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Abstract. There does not exist a Borel selection of an isomorphism class

within each bi-embeddability class of finitely generated groups.

1. Introduction

Two groups G, H are said to be bi-embeddable, written G ≈em H, if there

exist embeddings G ↪→ H and H ↪→ G. In this paper, we will consider the bi-

embeddability relation on the space Gfg of finitely generated groups. Here Gfg
denotes the Polish space of finitely generated groups introduced by Grigorchuk [3];

i.e., the elements of Gfg are the isomorphism types of marked groups 〈G, c 〉, where

G is a finitely generated group and c is a finite sequence of generators. (For a clear

account of the basic properties of the space Gfg, see either Champetier [1] or Grig-

orchuk [4].) Since each finitely generated group G has only countably many finitely

generated subgroups, it follows that ≈em is a countable Borel equivalence relation;

i.e. that every ≈em-class is countable. Consequently, since the isomorphism rela-

tion ∼= on Gfg is a universal countable Borel equivalence relation [15], there exists

a Borel reduction from ≈em to ∼=; i.e. a Borel map f : Gfg → Gfg such that if G,

H ∈ Gfg, then

G ≈em H ⇐⇒ f(G) ∼= f(H).

However, the only known proof of the existence of such a Borel reduction relies

ultimately upon the Feldman-Moore Theorem [2] and this proof does not produce

an explict example of such a reduction.

Open Problem 1.1. Find an explicit (preferably “group-theoretic”) example of

a Borel reduction from ≈em to ∼=.
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Of course, one approach to this problem would be to seek a Borel map which

selects an isomorphism class within each bi-embeddability class of finitely generated

groups. However, the main result of this paper shows that no such map exists.

Theorem 1.2. There does not exist a Borel reduction f : Gfg → Gfg from ≈em to

∼= such that f(G) ≈em G for all G ∈ Gfg.

This paper is organized as follows. In Section 2, we will recall some basic notions

and results concerning Borel equivalence relations and group theory. In Sections 3

and 4, we will discuss the structure of an uncountable family of finitely generated

groups which was first introduced by B.H. Neumann [9] and we will make an easy

observation concerning embeddings between products of suitably chosen pairs of

these groups. In Section 5, we will discuss a smooth group-theoretic invariant that

will play a key role in the proof of Theorem 1.2. In Section 6, we will use the Neu-

mann groups to give a simple proof that there does not exist a Borel selection of an

isomorphism class within each commensurability class of finitely generated groups.

(This result was first proved in Thomas [14] via a significantly more complicated

argument.) In Section 7, we will use products of suitably chosen pairs of Neumann

groups to prove Theorem 1.2, modulo two technical results which will be proved

in Sections 8 and 9. (The argument in Section 8 makes essential use of the work

of P.M. Neumann [10] on the structure of finitary permutation groups.) Finally, in

Section 10, we will briefly discuss a few of the many open problems suggested by

the material in this paper.

2. Preliminaries

In this section, we will recall some basic notions and results concerning Borel

equivalence relations and group theory.

2.1. Borel equivalence relations. Suppose that (X,B ) is a measurable space;

i.e. that B is a σ-algebra of subsets of the set X. Then (X,B ) is said to be a

standard Borel space if there exists a Polish topology T on X such that B is the

σ-algebra of Borel subsets of (X, T ). If X, Y are standard Borel spaces, then a

map f : X → Y is Borel if f−1(Z) is a Borel subset of X for each Borel subset

Z ⊆ Y . Equivalently, f : X → Y is Borel if graph(f) is a Borel subset of X × Y .



THE BI-EMBEDDABILITY RELATION FOR FINITELY GENERATED GROUPS 3

If X is a standard Borel space, then a Borel equivalence relation on X is an

equivalence relation E ⊆ X2 which is a Borel subset of X2. If E, F are Borel

equivalence relations on the standard Borel spaces X, Y respectively, then a Borel

map f : X → Y is said to be a homomorphism from E to F if for all x, y ∈ X,

x E y =⇒ f(x) F f(y).

If f satisfies the stronger property that for all x, y ∈ X,

x E y ⇐⇒ f(x) F f(y),

then f is said to be a Borel reduction and we write E ≤B F . If both E ≤B F

and F ≤B E, then we say that E and F are Borel bireducible and write E ∼B F .

Finally we write E <B F if both E ≤B F and F �B E.

The Borel equivalence relation E on the standard Borel space X is said to be

smooth if E is Borel reducible to the identity relation IdZ on some (equivalently ev-

ery) uncountable standard Borel space Z. Let E0 be the Borel equivalence relation

on the Cantor space 2N, which is defined by

x E0 y ⇐⇒ x(n) = y(n) for all but finitely many n.

Then, by Harrington-Kechris-Louveau [6], if E is any Borel equivalence relation,

then E is nonsmooth if and only if E0 ≤B E. The following “generic ergodicity”

result will play a key role in the proof of Theorem 1.2. (For example, see Hjorth

[7, Theorem 3.2].)

Proposition 2.1. Suppose that E is a smooth Borel equivalence relation on the

standard Borel space X. If f : 2N → X is a Borel homomorphism from E0 to E,

then there exists a comeager subset C ⊆ 2N such that f maps C to a single E-class.

In this paper, we will mainly work with the following slight variant of E0. Sup-

pose that A is an infinite subset of N. Then we can clearly identify E0 with the

corresponding equivalence relation on 2A. Let Inc(A) be the set of strictly increas-

ing sequences a = 〈 a0, a1, · · · , an, · · · 〉 of elements of A. Then we can identify each

a ∈ Inc(A) with the corresponding infinite subset of A,

Sa = { a0, a1, · · · , an, · · · } ∈ [A ]N.
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Finally if we identify each S ∈ [A ]N with its characteristic function χS ∈ 2A,

then Inc(A) becomes identified with the dense Gδ-subset of 2A consisting of the

functions x such that x(a) = 1 for infinitely many a ∈ A. Notice that E0 � Inc(A)

corresponds to the Borel equivalence relation Et on the original space Inc(A) of

strictly increasing sequences of elements of A defined by

〈 an|n ∈ N 〉 Et 〈 bn|n ∈ N 〉 ⇐⇒ (∃k ) (∃` ) (∀m ) ak+m = b`+m.

Of course, it is clear that Et is Borel bireducible with E0.

2.2. Some basic group theory. Throughout this paper, permutation groups will

always act on the left. Thus, for example, we will have that

( 1 2 3 ) ( 1 3 5 7 ) ( 1 2 3 )−1 = ( 2 1 5 7 )

If Ω is a nonempty set, then Sym(Ω) denotes the group of all permutations of

Ω. A permutation π ∈ Sym(Ω) is said to be finitary if supp(π) is finite, where

supp(π) = {α ∈ Ω | π(α) 6= α }. The group of even finitary permutations of Ω is

denoted by Alt(Ω).

If G is a group, then the FC-radical is the characteristic subgroup

∆(G) = { a ∈ G | aG is finite }.

