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Abstract. In this paper, we will prove the inevitable non-uniformity of two

constructions from combinatorial group theory related to the word problem

for finitely generated groups and the Higman-Neumann-Neumann Embedding

Theorem.

1. Introduction

Since the fundamental papers of Friedman-Stanley [3] and Hjorth-Kechris [7], it

has been well-known that descriptive set theory provides a framework for measur-

ing the complexity of the possible complete invariants for many naturally occurring

classification problems and hence also for measuring the relative complexity of these

problems. For example, see Thomas-Velickovic [22], Hjorth-Kechris [8], Clemens-

Gao-Kechris [1], Thomas [20] and Ferenczi-Louveau-Rosendal [2]. It is less well-

known that descriptive set theory also provides a framework for explaining the

inevitable non-uniformity of many classical constructions in mathematics. In this

paper, we will illustrate this point by considering two constructions from combina-

torial group theory related to the word problem for finitely generated groups and

the Higman-Neumann-Neumann Embedding Theorem.

We will begin by considering the word problem for finitely generated groups.

For each n ≥ 1, fix an effective enumeration {wk(x1, · · · , xn) | k ∈ N } of the (not

necessarily reduced) words in x1, · · · , xn, x
−1
1 , · · · , x−1

n . If G = 〈 a1, · · · , an 〉 is a

finitely generated group, then

Rel(G) = { k ∈ N | wk(a1, · · · , an) = 1 }.

Of course, there is a slight abuse of notation here, since the set Rel(G) clearly

depends on the sequence of generators a1, · · · , an. However, if b1, · · · , bm is any

Research partially supported by NSF Grant DMS 0600940.

1



2 SIMON THOMAS

other sequence of generators of G, then it is easily seen that

{ k ∈ N | wk(a1, · · · , an) = 1 } ≡T { ` ∈ N | w`(b1, · · · , bm) = 1 }.

Here ≡T denotes the Turing equivalence relation on 2N defined by

A ≡T B ⇐⇒ A ≤T B and B ≤T A.

It is well-known that for each subset A ⊆ N, there exists a finitely generated group

GA such that Rel(GA) ≡T A. The usual constructions of the group GA are highly

dependent on the specific subset A ⊆ N, in the sense that if A 6= B are subsets such

that A ≡T B, then the groups GA, GB are usually nonisomorphic. Consequently,

it is natural to ask whether there is a more uniform construction with the property

that if A ≡T B, then GA
∼= GB . However, Theorem 1.1 below implies that no such

construction exists.

Throughout this paper, G denotes the Polish space of countably infinite groups

and Gfg denotes the Polish space of finitely generated groups. (These spaces will

be defined in Section 2.) As usual, the powerset P(N) will be identified with the

Cantor space 2N by identifying subsets of N with their characteristic functions.

Theorem 1.1. Suppose that A 7→ GA is a Borel map from 2N to Gfg such that

Rel(GA) ≡T A for all A ∈ 2N. Then there exists a Turing degree d0 such that for all

Turing degrees d with d0 ≤T d, there exists an infinite subset {An | n ∈ N } ⊆ d

such that the groups {GAn | n ∈ N } are pairwise incomparable with respect to

embeddability.

Next recall that the Higman-Neumann-Neumann Embedding Theorem [5] states

that any countable group G can be embedded into a 2-generator group KG. In the

standard proof of this classical theorem, the construction of the group KG involves

an enumeration of a set {gn | n ∈ N} of generators of the group G; and it is

clear that the isomorphism type of KG usually depends upon both the generating

set and the particular enumeration that is used. Once again, it is natural to ask

whether there is a more uniform construction with the property that if G ∼= H,

then KG
∼= KH . In this case, the main result of Thomas [21] shows that no such

construction exists. However, it turns out that we can obtain a much more striking

result if we are willing to make use of a relatively mild large cardinal assumption.
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Throughout this paper, we will write (RC) to indicate that the proof of a given

result makes use of the assumption that a Ramsey cardinal exists.

