A DESCRIPTIVE VIEW OF COMBINATORIAL GROUP
THEORY

SIMON THOMAS

ABSTRACT. In this paper, we will prove the inevitable non-uniformity of two
constructions from combinatorial group theory related to the word problem
for finitely generated groups and the Higman-Neumann-Neumann Embedding

Theorem.

1. INTRODUCTION

Since the fundamental papers of Friedman-Stanley [3] and Hjorth-Kechris [7], it
has been well-known that descriptive set theory provides a framework for measur-
ing the complexity of the possible complete invariants for many naturally occurring
classification problems and hence also for measuring the relative complexity of these
problems. For example, see Thomas-Velickovic [22], Hjorth-Kechris [8], Clemens-
Gao-Kechris [1], Thomas [20] and Ferenczi-Louveau-Rosendal [2]. It is less well-
known that descriptive set theory also provides a framework for explaining the
inevitable non-uniformity of many classical constructions in mathematics. In this
paper, we will illustrate this point by considering two constructions from combina-
torial group theory related to the word problem for finitely generated groups and
the Higman-Neumann-Neumann Embedding Theorem.

We will begin by considering the word problem for finitely generated groups.
For each n > 1, fix an effective enumeration { wy(x1, -+ ,2,) | k € N} of the (not
necessarily reduced) words in zy,--- ,&n, 27,2, . I G = (ay, - ,a,) is a

finitely generated group, then
Rel(G) ={k eN|wg(ar, - ,an) =1}

Of course, there is a slight abuse of notation here, since the set Rel(G) clearly

depends on the sequence of generators ai,---,a,. However, if by,--- ,b,, is any
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other sequence of generators of G, then it is easily seen that
{keN|wg(ar, - ,an) =1} =7 {L €N |we(by, - ,by) =1}
Here =7 denotes the Turing equivalence relation on 2V defined by
A=7B <+= A<y Band B<p A.

It is well-known that for each subset A C N, there exists a finitely generated group
G 4 such that Rel(G4) =1 A. The usual constructions of the group G4 are highly
dependent on the specific subset A C N, in the sense that if A # B are subsets such
that A =7 B, then the groups G4, Gp are usually nonisomorphic. Consequently,
it is natural to ask whether there is a more uniform construction with the property
that if A =1 B, then G4 = Gg. However, Theorem 1.1 below implies that no such
construction exists.

Throughout this paper, G denotes the Polish space of countably infinite groups
and Gy, denotes the Polish space of finitely generated groups. (These spaces will
be defined in Section 2.) As usual, the powerset P(N) will be identified with the

Cantor space 2V by identifying subsets of N with their characteristic functions.

Theorem 1.1. Suppose that A — G4 is a Borel map from 2V to Grg such that
Rel(Ga) =1 A for all A € 2Y. Then there exists a Turing degree dg such that for all
Turing degrees d with dg <7 d, there exists an infinite subset { A, | n € N} Cd
such that the groups {Ga, | n € N} are pairwise incomparable with respect to

embeddability.

Next recall that the Higman-Neumann-Neumann Embedding Theorem [5] states
that any countable group G can be embedded into a 2-generator group K¢. In the
standard proof of this classical theorem, the construction of the group K¢ involves
an enumeration of a set {g, | n € N} of generators of the group G; and it is
clear that the isomorphism type of K¢ usually depends upon both the generating
set and the particular enumeration that is used. Once again, it is natural to ask
whether there is a more uniform construction with the property that if G = H,
then K¢ = Kp. In this case, the main result of Thomas [21] shows that no such
construction exists. However, it turns out that we can obtain a much more striking

result if we are willing to make use of a relatively mild large cardinal assumption.
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Throughout this paper, we will write (RC) to indicate that the proof of a given

result makes use of the assumption that a Ramsey cardinal exists.

Theorem 1.2 (RC). Suppose that G — Kg is a Borel map from G to Gy, such
that G — K¢ for all G € G. Then there exists a perfect family F C G of pairwise
isomorphic groups such that the groups { Kg | G € F} are pairwise incomparable
with respect to relative constructibility; i.e. if G # H € F, then Kg ¢ L[Kg] and
Ky ¢ L[K¢].