Here aG denotes the conjugacy class { g a g−1 | g ∈ G }. The group G is said to be

an FC-group if ∆(G) = G and is said to be FC-by-finite if [G : ∆(G) ] <∞.

By Dicman’s Lemma [16], if g1, · · · , gt are elements of G, each having finite

order and each having only finitely many conjugates in G, then there exists a

finite normal subgroup N E G such that g1, · · · gt ∈ N . Hence we can define a

characteristic subgroup ∆+(G) of G by

∆+(G) = {g ∈ G | g is contained in a finite normal subgroup of G }.

It is clear that ∆+(G) is a (possibly trivial) periodic FC-subgroup of G and that

∆+(G) 6 ∆(G). In fact, ∆+(G) = { g ∈ ∆(G) | g has finite order }.

3. A construction of B.H. Neumann

In this section, we will begin our discussion of a family of finitely generated

groups which was originally introduced by B.H. Neumann [9] in order to prove the
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existence of uncountably many finitely generated groups. Throughout this paper,

Alt(d) will denote the alternating group on the set { 1, 2, · · · , d }. It is well-known

that if d ≥ 5 is odd, then Alt(d) is simple and is generated by the permutations

ad = ( 1 2 3 · · · d ) and bd = ( 1 2 3 ). Let O = { d ∈ N | d ≥ 5 is an odd integer }

and let Inc(O) be the set of strictly increasing sequences d = 〈 d0, d1, · · · , dn, · · · 〉

of elements of O.

Definition 3.1 (B.H. Neumann [9]). For each d ∈ Inc(O), let Gd be the subgroup

of
∏
n∈N Alt(dn) generated by the two elements ad =

∏
n∈N adn and bd =

∏
n∈N bdn .

We will present a brief but reasonably complete account of the structure of the

groups Gd in the next section. In this section, we will prove a bi-embeddability

result for suitably chosen products of these groups, which will play a key role in

the proof of Theorem 1.2. For the remainder of this paper, let e = 〈 5, 7, · · · 〉 be

the increasing enumeration of the set of all odd integers d ≥ 5.

Definition 3.2. For each d ∈ Inc(O), let Hd = Gd ×Ge.

Proposition 3.3. If c, d ∈ Inc(O) and cEtd, then Hc and Hd are bi-embeddable.

Proposition 3.3 is an easy consequence of the following two lemmas.

Lemma 3.4. For each j ≥ 1, there exists a fixed word wj(x, y) such that for each

n ≥ 2j + 5,

wj(an, bn) = ( 1 2 3 · · · n− 2j ).

Proof. It is enough to prove the result when j = 1, for then an easy induction yields

the general result. Since

( 1 n n− 1 ) ( 1 2 3 · · · n ) = ( 1 2 3 · · · n− 2 ).

and a−2
n b−1

n a2
n = ( 1 n n− 1 ), it follows that we can take w1(x, y) = x−2 y−1 x3.

�

Lemma 3.5. For each 2j + 1 ≥ 5,

Alt(5)×Alt(7)× · · · ×Alt(2j + 1)×Ge ↪→ Ge.
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Proof. For each odd integer ` ≥ 5, let Alt(`) be the subgroup of Ge =
∏
n∈N Alt(en)

consisting of the elements θ =
∏
n∈N θn such that θn = 1 for all n 6= `. Then,

by Neumann [9], we have that each Alt(`) is a subgroup of Ge. Hence, letting

c = 〈 2j + 3, 2j + 5, · · · 〉 enumerate the odd integers ` ≥ 2j + 3, it follows that

Ge = Alt(5)×Alt(7)× · · · ×Alt(2j + 1)×Gc;

and so it is enough to show that Ge ↪→ Gc. To see this, note that Lemma 3.4

implies that the map ϕ : { ae, be } → Gc, defined by ϕ(ae) = wj−1(ac, bc) and

ϕ(be) = bc, extends to an embedding of Ge into Gc. �

Proof of Proposition 3.3. Suppose that k, ` are such that ck+m = d`+m for all m

and let

a = 〈 ck, ck+1 · · · 〉 = 〈 d`, d`+1 · · · 〉.

Then clearly

Hc = Alt(c0)×Alt(c1)× · · · ×Alt(ck−1)×Ga ×Ge

embeds into

Ga ×Alt(5)×Alt(7)× · · · ×Alt(ck−1)×Ge,

which by Lemma 3.5 embeds into Ga × Ge. Of course, it is clear that Ga × Ge

embeds into

Hd = Alt(d0)×Alt(d1)× · · · ×Alt(d`−1)×Ga ×Ge.

Similarly, Hd embeds into Hc. �

As we will explain in the next section, Proposition 3.3 easily implies that the

bi-embeddability relation is nonsmooth on the space Gam of finitely generated

amenable groups. In [17], Williams proved that the bi-embeddability relation on

the space Gfg of all finitely generated groups is countable universal.

Question 3.6. Is the bi-embeddability relation on Gam countable universal?
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4. The structure of the Neumann groups

In the remaining sections of this paper, it will be convenient to work with the

following “more symmetric” realization of the Neumann groups. For each odd

integer d = 2`+ 1 ≥ 5, let

Ωd = {−`, −(`− 1), · · · , −1, 0, 1, · · · , `− 1, ` }

and let αd, βd ∈ Alt(Ωd) be the permutations defined by:

• αd = (−` − (`− 1) · · · − 1 0 1 · · · `− 1 ` )

• βd = (−1 0 1 )

If d ∈ Inc(O), then Gd is clearly isomorphic to the subgroup G̃d of
∏
n∈N Alt(Ωdn)

generated by the two elements αd =
∏
n∈N αdn and βd =

∏
n∈N βdn . In the remain-

der of this paper, we will identify Gd with G̃d. Also, in order to simplify notation,

if θ ∈
∏
n∈N Alt(Ωdn), then we will write θ =

∏
θn instead of θ =

∏
n∈N θn

Next we will give a brief account of the main structural features of Gd. (For

a more detailed account, see de la Harpe [5, III.B.35].) For each ` ∈ N, identify

Alt(Ωd`) with the subgroup of
∏
n∈N Alt(Ωdn) consisting of the elements θ =

∏
θn

such that θn = 1 for all n 6= `; and let

Pd =
⊕
n∈N

Alt(Ωdn)

be the restricted direct product consisting of those σ =
∏
σn ∈

∏
n∈N Alt(Ωdn)

such that σn = 1 for all but finitely many n ∈ N. Then, by Neumann [9], we

have that ∆+(Gd) = Pd and Gd/Pd is isomorphic to the subgroup B∞ of Sym(Z)

generated by Alt(Z) and the shift map z 7→ z + 1. In this paper, the normal

subgroup of Gd consisting of the elements of finite order will be denoted by Fd.

Thus Fd/Pd
∼= Alt(Z) and Gd/Fd

∼= Z with αd mapping to the generator of Z. In

particular, the following result holds.

