THE BI-EMBEDDABILITY RELATION FOR FINITELY
GENERATED GROUPS

SIMON THOMAS AND JAY WILLIAMS

ABSTRACT. There does not exist a Borel selection of an isomorphism class

within each bi-embeddability class of finitely generated groups.

1. INTRODUCTION

Two groups G, H are said to be bi-embeddable, written G =, H, if there
exist embeddings G — H and H — G. In this paper, we will consider the bi-
embeddability relation on the space Gy, of finitely generated groups. Here Gy,
denotes the Polish space of finitely generated groups introduced by Grigorchuk [3];
i.e., the elements of G4 are the isomorphism types of marked groups ( G,¢), where
G is a finitely generated group and ¢ is a finite sequence of generators. (For a clear
account of the basic properties of the space Gy, see either Champetier [1] or Grig-
orchuk [4].) Since each finitely generated group G has only countably many finitely
generated subgroups, it follows that ~,, is a countable Borel equivalence relation;
i.e. that every ~.,,-class is countable. Consequently, since the isomorphism rela-
tion = on Gy, is a universal countable Borel equivalence relation [15], there exists
a Borel reduction from =, to =; i.e. a Borel map f : Gry — G4 such that if G,

H € Gyg4, then
Gren H <— f(G)= f(H).
However, the only known proof of the existence of such a Borel reduction relies

ultimately upon the Feldman-Moore Theorem [2] and this proof does not produce

an explict example of such a reduction.

Open Problem 1.1. Find an explicit (preferably “group-theoretic”) example of

a Borel reduction from =~,, to =.
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Of course, one approach to this problem would be to seek a Borel map which
selects an isomorphism class within each bi-embeddability class of finitely generated

groups. However, the main result of this paper shows that no such map exists.

Theorem 1.2. There does not exist a Borel reduction f : Grg — Grq from =epm to

= such that f(G) ~em G for all G € Gyq.

This paper is organized as follows. In Section 2, we will recall some basic notions
and results concerning Borel equivalence relations and group theory. In Sections 3
and 4, we will discuss the structure of an uncountable family of finitely generated
groups which was first introduced by B.H. Neumann [9] and we will make an easy
observation concerning embeddings between products of suitably chosen pairs of
these groups. In Section 5, we will discuss a smooth group-theoretic invariant that
will play a key role in the proof of Theorem 1.2. In Section 6, we will use the Neu-
mann groups to give a simple proof that there does not exist a Borel selection of an
isomorphism class within each commensurability class of finitely generated groups.
(This result was first proved in Thomas [14] via a significantly more complicated
argument.) In Section 7, we will use products of suitably chosen pairs of Neumann
groups to prove Theorem 1.2, modulo two technical results which will be proved
in Sections 8 and 9. (The argument in Section 8 makes essential use of the work
of P.M. Neumann [10] on the structure of finitary permutation groups.) Finally, in
Section 10, we will briefly discuss a few of the many open problems suggested by

the material in this paper.

2. PRELIMINARIES

In this section, we will recall some basic notions and results concerning Borel

equivalence relations and group theory.

2.1. Borel equivalence relations. Suppose that ( X, B) is a measurable space;
i.e. that B is a o-algebra of subsets of the set X. Then (X, B) is said to be a
standard Borel space if there exists a Polish topology 7 on X such that B is the
o-algebra of Borel subsets of (X, 7). If X, Y are standard Borel spaces, then a
map f: X — Y is Borel if f~1(Z) is a Borel subset of X for each Borel subset
Z CY. Equivalently, f : X — Y is Borel if graph(f) is a Borel subset of X x Y.
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If X is a standard Borel space, then a Borel equivalence relation on X is an
equivalence relation £ C X2 which is a Borel subset of X2. If E, F are Borel
equivalence relations on the standard Borel spaces X, Y respectively, then a Borel

map f: X — Y is said to be a homomorphism from E to F if for all z, y € X,
cEy = [f(2)F f(y).

If f satisfies the stronger property that for all z, y € X,
vEy <= [f(x)F fy),

then f is said to be a Borel reduction and we write £ <g F. If both F <g F
and F <p F, then we say that F and F' are Borel bireducible and write £ ~p F.
Finally we write E <p F if both E <p F and F £ E.

The Borel equivalence relation F on the standard Borel space X is said to be
smooth if E is Borel reducible to the identity relation Idz on some (equivalently ev-
ery) uncountable standard Borel space Z. Let Ey be the Borel equivalence relation

on the Cantor space 2", which is defined by
xEyy <= x(n)=y(n) for all but finitely many n.

Then, by Harrington-Kechris-Louveau [6], if E is any Borel equivalence relation,
then F is nonsmooth if and only if £y <p E. The following “generic ergodicity”
result will play a key role in the proof of Theorem 1.2. (For example, see Hjorth
[7, Theorem 3.2].)

Proposition 2.1. Suppose that E is a smooth Borel equivalence relation on the
standard Borel space X. If f : 2Y — X is a Borel homomorphism from Eqy to E,

then there exists a comeager subset C C 2N such that f maps C to a single E-class.

In this paper, we will mainly work with the following slight variant of Ey. Sup-
pose that A is an infinite subset of N. Then we can clearly identify Ey with the
corresponding equivalence relation on 2*. Let Inc(A) be the set of strictly increas-
ing sequences a = {(ag,ay, - ,Gn, - ) of elements of A. Then we can identify each

a € Inc(A) with the corresponding infinite subset of A,

Sa:{a();ala"' 7an7"'}€ [A]N
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Finally if we identify each S € [A]Y with its characteristic function ys € 2%,
then Inc(A) becomes identified with the dense Gs-subset of 2% consisting of the
functions z such that z(a) = 1 for infinitely many a € A. Notice that Ey | Inc(A)
corresponds to the Borel equivalence relation F; on the original space Inc(A) of

strictly increasing sequences of elements of A defined by
(apn e N) By (bp|n € N)  «—  (3k)(3¢)(Ym) agtm = bogm.-
Of course, it is clear that F; is Borel bireducible with FEj.