Here L[K ] denotes the smallest inner model of ZFC which contains the finitely

generated group Kg.

Remark 1.3. Working in ZF(C, we can obtain the weaker conclusion that there
exists a perfect family F C G of pairwise isomorphic groups such that the groups
{ K¢ | G € F} are pairwise incomparable with respect to embeddability. (In fact,

as we will explain in Section 4, it is possible to prove significantly stronger results.)

Remark 1.4. The existence of a Ramsey cardinal is certainly not the minimum
large cardinal assumption necessary to prove Theorem 1.2. For example, Philip
Welch has pointed out that Theorem 1.2 is a consequence of the weaker assumption
that wlL < wy for all € R. (With this assumption, working with the inner models
L[r] for suitable reals r instead of with generic extensions, the arguments of this

paper go through virtually unchanged.)

The remainder of this paper is organised as follows. In Section 2, we will discuss
the Polish space G of countably infinite groups and the Polish space Gy, of (marked)
finitely generated groups. In Section 3, we will use Borel Determinacy to prove
Theorem 1.1; and in Section 4, we will use a generic absoluteness argument to
prove Theorem 1.2.

Our notation is standard. For example, we write G — H to indicate that the
group G embeds into the group H. Throughout this paper, E:L and H:L will denote
the classical (boldface) pointclasses. As this paper is intended to be intelligible to a
general audience of logicians, it contains detailed explanations of some points which

will be obvious to the experts in recursion theory and descriptive set theory.
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2. SPACES OF GROUPS

In this section, we will discuss the Polish space G of countably infinite groups
and the Polish space Gy, of (marked) finitely generated groups.

Throughout this paper, we will use the usual representation of the class of count-
ably infinite groups by the elements of a Polish space. In more detail, let G be the
set of countably infinite groups GG with underlying set N and let 2% be the Polish
space of all 3-ary functions f : N3 — {0,1} with the natural product topology.
Then, identifying each group G € G with the graph of its multiplication operation
mg € 2N3, it is easily checked that G is a Gs-subset of 9N and hence G is a Polish
subspace of oN*,

Although this method can also be adapted to construct a Polish space of finitely
generated groups, we will prefer to use an alternative approach due to Grigorchuk
[4], which more faithfully reflects various important features of the class of finitely
generated groups. The Polish space Gy, of (marked) finitely generated groups is
defined as follows. A marked group (G,S) consists of a finitely generated group
with a distinguished sequence § = (s1,- -, s,,) of generators. (Here the sequence
§ is allowed to contain repetitions and we also allow the possibility that the se-
quence contains the identity element.) Two marked groups (G, (s1, -, $m)) and
(H, (t1, - ,tn)) are said to be isomorphic if m = n and the map s; — t; extends

to a group isomorphism between G and H.

Definition 2.1. For each m > 2, let G,,, be the set of isomorphism types of marked

groups (G, (S1,--- , Sm)) with m distinguished generators.
Let F,,, be the free group on the generators {x1,--- ,z,,}. Then for each marked
group (G, (51, ,5m)), we can define an associated epimorphism 0g s : Fp, — G

by ¢ s(z;) = s;. It is easily checked that two marked groups (G, (s1,- - ,Sm))
and (H, (t1,--- ,tm)) are isomorphic iff ker f 5 = ker 0 ;. Thus we can naturally

identify G,,, with the set N,,, of normal subgroups of F,,,. Note that N, is a closed
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subset of the compact space 2F» of all subsets of F,,, and so N, is also a compact
space. Hence, via the above identification, we can regard G,, as a compact space.
The topologies on N, and G,, can be described more explicitly as follows. For
each marked group (G, 5) and integer £ > 1, let By(G, 5) be the closed ball of radius
¢ around the identity element in the (labelled directed) Cayley graph Cay(G, 3) of
G with respect to the generating sequence 5. Then, letting Z = (1, - ,Zm), a
neighborhood basis in N, of the normal subgroup N is given by the collection of

open sets
Une={MeNpn|MNByFy,,z) = NN By(Fpp, )}, £>1.