Theorem 4.1 (B.H. Neumann [9]). {Gd | d ∈ Inc(O) } is an uncountable family

of pairwise nonisomorphic finitely generated amenable groups.

The following result is now an easy consequence of Proposition 3.3.

Proposition 4.2. The bi-embeddability relation ≈em on the space Gam of finitely

generated amenable groups is nonsmooth.
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Proof. By Proposition 3.3 and Theorem 4.1, the map f : Inc(O) → Gam, defined

by f(d) = Hd, is an injective Borel homomorphism from Et to ≈em. In particular,

since each ≈em-class is countable, no comeager subset C ⊆ Inc(O) is mapped to a

single ≈em-class. Hence the result follows from Proposition 2.1. �

In the remainder of this section, we will record a few basic properties of the

Neumann groups, which are needed in the proof of Theorem 1.2.

Proposition 4.3. If N E Gd is a subgroup of finite index, then there exists a finite

(possibly trivial) cyclic group C and a finite (possibly empty) subset T ⊆ N such

that Gd/N ∼= C ×
∏
`∈T Alt(Ωd`).

Proof. It is easily seen that N ∩ Pd =
⊕

d∈S Alt(Ωdn) for some subset S ⊆ N.

Furthermore, since [Pd : N ∩ Pd ] <∞, it follows that S must be a cofinite subset

of N. Let s = 〈sn | n ∈ N〉 be the increasing enumeration of S and let T = Nr S.

Next suppose that g =
∏
gn ∈ N and that gn 6= 1. Then there exists an element

h ∈ Alt(Ωdn) such that hgnh
−1 6= gn and it follows that

1 6= hgh−1g−1 ∈ N ∩Alt(Ωdn).

This implies that Alt(Ωdn) 6 N and so n ∈ S. Thus Ps 6 N 6 Gs and hence

Gd/N ∼= (Gs/N )×
∏
`∈T

Alt(Ωd`).

Thus it is enough to show that Gs/N is a finite (possibly trivial) cyclic group.

To see this, let p : Gs → Gs/Ps be the canonical surjective homomorphism and

let M = p[N ]. Then identifying Gs/Ps with B∞ = Alt(Z) o Z, it follows that

[ Alt(Z) : M ∩ Alt(Z) ] <∞ and hence Alt(Z) 6M . This implies that B∞/M is a

finite (possibly trivial) cyclic group and hence the same is true of Gs/N . �

The following observation will be used repeatedly in the proof of Theorem 1.2.

(In fact, we have switched to the current “more symmetric” realization of the

Neumann groups in order to obtain the following clean statement of Lemma 4.4.)

Lemma 4.4. Suppose that σ =
∏
σn ∈ Gd has infinite order. Then there exist

integers n0, k, c ∈ N and a fixed (possibly empty) subset F ⊆ Z such that for all

n ≥ n0,

(i) F ⊆ Ωdn is σn-invariant; and
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(ii) if ωn ∈ Ωdn r F , then the orbit of ωn under the action of σn has length at

least (dn − c)/k.

Proof. If σ =
∏
σn ∈ Gd has infinite order, then there exist integers n0 ∈ N and

` ∈ Zr{ 0 }, together with a fixed permutation π ∈ Alt(Z) such that supp(π) ⊆ Ωdn

and σn = α`d π for all n ≥ n0. A moment’s thought now shows that there exists a

subset F ⊆ {m ∈ Z | min supp(π) ≤ m ≤ max supp(π) } such that the result holds

with k = |`|. �

The following is the first of many consequences of Lemma 4.4.

Proposition 4.5. If σ ∈ Gd is an element of infinite order, then CFd
(σ) is an

FC-by-finite group.

Proof. By Lemma 4.4, if σ =
∏
σn ∈ Gd has infinite order, then there exists an

integer n0 ∈ N and a fixed (possibly empty) subset F ⊆ Z such that:

(i) F ⊆ Ωdn is invariant under the action of σn for all n ≥ n0.

(ii) If (ωn) ∈
∏
n≥n0

Ωdn r F , then the lengths of the orbits of ωn under the

action of σn are unbounded as n→∞.

Suppose that τ =
∏
τn ∈ CFd

(σ). Then there exists an integer n1 ≥ n0 and a fixed

permutation πτ ∈ Alt(Z) such that τn = πτ for all n ≥ n1. Since τn commutes

with σn for all n ∈ N, it follows that suppπτ ⊆ F . Thus the map τ 7→ πτ is

a homomorphism from CFd
(σ) to Sym(F ) with kernel CFd

(σ) ∩ Pd. The result

follows. �

5. A smooth Borel invariant

The general strategy of the proof of Theorem 1.2 can be described as follows.

Recall that we have already shown that the bi-embeddability relation ≈em on the

space {Gd | d ∈ Inc(O) } is a nonsmooth countable Borel equivalence relation.

We will next define a suitable smooth Borel invariant on the space G of countable

groups; i.e. a Borel homomorphism Φ : G → X from the isomorphism relation ∼=

on G to a smooth Borel equivalence relation E on some standard Borel space X.

Now suppose that f : Gfg → Gfg is a Borel map which selects an isomorphism

class within each bi-embeddability class. Then the Borel map d 7→ (Φ ◦ f)(Gd) is

a homomorphism from Et to the smooth Borel equivalence relation E; and hence
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by Proposition 2.1, there exists a comeager subset C ⊆ Inc(O) which is mapped to

a single E-class. Of course, Φ will be chosen so that this leads to a contradiction.

Definition 5.1. If G is any group, then:

(i) let SG be the set of nonabelian finite simple normal subgroups of G; and

(ii) let Φ(G) be the subgroup of G generated by
⋃
SG.

(If SG = ∅, then we define Φ(G) = 1.)

It is easily seen that Φ(G) =
⊕
{S | S ∈ SG } is the direct sum of the subgroups

S ∈ SG. Furthermore, it is clear that Φ(G) is a characteristic subgroup of G and

that Φ(G) 6 ∆+(G). For example, if d ∈ Inc(O), then

Φ(Gd) = ∆+(Gd) =
⊕
n∈N

Alt(Ωdn).

On the other hand, if n ≥ 2 and

G = Alt(5) wr Sym(n) = [Alt(5)× · · · ×Alt(5)︸ ︷︷ ︸
n! times

]o Sym(n),

then Φ(G) = 1 and ∆+(G) = G.

Next let Gss be the standard Borel space of countable groups R which can be

expressed as a direct sum

(5.1) R =
⊕

n∈I
Tn

of nonabelian finite simple groups Tn, where I is either N or else some finite (possibly

empty) initial segment of N. Since {Tn | n ∈ I } is exactly the set of minimal

nontrivial normal subgroups of R, it follows that the direct sum decomposition

(5.1) is essentially unique; in the sense that if

(5.2) R =
⊕

n∈J
T ′n

is a second such decomposition, then J = I and there is a permutation σ ∈ Sym(I)

such that T ′n = Tσ(n) for all n ∈ I. Hence, letting {S` | ` ∈ N } be a fixed

enumeration of the distinct nonabelian finite simple groups up to isomorphism, it

follows that R is determined up to isomorphism by the Borel invariant

tp(R) = 〈m0(R),m1(R), · · · ,m`(R), · · · 〉 ∈ (N ∪ {∞} )N
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defined by

m`(R) = the number of n ∈ I such that Tn ∼= S`.

