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Abstract. We study the relationship between the existence of nonprincipal

ultrafilters over ω and the failure of the Steinhaus and Bergman properties for

infinite products of finite groups.

1. Introduction

In this paper, we will investigate the status of the Steinhaus and Bergman prop-

erties for infinite products of finite groups in various axiomatic frameworks. Our

interest in these properties is partially motivated by the automatic continuity prob-

lem for Polish groups. More specifically, we will be interested in the question of

which infinite products G =
∏
Gn of nontrivial finite groups have the automatic

continuity property ; i.e. have the property that every homomorphism ϕ : G → H

from G into a Polish group H is necessarily continuous. In set theory with the Ax-

iom of Choice, infinite products of finite groups typically fail to have this property;

and, in fact, no examples of infinite products of finite groups with this property are

currently known. The basic example of a non-continuous homomorphism involves

a nonprincipal ultrafilter U over the set ω of natural numbers.

Example 1.1. Suppose that there exists a fixed nontrivial finite group F such that

Gn
∼= F for all n ∈ ω. Then the corresponding ultraproduct

∏
U Gn is isomorphic

to F and it is clear that the associated homomorphism ϕ :
∏
Gn → F is not

continuous.

The automatic continuity property for some more interesting infinite products

of finite groups can be shown to fail for more complicated reasons.
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Example 1.2. Let d ≥ 2 and suppose that Gn = SL(d, pn), where ( pn | n ∈ ω ) is

an increasing sequence of primes. If K =
∏
U Fpn

is the corresponding ultraproduct

of the fields Fpn
of order pn, then∏

U
SL(d, pn) ∼= SL(d,

∏
U

Fpn) = SL(d,K)

and thus SL(d,K) is a homomorphic image of
∏
SL(d, pn). Since K is a field of

characteristic 0 and cardinality 2ℵ0 , it follows that K embeds into C and hence

SL(d,K) embeds into SL(d,C). Once again, it is clear that the associated homo-

morphism ϕ :
∏
SL(d, pn) → SL(d,C) is not continuous.

Remark 1.3. In Section 3, we will present a more sophisticated construction involv-

ing an embedding of K into the field of Puiseux series over the field Q of algebraic

numbers, which yields a non-continuous homomorphism of
∏
SL(d, pn) into the

infinite symmetric group Sym(ω).

It is natural to ask whether the existence of a nonprincipal ultrafilter U over

ω is either necessary or sufficient in the above constructions of non-continuous

homomorphisms. (The existence of a nonprincipal ultrafilter U is clearly sufficient

in Example 1.1. However, the construction in Example 1.2 also makes use of the

existence of an embedding of the field K =
∏
U Fpn

into C and the usual proofs

of this result rely on the existence of transcendence bases for both K and C.) Of

course, when considering this kind of question, we cannot work with the usual

ZFC axioms of set theory since these already imply the existence of nonprincipal

ultrafilters over arbitrary infinite sets. Instead we will work with the axiom system

ZF +DC, where DC is the following weak form of the Axiom of Choice.

Axiom of Dependent Choice (DC). Suppose that X is a nonempty set and

that R is a binary relation on X such that for all x ∈ X, there exists y ∈ X with

x R y. Then there exists a function f : ω → X such that f(n) R f(n + 1) for all

n ∈ ω.

The axiom system ZF + DC is sufficient to develop most of real analysis and

descriptive set theory, but is insufficient to prove the existence of pathologies such

as nonmeasurable sets. (For example, see Moschovakis [22].) In particular, since

nonprincipal ultrafilters over ω are nonmeasurable when regarded as subsets of the
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Cantor space 2N, it follows that ZF + DC does not prove the existence of such

ultrafilters.

We will provide a structured answer to the above question. Firstly, the following

result is well-known. (For example, see Rosendal [24, Section 2].)

Theorem 1.4. It is consistent with ZF +DC that if G, H are any Polish groups,

then every homomorphism ϕ : G→ H is continuous.

In fact, assuming the existence of suitable large cardinals, this is true in L(R),

the canonical minimal model of ZF which contains all of the ordinals and all of

the real numbers. Of course, this implies the well-known result that L(R) does not

contain any nonprincipal ultrafilters over ω. While it seems almost certain that the

existence of a nonprincipal ultrafilter over ω is necessary to prove the failure of the

automatic continuity property for suitably chosen infinite products G =
∏
Gn of

finite groups, we have not completely settled this question. However, in Section 4,

we will prove a number of partial results in this direction, including the following

theorem.

Theorem 1.5 (ZF + DC). Suppose that d ≥ 2 and that ( pn | n ∈ ω ) is an

increasing sequence of primes. If there exists a non-continuous homomorphism

ϕ :
∏
SL(d, pn) → Sym(ω), then there exists a nonprincipal ultrafilter over ω.

On the other hand, we will show that the existence of a nonprincipal ultrafilter

over ω is not sufficient to prove the failure of the automatic continuity property for

suitably chosen infinite products of finite groups. In order to explain this result, it

will be necessary in the remainder of this section to assume the existence of suitable

large cardinals. We will not specify the precise large cardinal hypothesis that we

need until it becomes necessary to do so in Section 7. (This paper has been written

so that the first six sections can be read by mathematicians with no knowledge of

advanced set theory, such as forcing, large cardinals, etc. It is only in the final

section that some knowledge of advanced set theory is needed and this section can

be omitted by mathematicians without the necessary background.) Following the

usual convention [31], we will indicate the use of a large cardinal hypothesis by

writing (LC) before the statement of the relevant theorem. The following result is

a special case of a more general result that we will present in Section 5.
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Theorem 1.6 (LC). It is consistent with ZF +DC that

(i) there exists a nonprincipal ultrafilter U over ω; and

(ii) for each d ≥ 2, if ( pn | n ∈ ω ) is a sufficiently fast growing sequence of

primes, then
∏
SL(d, pn) has the automatic continuity property.

In fact, assuming the existence of suitable large cardinals, this is true in L(R)[U ],

the minimal model of ZF containing all of the ordinals and real numbers, together

with a Ramsey ultrafilter U over ω. Under a suitable large cardinal hypothesis,

L(R)[U ] has canonicity features parallel to those of L(R); and, in particular, its

theory does not depend on the choice of the Ramsey ultrafilter U . Di Prisco-

Todorcevic [7] have shown that many of the regularity properties of L(R) continue

to hold in L(R)[U ]. For example, in L(R)[U ], every uncountable set of reals has

a perfect subset. Thus it seems natural to regard L(R)[U ] as a canonical model

of ZF + DC in which a minimal number of the pathological consequences of the

Axiom of Choice hold, modulo the existence of a nonprincipal ultrafilter U over ω.

The results of this paper provide yet more evidence for this point of view.

Up until this point, we have considered two examples of infinite products of finite

groups; namely, infinite products of a fixed finite group F and infinite products of

the form
∏
SL(d, pn) for various increasing sequences ( pn | n ∈ ω ) of primes. In

the first example, we have seen that the existence of a nonprincipal ultrafilter U over

ω is sufficent to prove the failure of the automatic continuity property; while in the

second example, this is not sufficent. Now we should also consider a third example;

namely, the infinite product
∏

Alt(n) of the finite alternating groups. In this case,

as we will explain in Section 6, it is natural to conjecture that the automatic

continuity property holds. So what is the essential difference between these three

examples? Perhaps surprisingly, the key to our analysis of the infinite product∏
Gn of finite groups turns out to be the “asymptotic representation theory” of

the sequence (Gn | n ∈ ω ). In order to state this more precisely, it is necessary to

introduce the following definitions.

Definition 1.7. Let H be a nontrivial finite group.

(i) If K is a field, then dK(H) denotes the minimal dimension of a nontrivial

K-representation of H; i.e. the least d such that there exists a nontrivial

homomorphism θ : H → GL(d,K).
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(ii) d(H) = min{ dK(H) | K is a field }.

Example 1.8. Suppose that p ≥ 5 is a prime and that H = SL(d, p).

(i) If d = 2, then dC(H) = (p− 1)/2 and d(H) = 2.

(ii) If d > 2, then dC(H) = (pd − p)/(p− 1) and d(H) = d.

(For example, see Humphreys [12] and Tiep-Zalesskii [30].)

Let (Gn | n ∈ ω ) be a sequence of nontrivial finite groups. In this paper, we

will prove the following results.

(a) If lim inf dC(Gn) < ∞, then the existence of a nonprincipal ultrafilter U

over ω is enough to prove that
∏
Gn does not have the automatic continuity

property.

(b) Assuming (LC), if ( dC(Gn) | n ∈ ω ) grows sufficiently fast, then
∏
Gn has

the automatic continuity property in L(R)[U ].