Theorem 1.2 (RC). Suppose that G 7→ KG is a Borel map from G to Gfg such

that G ↪→ KG for all G ∈ G. Then there exists a perfect family F ⊆ G of pairwise

isomorphic groups such that the groups {KG | G ∈ F } are pairwise incomparable

with respect to relative constructibility; i.e. if G 6= H ∈ F , then KG /∈ L[KH ] and

KH /∈ L[KG].

Here L[KG] denotes the smallest inner model of ZFC which contains the finitely

generated group KG.

Remark 1.3. Working in ZFC, we can obtain the weaker conclusion that there

exists a perfect family F ⊆ G of pairwise isomorphic groups such that the groups

{KG | G ∈ F } are pairwise incomparable with respect to embeddability. (In fact,

as we will explain in Section 4, it is possible to prove significantly stronger results.)

Remark 1.4. The existence of a Ramsey cardinal is certainly not the minimum

large cardinal assumption necessary to prove Theorem 1.2. For example, Philip

Welch has pointed out that Theorem 1.2 is a consequence of the weaker assumption

that ωL[r]
1 < ω1 for all r ∈ R. (With this assumption, working with the inner models

L[r] for suitable reals r instead of with generic extensions, the arguments of this

paper go through virtually unchanged.)

The remainder of this paper is organised as follows. In Section 2, we will discuss

the Polish space G of countably infinite groups and the Polish space Gfg of (marked)

finitely generated groups. In Section 3, we will use Borel Determinacy to prove

Theorem 1.1; and in Section 4, we will use a generic absoluteness argument to

prove Theorem 1.2.

Our notation is standard. For example, we write G ↪→ H to indicate that the

group G embeds into the group H. Throughout this paper, Σ1
n and Π1

n will denote

the classical (boldface) pointclasses. As this paper is intended to be intelligible to a

general audience of logicians, it contains detailed explanations of some points which

will be obvious to the experts in recursion theory and descriptive set theory.
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2. Spaces of Groups

In this section, we will discuss the Polish space G of countably infinite groups

and the Polish space Gfg of (marked) finitely generated groups.

Throughout this paper, we will use the usual representation of the class of count-

ably infinite groups by the elements of a Polish space. In more detail, let G be the

set of countably infinite groups G with underlying set N and let 2N3
be the Polish

space of all 3-ary functions f : N3 → {0, 1} with the natural product topology.

Then, identifying each group G ∈ G with the graph of its multiplication operation

mG ∈ 2N3
, it is easily checked that G is a Gδ-subset of 2N3

and hence G is a Polish

subspace of 2N3
.

Although this method can also be adapted to construct a Polish space of finitely

generated groups, we will prefer to use an alternative approach due to Grigorchuk

[4], which more faithfully reflects various important features of the class of finitely

generated groups. The Polish space Gfg of (marked) finitely generated groups is

defined as follows. A marked group (G, s̄) consists of a finitely generated group

with a distinguished sequence s̄ = (s1, · · · , sm) of generators. (Here the sequence

s̄ is allowed to contain repetitions and we also allow the possibility that the se-

quence contains the identity element.) Two marked groups (G, (s1, · · · , sm)) and

(H, (t1, · · · , tn)) are said to be isomorphic if m = n and the map si 7→ ti extends

to a group isomorphism between G and H.

Definition 2.1. For each m ≥ 2, let Gm be the set of isomorphism types of marked

groups (G, (s1, · · · , sm)) with m distinguished generators.

Let Fm be the free group on the generators {x1, · · · , xm}. Then for each marked

group (G, (s1, · · · , sm)), we can define an associated epimorphism θG,s̄ : Fm → G

by θG,s̄(xi) = si. It is easily checked that two marked groups (G, (s1, · · · , sm))

and (H, (t1, · · · , tm)) are isomorphic iff ker θG,s̄ = ker θH,t̄. Thus we can naturally

identify Gm with the set Nm of normal subgroups of Fm. Note that Nm is a closed
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subset of the compact space 2Fm of all subsets of Fm and so Nm is also a compact

space. Hence, via the above identification, we can regard Gm as a compact space.