Thus the isomorphism relation on Gss is smooth.

Finally, note if θ : G→ H is a group isomorphism, then θ[ Φ(G) ] = Φ(H). Hence

the map G 7→ Φ(G) is a Borel homomorphism from the isomorphism relation on G

to the isomorphism relation on Gss.

6. The commensurability relation for finitely generated groups

In this section, as a warm-up exercise for the proof of Theorem 1.2, we will

use the Neumann groups to give a simple proof that there does not exist a Borel

selection of an isomorphism class within each commensurability class of finitely

generated groups. (This result was first proved in Thomas [14] via a significantly

more complicated argument.)

Recall that two groups G1, G2 are said to be (abstractly) commensurable, written

G1 ≈C G2, if there exist subgroups Hi 6 Gi of finite index such that H1
∼= H2.

Theorem 6.1. There does not exist a Borel reduction h : Gfg → Gfg from ≈C to

∼= such that h(G) ≈C G for all G ∈ Gfg.

The proof of Theorem 6.1 makes use of the smooth invariant ∆+
ss(G) on the

space G of countable groups defined by

∆+
ss(G) = Φ( ∆+(G) ).

For example, if d ∈ Inc(O), then

∆+
ss(Gd) = Φ(Gd) =

⊕
n∈N

Alt(Ωdn).

However, the following result is not true if we replace ∆+
ss(G) by Φ(G).

Lemma 6.2. If G, H are (not necessarily finitely generated) groups such that

G ≈C H, then ∆+
ss(G) ≈C ∆+

ss(H).

Proof. It is enough to prove the result for the special case whenH 6 G is a subgroup

of finite index. Assuming this, we will first show that

∆+(H) = ∆+(G) ∩H.
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Obviously ∆+(G) ∩H 6 ∆+(H). Conversely, suppose that h ∈ H r∆+(G). If h

has infinite order, then clearly h /∈ ∆+(H). So we can suppose that h has finite

order and thus |hG| = [G : CG(h) ] =∞. Since [G : H ] <∞ and

[ G : H ] [H : CH(h) ] = [G : CH(h) ] ≥ [G : CG(h) ] =∞,

it follows that [H : CH(h) ] = ∞ and so h /∈ ∆+(H). This completes the proof

that ∆+(H) = ∆+(G) ∩H. In particular, it follows that ∆+(H) is a subgroup of

finite index in ∆+(G).

Next recall that ∆+
ss(G) =

⊕
{S | S ∈ S∆+(G) } is the direct sum of the sub-

groups S ∈ S∆+(G). Since [ ∆+(G) : ∆+(H) ] < ∞, it follows that there is a

cofinite subset S0 ⊆ S∆+(G) such that
⊕
{S | S ∈ S0 } 6 ∆+(H) and it is clear

that S0 ⊆ S∆+(H). Finally, let g1, · · · , gt be a set of coset representatives of ∆+(H)

in ∆+(G). Since

[ ∆+
ss(H) : C∆+

ss(H)(g1, · · · , gt) ] <∞,

it follows easily that there is a cofinite subset S1 ⊆ S∆+(H) such that S1 ⊆ S∆+(G).

It now follows that ∆+
ss(G) ≈C ∆+

ss(H). �

Lemma 6.3. If c, d ∈ Inc(O), then the following statements are equivalent:

(i) c Et d;

(ii) Gc ≈C Gd;

(iii) ∆+
ss(Gc ) ≈C ∆+

ss(Gd ).

Proof. It is clear that (i) implies (ii); and, applying Lemma 6.2, it follows that (ii)

implies (iii). To see that (iii) implies (i), simply note that if c, d ∈ Inc(O) are not

Et-equivalent, then ∆+
ss(Gc ) ∼=

⊕
n∈N Alt(cn) and ∆+

ss(Gd ) ∼=
⊕

n∈N Alt(dn) are

clearly not commensurable. �

Proof of Theorem 6.1. Suppose that h : Gfg → Gfg is a Borel reduction from ≈C
to ∼= such that h(G) ≈C G for all G ∈ Gfg. Let ϕ : Inc(O)→ Gss be the Borel map

defined by ϕ(d) = ∆+
ss(h(Gd) ). Then, by Lemma 6.3, ϕ is a Borel homomorphism

from Et to the isomorphism relation ∼= on Gss. Hence, by Proposition 2.1, there

exists a comeager subset C ⊆ Inc(O) such that ϕ maps C to a single ∼=-class. Let

c, d ∈ C be such that c and d are not Et-equivalent. Then, since h(Gc) ≈C Gc
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and h(Gd) ≈C Gd, it follows from Lemma 6.2 that

∆+
ss(Gc ) ≈C ∆+

ss(h(Gc) ) ∼= ∆+
ss(h(Gd) ) ≈C ∆+

ss(Gd ).

But then, applying Lemma 6.3 once more, it follows that cEt d, which is a contra-

diction. �

7. The heart of the matter

In this section, we will present the proof of Theorem 1.2, modulo two technical

results which will be proved in Sections 8 and 9. For the remainder of this paper

A ⊆ N will be a fixed infinite set of odd integers such that if A = { an | n ∈ N } is

the increasing enumeration, then:

(i) a0 ≥ 5;

(ii) if m < n, then am | (an − 2); and

(iii) the sequence 〈 an | n ∈ N 〉 is “sufficiently fast growing”.

Here “sufficiently fast growing” means sufficiently fast growing for the various steps

in the proof of Theorem 1.2 to go through. In a similar fashion, we will use the

notation n � m to indicate that m is “much larger” than n. Condition (ii) has

been included in order to ensure that the following result holds.

Lemma 7.1. If d ∈ Inc(A), then for all n ∈ N,

1 6= [αdn−2
d βd α

−(dn−2)
d , βd ] ∈ Alt(Ωdn).

Proof. If d ≥ 5 is odd, then easy calculations show that [α`d βd α
−`
d , βd ] = 1 if

either ` ∈ { 3, 4, · · · , d− 3 } or d | `; and that [α`d βd α
−`
d , βd ] 6= 1 if ` = d− 2. The

result follows. �

Suppose that f : Gfg → Gfg is a Borel reduction from ≈em to ∼= such that

f(G) ≈em G for all G ∈ Gfg. Consider the Borel map h : Inc(A)→ Gss defined by

h(d) = Φ( f(Hd) ). By Proposition 3.3, if cEtd, thenHc ≈em Hd and so h is a Borel

homomorphism from Et to the isomorphism relation on Gss. Applying Proposition

2.1, since the isomorphism relation on Gss is smooth, it follows that there exists a

comeager subset C ⊆ Inc(A) such that h maps C to a single isomorphism class.