2.2. Some basic group theory. Throughout this paper, permutation groups will

always act on the left. Thus, for example, we will have that
(123)(1357)(123)'=(215T7)

If © is a nonempty set, then Sym(€2) denotes the group of all permutations of
Q. A permutation 7 € Sym(Q) is said to be finitary if supp(w) is finite, where
supp(m) = {a € Q | () # a}. The group of even finitary permutations of € is
denoted by Alt(Q).

If G is a group, then the F'C-radical is the characteristic subgroup

A(G) = {a € G |a" is finite }.

Here a® denotes the conjugacy class {gag™" | g € G}. The group G is said to be
an FC-group if A(G) = G and is said to be FC-by-finite if [G : A(G)] < 0.

By Dicman’s Lemma [16], if g1,---,g; are elements of G, each having finite
order and each having only finitely many conjugates in G, then there exists a
finite normal subgroup N < G such that g1,---g: € N. Hence we can define a
characteristic subgroup A1 (G) of G by

AT(G) = {g € G| g is contained in a finite normal subgroup of G }.

It is clear that AT (G) is a (possibly trivial) periodic FC-subgroup of G and that
AT(G) < A(GQ). In fact, AT(G) = { g € A(G) | g has finite order }.
3. A CONSTRUCTION OF B.H. NEUMANN

In this section, we will begin our discussion of a family of finitely generated

groups which was originally introduced by B.H. Neumann [9] in order to prove the
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existence of uncountably many finitely generated groups. Throughout this paper,
Alt(d) will denote the alternating group on the set {1,2,---,d}. It is well-known
that if d > 5 is odd, then Alt(d) is simple and is generated by the permutations
ag=(123---d)andb;=(1 2 3). Let O={d € N|d>5is an odd integer }
and let Inc(OQ) be the set of strictly increasing sequences d = (do,dy, -+ ,dp, )

of elements of O.

Definition 3.1 (B.H. Neumann [9]). For each d € Inc(Q), let Gq be the subgroup
of [[,,en Alt(dn) generated by the two elements aq = [, ey @a, and bg = [],,cy ba,, -

We will present a brief but reasonably complete account of the structure of the
groups Gq in the next section. In this section, we will prove a bi-embeddability
result for suitably chosen products of these groups, which will play a key role in
the proof of Theorem 1.2. For the remainder of this paper, let e = (5,7,---) be

the increasing enumeration of the set of all odd integers d > 5.

Definition 3.2. For each d € Inc(0), let Hg = Gq X Ge.

Proposition 3.3. Ifc, d € Inc(0Q) and c E;d, then H. and Hq are bi-embeddable.
Proposition 3.3 is an easy consequence of the following two lemmas.

Lemma 3.4. For each j > 1, there exists a fixed word wj(x,y) such that for each

n>2j+5,

wj(an,bp) =(123 - n—2j5).

Proof. 1t is enough to prove the result when j = 1, for then an easy induction yields

the general result. Since
(Inn-1)(123---n)=(123---n-2).

and a,2b,; a2 = (1 n n—1), it follows that we can take w (x,y) = 272y~ 23.

O

Lemma 3.5. For each 2j +1 > 5,

Alt(5) x AlL(7) x -+ x Alt(2] + 1) X Ge < Ge.
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Proof. For each odd integer £ > 5, let Alt(¢) be the subgroup of Ge = [, o Alt(ey)

consisting of the elements 6§ = [] 0, such that 6, = 1 for all n # ¢. Then,

neN

by Neumann [9], we have that each Alt(¢) is a subgroup of Ge. Hence, letting
c=(2j+3,2j+5,---) enumerate the odd integers £ > 2j + 3, it follows that

Ge = Alt(5) x Alt(7) x -+ x Alt(2j + 1) x Ge;

and so it is enough to show that Ge — G.. To see this, note that Lemma 3.4
implies that the map ¢ : {de,be } — Ge, defined by ¢(ae) = wj_1(ac,bc) and
©(be) = be, extends to an embedding of Ge into Ge. O

Proof of Proposition 3.3. Suppose that k, ¢ are such that ¢y, = dey for all m
and let

a:<ckvck+1”'>:<dlvd£+1.">'

Then clearly
Hc = Alt(CO) X Alt(Cl) X oo X Alt(ck_l) X Ga X Ge
embeds into
Ga X Alt(5) x ALL(7) x -+ - x Alt(ck—1) X Ge,

which by Lemma 3.5 embeds into G4 X Ge. Of course, it is clear that G4 X Ge

embeds into
Hg = Alt(dp) x Alt(dy) x -+ x Alt(dp—1) X Ga X Ge.
Similarly, Hq embeds into He. O

As we will explain in the next section, Proposition 3.3 easily implies that the
bi-embeddability relation is nonsmooth on the space G, of finitely generated
amenable groups. In [17], Williams proved that the bi-embeddability relation on

the space Gyq4 of all finitely generated groups is countable universal.

Question 3.6. Is the bi-embeddability relation on G,,, countable universal?
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4. THE STRUCTURE OF THE NEUMANN GROUPS

In the remaining sections of this paper, it will be convenient to work with the
following “more symmetric” realization of the Neumann groups. For each odd

integer d =20 +1 > 5, let
Qd:{_ga _(6_1)7 "'7_17 07 1a"'7€_17 é}

and let ag, B4 € Alt(Q4) be the permutations defined by:
eag=(—L —((—1) -+ —101--£(—11)
e Ba=(-101)

If d € Inc(Q), then Gq is clearly isomorphic to the subgroup Gg of ], o Alt(Qyg, )

neN
generated by the two elements ag = [[,,cy @, and Ba = [[,,cy B4, - In the remain-
der of this paper, we will identify Gg with Gq. Also, in order to simplify notation,
if 0 € I],,cn Alt(Q4,), then we will write 6 = ] 6,, instead of 6 =[], . n

Next we will give a brief account of the main structural features of Gq. (For
a more detailed account, see de la Harpe [5, II1.B.35].) For each ¢ € N, identify
Alt(€q,) with the subgroup of [, .y Alt(€2qg, ) consisting of the elements 6 = [] 6,
such that 6, = 1 for all n # ¢; and let

Pa = P Alt(Qq,)
neN

be the restricted direct product consisting of those ¢ = [[on € [],,en Alt(Q4,,)

neN
such that o, = 1 for all but finitely many n € N. Then, by Neumann [9], we
have that AT(Gq) = P4 and Gq/Py is isomorphic to the subgroup By, of Sym(Z)
generated by Alt(Z) and the shift map z — 2z + 1. In this paper, the normal
subgroup of Gg consisting of the elements of finite order will be denoted by Fy.