The topologies on Nm and Gm can be described more explicitly as follows. For

each marked group (G, s̄) and integer ` ≥ 1, let B`(G, s̄) be the closed ball of radius

` around the identity element in the (labelled directed) Cayley graph Cay(G, s̄) of

G with respect to the generating sequence s̄. Then, letting x̄ = (x1, · · · , xm), a

neighborhood basis in Nm of the normal subgroup N is given by the collection of

open sets

UN,` = {M ∈ Nm |M ∩B`(Fm, x̄) = N ∩B`(Fm, x̄) }, ` ≥ 1.

If (G, s̄) ∈ Gm corresponds to the normal subgroup N ∈ Nm, then the set of

relations N ∩B2`+1(Fm, x̄) contains essentially the same information as the closed

ball B`(G, s̄) in the Cayley graph of (G, s̄). It follows that a neighborhood basis in

Gm of the marked group (G, s̄) is given by the collection of open sets

V(G,s̄),` = { (H, t̄ ) ∈ Gm | B`(H, t̄ ) ∼= B`(G, s̄) }, ` ≥ 1.

Finally, for each m ≥ 2, there is a natural embedding of Nm into Nm+1 defined by

N 7→ the normal closure of N ∪ {xm+1} in Fm+1.

This enables us to regard Nm as a clopen subset of Nm+1 and to form the locally

compact Polish space N =
⋃
Nm. Note that N can be identified with the space

of normal subgroups N of the free group F∞ on countably many generators such

that N contains all but finitely many elements of the basis X = {xi | i ∈ N+}.

Similarly, we can form the locally compact Polish space Gfg =
⋃
Gm of finitely

generated groups via the corresponding natural embedding

(G, (s1, · · · , sm)) 7→ (G, (s1, · · · , sm, 1))

From now on, we will identify Gm and Nm with the corresponding clopen subsets

of Gfg and N . If Γ ∈ Gfg, then we will write Γ = (G, (s1, · · · , sm)), where m is the

least integer such that Γ ∈ Gm. Following the usual convention, we will completely

identify the Polish spaces Gfg and N ; and we will work with whichever space is

most convenient in any given context. For example, if Γ ∈ Gfg is a marked group,

then there is no longer any abuse of notation in writing Rel(Γ). On the other

hand, if we fix an effective enumeration of F∞ and then identify Γ ∈ Gfg with the
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corresponding normal subgroup N ∈ N , then we see that Γ is essentially a subset

of N and hence L[ Γ ] = L(Γ) is the smallest inner model of ZFC which contains Γ.

In the remainder of this paper, we will only consider the usual isomorphism

relation ∼= on the space Gfg of finitely generated groups; i.e. two marked groups

are ∼=-equivalent iff their underlying groups (obtained by forgetting about their

distinguished sequences of generators) are isomorphic. And we will often abuse

notation by writing G ∈ Gfg instead of Γ = (G, (s1, · · · , sm)) ∈ Gfg. Notice that

∼= is a countable Borel equivalence relation on Gfg; i.e. for each G ∈ Gfg, the

set {H ∈ Gfg | H ∼= G } is countable. Similarly, for each G ∈ Gfg, the set

{H ∈ Gfg | H ↪→ G } is also countable.

3. Borel Determinacy and the Word Problem for Finitely

Generated Groups

In this section, we will present the proof of Theorem 1.1. Our proof makes use

of a remarkable consequence of Borel Determinacy which classifies the ≤T -cofinal

Borel subsets X ⊆ 2N. We will begin by considering the special case when X is

≡T -invariant ; i.e. whenever x ∈ X and y ≡T x, then y ∈ X. Here the canonical

examples are the cones Cz = {x ∈ 2N | z ≤T x }, where z ∈ 2N. (We have included

the proof of Theorem 3.1 in order to give the reader a flavor of the more complicated

determinacy argument that is involved in the proof of Theorem 3.4.)