(c) If lim inf d(Gn) < ∞, then
∏
Gn does not have the automatic continuity

property in the actual set-theoretic universe V .

Furthermore, we conjecture that the converse of (c) also holds.

This paper is organized as follows. In Section 2, we will discuss the Steinhaus and

Bergman properties for infinite products of finite groups. In Section 3, working with

the usual ZFC axioms of set theory, we will prove that the Steinhaus and Bergman

properties fail for various infinite products of finite groups. In Section 4, working

with the axiom system ZF + DC, we will prove that the failure of the Bergman

property for suitably chosen infinite products of finite groups implies the existence

of a nonprincipal ultrafilter over ω; and we will show that the failure of a weak form

of the Steinhaus property also implies the existence of such an ultrafilter. In Section

5, we will present a partition property PP for products of finite sets with measures;

and we will show that ZF+DC+PP implies that various infinite products of finite

groups have both the Bergman property and the Steinhaus property. In Section 6,

we will briefly discuss the questions of which infinite products of nonabelian finite

simple groups have either the Bergman property or the Steinhaus property in the

actual set-theoretic universe V . Finally, in Section 7, assuming the existence of

suitable large cardinals, we will prove that L(R)[U ] satisfies PP .
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Notation 1.9. Let (Hn | n ∈ ω ) be a sequence of finite groups and let H =
∏
Hn.

Suppose that A ⊆ ω.

(i)
∏

n∈AHn denotes the subgroup ofH consisting of those elements (hn ) ∈ H

such that hn = 1 for all n ∈ ω rA.

(ii) If h = (hn ) ∈ H, then h � A denotes the element ( gn) ∈
∏

n∈AHn such

that gn = hn for all n ∈ A.

Recall that H =
∏
Hn is a Polish topological group with neighborhood basis of the

identity given by {
∏

n∈AHn | A is a cofinal subset of ω }.

Suppose that U is a subset of the group G. Then for each t ≥ 1, U t denotes the

set of elements g ∈ G which can be expressed as a product g = u1 · · ·ut, where each

ui ∈ U . The subset U is said to be symmetric if U = U−1 is closed under taking

inverses.

2. The Steinhaus and Bergman Properties

In this section, we will discuss the Steinhaus and Bergman properties for infinite

products of finite groups. The Steinhaus property was introduced by Rosendal-

Solecki [23] in the context of the automatic continuity problem for homomorphisms

between topological groups. In the following definition, a subset W of a group G

is said to be countably syndetic if there exist elements gn ∈ G for n ∈ ω such that

G =
⋃

n∈ω gnW .

Definition 2.1. LetG be a topological group. ThenG has the Steinhaus property if

there exists a fixed integer k ≥ 1 such that for every symmetric countably syndetic

subset W ⊆ G, the k-fold product W k contains an open neighborhood of the

identity element 1G.

Proposition 2.2 (Rosendal-Solecki [23]). If G is a topological group with the Stein-

haus property and ϕ : G → H is a homomorphism into a separable group H, then

ϕ is necessarily continuous.

The class of groups with the Steinhaus property includes Polish groups with

ample generics [15], Aut(Q, <), Homeo(R) [23] and full groups of ergodic countable

Borel equivalence relations [16]. However, no infinite product of finite groups is

currently known to have the Steinhaus property. Of course, by Example 1.2 and
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Proposition 2.2, it follows that if ( pn | n ∈ ω ) is an increasing sequence of primes

and d ≥ 2, then
∏
SL(d, pn) does not have the Steinhaus property. We will prove

the following more general result in Section 3.

Theorem 2.3. Suppose that (Gn | n ∈ ω ) is a sequence of nontrivial finite groups.

If lim inf d(Gn) < ∞, then
∏
Gn does not have the automatic continuity property

and hence does not have the Steinhaus property.

As the reader has probably guessed, the proof of Theorem 2.3 involves the use of

a suitable ultraproduct
∏
U Gn. However, the following strengthening of Theorem

1.6, which we will prove in Section 5, shows that the existence of a nonprincipal

ultrafilter over ω is not always enough to prove that such a product
∏
Gn does not

have the Steinhaus property.

Theorem 2.4 (LC). It is consistent with ZF +DC that

(i) there exists a nonprincipal ultrafilter U over ω; and

(ii) for each d ≥ 2, if ( pn | n ∈ ω ) is a sufficiently fast growing sequence of

primes, then
∏
SL(d, pn) has the Steinhaus property.

Once again, assuming the existence of suitable large cardinals, this is true in

L(R)[U ], the minimal model of ZF containing all of the ordinals and real numbers,

together with a Ramsey ultrafilter U over ω.

The Bergman property was introduced by Bergman [2] as a strengthening of

the notion of uncountable cofinality which was introduced earlier by Macpherson-

Neumann [20].

Definition 2.5. Suppose that G is a non-finitely generated group.

(a) G has countable cofinality if G =
⋃

n∈ω Gn can be expressed as the union

of a countable increasing chain of proper subgroups. Otherwise, G has

uncountable cofinality .

(b) G is Cayley bounded if for every symmetric generating set S, there exists an

integer n ≥ 1 such that every element g ∈ G can be expressed as a product

g = s1 · · · sn, where each si ∈ S ∪ { 1 }.

(c) G has the Bergman property if G has uncountable cofinality and is Cayley

bounded.
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By de Cornulier [6], a group G has the Bergman property if and only if whenever

G acts isometrically on a metric space, every G-orbit has a finite diameter. For this

reason, groups with the Bergman property are often said to be “strongly bounded”.

The class of groups with the Bergman property includes the symmetric groups

over infinite sets [2], automorphism groups of various infinite structures [9, 13] and

oligomorphic groups with ample generics [15] The following easy observation is

essentially contained in Bergman [2, Lemma 10].

Lemma 2.6. If G is a non-finitely generated group, then the following conditions

are equivalent.

(a) G has the Bergman property.

(b) If G =
⋃

n∈ω Un is the union of an increasing chain of symmetric subsets

such that UnUn ⊆ Un+1 for all n ∈ ω, then there exists an n ∈ ω such that

Un = G.

In [6], improving an earlier result of Koppelberg-Tits [17], de Cornulier proved

that if G is a product of infinitely many copies of a fixed finite perfect group,

then G has the Bergman property; and Zalan Gyenis has recently checked that the

arguments of Saxl-Shelah-Thomas [25] can be modified to prove that an infinite

product
∏
Sn of finite simple groups has the Bergman property if and only if∏

Sn has uncountable cofinality. This yields an explicit classification of the infinite

products
∏
Sn of finite simple groups satisfying the Bergman property, which we

will discuss in Section 6. On the other hand, there are many infinite products of

finite groups which are known not to have the Bergman property. In particular,

the following result holds.

Theorem 2.7. If d ≥ 2 and ( pn | n ∈ ω ) is an increasing sequence of primes,

then:

(a)
∏
SL(d, pn) has countable cofinality; and

(b)
∏
SL(d, pn) is not Cayley bounded.

Theorem 2.7(a) is essentially contained in Saxl-Shelah-Thomas [25]. However,

for the sake of completeness, we will quickly sketch the very easy proof. (We will

present the proof of Theorem 2.7(b) in Section 3.) Let U be a nonprincipal ultrafilter
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over ω and let K =
∏
U Fpn be the corresponding ultraproduct of the fields Fpn of

order pn. Then K is an uncountable field and∏
U
SL(d, pn) ∼= SL(d,

∏
U

Fpn
) = SL(d,K).

It follows that SL(d,K) is a homomorphic image of
∏
SL(d, pn) and hence Theorem

2.7(a) is an immediate consequence of the following observation.

Proposition 2.8. If F is an uncountable field, then SL(d, F ) has countable cofi-

nality.

Proof. Let B be a transcendence basis of F over its prime subfield. Then B is

uncountable and hence we can express B =
⋃

n∈ω Bn as the union of a countable

strictly increasing chain of proper subsets. For each n ∈ ω, let Fn be the algebraic

closure of Bn in F . Then the strictly increasing chain of proper subgroups

SL(d, F ) =
⋃
n∈ω

SL(d, Fn)

witnesses that SL(d, F ) has countable cofinality. �

The following result, which will be proved in Section 4, shows that the existence

of a nonprincipal ultrafilter over ω is necessary in order to prove either Theorem

2.7(a) or Theorem 2.7(b).

Theorem 2.9 (ZF + DC). Let d ≥ 2 and let ( pn | n ∈ ω ) be an increasing

sequence of primes. If
∏
SL(d, pn) does not have the Bergman property, then there

exists a nonprincipal ultrafilter over ω.

On the other hand, we will also show that the existence of a nonprincipal ultra-

filter over ω is not sufficient to prove either of the parts of Theorem 2.7.