In order to show that this is impossible, it is necessary to analyze the structure of

groups of the form Φ(K), where K ∈ Gfg satisfies K ≈em Hd for some d ∈ Inc(A).
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Since Hd ↪→ K ↪→ Hd, it is enough to consider the case of finitely generated groups

K such that ϕ(Hd ) 6 K 6 Hd for some embedding ϕ : Hd → Hd. Thus most of

our effort in this section will be devoted to an analysis of the possibilities for the

embedding ϕ. From now on, let pd : Gd × Ge → Gd and pe : Gd × Ge → Ge be

the canonical projections.

First consider the element ϕ(αd) = (σ, σ′ ) ∈ Hd = Gd ×Ge. Then at least one

of the elements σ, σ′ has infinite order. Suppose that both σ and σ′ have infinite

order. Then, applying Proposition 4.5, it follows that

CFd×Fe(ϕ(αd)) = CFd
(σ)× CFe(σ′)

is an FC-by-finite group. However, since

ϕ(Fe) 6 ϕ(CFd×Fe(αd) ) 6 CFd×Fe(ϕ(αd))

and Fe/Pe
∼= Alt(Z), this is impossible. Thus exactly one of the elements σ, σ′ has

infinite order.

Lemma 7.2. σ has infinite order.

Proof. Suppose that σ′ has infinite order and let σ′ =
∏
σ′n. Applying Lemma 4.4,

there exist integers n0, k, c ∈ N and a fixed (possibly empty) subset F ⊆ Z such

that for all n ≥ n0,

(i) F ⊆ Ωen is σ′n-invariant; and

(ii) if ωn ∈ Ωen r F , then the orbit of ωn under the action of σ′n has length at

least (en − c)/k.

Let ϕ(βd) = (π, π′ ) and let π′ =
∏
π′n. Then we can also suppose that n0 has been

chosen such that for all n ≥ n0,

(iii) there exists a fixed permutation θ ∈ Alt(Z) such that π′n = θ.

Since ϕ(βd) has infinitely many conjugates under the action of ϕ(αd) and the group

D = 〈σ, π 〉 ≤ Fd is finite, it follows that supp(θ) 6⊆ F . Finally, since the sequence

〈 an | n ∈ N 〉 is “sufficiently fast growing”, there exists an integer n ≥ n0 such that

for some m ∈ N,

(iv) dm � en � dm+1; and

(v)
∏
`≤m |Alt(Ωd`)| < en−c

k| supp(θ)| .
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Now consider the homomorphism ψ : Gd → Sym(Ωen) obtained by projecting

ϕ(Gd) into Sym(Ωen). Then clearly ψ(αd) = σ′n and ψ(βd) = θ. Applying Propo-

sition 4.3, there exists a finite (possibly trivial) cyclic group C and a finite (possibly

empty) subset T ⊆ N such that ψ(Gd ) ∼= C ×
∏
`∈T Alt(Ωd`). Since en < dm+1, it

follows that T ⊆ { 0, 1, · · · ,m }. In particular, each conjugacy class of ψ(Gd ) has

cardinality at most
∏
`≤m |Alt(Ωd`)|. However, since supp(θ) 6⊆ F and each orbit

of ψ(αd) = σ′n on Ωen r F has length at least (en − c)/k, the conjugacy class of

ψ(βd) = θ in ψ(Gd ) has cardinality at least en−c
k| supp(θ)| , which is a contradiction. �

Lemma 7.3. There exists an integer n0 ∈ N such that ϕ( Alt(Ωdn) ) = Alt(Ωdn)

for all n ≥ n0.

Proof. We will continue to write ϕ(αd) = (σ, σ′ ). Let σ =
∏
σn. Then, applying

Lemma 4.4, there exist integers n0, k, c ∈ N and a fixed (possibly empty) subset

F ⊆ Z such that for all n ≥ n0,

(i) F ⊆ Ωdn is σn-invariant; and

(ii) if ωn ∈ Ωdn r F , then the orbit of ωn under the action of σn has length at

least (dn − c)/k.

Let ϕ(βd) = (π, π′ ). Since σ′, π′ ∈ Fe, it follows that the group D = 〈σ′, π′ 〉 ≤ Fe

is finite. We can also suppose that n0 has been chosen so that

(iii) |Alt(Ωdn0
)| > max{ |Alt(F )|, |D| }.

Let π =
∏
πn. Then we can also suppose that n0 has been chosen such that for all

n ≥ n0,

(iv) there exists a fixed permutation η ∈ Alt(Z) such that πn = η.

Finally, since the sequence 〈 an | n ∈ N 〉 is “sufficiently fast growing”, we can also

suppose that n0 has been chosen such that:

(v) if n > ` ≥ n0, then |Alt(Ωd`)| < dn−c
4k| supp(η)| .

Now let ` ≥ n0 and let g` = [αd`−2
d βdα

−(d`−2)
d , βd ]. Then, by Lemma 7.1, we have

that 1 6= g` ∈ Alt(Ωd`); and hence the conjugates of g` in Gd generate Alt(Ωd`).

Let ϕ(g`) = (
∏
τn,

∏
τ ′n ). If τ ′n 6= 1 for some n ∈ N, then we can define a

nontrivial homomorphism from Alt(Ωd`) into D by ( pe ◦ ϕ ) � Alt(Ωd`), which is

impossible since |Alt(Ωd`)| > |D|. It follows similarly that τn = 1 for all n < `.

Finally, suppose that τn 6= 1 for some n > `. First note that if supp(τn) ⊆ F ,
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then there exists a nontrivial homomorphism from Alt(Ωd`) into Alt(F ), which is

impossible. Thus supp(τn) ∩ ( Ωdn r F ) 6= ∅. Next notice that since πn = η, it

follows that | supp(τn)| ≤ 4| supp(η)|. But this means that τn has at least dn−c
4k| supp(η)|

distinct conjugates under the action of σn and hence g` has more than |Alt(Ωd`)|

distinct conjugates under the action of ϕ(αd), which is impossible. It follows that

ϕ(g`) ∈ Alt(Ωd`) and this implies that ϕ( Alt(Ωd`) ) = Alt(Ωd`). �

Next let ϕ(αe) = (ψ′, ψ ). Then, arguing as above, we see that exactly one of

the elements ψ′, ψ has infinite order.

Lemma 7.4. ψ has infinite order.

Proof. Clearly ϕ(Fd × Fe) = ϕ(Hd) ∩ (Fd × Fe ) and so ϕ induces an embedding

ϕ̄ : Hd/(Fd × Fe ) ↪→ Hd/(Fd × Fe ) ∼= Z⊕ Z.