Theorem 3.1 (Martin [14, 15]). If X ⊆ 2N is a ≡T -invariant ≤T -cofinal Borel

subset, then there exists a cone C such that C ⊆ X.

Proof. Consider the two player game G(X)

I s(0) s(2) s(4) · · ·

II s(1) s(3) s(5) · · ·

where each s(i) ∈ { 0, 1 } and I wins iff s = ( s(0) s(1) s(2) · · · ) ∈ X. Then, by Borel

Determinacy [15], the game G(X) is determined. First suppose that σ : 2<N → 2

is a winning strategy for I. Let σ ≤T t ∈ 2N and consider the play of G(X) where

• II plays t = ( s(1) s(3) s(5) · · · )

• I responds with σ and plays ( s(0) s(2) s(4) · · · ).

Then s ∈ X and s ≡T t. Hence t ∈ X and so Cσ = { t ∈ 2N | σ ≤T t } ⊆ X.



A DESCRIPTIVE VIEW OF COMBINATORIAL GROUP THEORY 7

On the other hand, if I does not have a winning strategy, then II must have a

winning strategy τ : 2<N → 2. But then, arguing as above, we see that Cτ ⊆ 2NrX,

which contradicts the fact that X is ≤T -cofinal. �

As we mentioned earlier, we will require a strengthening of Theorem 3.1 which

classifies arbitary ≤T -cofinal Borel subsets X ⊆ 2N. In this case, the canonical

examples are the sets [S ] of infinite branches of pointed trees S ⊆ 2<N.

Definition 3.2 (Sacks [18]). The tree S ⊆ 2<N is said to be pointed if S is perfect

and S ≤T x for all x ∈ [S ].

The following lemma summarizes some of the basic properties of pointed trees.

Lemma 3.3 (Sacks [18]). Suppose that S ⊆ 2<N is a pointed tree.

(i) If S ≤T z ∈ 2N, then there exists a branch x ∈ [S ] such that x ≡T z.

(ii) If S0 ⊆ S is a subtree such that S0 ≤T S, then S0 is also a pointed tree

and S0 ≡T S.

(iii) If S ≤T z ∈ 2N, then there exists a pointed tree Sz ⊆ S such that Sz ≡T z.

As we will soon see, Theorem 1.1 is a straightforward consequence of the following

result. (The proof of Theorem 3.4 can be found in Kechris [12].)

Theorem 3.4 (Martin). If X is a ≤T -cofinal Borel subset of 2N, then there exists

a pointed tree S ⊆ 2<N such that [S ] ⊆ X.

Next recall that if A, B ⊆ N, then A is one-one reducible to B, written A ≤1 B,

if there exists an injective recursive function f : N → N such that for all n ∈ N,

n ∈ A ⇐⇒ f(n) ∈ B.

The proof of Theorem 1.1 also makes use of the following well-known result.

Lemma 3.5 (Folklore). If G, H ∈ Gfg and G ↪→ H, then Rel(G) ≤1 Rel(H).

Proof. Suppose that G = 〈 a1, · · · , an 〉 and H = 〈 b1, · · · , bm 〉 are marked finitely

generated groups. Let ϕ : G→ H be an embedding and let ϕ(ai) = ti(b̄). Then

wk(a1, · · · , an) = 1 ⇐⇒ wk(t1(b̄), · · · , tn(b̄)) = 1.