Theorem 2.10 (LC). If d ≥ 2 and ( pn | n ∈ ω ) is an increasing sequence of

primes, then
∏
SL(d, pn) has the Bergman property in L(R)[U ].

Examining the above proof of Theorem 2.7(a), we see that it relies upon the

following three consequences of the Axiom of Choice:

(i) the existence of a nonprincipal ultrafilter U over ω;

(ii) the existence of a transcendence basis B of the field
∏
U Fpn

; and
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(iii) the existence of an expression of B as the union of a countable strictly

increasing chain of proper subsets.

Clearly L(R)[U ] satisfies (i); and since DC implies that every infinite set has a

denumerably infinite subset, it follows easily that every infinite set can be expressed

as the union of a countable strictly increasing chain of proper subsets in L(R)[U ].

Consequently, assuming LC, if ( pn | n ∈ ω ) is an increasing sequence of primes,

then (ii) must fail in L(R)[U ].

Corollary 2.11 (LC). If ( pn | n ∈ ω ) is an increasing sequence of primes, then

the field
∏
U Fpn does not have a transcendence basis in L(R)[U ].

3. On the failure of the Bergman and Steinhaus properties

In this section, we will first that if ( pn | n ∈ ω ) is an increasing sequence of

primes and d ≥ 2, then:

• There exists a non-continuous homomorphism of
∏
SL(d, pn) into Sym(ω).

•
∏
SL(d, pn) is not Cayley bounded.

Then we will prove prove that if (Gn | n ∈ ω ) is a sequence of nontrivial finite

groups such that lim inf d(Gn) <∞, then
∏
Gn does not have the automatic con-

tinuity property and hence does not have the Steinhaus property.

Once again, let U be a nonprincipal ultrafilter over ω and let K =
∏
U Fpn

be the

corresponding ultraproduct of the fields Fpn
of order pn. Our arguments depend

upon the existence of a suitable valuation υ : K → Q ∪ {∞}.

Definition 3.1. Let F be a field and let t be an indeterminate over F . Then F ((t))

denotes the corresponding field of formal power series; and

P(F ) =
⋃
n≥1

F ((t1/n))

denotes the corresponding field of Puiseux series. Let υF : P(F ) → Q ∪ {∞} be

the valuation such that if

0 6= a =
∞∑

k≥M

akt
k/n ∈ P(F )

where ak ∈ F , aM 6= 0, k, M ∈ Z and n ≥ 1, then υF (a) = M/n. (As usual, we set

υF (0) = ∞.)
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It is well-known that if F is an algebraically closed field of characteristic 0,

then P(F ) is algebraically closed. (For example, see Chevalley [4].) In particular,

if Q is the field of algebraic numbers, then P(Q) is an algebraically closed field

of cardinality 2ℵ0 . Hence, since K =
∏
U Fpn

is a field of characteristic 0 and

cardinality 2ℵ0 , we can suppose that K is a subfield of P(Q). Furthermore, since

K is uncountable and the automorphism group of P(Q) acts transitively on non-

algebraic elements, we can suppose that t ∈ K. From now on, we let υ = υQ � K

denote the corresponding valuation of K and let R = { a ∈ K | υ(a) ≥ 0 } be the

corresponding valuation ring. We will make use of the following result, which was

proved in Thomas [29, Section 2].

Theorem 3.2. [SL(d,K) : SL(d,R) ] = ω.

Corollary 3.3. There exists a non-continuous homomorphism of
∏
SL(d, pn) into

Sym(ω).

Proof. Let π :
∏
SL(d, pn) → SL(d,K) be the canonical surjective homomorphism

and let H = π−1(SL(d,R) ). Then [
∏
SL(d, pn) : H ] = ω and the action of∏

SL(d, pn) on the cosets of H induces a homomorphism

ϕ :
∏

SL(d, pn) → Sym(ω)

such that ϕ(H) is the stabilizer of 0 in ϕ(
∏
SL(d, pn) ). If S is the stabilizer of 0 in

Sym(ω), then S is an open subgroup of Sym(ω) and ϕ−1(S) = H. Since H is clearly

not an open subgroup of
∏
SL(d, pn), it follows that ϕ is not continuous. �

Next we will prove that
∏
SL(d, pn) is not Cayley bounded. By the following

easy observation, it is enough to show that SL(d,K) is not Cayley bounded.

Lemma 3.4. Suppose that G is a group and that N E G is a normal subgroup. If

G is Cayley bounded, then H = G/N is also Cayley bounded.

Proof. Suppose that the symmetric generating set S ⊆ H witnesses that H is not

Cayley bounded. Let π : G → H be the canonical surjective homomorphism and

let T = π−1(S). Then T witnesses that G is not Cayley bounded. �

From now on, in order to simplify notation, we will suppose that d = 2. Recall

that after identifying K with its image under a suitable embedding into the field



12 SIMON THOMAS AND JINDŘICH ZAPLETAL

P(Q) of Puiseux series in the indeterminate t, we have that t ∈ K. Also note that

υ(t) = 1 and that υ(t−1) = −1. For each k ∈ K∗ = K r {0}, let

x(k) =

1 k

0 1

 y(k) =

1 0

k 1

 d(k) =

k 0

0 k−1


Then it is well-known that T = {x(k) | k ∈ K∗ } ∪ { y(k) | k ∈ K∗ } generates

SL(2,K). (For example, see Lang [18, Lemma XIII.8.1].) Let

U = { d(t), d(t−1) } ∪ {x(k) | 0 ≤ υ(k) ≤ 2} ∪ { y(k) | 0 ≤ υ(k) ≤ 2}.

Since υ(−k) = υ(k) for all k ∈ K, it follows that U is a symmetric subset of

SL(2,K). We claim that U generates SL(2,K). To see this, note that

d(t)x(k)d(t)−1 = x(t2k) d(t)−1x(k)d(t) = x(t−2k)

and that

υ(t2k) = υ(t2) + υ(k) = υ(k) + 2 υ(t−2k) = υ(t−2) + υ(k) = υ(k)− 2.

Hence if k ∈ K∗, then there exists m ∈ Z such that d(t)mx(k)d(t)−m ∈ U ; and

similarly, there exists m ∈ Z such that d(t)my(k)d(t)−m ∈ U . It follows that

T ⊆ 〈U 〉 and hence 〈U 〉 = SL(2,K). Next for each matrix

A =

a1 a2

a3 a4

 ∈ SL(2,K),

we define

τ(A) = min{ υ(ai) | 1 ≤ i ≤ 4 }.

Notice that sincea1 a2

a3 a4

 b1 b2

b3 b4

 =

a1b1 + a2b3 a1b2 + a2b4

a3b1 + a4b3 a3b2 + a4b4


and since, for example,

υ(a1b1 + a2b3) ≥ min{ υ(a1b1), υ(a2b3) }

= min{ υ(a1) + υ(b1), υ(a2) + υ(b3) },

it follows that τ(AB) ≥ τ(A) + τ(B) for all A, B ∈ SL(2,K). Finally recall that

for each m ∈ N, we have that υ(t−m) = −m and so τ(d(tm)) = −m. It now follows

easily that for each n ∈ N, there exists m ∈ N such that d(tm) is not a product of
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n elements of U ∪ { 1 }. Thus SL(2,K) is not Cayley bounded and it follows that∏
SL(2, pn) is also not Cayley bounded.

The remainder of this section is devoted to the proof of Theorem 2.3. Suppose

that (Gn | n ∈ ω ) is a sequence of nontrivial finite groups with lim inf d(Gn) <∞.

Then there exists an infinite subset I ⊆ ω and a fixed d ≥ 1 such that for each

n ∈ I there exists a nontrivial homomorphism

ϕn : Gn → GL(d, Fn)

for some field Fn. In order to simplify notation, we will suppose that I = ω. Let U

be a nonprincipal ultrafilter over ω and let

ϕ :
∏

U
Gn →

∏
U
GL(d, Fn)

be the homomorphism defined by ( gn )U 7→ (ϕn(gn) )U . Let F =
∏
U Fn and

H = ϕ(
∏
U Gn ). By Thomas [29, Theorem 2.1], since F is a field of cardinality at

most 2ℵ0 and

1 6= H 6
∏

U
GL(d, Fn) ∼= GL(d, F ),

it follows that there exists a proper subgroup H0 < H such that 1 < [H : H0 ] ≤ ω.

