
([w]“, C*) of infinite subsets of w, quasi-ordered by ¢ C* d if and only if e\ d| < w.
The key element of the proof is the work of Shelah-Zapletal [28] showing that for
every sufficiently fast growing sequence ({an,tn) | » € w) of finite sets a, with

measures [i,, there is a notion of forcing P with the following properties:

(1) P adds a new element & € [[ ay.

(2) P is proper, “w-bounding and adds no independent reals.

(3) P is defined in a way which depends only on the reals; i.e. if M C N are
transitive models of set theory with the same reals, then PM = PV,

(4) Suppose that M is a transitive model of set theory such that P(P(R))M is
countable. Then for every p € PM there exist a sequence of sets (b, | n€w)
with b, C a,, and p,(b,) — oo such that the product []b,, consists only of
M-generic points for the poset ]P’g/[ ={qePM|q¢<p}.
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Here an independent real is an infinite subset ¢ C w in the generic extension such
that neither a nor w \ a contains an infinite ground model subset.

Let k € V be an inaccessible cardinal and let G C Coll(w, < k) be a V-generic
filter. Suppose that V(R) is the corresponding Solovay model and that the Ram-
sey ultrafilter U is V[G]-generic (and hence also V(R)-generic) for P(w)/Fin. Let
((an,pn) | m € w) € V(R)[U] be a sufficiently fast growing sequence of finite

sets a, with measures u, and let [Ja, = || X, be a partition of the prod-

mew
uct into countably many pieces within the model V(R)[I]. Working inside V[G],
let ¢g € [w]¥ be any infinite subset of w. Then it is enough to find a subset
¢ € [w]¥ with ¢ C* ¢y and a sequence of subsets (b, C a, | n € w) € V[G] with

lim,, o ptr (by) = 00 such that for some m € w,
cl-JJon € Xom.
Let f: [[ an — w be the function defined by
flz)=m = =zeX,

and let f € V(R) be a P(w)/Fin-name for f. By the standard homogeneity ar-
guments with respect to the Lévy collapse Coll(w, < k), we can assume that c,
(an | n € w) € V and that the P(w)/Fin-name f is definable from the elements of
the ground model V. In particular, it follows that there exists a formula p(vg, v1, v2)
with parameters in V' such that for every V-generic filter H C Coll(w, < k) and

every ¢ € [w]¥, z € [[a, and m € w,
(7.2) VIH]E clbpeypin & € X <= V[H]F @(c,z,m).

Working inside the ground model V', consider the product of the forcing P with
Q = P(w)/Fin. Then the poset Q adds a Ramsey ultrafilter u and P adds a point
2 € [] an. Since the definition of the forcing P only depends on the real numbers,
it follows that PV = PVI*]. Hence if u,z are mutually generic, then z will be

PVI*l_generic over the model V[u].
Lemma 7.3. In Vu][z], u still generates a Ramsey ultrafilter.

Proof. By Shelah [27, VL.5.1], since PV = PVI[*] is proper and “w-bounding in

V[u], it is enough to show that u still generates an ultrafilter in V{u][x]. First note
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that since Q is o-closed and PP is proper, it follows that P(w)NVu][z] = P(w)NV[z].
(Since PP is proper, each real r € V]u][z] is obtained from a countable collection
C={C, | ne€w} e V[u] of countable subsets C,, C P such that each C, is
predense below some condition p € P; and since Q is o-closed, it follows that C € V'
and hence r € V]z].) Now suppose that p € P,q € Q are conditions and that
p Ik 7 C w. Since P does not add any independent reals, there exists a condition
p’ < p and an infinite subset ¢’ C ¢ such that either p’ IF ¢ C 7 or p’' IF7N¢ = 0.

!

Hence either {(¢',p’) IF 7 €tor {(¢',p’) IF w~ 7 € 1. Tt follows that u still generates

an ultrafilter in V[u][z]. O

From now on, fix some u € V[G] such that u is V-generic for Q and ¢y € u. Let

<w

D € V[u] be the poset consisting of the conditions (s,S), where s € [w]<“ and

S € u, partially ordered by
(5,8)<(t,T) <= sDtands~tCT.

Then D adjoins an infinite subset ¢ C w which diagonalizes the Ramsey ultrafilter
u; i.e. a subset ¢ such that |[¢ N S| < w for all S € u. In fact, by Mathias [21],
every set diagonalizing u is V[u]-generic for the poset D. By Lemma 7.3, if u is
the upwards closure of u in the model V]u][z], then u is a Ramsey ultrafilter in
V[u][z]. Hence if D € V[z,u] is the corresponding poset diagonalizing i, then D is
dense in D and every set diagonalizing u is V|[u][x]-generic for both D and D. Let

©(vg, v1,v2) be the formula with parameters in V' given by (7.2).

Lemma 7.4. In V[u|[z], there exists a natural number m € w such that
(1,1) IFpxcon(w,<x) (¢, &,m);
in other words, in V[u]lx], we have that
(1,1) Irpxcoliw,<r) ¢ Fpw)/Fin & € X

Proof. Suppose not. Then there exist distinct numbers mg, m; € w and conditions

for the associated 3-step iteration
<TO7 S0, d0>7 <T1, S1, d1> S <17 17 C>

such that <ro,so,do> - & e Xmo and (rl,sl,d1> -z € Xml. Choose mutually
V[u][z]-generic filters Hy C D, Ky C Coll(w, < &) such that (rg, so) € Ho x Ko; and
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note that, since d = dy/(Hy x Ko) C* ¢/Hy, it follows that d is V[u][z]-generic for
the poset D. Hence, after making a finite adjustment to the set d if necessary, we can
find a V[u][z]-generic filter H; C D such that r; € Hy and d = ¢/H;. A standard
homogeneity argument with respect to the Lévy collapse Coll(w, < k) now shows
that there exists a V[u|[z][H;]-generic filter K; C Coll(w, < &) such that s; € K3
and V[u][z][Hy x Ko] = V[u][z][H, x K1]. Let d' = dy/(H; x K;). Consider the
notion of forcing P(w)/Fin inside the model V{u][z][Hy x Ko] = V[u][z][H1 x K;].
Working with the V[u][z]-generic filter Hy x Ky, it follows that d I & € X,,, and
so V[u][z][Hy x Ko] F ¢(d, z,mg). Furthermore, since

d =d/(H, x K,) C* ¢/H, =d,

it follows that V{u][x][Hox Ko] E o(d’, 2, m¢) and so V[u][z][Hox Ko] ¥ o(d’, z,m1).
On the other hand, working with the V[u][z]-generic filter H; x K7, it follows that
d'IF & € X,,, and so V[u][z][H; x K] E o(d’,x,m1), which is a contradiction. [J

Next, working in the model M = V[u], let p € PM be a condition that identifies
the natural number m in the statement of Lemma 7.4. Then, since P(P(R))M is
countable in V[G], there exists a sequence of sets (b, | n € w) € V[G] with b, C ay
and i (b,) — oo such that the product []b, consists only of M-generic points
for the poset PX = {q € PM | ¢ < p}. Let ¢ € V[G] be an infinite subset of w
which diagonalizes the ultrafilter u € M. Then clearly ¢ C* ¢y and we claim that
¢ IF [Ibn € Xom. To see this, suppose that # € [[b,. Then u, z are mutually
V-generic and ¢ is V[u|[z]-generic for D. Hence, working in V|G|, Lemma 7.4
implies that the condition ¢ € P(w)/Fin forces # € X,,. This completes the proof
of Theorem 7.1.
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