�
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Proof of Theorem 1.1. Suppose that A 7→ GA is a Borel map from 2N to Gfg such

that Rel(GA) ≡T A for all A ∈ 2N and let θ : 2N → 2N be the Borel map defined

by A 7→ Rel(GA). Since θ is a countable-to-one Borel map, it follows that θ(2N) is

a Borel subset of 2N. Clearly θ(2N) is ≤T -cofinal and hence there exists a pointed

tree S such that [S ] ⊆ θ(2N). Let (πn | n ∈ N ) be an enumeration of the injective

recursive maps π : N → N. Then after replacing S by a suitable pointed subtree if

necessary, we can suppose that (πn | n ∈ N ) ≤T S. Notice that if n ∈ N and s1,

s2 ∈ S, then there exist t1, t2 ∈ S such that

• s1 ⊂ t1 and s2 ⊂ t2; and

• there exists ` such that t1(`) 6= t2(πn(`)).

Using this observation, it is routine to construct a perfect subtree S0 ⊆ S such that:

(i) S0 ≤T S; and

(ii) if x 6= y ∈ [S0 ], then x and y are incomparable with respect to the one-one

reducibility relation ≤1.

It follows that S0 is also a pointed tree. Finally let B ∈ 2N be any set such that

S0 ≤T B and let SB ⊆ S0 be a pointed subtree such that SB ≡T B.

Let {xn | n ∈ N } ⊆ [SB ] be an infinite set of branches chosen such that each

xn ≤T SB and hence xn ≡T SB ≡T B. For each n ∈ N, choose An ∈ 2N such

that Rel(GAn
) = xn. Then each An ≡T B; and if n 6= m, then Rel(GAn

) and

Rel(GAm
) are incomparable with respect to ≤1. Hence, by Lemma 3.5, the groups

{GAn
| n ∈ N } are incomparable with respect to embeddability. This completes

the proof of Theorem 1.1. �

4. Collapsing Cardinals and the Higman-Neumann-Neumann

Embedding Theorem

Let I(N, 2N) be the Polish space of all injective maps z : N → 2N. In this section,

we will derive Theorem 1.2 as an easy consequence of a slightly technical lemma

concerning arbitrary Borel maps θ : I(N, 2N) → X, where X is any Polish space.

But before we can state this lemma, we need to introduce two definitions.

Definition 4.1. Ecntble is the Borel equivalence relation on I(N, 2N) defined by

z Ecntble z
′ ⇐⇒ {z(n) | n ∈ N} = {z′(n) | n ∈ N}.
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Definition 4.2. Let � be a quasi-order on the set X. Then � is said to be

countable if { y ∈ X | y � x } is countable for all x ∈ X.

For example, the Turing reducibility relation ≤T on 2N and the embeddability re-

lation ↪→ on Gfg are both countable Borel quasi-orders. The relative constructibility

relation ≤c defined on 2N by

x ≤c y ⇐⇒ x ∈ L[ y ]

is a Σ1
2 quasi-order; and if (RC) holds, then ≤c is countable. (For example, see

Jech [9, Exercise 17.28].)

Lemma 4.3. Suppose that X is a standard Borel space and that θ : I(N, 2N) → X

is any Borel map. Then at least one of the following two conditions must hold:

(a) There exists x ∈ X such that for all r ∈ 2N, there exists z ∈ I(N, 2N) with

r ∈ range(z) such that θ(z) = x.

(b) For each countable Borel quasi-order 4 on X, there exists a perfect subset

P ⊆ I(N, 2N) such that

(i) y Ecntble z for all y, z ∈ P ; and

(ii) θ(y), θ(z) are incomparable with respect to 4 for all y 6= z ∈ P .

Furthermore, if (RC) holds, then the conclusion also holds with respect to the quasi-

order ≤c of relative constructibility.

The proof of Theorem 1.2 also makes use of the following result.

Lemma 4.4 (B.H. Neumann [17]). There exists a Borel family {Hr | r ∈ 2N } ⊆ G

of pairwise nonisomorphic infinite 2-generator groups.