(As with our earlier arguments, the proof of Thomas [29, Theorem 2.1] involves

defining a suitable valuation on F .) Let L = ϕ−1(H0 ). Then L is a proper

subgroup of
∏
U Gn of countable (possibly finite) index. Let π :

∏
Gn →

∏
U Gn

be the canonical surjective homomorphism and let M = π−1(L). Then M is a

proper subgroup of
∏
U Gn of countable (possibly finite) index. If M has countably

infinite index, then arguing as in the proof of Corollary 3.3, it follows that there

exists a non-continuous homomorphism of
∏
Gn into Sym(ω). So suppose that

[
∏
Gn : M ] = ` > 1 is finite. Since U is nonprincipal, it follows that if P is any

open subgroup of
∏
Gn, then π(P ) =

∏
U Gn. In particular, M is not an open

subgroup and hence there exists a non-continuous homomorphism from
∏
Gn into

the finite group Sym(`). This completes the proof of Theorem 2.3.

4. On the existence of nonprincipal ultrafilters

In this section, working with the axiom system ZF +DC, we will prove that the

failure of the Bergman property for suitably chosen infinite products
∏
Hn of finite

groups implies the existence of a nonprincipal ultrafilter over ω. It is currently
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not known whether failures of the Steinhaus property also imply the existence of a

nonprincipal ultrafilter over ω. However, we will show that failures of a weak form

of the Steinhaus property do indeed imply the existence of such an ultrafilter.

Theorem 4.1 (ZF + DC). Let (Hn | n ∈ ω ) be a sequence of nontrivial finite

groups which satisfies the following condition:

(†) There is a fixed integer t ≥ 1 such that for all n ∈ ω, there is a conjugacy

class Cn ⊆ Hn such that Ct
n = Hn.

If
∏
Hn does not have the Bergman property, then there exists a nonprincipal ul-

trafilter over ω.

Proof. Suppose that G =
∏
Hn does not have the Bergman property. Then we

can express G =
⋃

k∈ω Uk as the union of a strictly increasing chain of symmetric

proper subsets such that UkUk ⊆ Uk+1 for all k ∈ ω. Consider

I = {A ⊆ ω |
∏

n∈A
Hn ⊆ Uk for some k ∈ ω }.

Then clearly I is an ideal which contains all the finite subsets of ω. Hence it is

enough to prove that there exists a set B /∈ I such that I ∩ P(B) is a prime ideal

over B.

Suppose that no such set B exists. Then for each A /∈ I, there exists A′ ⊆ A

such that A′ /∈ I and A r A′ /∈ I; and hence we can inductively find pairwise

disjoint subsets {Ak | k ∈ ω } of ω such that Ak /∈ I and ω r
⋃

`≤k A` /∈ I for all

k ∈ ω.

Claim 4.2. There exists k ∈ ω such that for every h ∈
∏

n∈Ak
Hn, there exists

g ∈ Uk such that g � Ak = h.

Proof of Claim 4.2. If not, then there exists h ∈ G such that for all k ∈ ω and

g ∈ Uk, we have that g � Ak 6= h � Ak. But this means that h /∈
⋃

k∈ω Uk, which is

a contradiction. �

Fix some such k ∈ ω. For each n ∈ Ak, let Cn be the conjugacy class of Hn

given by condition (†) and let h = (hn ) ∈
∏

n∈Ak
Hn be such that hn ∈ Cn for all

n ∈ Ak. Let h ∈ U` and let m = max{ k, ` }. Then it follows that the conjugacy

class C of h in
∏

n∈Ak
Hn is contained in U 3

m; and hence
∏

n∈Ak
Hn is contained in
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U 3t
m . But this means that

∏
n∈Ak

Hn ⊆ Us for some s ≥ m, which contradicts the

fact that Ak /∈ I. This completes the proof of Theorem 4.1. �

Clearly Theorem 2.9 is an immediate consequence of Theorem 4.1, together with

the following result.

Proposition 4.3 (Ellers-Gordeev-Herzog [10]). Suppose that K is any field such

that |K| > 5 and that C is any noncentral conjugacy class of SL(d,K).

(i) If d = 2, then C8 = SL(2,K).

(ii) If d > 2, then C2d = SL(d,K).

In the remainder of this section, we will consider the following weak form of the

Steinhaus property.

Definition 4.4. The Polish group G is said to have the weak Steinhaus property

if for every symmetric countably syndetic subset W ⊆ G, there exists an integer

k ≥ 1 such that W k contains an open neighborhood of the identity element 1G.

For example, if the Polish group G has a non-open subgroup of countable index,

then clearly G does not have the weak Steinhaus property. In particular, if we work

with ZFC, then the results of Section 3 show that
∏
SL(d, pn) does not have the

weak Steinhaus property. The rest of this section is devoted to the proof of the

following result.

Theorem 4.5 (ZF + DC). Suppose that d ≥ 2 and that ( pn | n ∈ ω ) is an

increasing sequence of primes. If
∏
SL(d, pn) does not have the weak Steinhaus

property, then there exists a nonprincipal ultrafilter over ω.

Notice that Theorem 1.5 is an easy consequence of Theorem 4.5. For suppose that

ϕ :
∏
SL(d, pn) → Sym(ω) is a non-continuous homomorphism. Then there exists

an open subgroup U 6 Sym(ω) such that ϕ−1(U) is not open in
∏
SL(d, pn). Since

U has countable index in Sym(ω), it follows that ϕ−1(U) is a non-open subgroup

of countable index in
∏
SL(d, pn) and hence

∏
SL(d, pn) does not have the weak

Steinhaus property.

Most of our effort will go into proving the following special case of Theorem 4.5.



16 SIMON THOMAS AND JINDŘICH ZAPLETAL

Theorem 4.6 (ZF + DC). Suppose that d ≥ 2 and that ( pn | n ∈ ω ) is an

increasing sequence of primes. If there exists a subgroup H <
∏
SL(d, pn) such

that [
∏
SL(d, pn) : H ] = ω, then there exists a nonprincipal ultrafilter over ω.

The proof of Theorem 4.6 makes use of some of the basic properties of primitive

permutation groups. Recall that if Ω is any nonempty set and G 6 Sym(Ω), then

G is said to act primitively on Ω if:

(i) G acts transitively on Ω; and

(ii) there does not exist a nontrivial G-invariant equivalence relation on Ω.

It is well-known that ifG 6 Sym(Ω) is a transitive subgroup, thenG acts primitively

on Ω if and only if the stabilizer Gα = { g ∈ G | g(α) = α } is a maximal subgroup

of G for some (equivalently every) α ∈ Ω. Also if G acts primitively on Ω and

1 6= N E G is a nontrivial normal subgroup, then it follows that N must act

transitively on Ω. (For example, see Cameron [3, Theorem 1.7].)

The proof of Theorem 4.6 also makes use of the following easy consequence of

Proposition 4.3.

Lemma 4.7 (ZF + DC). Suppose that d ≥ 2 and that ( pn | n ∈ ω ) is an in-

creasing sequence of primes. Then every normal subgroup N of countable index in∏
SL(d, pn) is open.

Proof. Let G =
∏
SL(d, pn) and let F = { gτ = ( gτ (n) ) | τ ∈ 2N } ⊆ G be a family

such that for each τ 6= σ ∈ 2N, there exists an integer nτ,σ ≥ 0 such that

• gτ (n) = gσ(n) for all n < nτ,σ; and

• gτ (n)−1gσ(n) is a noncentral element of SL(d, pn) for all n ≥ nτ,σ.

Since [G : N ] ≤ ω, there exist τ 6= σ ∈ 2N such that gτN = gσN and hence

g = g−1
τ gσ ∈ N . Since N is a normal subgroup, the conjugacy class C = gG is

contained in N . Applying Proposition 4.3, it follows easily that N contains the

open subgroup
∏

n≥nτ,σ
SL(d, pn) and hence N is open. �

Proof of Theorem 4.6. Let G =
∏
SL(d, pn) and let {Pj | j ∈ J } be the set of

open subgroups of G such that H 6 Pj . Since H 6
⋂

j∈J Pj and the intersection

of infinitely many open subgroups of G has index 2ω, it follows that J is finite. Let

G′ =
∏

n≥n0

SL(d, pn) 6
⋂
j∈J

Pj .
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Then after replacing G by G′ and H by its projection H ′ into G′ if necessary, we

can suppose that H is not contained in any proper open subgroups of G.

LetG =
⊔

n∈ω gnH be the coset decomposition ofH inG. Then we can construct

a strictly increasing chain Hn of proper subgroups of G as follows.

• H0 = H.

• Suppose inductively thatHn has been defined and thatH 6 Hn < G. IfHn

is a maximal proper subgroup of G, then the construction terminates with

Hn. Otherwise, let kn be the least integer k such that Hn < 〈Hn, gk 〉 < G

and let Hn+1 = 〈Hn, gkn 〉.

