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Abstract. The set of complete groups is a complete co-analytic subset of the

standard Borel space of countably infinite groups.

1. Introduction

If G is a centerless group, then we can define an embedding G ↪→ Aut(G) by

g 7→ ig, where ig is the corresponding inner automorphism defined by

ig(x) = g x g−1, x ∈ G.

It is easily checked that Inn(G) = { ig | g ∈ G } is a normal subgroup of Aut(G).

Let Out(G) = Aut(G)/ Inn(G) be the associated quotient group.

Definition 1.1. A group G is complete if G is centerless and Aut(G) = Inn(G).

Let G be the standard Borel space of countably infinite groups. Then it is clear

that Gcmp = {G ∈ G | G is complete } is a co-analytic subset of G; and the main

result of this paper shows that Gcmp is not a Borel subset of G.

Theorem 1.2. The set Gcmp of complete groups is a complete co-analytic subset

of the standard Borel space G of countably infinite groups.

This paper is organized as follows. In Section 2, we will present the proof of

Theorem 1.2, and we will also briefly consider three other natural co-analytic sets

of countably infinite groups. Then, in Section 3, we will define a natural Π1
1-rank

on the collection of complete groups Gcmp ⊆ G.
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2. The proof of Theorem 1.2

In this section, we will prove that the set Gcmp of complete groups is a complete

co-analytic subset of the standard Borel space G of countably infinite groups. The

idea of the proof is easily explained. Suppose that K is a field such that |K| > 3.

Then PGL(2,K) is a centerless group; and, by Schreier and van der Waerden [6],

Aut(PGL(2,K)) = Inn(PGL(2,K)) o Aut(K).

Hence Out(PGL(2,K)) ∼= Aut(K), and so PGL(2,K) is a complete group if and

only if Aut(K) = 1. Thus, in order to prove that the set of complete groups is

complete co-analytic, it is enough to show that there exists a Borel map T 7→ KT

from the standard Borel space T of countable trees to the standard Borel space F

of countable fields such that

T is well-founded ⇐⇒ Aut(KT ) = 1.

As we will explain below, the existence of such a map follows easily from results

of Harrison [3] and Friedman-Stanley [2] on pseudo-well orderings, together with a

theorem of Fried-Kollar [1] which provides a suitable coding of an arbitary structure

within a field of characteristic 0.

Definition 2.1. A pseudo-well ordering is a linear ordering R of ω which has no

infinite descending sequence which is hyperarithmetic in R.

Lemma 2.2 (Harrison [3]). If R is a non-well-founded pseudo-well ordering, then

R has order-type (ωR
1 × (1 + Q)) + α for some α < ωR

1 .

Thus if R is a pseudo-well ordering, then R is not a well-ordering if and only if

Aut(R) 6= 1. Let L be the standard Borel space of countable linear orders.

Lemma 2.3 (Friedman-Stanley [2]). There exists a Borel map ϕ : T → L such

that for each T ∈ T :

(a) ϕ(T ) is a pseudo-well ordering.

(b) ϕ(T ) is a well-ordering if and only if T is a well-founded tree.

Let F0 be the standard Borel space of countable fields of characteristic 0.
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Lemma 2.4. There exists a Borel map ψ : L → F0 such that Aut(L) ∼= Aut(ψ(L))

for each L ∈ L.

Sketch proof. The proof proceeds in two steps. First, as a very special case of

Hodges [4, Theorem 5.1.1], there exists an explicit construction which to any infinite

linear order L associates a connected graph ΓL of the same cardinality such that

Aut(ΓL) ∼= Aut(L).

Secondly, by Fried-Kollár [1], there exists an explicit construction which to any

infinite connected graph Γ associates a field KΓ of characteristic 0 of the same

cardinality such that Aut(KΓ) ∼= Aut(Γ). Since both constructions are explicit, we

easily obtain a Borel map ψ : L → F0 such that Aut(L) ∼= Aut(ψ(L)) for each

L ∈ L. �

For each tree T ∈ T , let KT = (ψ ◦ ϕ)(T ). Then T 7→ PGL(2,KT ) is a Borel

map from T to G; and, by construction, for each tree T ∈ T ,

T is well-founded ⇐⇒ Out(PGL(2,KT )) ∼= Aut(KT ) = 1.

This completes the proof that the set Gcmp of complete groups is a complete co-

analytic subset of G.

Remark 2.5. It is easily shown that each of the groups GT = PGL(2,KT ) is

pseudo-complete in the sense that there do not exist any outer automorphisms

π ∈ Aut(GT ) r Inn(GT ) which are hyperarithmetic in GT .

In the remainder of this section, we will briefly consider three other natural

co-analytic sets of countably infinite groups. First let

Gcnt = {G ∈ G | Aut(G) is countable }.

By Kueker [5], if G is a countable group, then Aut(G) is countable if and only if

there exist g1, · · · , gn ∈ G such that the identity map IdG is the only automorphism

π ∈ Aut(G) satisfying π(gi) = gi for all 1 ≤ i ≤ n. It follows that Gcnt is a co-

analytic subset of G. Since the Borel map T 7→ PGL(2,KT ) also satisfies

T is well-founded ⇐⇒ Aut(PGL(2,KT )) is countable,

we obtain the following result.
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Theorem 2.6. Gcnt is a complete co-analytic subset of G.