Sketch proof. For each strictly increasing sequence d = 〈dn | n ∈ ω〉 of odd in-

tegers with d0 ≥ 5, let Xn
d = {xn

1 , x
n
2 , · · · , xn

dn
} and let Γd be the subgroup of∏

n∈ω Alt(Xn
d ) generated by the two permutations

αd =
∏
n∈ω

(xn
1 xn

2 xn
3 · · · xn

dn
)

βd =
∏
n∈ω

(xn
1 xn

2 xn
3 ).
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Then by B.H. Neumann [17], up to isomorphism, the finite simple normal subgroups

of Γd are precisely {Alt(dn) | n ∈ ω }. In particular, the groups Γd are infinite and

pairwise nonisomorphic. The result follows easily. �

Proof of Theorem 1.2 (RC). Suppose that ϕ : G → Gfg is a Borel map such that

G embeds into ϕ(G) for all G ∈ G. Let {Hr | r ∈ 2N } ⊆ G be the Borel family

of pairwise nonisomorphic infinite 2-generator groups given by Lemma 4.4 and let

ψ : I(N, 2N) → G be the injective Borel map defined by

ψ(z) = Hz(0) ×Hz(1) × · · · ×Hz(n) × · · ·

i.e. ψ(z) is the restricted direct product of the sequence 〈Hz(n) | n ∈ N 〉. Of course,

if y, z ∈ I(N, 2N) satisfy y Ecntble z, then ψ(y) ∼= ψ(z). Let θ : I(N, 2N) → Gfg be

the Borel map defined by θ = ϕ ◦ψ. Applying Lemma 4.3, first suppose that there

exists a group G ∈ Gfg such that for all r ∈ 2N, there exists z ∈ I(N, 2N) with

r ∈ range(z) such that θ(z) = G. Then Hr embeds into G for all r ∈ 2N, which is

impossible since G has only countably many finitely generated subgroups. Hence

there a perfect set P ⊆ I(N, 2N) such that

• y Ecntble z for all y, z ∈ P ; and

• the groups θ(y), θ(z) are incomparable with respect to the quasi-order ≤c

of relative constructibility for all y 6= z ∈ P .

Since ψ is an injective Borel map, it follows that ψ[P ] is an uncountable Borel

subset of G; and since y Ecntble z for all y, z ∈ P , it follows that the groups in ψ[P ]

are pairwise isomorphic. Consequently, if F ⊆ ψ[P ] is any perfect subset, then F is

a perfect family of pairwise isomorphic groups such that the groups {KG | G ∈ F }

are pairwise incomparable with respect to relative constructibility. �

Remark 4.5. Working in ZFC, we obtain the weaker conclusion that there exists a

perfect family F ⊆ G of pairwise isomorphic groups such the groups {KG | G ∈ F }

are pairwise incomparable with respect to embeddability. Of course, we can also

obtain significantly stronger results by considering other Borel quasi-orders. For

example, there exists a perfect family F ⊆ G of pairwise isomorphic groups such

the sets {Rel(KG) | G ∈ F } are pairwise incomparable with respect to Turing

reducibility. In fact, Philip Welch has pointed out that, working with suitable

inner models instead of with generic extensions, the arguments of this paper prove
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the existence a perfect family F ⊆ G of pairwise isomorphic groups such the sets

{Rel(KG) | G ∈ F } are pairwise incomparable with respect to hyperarithmetic

reducibility.

The remainder of this section is devoted to the proof of Lemma 4.3. From

now on, we will work within a fixed base universe V of set theory and consider

extensions of various projective relations in suitable generic extensions V P. If R

is a projective relation on the Polish space X and V P is a generic extension, then

XV P
, RV P

will denote the sets obtained by applying the definitions of X, R within

V P. The projective relation R is said to be absolute for V P if RV P ∩ V = R. Our

proof of Lemma 4.3 is based upon the following two absoluteness theorems.

Theorem 4.6 (Shoenfield [19]). If R ∈ V is a Σ1
2 relation, then R is absolute for

every generic extension V P.