First suppose that there exists an integer n such that Hn is a maximal proper

subgroup of G. Then we claim that [G : Hn ] = ω. Otherwise, [G : Hn ] < ω

and hence N =
⋂

g∈G gHng
−1 is a normal subgroup of G such that N 6 Hn and

[G : N ] < ω. Applying Lemma 4.7, it follows that N is an open subgroup of G and

hence Hn is also an open subgroup of G. But this contradicts the fact that H is not

contained in any proper open subgroups of G. Next suppose that the construction

does not terminate after finitely many steps and let Hω =
⋃

n∈ω Hn. Then either

Hω = G or else Hω is a maximal proper subgroup of G. In the former case, G

has countable cofinality and hence, by Theorem 2.9, there exists a nonprincipal

ultrafilter over ω. Thus we can suppose that Hω is a maximal proper subgroup of

G and our earlier argument shows that [G : Hω ] = ω.

In order to simplify notation, we will suppose that H is a maximal subgroup of

G. Hence, by considering the left translation action of G on the set { gnH | n ∈ N },

we obtain a homomorphism

ψ : G→ Sym(ω)

such that ψ(G) acts primitively on ω. It follows that if N E G is any normal

subgroup, then either ψ(N) = 1 or else ψ(N) acts transitively on N. Let

I = {A ⊆ ω | ψ(
∏

n∈A
SL(d, pn)) = 1 }.

Then I is clearly an ideal on ω. Furthermore, if F ⊆ ω is a finite subset, then

ψ(
∏

n∈F SL(d, pn)) cannot act transitively on N and so F ∈ I. We will show that

I is a prime ideal.
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So suppose that there exists a subset A ⊆ ω such that both A /∈ I and ωrA /∈ I.

Let P =
∏

n∈A SL(d, pn) and let Q =
∏

n∈ωrA SL(d, pn). Then both ψ(P ) and

ψ(Q) act transitively on N. Suppose that g ∈ P is such that ψ(g) fixes some integer

n ∈ N. If k ∈ N is arbitrary, then there exists h ∈ Q such that ψ(h)(n) = k; and

since g and h commute, it follows that

ψ(g)(k) = (ψ(g) ◦ ψ(h) )(n) = (ψ(h) ◦ ψ(g) )(n) = ψ(h)(n) = k.

Thus g ∈ kerψ. It follows that N = kerψ ∩P is a normal subgroup of P such that

[P : N ] = ω, which contradicts Lemma 4.7. �

Proof of Theorem 4.5. LetG =
∏
SL(d, pn) and suppose that the symmetric count-

ably syndetic subset W ⊆ G witnesses the failure of the weak Steinhaus property.

Let H = 〈W 〉 be the subgroup generated by W . Then clearly [G : H ] ≤ ω. If

[G : H ] = ω, then the result follows from Theorem 4.6 and so we can suppose that

[G : H ] < ω. Applying Lemma 4.7, it follows easily that H is an open subgroup

of G. Let

G′ =
∏

n≥n0

SL(d, pn) 6 H

and let π : G → G′ be the canonical projection. Consider the set W ′ = π(W ) of

generators of G′. If W ′ witnesses that G′ is not Cayley bounded, then the result

follows from Theorem 2.9. Hence we can suppose that there exists an integer k ≥ 1

such that (W ′)k = G′. Let g = (gn) ∈ G′ be such that gn is a noncentral element of

SL(d, pn) for all n ≥ n0. Then g ∈W ` for some ` ≥ 1; and Proposition 4.3 implies

that

G′ ⊆W kW `W k · · ·W kW `W k︸ ︷︷ ︸
m times

= W 2km+`m,

where m = 8 if d = 2 and m = 2d if d > 2. But this contradicts the assumption

that W witnesses the failure of the weak Steinhaus property. �

5. The Bergman and Steinhaus Properties in L(R)[U ]

In this section, we will present a partition property PP for products of finite sets

with measures; and we will show that ZF+DC+PP implies that if (Hn | n ∈ ω ) is

a sequence of nontrivial finite groups such that ( dC(Hn) | n ∈ ω ) grows sufficiently

fast, then
∏
Hn has both the Bergman property and the Steinhaus property.
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The Partition Property (PP ). If ( 〈an, µn〉 | n ∈ ω ) is a sufficiently fast growing

sequence of finite sets an with measures µn, then for every partition∏
an =

⊔
m∈ω

Xm,

there exists an integer m ∈ ω such that
∏
bn ⊆ Xm for some sequence of subsets

bn ⊆ an such that limn→∞ µn(bn) = ∞.

Here the words “sufficiently fast growing” should be interpreted in the sense that

there is a fixed function f that assigns a natural number to every finite sequence

of finite sets with measures ( 〈am, µm〉 | m < n ) and that an infinite sequence

( 〈an, µn〉 | n ∈ ω ) is sufficiently fast growing if

µn(an) > f( ( 〈am, µm〉 | m < n ) )

for all n ∈ ω. The exact formula for the function f is immaterial for the purposes

of this paper. We will only mention that it is primitive recursive with a growth

rate approximately that of a tower of exponentials of linear height.

The partition property PP fails in ZFC, since the Axiom of Choice can be

used to construct highly irregular partitions. However, it does hold in ZFC if we

restrict our attention to partitions into Borel sets; and it also holds for arbitrary

partitions in many models of set theory in which the Axiom of Choice fails. In

particular, in Section 7, we will prove the following result, which extends the work

of Di Prisco-Todorcevic [8, Section 7].

Theorem 5.1 (LC). L(R)[U ] satisfies PP .

We will also make use of the following recent result of Babai-Nikolov-Pyber [1]

in the newly flourishing area of “arithmetic combinatorics”. Recall that if H is a

nontrivial finite group and K is a field, then dK(H) denotes the minimal dimension

of a nontrivial K-representation of H; i.e. the least d such that there exists a

nontrivial homomorphism θ : H → GL(d,K).

Theorem 5.2 (Babai-Nikolov-Pyber [1]). Let H be a nontrivial finite group and

let k be an integer such that 1 ≤ k3 ≤ dC(H). If A ⊆ H is a subset such that

|A| ≥ |H|/k, then A3 = H.
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Proof. By Babai-Nikolov-Pyber [1, Corollary 2.6], if 1 ≤ k3 ≤ dR(H) and A ⊆ H

with |A| ≥ |H|/k, then A3 = H. Since dC(H) ≤ dR(H), the result follows. �

Remark 5.3. If H is a nontrivial finite group, then either dR(H) = dC(H) or else

dR(H) = 2dC(H). For the purposes of this paper, it does not matter whether we

work with dC(H) or dR(H). Since most of the literature on the representation

theory of finite groups deals with complex representations, we have chosen to state

our results in terms of dC(H).

Theorem 5.4 (ZF +DC+PP ). If (Hn | n ∈ ω ) is a sequence of nontrivial finite

groups such that ( dC(Hn) | n ∈ ω ) grows sufficiently fast, then
∏
Hn has both the

Bergman property and the Steinhaus property.

Proof. For each n ∈ ω, let kn = bdC(Hn)1/3c and let µn be the measure on Hn

defined by µn(A) = kn ( |A|/|Hn| ). To see that G =
∏
Hn has the Steinhaus

property, suppose that W ⊆ G is a symmetric countably syndetic subset and let

G =
⋃

m∈ω gmW . Since µn(Hn) = kn grows sufficiently fast, PP implies that there

exists m ∈ ω such that
∏
An ⊆ gmW for some sequence of subsets An ⊆ Hn such

that limn→∞ µn(An) = ∞; and after replacing
∏
An by g−1

m

∏
An, we can suppose

that
∏
An ⊆ W . Let n0 ∈ ω be such that µn(An) ≥ 1 and hence |An| ≥ |Hn|/kn

for all n ≥ n0. Clearly we can suppose that An = { an } is a singleton for each

n < n0. Applying Theorem 5.2, it follows that W 3 ⊇ gG′, where

• g = ( a3
0, · · · , a3

n0−1, 1, 1, · · · ) and

• G′ is the open subgroup
∏

n≥n0
Hn.

Since W is symmetric, it follows that W 6 ⊇ (gG′)−1gG′ = G′. This completes the

proof that
∏
Hn has the Steinhaus property.

To see that G =
∏
Hn has the Bergman property, suppose that G =

⋃
m∈ω Um

is the union of an increasing chain of symmetric subsets such that UmUm ⊆ Um+1

for all m ∈ ω. Arguing as above, it follows that there exists m ∈ ω such that U6
m

contains an open subgroup G′ and hence G′ ⊆ Um+3. Since [G : G′ ] < ω, this

implies that there exists k ∈ ω such that G = Uk, as required. �

It is perhaps worth pointing out that the proof of following corollary does not

make use of the classification of the finite simple groups.
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Corollary 5.5 (LC). If (Sn | n ∈ ω ) is a sufficiently fast growing sequence of

nonabelian finite simple groups, then
∏
Sn has both the Bergman property and the

Steinhaus property in L(R)[U ].