Thus Fq/Pq = Alt(Z) and Gq/F4 = Z with ag mapping to the generator of Z. In

particular, the following result holds.

Theorem 4.1 (B.H. Neumann [9]). {Gq | d € Inc(O) } is an uncountable family

of pairwise nonisomorphic finitely generated amenable groups.
The following result is now an easy consequence of Proposition 3.3.

Proposition 4.2. The bi-embeddability relation ¢, on the space Gy of finitely

generated amenable groups is nonsmooth.
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Proof. By Proposition 3.3 and Theorem 4.1, the map f : Inc(Q) — Gum, defined
by f(d) = Hgq, is an injective Borel homomorphism from E; to &.,,. In particular,
since each ~.,,-class is countable, no comeager subset C' C Inc(Q) is mapped to a

single =s.,,,-class. Hence the result follows from Proposition 2.1. |

In the remainder of this section, we will record a few basic properties of the

Neumann groups, which are needed in the proof of Theorem 1.2.

Proposition 4.3. If N < Gq is a subgroup of finite index, then there exists a finite
(possibly trivial) cyclic group C and a finite (possibly empty) subset T C N such
that Gd/N ~(C x HZET Alt(QdE).

Proof. Tt is easily seen that N N Py = @ g Alt(Qq,) for some subset S C N.
Furthermore, since [ Pq : N N Pgq] < o0, it follows that S must be a cofinite subset
of N. Let s = (s,, | n € N) be the increasing enumeration of S and let T =N~ S.

Next suppose that g = [[ g» € N and that g, # 1. Then there exists an element
h € Alt(Qq,) such that hg,h™! # g, and it follows that

1# hgh™tg™' € NN Alt(Qg,).
This implies that Alt(Q4,) < N and so n € S. Thus Ps < N < G5 and hence

Ga/N = (Gs/N ) x [ Alt(Qa,).

LeT

Thus it is enough to show that Gs/N is a finite (possibly trivial) cyclic group.
To see this, let p : Gg — Gs/Ps be the canonical surjective homomorphism and
let M = p[N]. Then identifying Gs/Ps with Bs, = Alt(Z) x Z, it follows that
[Alt(Z) : M N Alt(Z)] < oo and hence Alt(Z) < M. This implies that B /M is a
finite (possibly trivial) cyclic group and hence the same is true of Gs/N. O

The following observation will be used repeatedly in the proof of Theorem 1.2.
(In fact, we have switched to the current “more symmetric” realization of the

Neumann groups in order to obtain the following clean statement of Lemma 4.4.)

Lemma 4.4. Suppose that o = [[o, € Ga has infinite order. Then there exist
integers ng, k, ¢ € N and a fized (possibly empty) subset F' C Z such that for all
n Z o,

(i) F C Qq, is op-invariant; and



THE BI-EMBEDDABILITY RELATION FOR FINITELY GENERATED GROUPS 9

(i) if wn € Qq, N\ F, then the orbit of wy, under the action of o, has length at
least (d,, — ¢)/k.

Proof. If 0 = [[ o, € Ggq has infinite order, then there exist integers ng € N and
¢ € Z~{0}, together with a fixed permutation 7 € Alt(Z) such that supp(7) C Qq,
and o, = af; 7 for all n > ng. A moment’s thought now shows that there exists a
subset F C {m € Z | minsupp(n) < m < maxsupp(rw) } such that the result holds
with k = |£]. O

The following is the first of many consequences of Lemma 4.4.

Proposition 4.5. If 0 € Gq is an element of infinite order, then Cr, (o) is an

FC-by-finite group.

Proof. By Lemma 4.4, if 0 = [0, € Gq has infinite order, then there exists an

integer ng € N and a fixed (possibly empty) subset F' C Z such that:

(i) F CQq, is invariant under the action of oy, for all n > nyg.
(i) If (wn) € [I,;5n, 4, ~ F, then the lengths of the orbits of w;,, under the

action of o, are unbounded as n — oo.

Suppose that 7 = [[ 7, € CF,(0). Then there exists an integer n; > ng and a fixed
permutation 7, € Alt(Z) such that 7, = 7, for all n > ny. Since 7, commutes
with o, for all n € N, it follows that suppm, C F. Thus the map 7 — 7, is
a homomorphism from Cp,(c) to Sym(F) with kernel Cg,(c) N Pg. The result
follows. (]

5. A SMOOTH BOREL INVARIANT

The general strategy of the proof of Theorem 1.2 can be described as follows.
Recall that we have already shown that the bi-embeddability relation ~.,, on the
space {Gq | d € Inc(0)} is a nonsmooth countable Borel equivalence relation.
We will next define a suitable smooth Borel invariant on the space G of countable
groups; i.e. a Borel homomorphism ® : G — X from the isomorphism relation =2
on G to a smooth Borel equivalence relation E on some standard Borel space X.
Now suppose that f : Gy, — Gyy is a Borel map which selects an isomorphism

class within each bi-embeddability class. Then the Borel map d — (® o f)(Gq) is

a homomorphism from F; to the smooth Borel equivalence relation EF; and hence
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by Proposition 2.1, there exists a comeager subset C' C Inc(Q) which is mapped to

a single F-class. Of course, ® will be chosen so that this leads to a contradiction.

Definition 5.1. If G is any group, then:

(i) let Sg be the set of nonabelian finite simple normal subgroups of G; and

(ii) let ®(G) be the subgroup of G generated by |JSg.

(If S¢ = 0, then we define ®(G) = 1.)