Theorem 4.7 (Martin-Solovay [16]). Suppose that κ is a Ramsey cardinal. If

R ∈ V is a Σ1
3 relation and |P| < κ, then R is absolute for V P.

For example, suppose that � is a countable Borel quasi-order on the Polish space

X. At first glance, it appears that the countability of � is a Π1
3 property. However,

recall that if B is an uncountable Borel subset of a Polish space X, then B contains

a nonempty perfect subset of X. Thus, letting Perf(X) denote the Polish space of

nonempty perfect subsets of X, we see that the countability of � can be expressed

by the following Π1
2 statement:

∀x ∈ X ∀P ∈ Perf(X) ∃y ∈ X [ y ∈ P ∧ y 6� x ].

Hence, by the Shoenfield Absoluteness Theorem, if P is any notion of forcing, then

�V P
is a countable Borel quasi-order on the Polish space XV P

. (In fact, the Lusin-

Novikov Uniformization Theorem [13, 18.10] allows us to express the countability

of � by a Π1
1 statement.) Of course, if κ is a Ramsey cardinal and |P| < κ, then κ

remains a Ramsey cardinal in V P and hence ≤c remains a countable quasi-order in

V P. (For example, see Jech [9, Theorem 21.2].)

The proof of Lemma 4.3 also makes use of the following notion which was ab-

stracted by Kanovei-Reeken [11] from an argument in Hjorth [6, Section 5].
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Definition 4.8 (Kanovei-Reeken [11]). Working in the base universe V , suppose

that E is a Borel equivalence relation on the Polish space X. If P is a notion of

forcing, then a virtual E-class is a P-name τ such that:

(i) 
P τ ∈ XV P
; and

(ii) 
P×P τ left E
V P×P

τright.

Here τ left and τright are the (P × P)-names such that if G ×H is (P × P)-generic,

then τ left[G×H] = τ [G] and τright[G×H] = τ [H].

Example 4.9. Let E = Ecntble and let P consist of all finite injective partial

functions p : N → 2N, partially ordered by p ≤ q iff p ⊇ q. If G ⊆ P is generic, then

g =
⋃
G ∈ V P is a bijection between N and 2N ∩ V . Hence if τ is the canonical

P-name such that τ [G] = g, then τ is a virtual Ecntble-class.

We are finally ready to present the proof of Lemma 4.3. Let � be either a count-

able Borel quasi-order on the Polish space X or else the relative constructibility

relation ≤c on 2N. If x, y ∈ X, then we will write x || y if x, y are �-comparable

and write x ⊥ y if x, y are �-incomparable. For the rest of this section, P denotes

the notion of forcing consisting of all finite injective partial functions p : N → 2N

and τ is the virtual Ecntble-class defined in Example 4.9. Our analysis splits into

two cases, depending on whether or not there exists an element p0 ∈ P such that

〈 p0, p0 〉 
 θ(τ left) || θ(τ right).

We will show that if such an element exists, then Condition 4.3(a) holds; while if

no such element exists, then Condition 4.3(b) holds. It should be stressed that the

following argument is based very closely on the proofs in Hjorth [6, Section 5] and

Kanovei-Reeken [11, Section 4]. (An account of Kanovei-Reeken [11, Section 4] can

also be found in Kanovei [10, Chapter 17].)

Case 1: Suppose that there exists an element p0 ∈ P such that

〈 p0, p0 〉 
 θ(τ left) || θ(τ right).

Claim 4.10. There exists p1 ≤ p0 such that 〈 p1, p1 〉 
 θ(τ left) = θ(τ right).

Proof. Suppose not and let Q be a notion of forcing which collapses P(P × P) to

a countable set. For the remainder of this argument, we will work inside V Q. Let



A DESCRIPTIVE VIEW OF COMBINATORIAL GROUP THEORY 13

{Dn | n ∈ N } be an enumeration of the dense open subsets D ⊆ P × P such that

D ∈ V . Then we can inductively define conditions ps ∈ P for s ∈ 2<N such that

the following hold:

(i) p∅ = p0;

(ii) if s ⊂ t, then ps ≥ pt;

(iii) if s 6= t ∈ 2n+1, then 〈ps, pt〉 ∈ Dn; and

(iv) 〈 psb0, psb1 〉 
 θ(τ left) 6= θ(τ right).