Proof. By Jordan’s Theorem, there exists a function ϕ : N → N such that if H is a

finite subgroup of GL(n,C), then H contains an abelian normal subgroup N with

[H : N ] ≤ ϕ(n). (For example, see Curtis-Reiner [5, Theorem 36.13].) Hence if

|Sn| grows sufficiently fast, then dC(Sn) also grows sufficiently fast. �

Corollary 5.6 (LC). If d ≥ 2 and ( pn | n ∈ ω ) is a sufficiently fast growing

sequence of primes, then
∏
SL(d, pn) has both the Bergman property and the Stein-

haus property in L(R)[U ].

Proof. Recall that if p ≥ 5 is a prime, then dC(SL(2, p) ) = (p− 1)/2; and that if

d > 2, then dC(SL(d, p) ) = (pd − p)/(p− 1).

�

The next result suggests that the fast growth conditions in the statements of

Corollary 5.5 and Corollary 5.6 are almost certainly not necessary.

Theorem 5.7 (ZF + DC + PP ). Suppose that (Hn | n ∈ ω ) is a sequence of

nontrivial finite groups which satisfies the following conditions:

(i) limn→∞ dC(Hn) = ∞.

(ii) There is a fixed integer t ≥ 1 such that for all n ∈ ω, there exists a conju-

gacy class Cn ⊆ Hn such that Ct
n = Hn.

Then
∏
Hn has both the Bergman property and the weak Steinhaus property.

The proof of Theorem 5.7 makes use of the following two simple observations.

Lemma 5.8. If H1, · · ·Hs are nontrivial finite groups and H = H1×· · ·×Hs, then

dC(H) = min{dC(Hi) | 1 ≤ i ≤ s}.

Proof. Let m = min{dC(Hi) | 1 ≤ i ≤ s}. Then it is clear that dC(H) ≤ m. So

suppose that d < m and that θ : H → GL(d,C) is a homomorphism. Then θ � Hi

is the trivial homomorphism for each 1 ≤ i ≤ s and hence θ is trivial. �
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Lemma 5.9. Let (Hn | n ∈ ω ) be a sequence of nontrivial finite groups such

that limn→∞ dC(Hn) = ∞. Then there exists an increasing sequence of integers

0 = a0 < a1 < · · · < an < · · · such that if

Pn =
∏

a2n≤i<a2n+1

Hi and Qn =
∏

a2n+1≤i<a2n+2

Hi,

then both ( dC(Pn) | n ∈ ω ) and ( dC(Qn) | n ∈ ω ) grow sufficiently fast.

Proof. First let a1 = 1. Now suppose that n ≥ 1 and that a` has been defined

for all ` ≤ n. Suppose, for example, that n = 2m + 1 is odd, so that the groups

P0, · · · , Pm have already been determined. Then we can choose a2m+2 so that

dC(Ha2m+2) is sufficiently large with respect to ( dC(P0), · · · , dC(Pm) ) and such

that dC(Ha2m+2) ≤ dC(Hi) for all i ≥ a2m+2. Applying Lemma 5.8, it follows that

for any choice of a2m+3, we will have that dC(Pm+1) = dC(Ha2m+2) is sufficiently

large with respect to ( dC(P0), · · · , dC(Pm) ). �

Proof of Theorem 5.7 (ZF +DC + PP ). Let (Hn | n ∈ ω ) be a sequence of non-

trivial finite groups which satisfies conditions (5.7)(i) and (5.7)(ii). First suppose

that
∏
Hn does not have the Bergman property and express

∏
Hn =

⋃
k∈ω Uk as

the union of a strictly increasing chain of symmetric subsets such that UkUk ⊆ Uk+1

for all k ∈ ω. Then

I = {A ⊆ ω |
∏

n∈A
Hn ⊆ Uk for some k ∈ ω }.

is a proper ideal over ω. Let ( an | n ∈ ω ) be the increasing sequence of natural

numbers given by Lemma 5.9. Then we can suppose that

A = { i | a2n ≤ i < a2n+1 for some n ∈ ω } /∈ I.

Since ( dC(Pn) | n ∈ ω ) grows sufficiently fast, it follows that∏
Pn =

∏
n∈A

Hn

has the Bergman property. For each k ∈ ω, let

Wk = { g � A | g ∈ Uk } ⊆
∏

n∈A
Hn.

Then there exists k ∈ ω such that Wk =
∏

n∈AHn. Let t ≥ 1 be the integer given

by condition (5.7)(ii). Then for each n ∈ A, there exists a conjugacy class Cn ⊆ Hn
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such that Ct
n = Hn. Let h = (hn) ∈

∏
n∈AHn be such that hn ∈ Cn and let ` ≥ k

be such that h ∈ U`. Then clearly

∏
n∈A

Hn ⊆ UkU`Uk · · ·UkU`Uk︸ ︷︷ ︸
t times

⊆ U3t
` ;

and so
∏

n∈AHn ⊆ Us for some s ≥ `, which contradicts the fact that A /∈ I. Thus∏
Hn has the Bergman property.

To show that Hn has the weak Steinhaus property, we will first prove that
∏
Hn

has no subgroups H such that [
∏
Hn : H ] = ω. So suppose that such a subgroupH

exists. Then, arguing as in the proof of Theorem 4.6 and using the fact that
∏
Hn

has the Bergman property, we can suppose that H is a maximal proper subgroup.

Hence, by considering the left translation action of
∏
Hn on the set of cosets of H

in
∏
Hn , we obtain a homomorphism

ψ :
∏

Hn → Sym(ω)

such that ψ(
∏
Hn) acts primitively on ω. In particular, it follows that if N E

∏
Hn

is any normal subgroup, then either ψ(N) = 1 or else ψ(N) acts transitively on ω.

Clearly

I = {A ⊆ ω | ψ(
∏

n∈A
Hn) = 1 }.

is a proper ideal over ω. Arguing as in the previous paragraph, it follows that

there exists a subset A /∈ I such that
∏

n∈AHn has the Steinhaus property. But

since ψ(
∏

n∈AHn) acts transitively on ω, there exists a subgroup K such that

[
∏

n∈AHn : K ] = ω, which is a contradiction.

At this point, we know that
∏
Hn has the Bergman property and that

∏
Hn

has no subgroups H with [
∏
Hn : H ] = ω. Arguing as in the proof of Theorem

4.5, it follows easily that
∏
Hn has the weak Steinhaus property. �

Corollary 5.10 (LC). If d ≥ 2 and ( pn | n ∈ ω ) is an increasing sequence of

primes, then
∏
SL(d, pn) has both the Bergman property and the weak Steinhaus

property in L(R)[U ].

Proof. We have already seen that (SL(d, pn) | n ∈ ω ) satisfies conditions (5.7)(i)

and (5.7)(ii). �
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In contrast to Corollary 5.5, the proof of the following result does make use of

the classification of the finite simple groups. (More precisely, the proof of Shalev

[26, Corollary 2.3] makes use of the classification.)

Corollary 5.11 (LC). If (Sn | n ∈ ω ) is a sequence of distinct nonabelian finite

simple groups, then
∏
Sn has both the Bergman property and the weak Steinhaus

property in L(R)[U ].

Proof. Arguing as in the proof of Corollary 5.5, it follows that (Sn | n ∈ ω ) satisfies

condition (5.7)(i). By Shalev [26, Corollary 2.3], there exists a constant N such

that if S is a nonabelian finite simple group with |S| ≥ N , then there exists a

conjugacy class C ⊆ S such that C3 = S. It follows that (Sn | n ∈ ω ) also satisfies

condition (5.7)(ii). �

We will conclude this section with a result which shows that it is necessary to

impose some condition on the growth rate of the sequence ( dC(Hn) | n ∈ ω ) if we

wish to obtain the conclusion of Theorem 5.4.

Theorem 5.12 (ZF + DC). Suppose that there exists a nonprincipal ultrafilter

over ω. Then whenever (Hn | n ∈ ω ) is a sequence of nontrivial finite groups

such that lim inf dC(Hn) < ∞, then
∏
Hn does not have the automatic continuity

property and hence does not have the Steinhaus property.

Proof. Recall that every complex representation of a finite group is similar to a

unitary representation. (For example, see Curtis-Reiner [5, Exercise 10.6].) Hence

there exists an infinite subset I ⊆ ω and a fixed integer d ≥ 1 such that for each

n ∈ I, there exists a nontrivial homomorphism ϕn : Hn → U(d,C), where U(d,C)

denotes the compact group of d×d unitary matrices. In order to simplify notation,

we will suppose that I = ω.