It is easily seen that ®(G) = @P{S | S € S¢ } is the direct sum of the subgroups
S € Sg. Furthermore, it is clear that ®(G) is a characteristic subgroup of G and
that ®(G) < AT (G). For example, if d € Inc(Q), then
O(Ga) = AT(Ga) = ) Alt(Q,).
neN

On the other hand, if n > 2 and

G = Alt(5) wr Sym(n) = [Alt(5) x - -+ x Alt(5)] x Sym(n),

n! times
then ®(G) =1 and AT(G) = G.
Next let Gy be the standard Borel space of countable groups R which can be

expressed as a direct sum

(5.1) R= @na T,

of nonabelian finite simple groups T},, where I is either N or else some finite (possibly
empty) initial segment of N. Since {T,, | n € I} is exactly the set of minimal
nontrivial normal subgroups of R, it follows that the direct sum decomposition

(5.1) is essentially unique; in the sense that if

(5.2) R= @ng T

is a second such decomposition, then J = I and there is a permutation o € Sym(I)
such that T, = T, for all n € I. Hence, letting {S; | £ € N} be a fixed
enumeration of the distinct nonabelian finite simple groups up to isomorphism, it

follows that R is determined up to isomorphism by the Borel invariant

tp(R) = (mo(R),mi(R), -~ ,me(R),---) € (NU{oo})"
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defined by

my¢(R) = the number of n € I such that T,, = S,.

Thus the isomorphism relation on G4 is smooth.
Finally, note if 8 : G — H is a group isomorphism, then [ ®(G)] = ®(H). Hence
the map G — ®(G) is a Borel homomorphism from the isomorphism relation on G

to the isomorphism relation on Gg,.

6. THE COMMENSURABILITY RELATION FOR FINITELY GENERATED GROUPS

In this section, as a warm-up exercise for the proof of Theorem 1.2, we will
use the Neumann groups to give a simple proof that there does not exist a Borel
selection of an isomorphism class within each commensurability class of finitely
generated groups. (This result was first proved in Thomas [14] via a significantly
more complicated argument.)

Recall that two groups G1, G are said to be (abstractly) commensurable, written

G1 =~¢ Go, if there exist subgroups H; < G; of finite index such that H; & Hs.

Theorem 6.1. There does not exist a Borel reduction h : Gyg — Grq from =¢c to

= such that h(G) =¢ G for all G € Gyq.

The proof of Theorem 6.1 makes use of the smooth invariant AY,(G) on the

space G of countable groups defined by
AL(G) = 2(AT(G)).
For example, if d € Inc(Q), then

AL (Ga) = ®(Ga) = P Alt(Qu,).

neN

However, the following result is not true if we replace A7, (G) by ®(G).

Lemma 6.2. If G, H are (not necessarily finitely generated) groups such that
G ~¢ H, then AL(G) =¢ AL (H).

Proof. 1t is enough to prove the result for the special case when H < G is a subgroup

of finite index. Assuming this, we will first show that

A+(H) = AY(G) N H.
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Obviously AT(G) N H < AT(H). Conversely, suppose that h € H ~ AT(G). If h
has infinite order, then clearly h ¢ AY(H). So we can suppose that h has finite
order and thus |h%| =[G : Cg(h)] = oo. Since [G : H] < oo and

[G:H][H:Cu(h)]=[G:Cu(h)] 2 [G:Ca(h)] = oo,

it follows that [H : Cy(h)] = oo and so h ¢ AT(H). This completes the proof
that AT(H) = AT(G) N H. In particular, it follows that A*(H) is a subgroup of
finite index in AT(G).

Next recall that AT, (G) = @{S | S € Sa+() } is the direct sum of the sub-
groups S € Sa+(g). Since [AT(G) : AT(H)] < oo, it follows that there is a
cofinite subset Sy € Sa+(q) such that @{S | S € So} < AT(H) and it is clear
that Sy C Sa+ (. Finally, let g1,-- -, g be a set of coset representatives of A*(H)
in AT(G). Since

[A;:(H) : CAjg(H)(gh 7915)] < 00,

it follows easily that there is a cofinite subset S; C Sa+ () such that Sy C Sa+(g)-
It now follows that AJ,(G) ~¢ AJ,(H). O

Lemma 6.3. Ifc, d € Inc(Q), then the following statements are equivalent:
(i) c By d;
(ii) Ge =c Ga;
(iif) AL (Ge) =c AL(Ga).

Proof. Tt is clear that (i) implies (ii); and, applying Lemma 6.2, it follows that (ii)
implies (iii). To see that (iii) implies (i), simply note that if ¢, d € Inc(Q) are not
E-equivalent, then AT, (G.) = @, yAlt(c,) and AL (Ga) 2 @, Alt(d,) are

neN neN

clearly not commensurable. O

Proof of Theorem 6.1. Suppose that h : G¢; — G¢,4 is a Borel reduction from ~¢
to = such that h(G) =~¢ G for all G € Gy,4. Let ¢ : Inc(0) — G45 be the Borel map
defined by ¢(d) = Af,(h(Ga) ). Then, by Lemma 6.3, ¢ is a Borel homomorphism
from E; to the isomorphism relation = on G,s. Hence, by Proposition 2.1, there

exists a comeager subset C' C Inc(Q) such that ¢ maps C to a single 2-class. Let

¢, d € C be such that ¢ and d are not Ej-equivalent. Then, since h(G.) =¢ Ge
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and h(Gq) ~¢ Gq, it follows from Lemma 6.2 that
AL(Ge) me AL (h(Ge)) = AL (h(Ga)) =c AL (Ga).

But then, applying Lemma 6.3 once more, it follows that ¢ E; d, which is a contra-

diction. O

7. THE HEART OF THE MATTER

In this section, we will present the proof of Theorem 1.2, modulo two technical
results which will be proved in Sections 8 and 9. For the remainder of this paper
A C N will be a fixed infinite set of odd integers such that if A ={ a, | n € N} is

the increasing enumeration, then:
(i) ap > 5;

)
ii) if m < n, then ay, | (a, —2); and
(iii)

the sequence (a, | n € N) is “sufficiently fast growing”.

Here “sufficiently fast growing” means sufficiently fast growing for the various steps
in the proof of Theorem 1.2 to go through. In a similar fashion, we will use the
notation n < m to indicate that m is “much larger” than n. Condition (ii) has

been included in order to ensure that the following result holds.
Lemma 7.1. Ifd € Inc(A), then for alln € N,
1+# [a% ™2 Baag ™™, Ba] € Alt(Qa,).