If (G,s) € Gy, corresponds to the normal subgroup N € N,,, then the set of
relations N N Bagy1(Fom, T) contains essentially the same information as the closed
ball B¢(G, 5) in the Cayley graph of (G, 5). It follows that a neighborhood basis in
Gm of the marked group (G, 5) is given by the collection of open sets

Vigs)e ={(H,t) € G | Be(H,t) = By(G,5)}, (>1.
Finally, for each m > 2, there is a natural embedding of N, into N,,+1 defined by
N — the normal closure of N U {41} in Fyppq1.

This enables us to regard N, as a clopen subset of AV, 1 and to form the locally
compact Polish space N' = |JN;,. Note that N can be identified with the space
of normal subgroups N of the free group F,, on countably many generators such
that N contains all but finitely many elements of the basis X = {x; | i € NT}.
Similarly, we can form the locally compact Polish space G¢; = |JGp, of finitely

generated groups via the corresponding natural embedding
(G, (51,7 y8m)) = (G, (51,7 1 8m, 1))

From now on, we will identify G, and N, with the corresponding clopen subsets
of Grg and N. If T’ € Gy, then we will write I' = (G, (s1,- -+ , $mm)), where m is the
least integer such that I € G,,,. Following the usual convention, we will completely
identify the Polish spaces Gy, and N; and we will work with whichever space is
most convenient in any given context. For example, if I' € Gy, is a marked group,
then there is no longer any abuse of notation in writing Rel(T"). On the other

hand, if we fix an effective enumeration of Fo, and then identify I' € Gy, with the
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corresponding normal subgroup N € N, then we see that T is essentially a subset
of N and hence L[T'] = L(T") is the smallest inner model of ZFC which contains I.

In the remainder of this paper, we will only consider the usual isomorphism
relation = on the space Gy, of finitely generated groups; i.e. two marked groups
are -equivalent iff their underlying groups (obtained by forgetting about their
distinguished sequences of generators) are isomorphic. And we will often abuse
notation by writing G € Gy, instead of I' = (G, (s1,--- ,5m)) € Gfq4. Notice that
2 is a countable Borel equivalence relation on G¢4; ie. for each G € Gy4, the
set {H € Gyy | H = G} is countable. Similarly, for each G € Gy, the set

{H € Gy | H— G} is also countable.

3. BOREL DETERMINACY AND THE WORD PROBLEM FOR FINITELY

GENERATED GROUPS

In this section, we will present the proof of Theorem 1.1. Our proof makes use
of a remarkable consequence of Borel Determinacy which classifies the < p-cofinal
Borel subsets X C 2. We will begin by considering the special case when X is
= p-invariant; i.e. whenever x € X and y =7 x, then y € X. Here the canonical
examples are the cones C, = {x € 2 | 2 <7 x }, where 2z € 2. (We have included
the proof of Theorem 3.1 in order to give the reader a flavor of the more complicated

determinacy argument that is involved in the proof of Theorem 3.4.)

Theorem 3.1 (Martin [14, 15]). If X C 2" is a =p-invariant <p-cofinal Borel

subset, then there exists a cone C such that C C X.

Proof. Consider the two player game G(X)

IT1 s(1) s(3) s(5)
where each s(i) € {0,1} and I wins iff s = (s(0) s(1) s(2) ---) € X. Then, by Borel
Determinacy [15], the game G(X) is determined. First suppose that o : 2<N — 2
is a winning strategy for I. Let o <7 t € 2~ and consider the play of G(X) where

e II playst=(s(1)s(3)s(5) ---)
e [ responds with ¢ and plays (s(0)s(2) s(4) ---).