For each gn ∈ Hn and 1 ≤ i, j ≤ d, let ϕn(gn)ij denote the ij entry of the matrix

ϕn(gn) ∈ U(d,C). Then if U is a nonprincipal ultrafilter over ω, we can define a

homomorphism

ψ :
∏

Hn → U(d,C)

( gn ) 7→ ( zij ),
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where zij = limU ϕn(gn)ij . We claim that ψ is not continuous. To see this, sup-

pose that ψ is continuous and let W ⊆ U(d,C) be an open neighborhood of the

identity element which contains no nontrivial subgroups. (For the existence of such

a neighborhood, see Helgason [11, II.B.5].) Then there exists an open subgroup

H ⊆
∏
Hn such that ψ(H) ⊆W and hence H 6 kerψ. In particular, there exists a

cofinite subset A ⊆ ω such that
∏

k∈AHk 6 kerψ. For each k ∈ A, choose gk ∈ Hk

such that ϕk(gk) /∈W . Then, letting g = (gk) ∈
∏

k∈AHk, we have that ψ(g) /∈W ,

which is a contradiction. �

Remark 5.13. Recall that de Cornulier [6] has shown that if G is a product of

infinitely many copies of a fixed finite perfect group H, then G has the Bergman

property. Thus the analogue of Theorem 5.12 is false for the Bergman property.

6. The Bergman and Steinhaus Properties in V

Suppose that (Sn | n ∈ ω ) is a sequence of distinct nonabelian finite simple

groups. Then, in the previous section, assuming the existence of suitable large

cardinals, we proved that
∏
Sn has the Bergman property in L(R)[U ]; and we

proved that if (Sn | n ∈ ω ) is sufficiently fast growing, then
∏
Sn also has the

Steinhaus property in L(R)[U ]. In this section, we will briefly discuss the question

of when
∏
Sn has either the Bergman property or the Steinhaus property in the

actual set-theoretic universe V . In particular, throughout this section, we will work

with the usual ZFC axioms of set theory.

Recall that the classification of the finite simple groups says that if S is a non-

abelian finite simple group, then one of the following cases must hold.

(i) S is one of the 26 sporadic finite simple groups.

(ii) S is an alternating group Alt(n) for some n ≥ 5.

(iii) S is a group L(q) of (possibly twisted) Lie type L over a finite field Fq for

some prime power q.

The following condition is the key to understanding when the product
∏
Sn has

countable cofinality.

Definition 6.1. A sequence (Sn | n ∈ ω) of nonabelian finite simple groups satisfies

the Malcev condition if there exists an infinite subset I of ω such that the following

properties hold.



26 SIMON THOMAS AND JINDŘICH ZAPLETAL

(a) There exists a fixed (possibly twisted) Lie type L such that for all n ∈ I,

Sn = L(qn) for some prime power qn.

(b) If n, m ∈ I and n < m, then qn < qm.

Arguing as in the proof of Theorem 2.7(a), it follows easily that if (Sn | n ∈ ω)

satisfies the Malcev condition, then
∏
Sn has countable cofinality. Conversely, by

Saxl-Shelah-Thomas [25, Theorem 1.9], if (Sn | n ∈ ω) does not satisfy the Malcev

condition, then
∏
Sn has uncountable cofinality. Furthermore, as we mentioned ear-

lier, Zalan Gyenis has recently checked that the arguments of Saxl-Shelah-Thomas

[25] can be modified to prove that an infinite product
∏
Sn of finite simple groups

has the Bergman property if and only if
∏
Sn has uncountable cofinality. Conse-

quently, we have the following classification of the infinite products
∏
Sn satisfying

the Bergman property.

Theorem 6.2. If (Sn | n ∈ ω ) is a sequence of nonabelian finite simple groups,

then the following are equivalent:

(a) (Sn | n ∈ ω ) does not satisfy the Malcev condition.

(b)
∏
Sn has the Bergman property.

The proof of Theorem 2.3 shows that if (Sn | n ∈ ω) satisfies the Malcev condi-

tion, then there exists a subgroup H 6
∏
Sn with [

∏
Sn : H ] = ω and hence

∏
Sn

does not have the Steinhaus property. Also, it is clear that if (Sn | n ∈ ω) satisfies

the following condition, then
∏
Sn has a non-open subgroup of finite index and so

once again the Steinhaus property fails. (See Example 1.1.)

Definition 6.3. A sequence (Sn | n ∈ ω) of nonabelian finite simple groups satisfies

the Saxl-Wilson condition if there exists an infinite subset I of ω and a fixed group

S such that Sn = S for all n ∈ I.

In Thomas [29], it was shown that
∏
Sn has a non-open subgroup H such that

[
∏
Sn : H ] < 2ℵ0 if and only if (Sn | n ∈ ω) satisfies either the Malcev condition

or the Saxl-Wilson condition. Consequently, it seems natural to make the following

conjecture.

Conjecture 6.4. If (Sn | n ∈ ω ) is a sequence of nonabelian finite simple groups,

then the following are equivalent:
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(a) (Sn | n ∈ ω ) satisfies neither the Malcev condition nor the Saxl-Wilson

condition.

(b)
∏
Sn has the Steinhaus property.

Remark 6.5. Using the classification of the finite simple groups, it is easily seen

that condition (a) is equivalent to:

(a)′ lim inf d(Sn) = ∞.

7. The Partition Property (PP )

Suppose that the Ramsey ultrafilter U is L(R)-generic for for the notion of forcing

P(ω)/Fin. In this section, assuming the existence of suitable large cardinals, we

will prove that the Partition Property (PP ) holds in L(R)[U ]. More specifically,

we will make use of the following large cardinal assumption.

(LC) There exist infinitely many Woodin cardinals below a measurable cardinal.

If we merely want to prove the consistency of ZF + DC + PP , then it is only

necessary to assume the existence of an inaccessible cardinal. In more detail, sup-

pose that κ ∈ V is an inaccessible cardinal and that Coll(ω,< κ) is the usual Lévy

collapse. (For the basic properties of the Lévy collapse, see Jech [14, Chapter 26].)

Let G ⊆ Coll(ω,< κ) be a V -generic filter and let R̄ be the set of reals in the generic

extension V [G]. Then the corresponding Solovay model V (R̄) consists of the sets

z ∈ V [G] which are hereditarily definable in V [G] from parameters in R̄ ∪ V . Let

the Ramsey ultrafilter Ū be V [G]-generic for P(ω)/Fin. Then clearly Ū is also

V (R̄)-generic for P(ω)/Fin. Most of our effort in this section will be devoted to

proving the following result.

Theorem 7.1. With the above hypotheses, V (R̄)[Ū ] satisfies PP .

To transfer this result from V (R̄)[Ū ] to L(R)[U ], we will make use of the fact

that, assuming LC, if κ ∈ V is the least inaccessible cardinal, then the theory

of L(R)[U ] is not altered by forcing with Coll(ω,< κ). In more detail, assuming

LC, the theory of L(R) is not altered by forcing with Coll(ω,< κ); i.e. L(R̄) is

elementarily equivalent to L(R). (For example, see Larson [19, Corollary 3.1.16].)

Since P(ω)/Fin is a homogeneous notion of forcing, it follows that if ϕ is any
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sentence in the language of set theory, then

L(R)[U ] � ϕ ⇐⇒ L(R) � P(ω)/Fin 
 ϕ

⇐⇒ L(R̄) � P(ω)/Fin 
 ϕ

⇐⇒ L(R̄)[Ū ] � ϕ.

Proof of Theorem 5.1 (LC). Let κ be the least inaccessible cardinal and let V (R̄)[Ū ]

be as in Theorem 7.1. Then the Ramsey ultrafilter Ū is also L(R̄)-generic for

P(ω)/Fin. Working inside L(R̄)[Ū ], suppose that ( 〈an, µn〉 | n ∈ ω ) is a suffi-

ciently fast growing sequence of finite sets an with measures µn and that

∏
an =

⊔
m∈ω

Xm

is any partition. Since V (R̄)[Ū ] satisfies PP , there exists an integer m ∈ ω and

a sequence of subsets ( bn ⊆ an | n ∈ ω ) ∈ V (R̄)[Ū ] such that
∏
bn ⊆ Xm and

limn→∞ µn(bn) = ∞. Since L(R̄)[Ū ] and V (R̄)[Ū ] have the same reals, it follows

that ( bn ⊆ an | n ∈ ω ) ∈ L(R̄)[Ū ]. Thus L(R̄)[Ū ] satisfies PP . Finally since the

theory of L(R)[U ] is not altered by forcing with Coll(ω,< κ), it follows that L(R)[U ]

satisfies also PP . �

The remainder of this section will be devoted to the proof of Theorem 7.1.

As usual, we will identify the notion of forcing P(ω)/Fin with the quasi-order

( [ω]ω,⊆∗ ) of infinite subsets of ω, quasi-ordered by c ⊆∗ d if and only if |crd| < ω.