Proof. If d > 5 is odd, then easy calculations show that [af B4 a;z, Ba]l = 1if
either £ € {3,4,--- ,d — 3} or d|¢; and that [} Bqa;", Ba] #1if £ =d — 2. The

result follows. O

~

Suppose that f : Gry — Gy, is a Borel reduction from ~.,, to = such that
f(G) =em G for all G € Gy, Consider the Borel map h : Inc(A) — G, defined by
h(d) = ®( f(Ha) ). By Proposition 3.3, if cE;d, then H¢ ., Hq and so h is a Borel
homomorphism from FE; to the isomorphism relation on Gss. Applying Proposition
2.1, since the isomorphism relation on G, is smooth, it follows that there exists a
comeager subset C' C Inc(A) such that h maps C to a single isomorphism class.
In order to show that this is impossible, it is necessary to analyze the structure of

groups of the form ®(K'), where K € Gy, satisfies K =~,,, Hq for some d € Inc(A).
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Since Hq — K — Hg, it is enough to consider the case of finitely generated groups
K such that p( Hq) < K < Hgq for some embedding ¢ : Hg — Hg. Thus most of
our effort in this section will be devoted to an analysis of the possibilities for the
embedding ¢. From now on, let pq : Gq X Ge — Gq and pe : Gqg X Ge — G¢ be
the canonical projections.

First consider the element ¢(aq) = (0,0’ ) € Hq = Gq X Ge. Then at least one
of the elements o, o’ has infinite order. Suppose that both ¢ and ¢’ have infinite

order. Then, applying Proposition 4.5, it follows that

Cryxr.(p(aa)) = Cpy(0) x Cr, (")

is an F'C-by-finite group. However, since

o(Fe) < o(Cryxr.(aa)) < Cpyxr, (p(aa))

and Fe/Pe = Alt(Z), this is impossible. Thus exactly one of the elements o, ¢’ has

infinite order.
Lemma 7.2. o has infinite order.

Proof. Suppose that ¢’ has infinite order and let ¢/ = [] ¢/,. Applying Lemma 4.4,
there exist integers ng, k, ¢ € N and a fixed (possibly empty) subset F C Z such
that for all n > ng,
(i) F C Q. is o) -invariant; and
(ii) if wy, € Q¢, \ F, then the orbit of w,, under the action of o], has length at
least (e, — ¢)/k.
Let ¢(Bq) = (w, 7" ) and let 7’ = [[ «},. Then we can also suppose that ng has been

chosen such that for all n > ng,

(iii) there exists a fixed permutation § € Alt(Z) such that =], = 6.
Since p(B4) has infinitely many conjugates under the action of ¢(aq) and the group
D = (o,m) < Fq is finite, it follows that supp(f) € F. Finally, since the sequence
(ay | n € N) is “sufficiently fast growing”, there exists an integer n > ng such that
for some m € N,

(iv) dm < ep < dipa; and

(V) o< | A16(Q,)| < grassioy-
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Now consider the homomorphism ¢ : Gqg — Sym({)., ) obtained by projecting
©(Gq) into Sym(Q,, ). Then clearly ¢(aq) = o), and ¥(8a) = 6. Applying Propo-
sition 4.3, there exists a finite (possibly trivial) cyclic group C and a finite (possibly
empty) subset 7' C N such that ¥(Gq) = C x [[,cp Alt(Qq,). Since e, < dypy1, it
follows that T'C {0,1,--- ,m }. In particular, each conjugacy class of ¥(Gq ) has
cardinality at most [, | Alt(Q2q,)|. However, since supp(f) Z F" and each orbit
of Y(aq) = o), on Q. ~ F has length at least (e, — ¢)/k, the conjugacy class of
¥(Ba) = 0 in ¢( Gq ) has cardinality at least m, which is a contradiction. O

Lemma 7.3. There exists an integer ng € N such that p( Alt(Qg,)) = Alt(Qq,,)

for alln > ng.

Proof. We will continue to write ¢(aq) = (0,0’ ). Let 0 = [[ o,. Then, applying
Lemma 4.4, there exist integers ng, k, ¢ € N and a fixed (possibly empty) subset
F C 7 such that for all n > ny,
(i) F C Qyq, is op-invariant; and
(ii) if wy, € Qq, \ F, then the orbit of w, under the action of o,, has length at
least (d,, — ¢)/k.

Let ¢(Ba) = (7, 7). Since o', ' € Fe, it follows that the group D = (o', 7" ) < Fg
is finite. We can also suppose that ng has been chosen so that

(i) [ALlt(Q4q,, )| > max{|Alt(F)],|D| }.
Let m = [[ . Then we can also suppose that ng has been chosen such that for all
n > no,

(iv) there exists a fixed permutation n € Alt(Z) such that m, = n.
Finally, since the sequence (a, | n € N) is “sufficiently fast growing”, we can also

suppose that ng has been chosen such that:

n —C

__dn—c
4k|supp(n)[*

Now let £ > ng and let g, = [ozdd’f_Qﬁda;(dhm,Bd]. Then, by Lemma 7.1, we have

(v) if n > € > ng, then | Alt(Qg,)]| <

that 1 # g, € Alt(Qq4,); and hence the conjugates of g, in G4 generate Alt(£g,).
Let ©(g9e) = (IImn,I]7,). I 7}, # 1 for some n € N, then we can define a
nontrivial homomorphism from Alt(€Qg,) into D by (pe o ¢ ) | Alt(4,), which is
impossible since | Alt(2q,)| > |D]. It follows similarly that 7, = 1 for all n < £.

Finally, suppose that 7, # 1 for some n > ¢. First note that if supp(r,) C F,
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then there exists a nontrivial homomorphism from Alt(4,) into Alt(F'), which is
impossible. Thus supp(r,) N (Qa, ~ F) # 0. Next notice that since m, = 7, it
follows that | supp(7,)| < 4|supp(n)|. But this means that 7,, has at least m
distinct conjugates under the action of o, and hence g, has more than | Alt(€y,)|

distinct conjugates under the action of p(aq), which is impossible. It follows that

©(ge) € Alt(2g,) and this implies that ¢( Alt(Qg,)) = Alt(Qyq, ). O

Next let ¢(ae) = (9',1). Then, arguing as above, we see that exactly one of

the elements 1)’, ) has infinite order.

Lemma 7.4. ¢ has infinite order.