Then s € X and s =p t. Hencet € X andso C, = {t €2V |o <rt} C X.
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On the other hand, if I does not have a winning strategy, then II must have a
winning strategy 7 : 2<N — 2. But then, arguing as above, we see that C; C 2V X,

which contradicts the fact that X is <-cofinal. O

As we mentioned earlier, we will require a strengthening of Theorem 3.1 which
classifies arbitary <p-cofinal Borel subsets X C 2N, In this case, the canonical

examples are the sets [ S] of infinite branches of pointed trees S C 2 <N,

Definition 3.2 (Sacks [18]). The tree S C 2 <N is said to be pointed if S is perfect

and S <pzx for all z € [S].
The following lemma summarizes some of the basic properties of pointed trees.

Lemma 3.3 (Sacks [18]). Suppose that S C 2<N is a pointed tree.

(i) If S <1 z € 2N, then there exists a branch x € [S] such that x =71 z.
(ii) If So C S is a subtree such that So < S, then Sy is also a pointed tree
and So =1 S.
(iii) If S <7 z € 2N, then there exists a pointed tree S, C S such that S, =7 z.

As we will soon see, Theorem 1.1 is a straightforward consequence of the following

result. (The proof of Theorem 3.4 can be found in Kechris [12].)

Theorem 3.4 (Martin). If X is a <r-cofinal Borel subset of N then there exists
a pointed tree S C 2<N such that [S] C X.

Next recall that if A, B C N, then A is one-one reducible to B, written A <; B,

if there exists an injective recursive function f : N — N such that for all n € N,
neA < f(n)e€B.

The proof of Theorem 1.1 also makes use of the following well-known result.
Lemma 3.5 (Folklore). If G, H € G4 and G — H, then Rel(G) <; Rel(H).

Proof. Suppose that G = (a1, ,a, ) and H = (b1, by, ) are marked finitely

generated groups. Let ¢ : G — H be an embedding and let ¢(a;) = ¢;(b). Then

wi(a, -+ a,) =1 <= wi(t1(b), - ,t,(b)) = 1.
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Proof of Theorem 1.1. Suppose that A — G4 is a Borel map from 2V to G, such
that Rel(Ga) =7 A for all A € 2V and let 6 : 2N — 2N be the Borel map defined
by A+ Rel(G4). Since 6 is a countable-to-one Borel map, it follows that 6(2V) is
a Borel subset of 2V, Clearly 9(2N) is <p-cofinal and hence there exists a pointed
tree S such that [S] C 0(2"). Let (7, | n € N) be an enumeration of the injective
recursive maps m : N — N. Then after replacing S by a suitable pointed subtree if
necessary, we can suppose that (m, | n € N) <r S. Notice that if n € N and sy,

so € S, then there exist t1, to € S such that

e 51 Ct; and so C to; and
e there exists ¢ such that t1(£) # ta(my(£)).
Using this observation, it is routine to construct a perfect subtree Sy C S such that:
(i) So <7 S; and
(i) if # # y € [ So], then z and y are incomparable with respect to the one-one
reducibility relation <j.
It follows that Sy is also a pointed tree. Finally let B € 2N be any set such that
So <7 B and let Sg C Sy be a pointed subtree such that Sg =1 B.

Let {z, | n € N} C [Sg] be an infinite set of branches chosen such that each
z, <1 Sp and hence z,, =¢ Sg =7 B. For each n € N, choose 4,, € 2V such
that Rel(G4,) = z,. Then each A, =7 B; and if n # m, then Rel(G4, ) and
Rel(G4,,) are incomparable with respect to <;. Hence, by Lemma 3.5, the groups

{Ga,
the proof of Theorem 1.1. O

n € N} are incomparable with respect to embeddability. This completes

4. COLLAPSING CARDINALS AND THE HIGMAN-NEUMANN-NEUMANN

EMBEDDING THEOREM

Let I(N, 2V) be the Polish space of all injective maps z : N — 2N, In this section,
we will derive Theorem 1.2 as an easy consequence of a slightly technical lemma
concerning arbitrary Borel maps 6 : I(N,2Y) — X where X is any Polish space.

But before we can state this lemma, we need to introduce two definitions.