The key element of the proof is the work of Shelah-Zapletal [28] showing that for

every sufficiently fast growing sequence (〈an, µn〉 | n ∈ ω) of finite sets an with

measures µn, there is a notion of forcing P with the following properties:

(1) P adds a new element ẋ ∈
∏
an.

(2) P is proper, ωω-bounding and adds no independent reals.

(3) P is defined in a way which depends only on the reals; i.e. if M ⊆ N are

transitive models of set theory with the same reals, then PM = PN .

(4) Suppose that M is a transitive model of set theory such that P(P(R))M is

countable. Then for every p ∈ PM , there exist a sequence of sets (bn | n ∈ ω)

with bn ⊆ an and µn(bn) →∞ such that the product
∏
bn consists only of

M -generic points for the poset PM
p = { q ∈ PM | q ≤ p }.
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Here an independent real is an infinite subset a ⊆ ω in the generic extension such

that neither a nor ω r a contains an infinite ground model subset.

Let κ ∈ V be an inaccessible cardinal and let G ⊆ Coll(ω,< κ) be a V -generic

filter. Suppose that V (R̄) is the corresponding Solovay model and that the Ram-

sey ultrafilter Ū is V [G]-generic (and hence also V (R̄)-generic) for P(ω)/Fin. Let

(〈an, µn〉 | n ∈ ω) ∈ V (R̄)[Ū ] be a sufficiently fast growing sequence of finite

sets an with measures µn and let
∏
an =

⊔
m∈ω Xm be a partition of the prod-

uct into countably many pieces within the model V (R̄)[Ū ]. Working inside V [G],

let c0 ∈ [ω]ω be any infinite subset of ω. Then it is enough to find a subset

c ∈ [ω]ω with c ⊆∗ c0 and a sequence of subsets ( bn ⊆ an | n ∈ ω ) ∈ V [G] with

limn→∞ µn(bn) = ∞ such that for some m ∈ ω,

c 

∏

bn ⊆ Ẋm.

Let f :
∏
an → ω be the function defined by

f(x) = m ⇐⇒ x ∈ Xm

and let ḟ ∈ V (R̄) be a P(ω)/Fin-name for f . By the standard homogeneity ar-

guments with respect to the Lévy collapse Coll(ω,< κ), we can assume that c0,

(an | n ∈ ω) ∈ V and that the P(ω)/Fin-name ḟ is definable from the elements of

the ground model V . In particular, it follows that there exists a formula ϕ(v0, v1, v2)

with parameters in V such that for every V -generic filter H ⊆ Coll(ω,< κ) and

every c ∈ [ω]ω, x ∈
∏
an and m ∈ ω,

(7.2) V [H] � c 
P(ω)/Fin x̌ ∈ Ẋm ⇐⇒ V [H] � ϕ(c, x,m).

Working inside the ground model V , consider the product of the forcing P with

Q = P(ω)/Fin. Then the poset Q adds a Ramsey ultrafilter u and P adds a point

x ∈
∏
an. Since the definition of the forcing P only depends on the real numbers,

it follows that PV = PV [ u ]. Hence if u,x are mutually generic, then x will be

PV [ u ]-generic over the model V [ u ].

Lemma 7.3. In V [u][x], u still generates a Ramsey ultrafilter.

Proof. By Shelah [27, VI.5.1], since PV = PV [ u ] is proper and ωω-bounding in

V [ u ], it is enough to show that u still generates an ultrafilter in V [u][x]. First note
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that since Q is σ-closed and P is proper, it follows that P(ω)∩V [u][x] = P(ω)∩V [x].

(Since P is proper, each real r ∈ V [u][x] is obtained from a countable collection

C = {Cn | n ∈ ω } ∈ V [ u ] of countable subsets Cn ⊆ P such that each Cn is

predense below some condition p ∈ P; and since Q is σ-closed, it follows that C ∈ V

and hence r ∈ V [x].) Now suppose that p ∈ P, q ∈ Q are conditions and that

p 
 τ ⊆ ω. Since P does not add any independent reals, there exists a condition

p′ ≤ p and an infinite subset q′ ⊆ q such that either p′ 
 q′ ⊆ τ or p′ 
 τ ∩ q′ = ∅.

Hence either 〈q′, p′〉 
 τ ∈ u̇ or 〈q′, p′〉 
 ω r τ ∈ u̇. It follows that u still generates

an ultrafilter in V [u][x]. �

From now on, fix some u ∈ V [G] such that u is V -generic for Q and c0 ∈ u. Let

D ∈ V [ u] be the poset consisting of the conditions ( s, S ), where s ∈ [ω]<ω and

S ∈ u, partially ordered by

( s, S ) ≤ ( t, T ) ⇐⇒ s ⊇ t and sr t ⊆ T.

Then D adjoins an infinite subset ċ ⊆ ω which diagonalizes the Ramsey ultrafilter

u; i.e. a subset ċ such that |ċ r S| < ω for all S ∈ u. In fact, by Mathias [21],

every set diagonalizing u is V [ u]-generic for the poset D. By Lemma 7.3, if ū is

the upwards closure of u in the model V [ u][x], then ū is a Ramsey ultrafilter in

V [ u][x]. Hence if D̄ ∈ V [x, u] is the corresponding poset diagonalizing ū, then D is

dense in D̄ and every set diagonalizing u is V [ u][x]-generic for both D̄ and D. Let

ϕ(v0, v1, v2) be the formula with parameters in V given by (7.2).

Lemma 7.4. In V [ u][x], there exists a natural number m ∈ ω such that

〈1, 1〉 
D×Coll(ω,<κ) ϕ(ċ, x̌, m̌);

in other words, in V [ u][x], we have that

〈1, 1〉 
D×Coll(ω,<κ) ċ 
P(ω)/Fin x̌ ∈ Ẋm.

Proof. Suppose not. Then there exist distinct numbers m0, m1 ∈ ω and conditions

for the associated 3-step iteration

〈r0, s0, ḋ0〉, 〈r1, s1, ḋ1〉 ≤ 〈1, 1, ċ〉

such that 〈r0, s0, ḋ0〉 
 x̌ ∈ Ẋm0 and 〈r1, s1, ḋ1〉 
 x̌ ∈ Ẋm1 . Choose mutually

V [u][x]-generic filters H0 ⊆ D, K0 ⊆ Coll(ω,< κ) such that 〈r0, s0〉 ∈ H0×K0; and
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note that, since d = ḋ0/(H0 ×K0) ⊆∗ ċ/H0, it follows that d is V [u][x]-generic for

the poset D. Hence, after making a finite adjustment to the set d if necessary, we can

find a V [u][x]-generic filter H1 ⊆ D such that r1 ∈ H1 and d = ċ/H1. A standard

homogeneity argument with respect to the Lévy collapse Coll(ω,< κ) now shows

that there exists a V [u][x][H1]-generic filter K1 ⊆ Coll(ω,< κ) such that s1 ∈ K1

and V [u][x][H0 × K0] = V [u][x][H1 × K1]. Let d′ = ḋ1/(H1 × K1). Consider the

notion of forcing P(ω)/Fin inside the model V [u][x][H0 ×K0] = V [u][x][H1 ×K1].

Working with the V [u][x]-generic filter H0 ×K0, it follows that d 
 x̌ ∈ Ẋm0 and

so V [u][x][H0 ×K0] � ϕ(d, x,m0). Furthermore, since

d′ = ḋ1/(H1 ×K1) ⊆∗ ċ/H1 = d,

it follows that V [u][x][H0×K0] � ϕ(d′, x,m0) and so V [u][x][H0×K0] 6� ϕ(d′, x,m1).

On the other hand, working with the V [u][x]-generic filter H1 ×K1, it follows that

d′ 
 x̌ ∈ Ẋm1 and so V [u][x][H1 ×K1] � ϕ(d′, x,m1), which is a contradiction. �

Next, working in the model M = V [ u], let p ∈ PM be a condition that identifies

the natural number m in the statement of Lemma 7.4. Then, since P(P(R))M is

countable in V [G], there exists a sequence of sets (bn | n ∈ ω) ∈ V [G] with bn ⊆ an

and µn(bn) → ∞ such that the product
∏
bn consists only of M -generic points

for the poset PM
p = { q ∈ PM | q ≤ p }. Let c ∈ V [G] be an infinite subset of ω

which diagonalizes the ultrafilter u ∈ M . Then clearly c ⊆∗ c0 and we claim that

c 

∏
bn ⊆ Ẋm. To see this, suppose that x ∈

∏
bn. Then u, x are mutually

V -generic and c is V [ u][x]-generic for D. Hence, working in V [G], Lemma 7.4

implies that the condition c ∈ P(ω)/Fin forces x̌ ∈ Ẋm. This completes the proof

of Theorem 7.1.
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