Proof. Clearly ¢(Fgq x Fe) = ¢(Ha) N (Fq x Fe) and so ¢ induces an embedding
@P:Ha/(Fa X Fe) = Hq/(Fa X Fe) =27 ®Z.

It follows that im @ is a subgroup of finite index in Hq/( Fg X Fe). Combined with

Lemma 7.2, this implies that ¥ must have infinite order. (Il

Let ¢ = [[¢n. Applying Lemma 4.4 once again, there exist integers nq, k', ¢
with n1 > ng and a fixed (possibly empty) subset F’ C Z such that for all n > ny,
o F' C Q. is ¢,-invariant; and
o ifw), € Q. ~ F’ then the orbit of w], under the action of ¢, has length at
least (e, — ') /K.

Lemma 7.5. If K is an arbitrary subgroup such that p(Hq) < K < Hgq, then
[AF(pe(K)) : AT (pe(K)) N Pe] < o0.

Proof. If g = [1gn € AT (pe(K)), then there exists n, > n; and a fixed permuta-
tion 1y € Alt(Z) such that g, = 7, for all n > ng. Since the conjugacy class of g
in pe(K) is finite and ¢p(ae) € K, it follows that supp(n,) C F’. Thus g — n, is a
homomorphism from A" (pe(K)) to Sym(F’) with kernel AT (pe(K))NPe. O

Until further notice, we will fix some finitely generated group K such that

w(Ha) < K < Hq. Let U < K be the subgroup defined by

U={(a,b) e K|be P }.
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Then, applying Suzuki [11, 4.19], we have that

(7.6) pe(U)/(UNGe) Z2pa(U)/(UNGaq).

Note that pe(U)/(UNGe ) = pe(U)/(UNPe ) is a homomorphic image of a subgroup
of Pe. In particular, it follows that pe(U)/(U N Ge) is a periodic FC-group.

Lemma 7.6. There exist only finitely many integers m > 5 such that Alt(m)
embeds into pe(U)/(U N Ge).

In view of the isomorphism (7.6), it is enough to show that there exist only
finitely many integers m > 5 such that Alt(m) embeds into pa(U)/(U NGq). To
see this, first recall that there exists an integer ngy such that

P Alt(Qa,) < p(Ha) N Ga < UNGa.

n>ng
Let d’ = (dpy1e | £ € N). Then P = pa(U) N Ga is a subgroup of finite index in
pa(U) and hence

P(UNG4)/(UNGq)=P/(PNUNGq)

is a subgroup of finite index in pq(U)/(U N Gq). Hence it is enough to show
that there exist only finitely many integers m > 5 such that Alt(m) embeds into
P/(PNUNGq). Notice that PNUNGq = PNUNGg and that
P Alt(Q,) < PNUNGa < P < Ga.
n>ng
We claim that P contains an element of infinite order. Since [pg(U) : P] < oo,
it is enough to show that pa(U) contains an element of infinite order. To see this,
recall that ¢(aq) = (o,0") for some o € Gq of infinite order and some o’ € Ge
of finite order. Hence if r is the order of ¢’, then p(aq)” = (¢",1) € pa(U) is an
element of infinite order.
Thus there exist a subgroup I' < Bo, = Alt(Z) x Z with I' € Alt(Z) and a
normal subgroup N < T such that T'/N =2 P/(PNUNGq). Hence Lemma 7.6 is

a consequence of the following result, which will be proved in Section 8.

Proposition 7.7. Suppose that T' < By = Alt(Z) X Z and that T € Alt(Z). If
N 4T is a normal subgroup such that T'/N is an FC-group, then there exist only
finitely many integers m > 5 such that Alt(m) embeds into T'/N.
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For each countable group G and integer m > 5, let multg(m) € NU{ oo } be the
multiplicity with which Alt(m) occurs in ®(G). (As expected, in the statement of

the following result, we define oo + 1 to be c0.)
Proposition 7.8. For all but finitely many m > 5,

mult,,_ m)+1, ifme{d,|neN}
(7.8) mult e (m) = peti) (1) tdn | }

mult,,_ (x)(m), otherwise.
Proof. Suppose that m > 5 is “sufficiently large”. First suppose that S < K and

that S = Alt(m). Since m is sufficiently large, there are no nontrivial homomor-

phisms from Alt(m) into Alt(€g,) for ¢ < ng; and hence if pq(S) # 1, then

1#pa(S) < [ Alt(Q,).

n>ngo

Let 1 # s € S and let pa(s) = [[sn € [[,,5,,, Alt(2a,). Then there exists n > ng
such that s, # 1. Let g € Alt(Qg, ) be an element such that [s,,g] # 1. Since
Alt(Qq,) < K and S < K, it follows that

1# [s,g] =s(gs 'g™") € SNAIt(Qq,),

and this implies that S = Alt(Qg,). On the other hand, if pq(S) = 1, then S < Ge
and 50 S = pe(S) < pe(K). It follows that the left-hand side of equation (7.8) is
less than or equal to the right-hand side.

Next suppose that T' < pe(K) and that T =2 Alt(m). Since m is sufficiently large,
Lemma 7.5 implies that T < pe(K) N Pe = pe(U); and hence Lemma 7.6 implies
that T < UNGe < KNGe. Thus T < K. Finally if m € {d,, | n € N}, then
m = d, for some n > ng and so Alt(m) = Alt(24,) < K. Hence the right-hand

side of equation (7.8) is also less than or equal to the left-hand side. (]

Of course, in order for this result to be useful, it is necessary that mult,_(x)(m)
should not take the value co too many times. This is confirmed by the following
result, which will be proved in Section 9. (To see that pe(K) satisfies the hypotheses
of Proposition 7.9, note that pe(K) is obviously finitely generated and that we have

already shown that the subgroup pe(U) contains an element of infinite order.)
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Proposition 7.9. If ¢ € Inc(0) and L < G. is a finitely generated non-periodic
subgroup, then there exist only finitely many m € N such that Alt(m) occurs with

infinite multiplicity in ®(L).