Definition 4.1. E,,e is the Borel equivalence relation on I(N, 2N) defined by

2 Ecppie 27 <= {z(n) |n e N} ={2'(n) | n € N}.



A DESCRIPTIVE VIEW OF COMBINATORIAL GROUP THEORY 9

Definition 4.2. Let < be a quasi-order on the set X. Then =< is said to be

countable if {y € X | y <z} is countable for all z € X.

For example, the Turing reducibility relation < 7 on 2N and the embeddability re-
lation < on G4 are both countable Borel quasi-orders. The relative constructibility

relation <. defined on 2N by
r<.y <= =xz€lLly]

is a 33 quasi-order; and if (RC) holds, then <, is countable. (For example, see

Jech [9, Exercise 17.28].)

Lemma 4.3. Suppose that X is a standard Borel space and that 6 : I(N,2Y) — X

is any Borel map. Then at least one of the following two conditions must hold:

(a) There exists x € X such that for all v € 2V, there exists z € I(N, 2N) with
r € range(z) such that 0(z) = x.
(b) For each countable Borel quasi-order < on X, there exists a perfect subset
P CI(N,2Y) such that
(1) y Ecntvie 2 for ally, z € P; and
(ii) 6(y), 0(z) are incomparable with respect to < for all y # z € P.

Furthermore, if (RC) holds, then the conclusion also holds with respect to the quasi-

order <. of relative constructibility.
The proof of Theorem 1.2 also makes use of the following result.

Lemma 4.4 (B.H. Neumann [17]). There exists a Borel family { H, |r € 28} C G

of pairwise nonisomorphic infinite 2-generator groups.

Sketch proof. For each strictly increasing sequence d = (d,, | n € w) of odd in-
tegers with do > 5, let X3 = {27,25,---, 2} } and let I'q be the subgroup of

[I.c., Alt(Xj) generated by the two permutations

aa=T](a7 2 af - ay)

necw

Ba=[[ (a1 23 o).

necw
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Then by B.H. Neumann [17], up to isomorphism, the finite simple normal subgroups
of I'q are precisely { Alt(d,,) | » € w}. In particular, the groups I'q are infinite and

pairwise nonisomorphic. The result follows easily. ([l

Proof of Theorem 1.2 (RC'). Suppose that ¢ : G — Gy, is a Borel map such that
G embeds into p(G) for all G € G. Let { H, | 7 € 2N} C G be the Borel family
of pairwise nonisomorphic infinite 2-generator groups given by Lemma 4.4 and let

¥ I(N,2Y) — G be the injective Borel map defined by
Y(2) = Hu0) X Hoa) X - X Hyny X -

i.e. 1(2) is the restricted direct product of the sequence ( H.(,) | n € N). Of course,
if y, z € I(N,2%) satisfy y Eeppie 2, then 1(y) = ¥(2). Let 6 : I(N,2Y) — Gy, be
the Borel map defined by 6 = p o). Applying Lemma 4.3, first suppose that there
exists a group G € Gy, such that for all r € 2V, there exists z € I(N,2") with
r € range(z) such that 6(z) = G. Then H, embeds into G for all r € 2V, which is
impossible since G has only countably many finitely generated subgroups. Hence

there a perfect set P C I(N, 2Y) such that

o y Ecnpie 2 for all y, z € P; and
e the groups 6(y), 0(z) are incomparable with respect to the quasi-order <,

of relative constructibility for all y # z € P.

Since 1 is an injective Borel map, it follows that [P] is an uncountable Borel
subset of G; and since y Eeppie 2z for all y, z € P, it follows that the groups in ¢[P]
are pairwise isomorphic. Consequently, if F C [P] is any perfect subset, then F is
a perfect family of pairwise isomorphic groups such that the groups { K¢ | G € F'}

are pairwise incomparable with respect to relative constructibility. ([

Remark 4.5. Working in ZFC, we obtain the weaker conclusion that there exists a
perfect family F C G of pairwise isomorphic groups such the groups { K¢ | G € F }
are pairwise incomparable with respect to embeddability. Of course, we can also
obtain significantly stronger results by considering other Borel quasi-orders. For
example, there exists a perfect family F C G of pairwise isomorphic groups such
the sets {Rel(Kg) | G € F} are pairwise incomparable with respect to Turing
reducibility. In fact, Philip Welch has pointed out that, working with suitable

inner models instead of with generic extensions, the arguments of this paper prove
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the existence a perfect family F C G of pairwise isomorphic groups such the sets
{Rel(K¢) | G € F} are pairwise incomparable with respect to hyperarithmetic
reducibility.