It follows that im ϕ̄ is a subgroup of finite index in Hd/(Fd×Fe ). Combined with

Lemma 7.2, this implies that ψ must have infinite order. �

Let ψ =
∏
ψn. Applying Lemma 4.4 once again, there exist integers n1, k′, c′

with n1 ≥ n0 and a fixed (possibly empty) subset F ′ ⊆ Z such that for all n ≥ n1,

• F ′ ⊆ Ωen is ψn-invariant; and

• if ω′n ∈ Ωen rF ′, then the orbit of ω′n under the action of ψn has length at

least (en − c′)/k′.

Lemma 7.5. If K is an arbitrary subgroup such that ϕ(Hd ) 6 K 6 Hd, then

[ ∆+( pe(K) ) : ∆+( pe(K) ) ∩ Pe ] <∞.

Proof. If g =
∏
gn ∈ ∆+( pe(K) ), then there exists ng ≥ n1 and a fixed permuta-

tion ηg ∈ Alt(Z) such that gn = ηg for all n ≥ ng. Since the conjugacy class of g

in pe(K) is finite and ϕ(αe) ∈ K, it follows that supp(ηg) ⊆ F ′. Thus g 7→ ηg is a

homomorphism from ∆+( pe(K) ) to Sym(F ′) with kernel ∆+( pe(K) ) ∩ Pe. �

Until further notice, we will fix some finitely generated group K such that

ϕ(Hd ) 6 K 6 Hd. Let U 6 K be the subgroup defined by

U = { (a, b) ∈ K | b ∈ Pe }.



THE BI-EMBEDDABILITY RELATION FOR FINITELY GENERATED GROUPS 17

Then, applying Suzuki [11, 4.19], we have that

(7.6) pe(U)/(U ∩Ge ) ∼= pd(U)/(U ∩Gd ).

Note that pe(U)/(U∩Ge ) = pe(U)/(U∩Pe ) is a homomorphic image of a subgroup

of Pe. In particular, it follows that pe(U)/(U ∩Ge ) is a periodic FC-group.

Lemma 7.6. There exist only finitely many integers m ≥ 5 such that Alt(m)

embeds into pe(U)/(U ∩Ge ).

In view of the isomorphism (7.6), it is enough to show that there exist only

finitely many integers m ≥ 5 such that Alt(m) embeds into pd(U)/(U ∩ Gd ). To

see this, first recall that there exists an integer n0 such that⊕
n≥n0

Alt(Ωdn) 6 ϕ(Hd) ∩Gd 6 U ∩Gd.

Let d′ = 〈 dn0+` | ` ∈ N 〉. Then P = pd(U) ∩ Gd′ is a subgroup of finite index in

pd(U) and hence

P (U ∩Gd )/(U ∩Gd ) ∼= P/(P ∩ U ∩Gd )

is a subgroup of finite index in pd(U)/(U ∩ Gd ). Hence it is enough to show

that there exist only finitely many integers m ≥ 5 such that Alt(m) embeds into

P/(P ∩ U ∩Gd ). Notice that P ∩ U ∩Gd = P ∩ U ∩Gd′ and that⊕
n≥n0

Alt(Ωdn) 6 P ∩ U ∩Gd′ 6 P 6 Gd′ .

We claim that P contains an element of infinite order. Since [ pd(U) : P ] <∞,

it is enough to show that pd(U) contains an element of infinite order. To see this,

recall that ϕ(αd) = (σ, σ′ ) for some σ ∈ Gd of infinite order and some σ′ ∈ Ge

of finite order. Hence if r is the order of σ′, then ϕ(αd)r = (σr, 1 ) ∈ pd(U) is an

element of infinite order.

Thus there exist a subgroup Γ 6 B∞ = Alt(Z) o Z with Γ 66 Alt(Z) and a

normal subgroup N E Γ such that Γ/N ∼= P/(P ∩ U ∩Gd ). Hence Lemma 7.6 is

a consequence of the following result, which will be proved in Section 8.

Proposition 7.7. Suppose that Γ 6 B∞ = Alt(Z) o Z and that Γ 66 Alt(Z). If

N E Γ is a normal subgroup such that Γ/N is an FC-group, then there exist only

finitely many integers m ≥ 5 such that Alt(m) embeds into Γ/N .
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For each countable group G and integer m ≥ 5, let multG(m) ∈ N∪{∞} be the

multiplicity with which Alt(m) occurs in Φ(G). (As expected, in the statement of

the following result, we define ∞+ 1 to be ∞.)

Proposition 7.8. For all but finitely many m ≥ 5,

(7.8) multK(m) =

multpe(K)(m) + 1, if m ∈ { dn | n ∈ N };

multpe(K)(m), otherwise.

Proof. Suppose that m ≥ 5 is “sufficiently large”. First suppose that S E K and

that S ∼= Alt(m). Since m is sufficiently large, there are no nontrivial homomor-

phisms from Alt(m) into Alt(Ωd`) for ` < n0; and hence if pd(S) 6= 1, then

1 6= pd(S) 6
∏
n≥n0

Alt(Ωdn).

Let 1 6= s ∈ S and let pd(s) =
∏
sn ∈

∏
n≥n0

Alt(Ωdn). Then there exists n ≥ n0

such that sn 6= 1. Let g ∈ Alt(Ωdn) be an element such that [ sn, g ] 6= 1. Since

Alt(Ωdn) 6 K and S E K, it follows that

1 6= [ s, g ] = s ( g s−1g−1) ∈ S ∩Alt(Ωdn),

and this implies that S = Alt(Ωdn). On the other hand, if pd(S) = 1, then S 6 Ge

and so S = pe(S) E pe(K). It follows that the left-hand side of equation (7.8) is

less than or equal to the right-hand side.

Next suppose that T E pe(K) and that T ∼= Alt(m). Since m is sufficiently large,

Lemma 7.5 implies that T 6 pe(K) ∩ Pe = pe(U); and hence Lemma 7.6 implies

that T 6 U ∩ Ge 6 K ∩ Ge. Thus T E K. Finally if m ∈ { dn | n ∈ N }, then

m = dn for some n ≥ n0 and so Alt(m) ∼= Alt(Ωdn) 6 K. Hence the right-hand

side of equation (7.8) is also less than or equal to the left-hand side. �

Of course, in order for this result to be useful, it is necessary that multpe(K)(m)

should not take the value ∞ too many times. This is confirmed by the following

result, which will be proved in Section 9. (To see that pe(K) satisfies the hypotheses

of Proposition 7.9, note that pe(K) is obviously finitely generated and that we have

already shown that the subgroup pe(U) contains an element of infinite order.)
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Proposition 7.9. If c ∈ Inc(O) and L 6 Gc is a finitely generated non-periodic

subgroup, then there exist only finitely many m ∈ N such that Alt(m) occurs with

infinite multiplicity in Φ(L).