At this point, it is easy to complete the proof of Theorem 1.2. So suppose that
f:Grg = Gpg is a Borel reduction from =, to = such that f(G) ~e, G for
all G € Gyq. Let h : Inc(A) — Gss be the Borel homomorphism from E; to the
isomorphism relation on Gy defined by h(d) = ®( f(Ha)). Then there exists a
comeager subset C' C Inc(A) such that h maps C to a single isomorphism class;
and hence there is a fized function v : @ — NU { oo } such that mult s,y = v for
alld € C. Let { Ly | kK € N} be the set of finitely generated non-periodic subgroups
of Ge; and for each k € N, let C, C C be the set of those d € C such that for all
but finitely many m > 5,

multy, (m)+1, ifme{d,|neN}
multf(Hd)(m) =

multy, (m), otherwise.

Applying Proposition 7.9, it follows that if d € Cy, then for all but finitely many
m > 9,

me{d,|neN} << v(m)#multy, (m);
and this clearly implies that C} is countable. However, applying Proposition 7.8,

we obtain that C' = J, .y Ck, which is a contradiction.

8. FINITARY PERMUTATION GROUPS

In this section, we will present the proof of Proposition 7.7, making use of P.M.
Neumann’s work [10] on the structure of finitary permutation groups, together with
the following easy observation. (Recall that G is said to be an ICC-group if for

each 1 # g € G, the corresponding conjugacy class ¢¢ is infinite.)

Proposition 8.1. If G is a transitive group of finitary permutations of an infinite

set Q, then G is an ICC-group.

Proof. Suppose that 1 # ¢ € G. Since G acts transitively on €2, it follows that

Q= g(supp(p)) = | supp(909™").

geG geG



20 SIMON THOMAS AND JAY WILLIAMS

Since supp(y) is a finite subset of 2, this implies that ¢ has infinitely many distinct

conjugates. [

Proof of Proposition 7.7. Let p : Alt(Z) x Z — Z be the canonical surjective ho-
momorphism. Then p[T']| = kZ for some k > 1. Choose some ¢t € I' with p(t) = k
and let T'= (t). Then clearly I' = G x T, where G = Alt(Z) NT. Let 7 € By, be
the shift map, z +» z 4+ 1. Then there exists a permutation = € Alt(Z) such that
t = 7", Tt follows that T has finitely many finite orbits and finitely many infinite

orbits on Z, and this implies that the same is true of I'. Let

Z=F - -UF,UA U A,

be the corresponding decomposition into I'-orbits, where each Fj is finite and each
A, is infinite. Fix some 1 < i < s and consider the action of I" on A;. Since G < T,
it follows that I" acts transitively on the set B; of G-orbits on A;; and, in particular,
each G-orbit on A; has the same cardinality. It follows that there is an integer n
such that if F' is a finite orbit for the action of G on Z, then |F| < n.

We claim that if m > 5 is an integer such that m > | Sym(n)|, then Alt(m) does
not embed into I'/N. To see this, suppose that 6 : Alt(m) — I'/N is an embedding.
Then, since the quotient of I'/N by its normal subgroup GN/N is abelian, it follows
that ( Alt(m)) < GN/N. Slightly abusing notation, since GN/N = G/(G N N),
we can suppose that 0 is an embedding of Alt(m) into G/(G N N).

Let Qg be the union of the finite G-orbits and let €1 be the union of the infinite
G-orbits. Let K be the kernel of the action of G on y. Then G/K acts faithfully
as a group of finitary permutations of 2y and all its orbits have cardinality at most
n. Thus G/K is isomorphic to a subgroup of a restricted direct product € I H;
of finite groups, each of which embeds into Sym(n). In particular, it follows that
the order of each element of G/K is a divisor of | Sym(n)|. Since the quotient @ of
G/(GNN) by K(GNN)/(GNN) is a homomorphic image of G/ K, the order of each
element of @ is also a divisor of | Sym(n)| and this implies that Alt(m) does not
embed into Q. It follows that O( Alt(m)) < K(GNN)/(G N N). Slightly abusing
notation once again, since K(GNN)/(GNN) = K/(KNN), we can suppose that
0 is an embedding of Alt(m) into K/(K N N).
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Since G/(G N N) embeds into I'/N, it follows that G/(G N N) is also a periodic
FC-group. In particular, by Proposition 8.1, G/(G N N) cannot act as a transitive
group of finitary permutations on an infinite set. By Neumann [10, Lemma 2.1], it
follows that GN N acts transitively on every infinite orbit of G. Applying Neumann
[10, Theorem 4.1], this implies that [K, K| < (G N N). But this means that
[K,K] < (KNN) and hence K/( K NN ) is abelian, which is a contradiction. O

9. AN APPLICATION OF JORDAN’S THEOREM

In this section, we will present the proof of Proposition 7.9, making use of the
following classical theorem of Jordan on finite primitive permutation groups con-
taining nontrivial elements of small support. Recall that if Q is a nonempty (not
necessarily finite) set and G < Sym(Q2), then G is said to act imprimitively on Q if:

(i) G acts transitively on 2; and
(i) there exists a subset A C Q with 1 < |A| < || such that for every g € G,
either g(A) = A or g(A)NA=10.
In this case, A is said to be a nontrivial block of imprimitivity; and we can define

a corresponding nontrivial G-invariant equivalence relation E on 2 by
By <= (JgeqG)xz,yceqg(A).

As expected, a transitive subgroup G < Sym(2) is said to act primitively on Q if

there do not exist any nontrivial blocks of imprimitivity.

Theorem 9.1 (Jordan [8]). There exists a nondecreasing function ¢ : N — N such
that whenever ) is a finite set with |Q| > ¢(d) and H < Sym(Q) is a subgroup such
that:

(i) H acts primitively on ; and

(il) H contains a nontrivial element h with |supp(h)| < d;

then H is either Alt(Q2) or Sym(Q).

Proof of Proposition 7.9. Let p : G¢ — Z be the canonical surjective homomor-
phism. Then there exists an integer k£ > 1 such that p(L) = kZ. Choose g € L
such that p(g) = k. Then g = of 7 for some 7 € F,. Let {6;,---,0; } be a finite
generating set for L, chosen so that #; = g. Suppose that 2 < ¢ < t and that
0, = aﬁin for some ¢; # 0 and 7; € F,. Then there exists 0 # m; € Z such that
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¢; = m;k and clearly 0, ™0, € F.. Hence, replacing each such 6; by 6;™0;, we
can suppose that 0o, --- 60, € F.
Let 61 = [[ oy, and let 6; = [ 6;.,, for each 2 < i < ¢. Then there exist integers
ng, d € N and a fixed (possibly empty) subset F' C Z such that for all n > nyg,
(i) F CQ,, is o,-invariant; and
(ii) if wy € Q, \ F, then the orbit of w,, under the action of o,, has length at
least (¢, — d)/k.
We can also suppose that ng has been chosen so that for all 2 < i <, there exists
a fixed permutation m; € Alt(Z) such that:

(iii) 6, = m; for all n > ng.