For each α ∈ 2N, let Gα = { q ∈ P | (∃n )pα�n ≤ q } and let xα =
⋃
Gα. Then

C = {xα | α ∈ 2N } is a perfect subset of I(N, 2N) such that:

(a) θ � C is injective; and

(b) if y, z ∈ θ(C), then y || z.

Let Z ⊆ θ(C) be a perfect subset and consider the set

A = { 〈y, z〉 ∈ Z × Z | y � z }.

If � is a countable Borel quasi-order, then A is a Borel subset of Z × Z and hence

has the Baire property. On the other hand, if � is the relative constructibility

relation ≤c, then A is a Σ1
2 subset of Z × Z; and since we are assuming (RC), it

again follows that A has the Baire property. (For example, see Jech [9, 26.21].) In

both cases, each section Az = { y ∈ Z | y � z } is countable; and hence, by the

Kuratowski-Ulam Theorem, it follows that A is a meager subset of Z×Z. Similarly,

we see that

B = { 〈y, z〉 ∈ Z × Z | y � z }.

is a meager subset of Z × Z. But since Z × Z = A ∪B, this contradicts the Baire

Category Theorem. �

Claim 4.11. There exists x ∈ X such that p1 
 θ(τ ) = x.

Proof. To simplify notation, suppose that X = [0, 1]. Then, working in V , we can

inductively define conditions

p1 ≥ p2 ≥ p3 ≥ · · · ≥ pn ≥ · · ·

and closed intervals In ⊆ [0, 1] with rational endpoints

I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ · · ·
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such that |In| = 2−(n−1) and pn 
 θ(τ ) ∈ In. Let
⋂

n≥1 In = {x}. Then we claim

that x satisfies our requirements. Otherwise, there exist q ≤ p1 and n ≥ 1 such

that q 
 θ(τ ) /∈ In. But then 〈q, pn〉 ≤ 〈p1, p1〉 satisfies

〈q, pn〉 
 θ(τ left) /∈ In and θ(τ right) ∈ In,

which is a contradiction. �

Let G ⊆ P be a V -generic filter such that p1 ∈ G. Then V [G] � θ(τ [G]) = x.

Recall that τ [G] =
⋃
G is a bijection between N and 2N ∩ V . Hence for each real

r ∈ 2N ∩ V ,

V [G] � (∃z ∈ I(N, 2N) ) (∃n ∈ N ) [ z(n) = r and θ(z) = x ].

Applying the Shoenfield Absoluteness Theorem, this Σ1
1 property of the reals r,

x ∈ 2N ∩ V must also hold in V ; and so Condition 4.3(a) holds in V .

Case 2: Suppose that there does not exist p ∈ P such that

〈 p, p 〉 
 θ(τ left) || θ(τ right).

Once again, let Q be a notion of forcing which collapses P(P×P) to a countable

set. Arguing as in the proof of Claim 4.10, we see that the following statement

holds in V Q :

(4.12) ∃P ∈ Perf(I(N, 2N)) ∀x, y ∈ I(N, 2N)

[ (x, y ∈ P ∧ x 6= y ) =⇒ (x Ecntble y ∧ θ(x) ⊥ θ(y) ) ].

If � is a countable Borel quasi-order, then (4.12) is a Σ1
2 statement; and if � is the

relative constructibility relation ≤c, then (4.12) is a Σ1
3 statement. Hence, applying

either the Shoenfield Absoluteness Theorem or the Martin-Solovay Absoluteness

Theorem, it follows that statement (4.12) also holds in V . This completes the

proof of Lemma 4.3.
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