The remainder of this section is devoted to the proof of Lemma 4.3. From
now on, we will work within a fixed base universe V of set theory and consider
extensions of various projective relations in suitable generic extensions VF. If R
is a projective relation on the Polish space X and V¥ is a generic extension, then
X V]P, RY" will denote the sets obtained by applying the definitions of X, R within
VP, The projective relation R is said to be absolute for V¥ if RV NV = R. Our

proof of Lemma 4.3 is based upon the following two absoluteness theorems.

Theorem 4.6 (Shoenfield [19]). If R € V is a 33 relation, then R is absolute for

every generic extension V.

Theorem 4.7 (Martin-Solovay [16]). Suppose that k is a Ramsey cardinal. If

R €V is a 33 relation and |P| < k, then R is absolute for VT.

For example, suppose that < is a countable Borel quasi-order on the Polish space
X. At first glance, it appears that the countability of < is a Hé property. However,
recall that if B is an uncountable Borel subset of a Polish space X, then B contains
a nonempty perfect subset of X. Thus, letting Perf(X) denote the Polish space of
nonempty perfect subsets of X, we see that the countability of < can be expressed

by the following H% statement:
Vee X VP ePerf(X)Iye X [ye PAy A x].

Hence, by the Shoenfield Absoluteness Theorem, if P is any notion of forcing, then
jVP is a countable Borel quasi-order on the Polish space X Ve (In fact, the Lusin-
Novikov Uniformization Theorem [13, 18.10] allows us to express the countability
of < by a I} statement.) Of course, if s is a Ramsey cardinal and [P| < &, then &
remains a Ramsey cardinal in V¥ and hence <. remains a countable quasi-order in
VE. (For example, see Jech [9, Theorem 21.2].)

The proof of Lemma 4.3 also makes use of the following notion which was ab-

stracted by Kanovei-Reeken [11] from an argument in Hjorth [6, Section 5].



12 SIMON THOMAS

Definition 4.8 (Kanovei-Reeken [11]). Working in the base universe V', suppose
that E is a Borel equivalence relation on the Polish space X. If P is a notion of
forcing, then a virtual FE-class is a P-name 7 such that:

(i) Fp 7€ XV'; and

(i) IFpxp Tiefs EVY Tright-
Here Tier, and Tyigny are the (P x P)-names such that if G x H is (P x P)-generic,

then T |G X H] = 7[G] and Tigni[G X H] = T[H].

Example 4.9. Let F = FE_,41. and let P consist of all finite injective partial
functions p : N — 2V, partially ordered by p < q iff p D ¢. If G C P is generic, then
g = UG € VP is a bijection between N and 2¥ N V. Hence if 7 is the canonical

P-name such that 7[G] = g, then 7 is a virtual E.,p.-class.

We are finally ready to present the proof of Lemma 4.3. Let < be either a count-
able Borel quasi-order on the Polish space X or else the relative constructibility
relation <, on 2V. If z, y € X, then we will write z || y if , y are =<-comparable
and write z L y if x, y are =<-incomparable. For the rest of this section, P denotes
the notion of forcing consisting of all finite injective partial functions p : N — 2N
and 7 is the virtual E.,spe-class defined in Example 4.9. Our analysis splits into

two cases, depending on whether or not there exists an element py € P such that

<p07p0> I+ G(Tleft) || Q(Tright)~

We will show that if such an element exists, then Condition 4.3(a) holds; while if
no such element exists, then Condition 4.3(b) holds. It should be stressed that the
following argument is based very closely on the proofs in Hjorth [6, Section 5] and
Kanovei-Reeken [11, Section 4]. (An account of Kanovei-Reeken [11, Section 4] can
also be found in Kanovei [10, Chapter 17].)