Next recall that a groupG is said to be Hopfian if every surjective homomorphism

π : G→ G is injective; and that a group G is said to be co-Hopfian if every injective

homomorphism π : G→ G is surjective. Let

• GHop = {G ∈ G | G is Hopfian };

• GcoH = {G ∈ G | G is co-Hopfian }.

Then GHop and GcoH are clearly co-analytic subsets of G. Unfortunately, our earlier

argument tells us nothing about the questions of whether GHop and GcoH are com-

plete co-analytic subsets of G, since it is easily shown that for every tree T ∈ T ,

the group PGL(2,KT ) is Hopfian and not co-Hopfian.

Question 2.7. Are GHop and GcoH are complete co-analytic subsets of G?

3. A Π1
1-rank on the set of complete groups

In this section, we will define a natural Π1
1-rank on the collection of complete

groups Gcmp ⊆ G. We will make use of the following observation.

Definition 3.1. If G is any group, then an automorphism ϕ ∈ Aut(G) is said to

be locally inner if for every finite subset X ⊂ G, there exists g ∈ G such that

ϕ(x) = gxg−1 for every x ∈ X.

Proposition 3.2. If G is a countably infinite centerless group, then the following

statements are equivalent.

(a) There exist 2ℵ0 locally inner autmorphisms ϕ ∈ Aut(G) r Inn(G).

(b) There exist a locally inner autmorphism ϕ ∈ Aut(G) r Inn(G).

(c) CG(X) 6= 1 for every finite subset X ⊂ G.

Proof. Clearly (a) implies (b). To see that (b) implies (c), let ϕ ∈ Aut(G)r Inn(G)

be locally inner and let X ⊆ G be any finite subset. Then there exists g ∈ G such

that ϕ(x) = gxg−1 for every x ∈ X. Since ϕ /∈ Inn(G), there exists y ∈ G such

that ϕ(y) 6= gyg−1. Let Z = X ∪ { y } and let h ∈ G be such that ϕ(z) = hzh−1

for every z ∈ Z. Then 1 6= h−1g ∈ CG(X).

Finally suppose that CG(X) 6= 1 for every finite subset X ⊂ G. Then we can

express G =
⋃

n∈NGn as the union of a strictly increasing chain of finitely generated
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subgroups Gn such that for every n ∈ N, there exists an element gn ∈ Gn such that

g0 ∈ G0 r Z(G0) and gn+1 ∈ CGn+1
(Gn) r Z(Gn+1). For each ε ∈ { 0, 1 }, let

gεn =

gn, if ε = 1;

1, if ε = 0.

Then for each binary sequence s = ( εn ) ∈ 2N, we can define a corresponding locally

inner automorphism ϕs by setting

ϕs(x) = (gεnn · · · g
ε0
0 )x(gεnn · · · g

ε0
0 )−1, x ∈ Gn.

If s 6= s′ = ( ε′n ) ∈ 2N and n is the least natural number such that εn 6= ε′n, then

ϕs � Gn 6= ϕs′ � Gn. Since G has only countably many inner automorphisms, it

follows that there exist 2ℵ0 locally inner autmorphisms ϕ ∈ Aut(G) r Inn(G). �

Definition 3.3. A group G is strongly centerless if there exists a finite subset

X ⊂ G such that CG(X) = 1.

Corollary 3.4. If G is a countably infinite complete group, then G is strongly

centerless.

Convention 3.5. From now on, we will regard each element of G as an ordered

pair (G, e), where G is a countably infinite group and e = ( gn | n ∈ N ) is an

enumeration of G such that e0 = 1.

Definition 3.6. For each (G, e) ∈ G, let T e
G be the tree consisting of the finite

injective partial functions f : G → G, partially ordered by inclusion, such that

either f = (1, 1), or else

dom f = { g0, · · · , gn } ∪ { f−1(g0), · · · , f−1(gn) }

for some n ∈ N and the following conditions hold:

(i) The partial function f extends to an embedding of the subgroup generated

by dom f into G.

(ii) For all h ∈ G, there exists a ∈ dom f such that f(a) 6= h−1ah.

Lemma 3.7. If (G, e) ∈ G is strongly centerless, then G is complete if and only if

T e
G is well-founded.
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Proof. First suppose that G is not complete and let ϕ ∈ Aut(G) r Inn(G) be an

outer automorphism. For each n ∈ N, let

ϕn = ϕ � { g0, · · · , gn, ϕ−1(g0), · · ·ϕ−1(gn) }.

By Proposition 3.2, the outer automorphism ϕ is not locally inner, and hence there

exists n0 ∈ N such that ϕn ∈ T e
G for all n ≥ n0. Thus T e

G is not well-founded.

Conversely, suppose that T e
G is not well-founded and let B be an infinite branch

of T e
G. Then it is clear that ϕ =

⋃
B is an automorphism of G. Furthermore, by

considering any element f ∈ B, we see that ϕ /∈ Inn(G). �

Definition 3.8. Let ρ : Gcmp → Ord be the function defined by ρ(G, e) = rank(T e
G).

Theorem 3.9. ρ : Gcmp → Ord is a Π1
1-rank.

Proof. If (H, c) ∈ Gcmp and (G, e) ∈ G, then the following conditions are equivalent:

(i) (G, e) ∈ Gcmp and ρ(G, e) ≤ ρ(H, c).

(ii) G is strongly centerless and rank(T e
G) 6 rank(T c

H).

It is easily checked that the map (G, e) 7→ T e
G is Borel. The result follows. �
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