Finally we can also suppose that ng has been chosen sufficiently large with respect
to max o<i<; | supp(m;)| to allow the following argument to go through.

Suppose that m > max{|supp(m)| | 2 < i < t} U{|F|} and that Alt(m)
occurs with infinite multiplicity in ®(L). Then there exists a subgroup T € Sp,
such that 7" 2 Alt(m) and such that T projects nontrivially into Alt(Q., ) for
some n > ng with m < ¢,. Let S be the projection of T into Alt(€2., ) and let
I'={(op,ma, - ,m) < Alt(Q,). Then S IT and S = Alt(m). In the remainder
of this proof, we will focus on the action of I on Q..

Let A be a I'-orbit on ., such that S acts nontrivially and hence faithfully
on A. Since m > |F|, it follows that A intersects )., . F nontrivially and hence
|A| > (¢, — d)/Ek. Since m < ¢y, it follows that S does not act transitively on
A; and since S < T, it follows that ' permutes transitively the set of S-orbits on
A. Let E be the corresponding nontrivial I'-invariant equivalence relation on A

defined by

rEFy <= x,y lie in the same S-orbit;
and let A/JE = {X; | j € J} be the corresponding set of S-orbits. Then if
j # k € J, the permutation groups (S, X, ) and (S, X} ) are isomorphic; and S

acts on A as a “diagonal subgroup” of []..; Sym(X,). Furthermore, since

Jj€J
m > max{ | supp(m;)| | 2 <i <t}

it follows that each |X;| > max{|supp(m;)| | 2 <3 <t} and this implies that each

m; acts trivially on A/E.
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Let X be an S-orbit on A and let I'yx} be the subgroup of I' which fixes X
setwise. Let A C X be a maximal proper block of imprimitivity for the action of
I'ixy on X. (If the induced action of I'yxy on X is primitive, then we take A to be
a trivial singleton block.) Then A is also a block of imprimitivity for the action of T'
on A. Let E’ be the corresponding I'-invariant equivalence relation on A. If every ;
acts trivially on the set A/FE’ of E’-classes, then I" acts as a transitive cyclic group
on A/E’, which is a contradiction since S acts transitively and hence faithfully on
the E’-classes contained in X. Thus some ;, acts nontrivially on A/E’. For each
S-orbit Y, let Y/E' denote the set of E'-classes which are contained in Y. Let Z
be an S-orbit such that m;, moves some E’-equivalence class B € Z/E’. Then B
is a maximal proper block of imprimitivity for the action of I';zy on Z; and so the
induced action of I'y 73 on Z/E" is primitive. Applying Jordan’s Theorem, since the
support for the nontrivial action of 7;, on Z/E' is small, it follows that I'{ 7y induces
at least Alt(Z/E’) on Z/E'. Furthermore, since I'{z} normalizes S, it follows that
S also induces Alt(Z/E’') on Z/E'. Thus |Z/E'| = m and S acts on A/E’ as

a “diagonal subgroup” of []..; Alt(X;/E’). Next note that since the support of

je
T, is small and the number of E-classes is large, it follows that there exists an
S-orbit Z' such that m;, acts trivially on Z’'/E’. Let ¢ € S be an element such that
the permutation induced by % on Z/E’ does not commute with the permutation
induced by m;, on Z/E’. Then the commutator [, T;, | acts nontrivially on Z/E’

and acts trivially on Z’/E’. But since " normalizes S, it follows that
[, 0] = (migp " 'mt) €8,

which contradicts the fact that S acts on A/E’ as a “diagonal subgroup” of
[1;c; Alt(X;/E"). This completes the proof of Proposition 7.9. O

10. SOME OPEN PROBLEMS

In this section, we will discuss a few of the many open questions suggested by
the material in this paper, including the question of whether there exists a purely
“group-theoretic” Borel reduction from =2, to =. By this, we mean a construction
which only involves purely group-theoretic notions such as wreath products, free
products with amalgamation, HN N-extensions, etc. In each case that we have

considered, such a construction induces a continuous map on the space of marked
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finitely generated groups. Thus it is natural to ask whether various group-theoretic

problems have continuous solutions.

Conjecture 10.1. There does not exist a continuous Borel reduction f : Gyy — Gyg

from the bi-embeddability relation =, to the isomorphism relation .

Conjecture 10.2. There does not exist a continuous Borel reduction f : Gry — Gyg

from the commensurability relation ~¢ to the isomorphism relation 2.

It is perhaps worth mentioning that if S is a fixed infinite finitely generated

simple group, then the map f: Gry — Gyg, defined by
G (Alt(5) wr G) wr S,

is a continuous Borel reduction from 2 to ~¢. (See Thomas [14].) On the other
hand, it is not known whether or not there exists a continuous Borel reduction from
= 10 Rem-
Very few nontrivial natural examples are currently known of pairs E, F of count-
able Borel equivalence relations with £ <g F such that there does not exist a
continuous reduction from E to F. In fact, as far as we are aware, the only known
examples are variants of those presented in Thomas [13]. In particular, no such
examples are known when F and F' are natural “group-theoretic” equivalence re-
lations on the space Gy, of finitely generated groups.

It is also interesting to ask whether the analog of Theorem 1.2 holds for the
quasi-isometry relation ~¢g; on the space of finitely generated groups. (A clear
account of the basic properties of the quasi-isometry relation for finitely generated

groups can be found in de la Harpe [5].)

Conjecture 10.3. There does not exist a Borel selection of an isomorphism class

within each quasi-isometry class of finitely generated groups.

In Thomas [12], it was conjectured that the quasi-isometry relation ~¢g; on the
space of finitely generated groups is a universal K, equivalence relation. Of course,
if this is true, then there does not exist a Borel reduction from ~gr to = and so

Conjecture 10.3 holds.
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