Case 1: Suppose that there exists an element py € P such that
(po,po ) IF 0(Tiete) || O(Trignt)-
Claim 4.10. There exists p1 < po such that (p1,p1) IF O(T 1e5t) = O(T righs)-

Proof. Suppose not and let Q be a notion of forcing which collapses P(P x P) to

a countable set. For the remainder of this argument, we will work inside VQ. Let
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{D, | n € N} be an enumeration of the dense open subsets D C IP x P such that
D € V. Then we can inductively define conditions p, € P for s € 2<N such that
the following hold:

(i) Pop = Po;

(ii) if s C ¢, then py > ps;

(iii) if s # ¢ € 2"+, then (ps, pi) € D,,; and

(iv) (ps0,Ps1) IF O(T1est) 7 O(Tright)-
For each a € 28 let G, = {q € P | (In)pamn < ¢} and let 2, = JG4. Then
C ={z4 | a €2V} is a perfect subset of I(N, 2Y) such that:

(a) 0] C is injective; and

(b) if y, z € 8(C), then y || 2.

Let Z C §(C) be a perfect subset and consider the set
A={ly2)eZxZ|y=2}

If < is a countable Borel quasi-order, then A is a Borel subset of Z x Z and hence
has the Baire property. On the other hand, if < is the relative constructibility
relation <., then A is a X3 subset of Z x Z; and since we are assuming (RC), it
again follows that A has the Baire property. (For example, see Jech [9, 26.21].) In
both cases, each section A* = {y € Z | y <X z} is countable; and hence, by the
Kuratowski-Ulam Theorem, it follows that A is a meager subset of Z x Z. Similarly,
we see that

B={(y,z)€ZxZ|yrz}.

is a meager subset of Z x Z. But since Z x Z = A U B, this contradicts the Baire
Category Theorem. O

Claim 4.11. There exists x € X such that py |- 0(T) = «.

Proof. To simplify notation, suppose that X = [0,1]. Then, working in V, we can

inductively define conditions

and closed intervals I,, C [0, 1] with rational endpoints

L D>LD>--DI, D
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such that |I,,| = 2= and p, IF 6(7) € I,. Let Ny>1In = {z}. Then we claim
that « satisfies our requirements. Otherwise, there exist ¢ < p; and n > 1 such

that ¢ IF 0(7) ¢ I,,. But then (q,p,) < (p1,p1) satisfies

<Qapn> I- G(Tleft) ¢ I, and G(Tright) € I,

which is a contradiction. O

Let G C P be a V-generic filter such that p; € G. Then V|G| F 0(7[G]) = =.
Recall that 7[G] = |JG is a bijection between N and 2 N V. Hence for each real
re2nv,

VG E (32 € I(N,2Y)) (In € N) [2(n) =7 and 0(2) = = ].

Applying the Shoenfield Absoluteness Theorem, this E} property of the reals r,
x € 2Y' NV must also hold in V; and so Condition 4.3(a) holds in V.

Case 2: Suppose that there does not exist p € P such that

(p,p) IFO(Tiese) || O(Trignt)-

Once again, let Q be a notion of forcing which collapses P(P x P) to a countable
set. Arguing as in the proof of Claim 4.10, we see that the following statement

holds in V@ :

(4.12) 3P € Perf(I(N,2Y)) Vz,y € I(N, 2")

[(z,ye P Nz #y) = (2 Ecnnie y NO(z) L O(y))].

If < is a countable Borel quasi-order, then (4.12) is a 33 statement; and if < is the
relative constructibility relation <., then (4.12) is a 33 statement. Hence, applying
either the Shoenfield Absoluteness Theorem or the Martin-Solovay Absoluteness
Theorem, it follows that statement (4.12) also holds in V. This completes the

proof of Lemma 4.3.
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