At this point, it is easy to complete the proof of Theorem 1.2. So suppose that

f : Gfg → Gfg is a Borel reduction from ≈em to ∼= such that f(G) ≈em G for

all G ∈ Gfg. Let h : Inc(A) → Gss be the Borel homomorphism from Et to the

isomorphism relation on Gss defined by h(d) = Φ( f(Hd) ). Then there exists a

comeager subset C ⊆ Inc(A) such that h maps C to a single isomorphism class;

and hence there is a fixed function ν : O→ N ∪ {∞} such that multf(Hd) = ν for

all d ∈ C. Let {Lk | k ∈ N } be the set of finitely generated non-periodic subgroups

of Ge; and for each k ∈ N, let Ck ⊆ C be the set of those d ∈ C such that for all

but finitely many m ≥ 5,

multf(Hd)(m) =

multLk
(m) + 1, if m ∈ { dn | n ∈ N };

multLk
(m), otherwise.

Applying Proposition 7.9, it follows that if d ∈ Ck, then for all but finitely many

m ≥ 5,

m ∈ { dn | n ∈ N } ⇐⇒ ν(m) 6= multLk
(m);

and this clearly implies that Ck is countable. However, applying Proposition 7.8,

we obtain that C =
⋃
k∈N Ck, which is a contradiction.

8. Finitary permutation groups

In this section, we will present the proof of Proposition 7.7, making use of P.M.

Neumann’s work [10] on the structure of finitary permutation groups, together with

the following easy observation. (Recall that G is said to be an ICC-group if for

each 1 6= g ∈ G, the corresponding conjugacy class gG is infinite.)

Proposition 8.1. If G is a transitive group of finitary permutations of an infinite

set Ω, then G is an ICC-group.

Proof. Suppose that 1 6= ϕ ∈ G. Since G acts transitively on Ω, it follows that

Ω =
⋃
g∈G

g ( supp(ϕ) ) =
⋃
g∈G

supp(g ϕ g−1).
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Since supp(ϕ) is a finite subset of Ω, this implies that ϕ has infinitely many distinct

conjugates. �

Proof of Proposition 7.7. Let p : Alt(Z) o Z → Z be the canonical surjective ho-

momorphism. Then p[ Γ ] = kZ for some k ≥ 1. Choose some t ∈ Γ with p(t) = k

and let T = 〈 t 〉. Then clearly Γ = Go T , where G = Alt(Z) ∩ Γ. Let τ ∈ B∞ be

the shift map, z
τ7→ z + 1. Then there exists a permutation π ∈ Alt(Z) such that

t = π τk. It follows that T has finitely many finite orbits and finitely many infinite

orbits on Z, and this implies that the same is true of Γ. Let

Z = F1 t · · · t Fr t∆1 t · · · t∆s

be the corresponding decomposition into Γ-orbits, where each Fi is finite and each

∆i is infinite. Fix some 1 ≤ i ≤ s and consider the action of Γ on ∆i. Since G E Γ,

it follows that Γ acts transitively on the set Bi of G-orbits on ∆i; and, in particular,

each G-orbit on ∆i has the same cardinality. It follows that there is an integer n

such that if F is a finite orbit for the action of G on Z, then |F | ≤ n.

We claim that if m ≥ 5 is an integer such that m > |Sym(n)|, then Alt(m) does

not embed into Γ/N . To see this, suppose that θ : Alt(m)→ Γ/N is an embedding.

Then, since the quotient of Γ/N by its normal subgroup GN/N is abelian, it follows

that θ( Alt(m) ) 6 GN/N . Slightly abusing notation, since GN/N ∼= G/(G ∩ N),

we can suppose that θ is an embedding of Alt(m) into G/(G ∩N).

Let Ω0 be the union of the finite G-orbits and let Ω1 be the union of the infinite

G-orbits. Let K be the kernel of the action of G on Ω0. Then G/K acts faithfully

as a group of finitary permutations of Ω0 and all its orbits have cardinality at most

n. Thus G/K is isomorphic to a subgroup of a restricted direct product
⊕

j∈J Hj

of finite groups, each of which embeds into Sym(n). In particular, it follows that

the order of each element of G/K is a divisor of |Sym(n)|. Since the quotient Q of

G/(G∩N) by K(G∩N)/(G∩N) is a homomorphic image of G/K, the order of each

element of Q is also a divisor of |Sym(n)| and this implies that Alt(m) does not

embed into Q. It follows that θ( Alt(m) ) 6 K(G ∩N)/(G ∩N). Slightly abusing

notation once again, since K(G ∩N)/(G ∩N) ∼= K/(K ∩N), we can suppose that

θ is an embedding of Alt(m) into K/(K ∩N).
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Since G/(G ∩N) embeds into Γ/N , it follows that G/(G ∩N) is also a periodic

FC-group. In particular, by Proposition 8.1, G/(G∩N) cannot act as a transitive

group of finitary permutations on an infinite set. By Neumann [10, Lemma 2.1], it

follows that G∩N acts transitively on every infinite orbit of G. Applying Neumann

[10, Theorem 4.1], this implies that [K,K ] 6 (G ∩ N ). But this means that

[K,K ] 6 (K ∩N ) and hence K/(K ∩N ) is abelian, which is a contradiction. �

9. An application of Jordan’s Theorem

In this section, we will present the proof of Proposition 7.9, making use of the

following classical theorem of Jordan on finite primitive permutation groups con-

taining nontrivial elements of small support. Recall that if Ω is a nonempty (not

necessarily finite) set and G 6 Sym(Ω), then G is said to act imprimitively on Ω if:

(i) G acts transitively on Ω; and

(ii) there exists a subset A ⊆ Ω with 1 < |A| < |Ω| such that for every g ∈ G,

either g(A) = A or g(A) ∩A = ∅.

In this case, A is said to be a nontrivial block of imprimitivity ; and we can define

a corresponding nontrivial G-invariant equivalence relation E on Ω by

x E y ⇐⇒ (∃g ∈ G ) x, y ∈ g(A).

As expected, a transitive subgroup G 6 Sym(Ω) is said to act primitively on Ω if

there do not exist any nontrivial blocks of imprimitivity.

Theorem 9.1 (Jordan [8]). There exists a nondecreasing function c : N→ N such

that whenever Ω is a finite set with |Ω| > c(d) and H 6 Sym(Ω) is a subgroup such

that:

(i) H acts primitively on Ω; and

(ii) H contains a nontrivial element h with | supp(h)| ≤ d;

then H is either Alt(Ω) or Sym(Ω).

Proof of Proposition 7.9. Let p : Gc → Z be the canonical surjective homomor-

phism. Then there exists an integer k ≥ 1 such that p(L) = kZ. Choose g ∈ L

such that p(g) = k. Then g = αkc τ for some τ ∈ Fc. Let { θ1, · · · , θt } be a finite

generating set for L, chosen so that θ1 = g. Suppose that 2 ≤ i ≤ t and that

θi = α`ic τi for some `i 6= 0 and τi ∈ Fc. Then there exists 0 6= mi ∈ Z such that
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`i = mik and clearly θ−mi
1 θi ∈ Fc. Hence, replacing each such θi by θ−mi

1 θi, we

can suppose that θ2, · · · , θt ∈ Fc.

Let θ1 =
∏
σn and let θi =

∏
θi,n for each 2 ≤ i ≤ t. Then there exist integers

n0, d ∈ N and a fixed (possibly empty) subset F ⊆ Z such that for all n ≥ n0,

(i) F ⊆ Ωcn is σn-invariant; and

(ii) if ωn ∈ Ωcn r F , then the orbit of ωn under the action of σn has length at

least (cn − d)/k.

We can also suppose that n0 has been chosen so that for all 2 ≤ i ≤ t, there exists

a fixed permutation πi ∈ Alt(Z) such that:

(iii) θi,n = πi for all n ≥ n0.

Finally we can also suppose that n0 has been chosen sufficiently large with respect

to max 2≤i≤t | supp(πi)| to allow the following argument to go through.

Suppose that m � max{ | supp(πi)| | 2 ≤ i ≤ t } ∪ { |F | } and that Alt(m)

occurs with infinite multiplicity in Φ(L). Then there exists a subgroup T ∈ SL
such that T ∼= Alt(m) and such that T projects nontrivially into Alt(Ωcn) for

some n ≥ n0 with m � cn. Let S be the projection of T into Alt(Ωcn) and let

Γ = 〈σn, π2, · · · , πt 〉 6 Alt(Ωcn). Then S E Γ and S ∼= Alt(m). In the remainder

of this proof, we will focus on the action of Γ on Ωcn .

Let ∆ be a Γ-orbit on Ωcn such that S acts nontrivially and hence faithfully

on ∆. Since m > |F |, it follows that ∆ intersects Ωcn r F nontrivially and hence

|∆| ≥ (cn − d)/k. Since m � cn, it follows that S does not act transitively on

∆; and since S E Γ, it follows that Γ permutes transitively the set of S-orbits on

∆. Let E be the corresponding nontrivial Γ-invariant equivalence relation on ∆

defined by

x E y ⇐⇒ x, y lie in the same S-orbit;

and let ∆/E = {Xj | j ∈ J } be the corresponding set of S-orbits. Then if

j 6= k ∈ J , the permutation groups (S,Xj ) and (S,Xk ) are isomorphic; and S

acts on ∆ as a “diagonal subgroup” of
∏
j∈J Sym(Xj). Furthermore, since

m� max{ | supp(πi)| | 2 ≤ i ≤ t },

it follows that each |Xj | > max{ | supp(πi)| | 2 ≤ i ≤ t } and this implies that each

πi acts trivially on ∆/E.
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Let X be an S-orbit on ∆ and let Γ{X} be the subgroup of Γ which fixes X

setwise. Let A ( X be a maximal proper block of imprimitivity for the action of

Γ{X} on X. (If the induced action of Γ{X} on X is primitive, then we take A to be

a trivial singleton block.) Then A is also a block of imprimitivity for the action of Γ

on ∆. Let E′ be the corresponding Γ-invariant equivalence relation on ∆. If every πi

acts trivially on the set ∆/E′ of E′-classes, then Γ acts as a transitive cyclic group

on ∆/E′, which is a contradiction since S acts transitively and hence faithfully on

the E′-classes contained in X. Thus some πi0 acts nontrivially on ∆/E′. For each

S-orbit Y , let Y/E′ denote the set of E′-classes which are contained in Y . Let Z

be an S-orbit such that πi0 moves some E′-equivalence class B ∈ Z/E′. Then B

is a maximal proper block of imprimitivity for the action of Γ{Z} on Z; and so the

induced action of Γ{Z} on Z/E′ is primitive. Applying Jordan’s Theorem, since the

support for the nontrivial action of πi0 on Z/E′ is small, it follows that Γ{Z} induces

at least Alt(Z/E′) on Z/E′. Furthermore, since Γ{Z} normalizes S, it follows that

S also induces Alt(Z/E′) on Z/E′. Thus |Z/E′| = m and S acts on ∆/E′ as

a “diagonal subgroup” of
∏
j∈J Alt(Xj/E

′). Next note that since the support of

πi0 is small and the number of E-classes is large, it follows that there exists an

S-orbit Z ′ such that πi0 acts trivially on Z ′/E′. Let ψ ∈ S be an element such that

the permutation induced by ψ on Z/E′ does not commute with the permutation

induced by πi0 on Z/E′. Then the commutator [ψ, πi0 ] acts nontrivially on Z/E′

and acts trivially on Z ′/E′. But since Γ normalizes S, it follows that

[ψ, πi0 ] = ψ (πi0ψ
−1π−1

i0
) ∈ S,

which contradicts the fact that S acts on ∆/E′ as a “diagonal subgroup” of∏
j∈J Alt(Xj/E

′). This completes the proof of Proposition 7.9. �

10. Some Open Problems

In this section, we will discuss a few of the many open questions suggested by

the material in this paper, including the question of whether there exists a purely

“group-theoretic” Borel reduction from ≈em to ∼=. By this, we mean a construction

which only involves purely group-theoretic notions such as wreath products, free

products with amalgamation, HNN -extensions, etc. In each case that we have

considered, such a construction induces a continuous map on the space of marked
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finitely generated groups. Thus it is natural to ask whether various group-theoretic

problems have continuous solutions.

Conjecture 10.1. There does not exist a continuous Borel reduction f : Gfg → Gfg
from the bi-embeddability relation ≈em to the isomorphism relation ∼=.

Conjecture 10.2. There does not exist a continuous Borel reduction f : Gfg → Gfg
from the commensurability relation ≈C to the isomorphism relation ∼=.

It is perhaps worth mentioning that if S is a fixed infinite finitely generated

simple group, then the map f : Gfg → Gfg, defined by

G
f7→ (Alt(5) wrG) wr S,

is a continuous Borel reduction from ∼= to ≈C . (See Thomas [14].) On the other

hand, it is not known whether or not there exists a continuous Borel reduction from

∼= to ≈em.

Very few nontrivial natural examples are currently known of pairs E, F of count-

able Borel equivalence relations with E ≤B F such that there does not exist a

continuous reduction from E to F . In fact, as far as we are aware, the only known

examples are variants of those presented in Thomas [13]. In particular, no such

examples are known when E and F are natural “group-theoretic” equivalence re-

lations on the space Gfg of finitely generated groups.

It is also interesting to ask whether the analog of Theorem 1.2 holds for the

quasi-isometry relation ≈QI on the space of finitely generated groups. (A clear

account of the basic properties of the quasi-isometry relation for finitely generated

groups can be found in de la Harpe [5].)

Conjecture 10.3. There does not exist a Borel selection of an isomorphism class

within each quasi-isometry class of finitely generated groups.

In Thomas [12], it was conjectured that the quasi-isometry relation ≈QI on the

space of finitely generated groups is a universal Kσ equivalence relation. Of course,

if this is true, then there does not exist a Borel reduction from ≈QI to ∼= and so

Conjecture 10.3 holds.
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