COMPLETE GROUPS ARE COMPLETE CO-ANALYTIC

SIMON THOMAS

ABSTRACT. The set of complete groups is a complete co-analytic subset of the

standard Borel space of countably infinite groups.

1. INTRODUCTION

If G is a centerless group, then we can define an embedding G — Aut(G) by

g — iy, where 44 is the corresponding inner automorphism defined by

ig(z) =gxg ", x €G.

It is easily checked that Inn(G) = {i,4 | g € G'} is a normal subgroup of Aut(G).
Let Out(G) = Aut(G)/ Inn(G) be the associated quotient group.

Definition 1.1. A group G is complete if G is centerless and Aut(G) = Inn(G).

Let G be the standard Borel space of countably infinite groups. Then it is clear
that Gemp = { G € G | G is complete } is a co-analytic subset of G; and the main

result of this paper shows that G.,, is not a Borel subset of G.

Theorem 1.2. The set Gepp of complete groups is a complete co-analytic subset

of the standard Borel space G of countably infinite groups.

This paper is organized as follows. In Section 2, we will present the proof of
Theorem 1.2, and we will also briefly consider three other natural co-analytic sets
of countably infinite groups. Then, in Section 3, we will define a natural IT}-rank

on the collection of complete groups Gemp C G.
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2. THE PROOF OF THEOREM 1.2

In this section, we will prove that the set G, of complete groups is a complete
co-analytic subset of the standard Borel space G of countably infinite groups. The
idea of the proof is easily explained. Suppose that K is a field such that |K| > 3.
Then PGL(2,K) is a centerless group; and, by Schreier and van der Waerden [6],

Aut(PGL(2,K)) = Inn(PGL(2, K)) »x Aut(K).

Hence Out(PGL(2,K)) = Aut(K), and so PGL(2, K) is a complete group if and
only if Aut(K) = 1. Thus, in order to prove that the set of complete groups is
complete co-analytic, it is enough to show that there exists a Borel map T — Ky
from the standard Borel space T of countable trees to the standard Borel space F

of countable fields such that
T is well-founded <= Aut(Kr)=1.

As we will explain below, the existence of such a map follows easily from results
of Harrison [3] and Friedman-Stanley [2] on pseudo-well orderings, together with a
theorem of Fried-Kollar [1] which provides a suitable coding of an arbitary structure

within a field of characteristic 0.

Definition 2.1. A pseudo-well ordering is a linear ordering R of w which has no

infinite descending sequence which is hyperarithmetic in R.

Lemma 2.2 (Harrison [3]). If R is a non-well-founded pseudo-well ordering, then

R has order-type (wf x (14 Q)) + a for some a < wit.

Thus if R is a pseudo-well ordering, then R is not a well-ordering if and only if

Aut(R) # 1. Let L be the standard Borel space of countable linear orders.

Lemma 2.3 (Friedman-Stanley [2]). There exists a Borel map ¢ : T — L such
that for each T € T :

(a) ©(T) is a pseudo-well ordering.
(b) ©(T) is a well-ordering if and only if T is a well-founded tree.

Let Fy be the standard Borel space of countable fields of characteristic 0.
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Lemma 2.4. There exists a Borel map ¢ : L — Fo such that Aut(L) = Aut(y(L))
for each L € L.

Sketch proof. The proof proceeds in two steps. First, as a very special case of
Hodges [4, Theorem 5.1.1], there exists an explicit construction which to any infinite
linear order L associates a connected graph I'p, of the same cardinality such that
Aut(T'y) = Aut(L).

Secondly, by Fried-Kolldr [1], there exists an explicit construction which to any
infinite connected graph I' associates a field Kt of characteristic 0 of the same
cardinality such that Aut(Kr) = Aut(T'). Since both constructions are explicit, we
easily obtain a Borel map ¢ : £ — Fy such that Aut(L) = Aut(¢(L)) for each
Lel. d

For each tree T € T, let Kr = (¢ o )(T). Then T — PGL(2,Kr) is a Borel

map from 7T to G; and, by construction, for each tree T' € T,
T is well-founded <= Out(PGL(2,K7)) = Aut(Kr) = 1.

This completes the proof that the set G,y of complete groups is a complete co-

analytic subset of G.

Remark 2.5. It is easily shown that each of the groups Gr = PGL(2,Kr) is
pseudo-complete in the sense that there do not exist any outer automorphisms

m € Aut(Gr) \ Inn(Gr) which are hyperarithmetic in Grp.

In the remainder of this section, we will briefly consider three other natural

co-analytic sets of countably infinite groups. First let
Gent = { G € G | Aut(G) is countable }.

By Kueker [5], if G is a countable group, then Aut(G) is countable if and only if
there exist g1, - , gn € G such that the identity map Idq is the only automorphism
7 € Aut(Q) satisfying w(g;) = g; for all 1 < ¢ < n. It follows that G, is a co-
analytic subset of G. Since the Borel map T — PGL(2, Kr) also satisfies

T is well-founded <= Aut(PGL(2,Kr)) is countable,

we obtain the following result.
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Theorem 2.6. G.,; is a complete co-analytic subset of G.

Next recall that a group G is said to be Hopfian if every surjective homomorphism

7 : G — G is injective; and that a group G is said to be co-Hopfian if every injective
homomorphism 7 : G — G is surjective. Let

® Grop ={G € G| G is Hopfian };

e Goomw = {G € G| G is co-Hopfian }.
Then Grop and Geopr are clearly co-analytic subsets of G. Unfortunately, our earlier
argument tells us nothing about the questions of whether Gy,, and G.,y are com-
plete co-analytic subsets of G, since it is easily shown that for every tree T' € T,

the group PGL(2, Kr) is Hopfian and not co-Hopfian.
Question 2.7. Are Gy,p and G, are complete co-analytic subsets of G7

3. A TI}-RANK ON THE SET OF COMPLETE GROUPS

In this section, we will define a natural II}-rank on the collection of complete

groups Gemp € G. We will make use of the following observation.

Definition 3.1. If G is any group, then an automorphism ¢ € Aut(G) is said to
be locally inner if for every finite subset X C G, there exists g € G such that
o(z) = grg~?! for every z € X.

Proposition 3.2. If G is a countably infinite centerless group, then the following

statements are equivalent.

(a) There exist 2% locally inner autmorphisms ¢ € Aut(G) ~ Inn(G).
(b) There exist a locally inner autmorphism ¢ € Aut(G) \ Inn(G).
(¢) Ca(X) #1 for every finite subset X C G.

Proof. Clearly (a) implies (b). To see that (b) implies (¢), let ¢ € Aut(G) \Inn(G)
be locally inner and let X C G be any finite subset. Then there exists g € G such
that o(z) = grg~! for every z € X. Since ¢ ¢ Inn(G), there exists y € G such
that p(y) # gyg~'. Let Z = X U{y} and let h € G be such that p(z) = hzh™!
for every z € Z. Then 1 # h~lg € Cq(X).

Finally suppose that Cg(X) # 1 for every finite subset X C G. Then we can

express G = |J,,cn G @s the union of a strictly increasing chain of finitely generated
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subgroups G, such that for every n € N, there exists an element g,, € G,, such that
g0 € Go ~ Z(Go) and gnt1 € Cq,,,,(Gn) N~ Z(Gpq1). Foreach e € {0,1}, let
c Gn, ife=1;
9n =
1, ife=0.
Then for each binary sequence s = (&, ) € 2", we can define a corresponding locally

inner automorphism ¢y by setting

os(x) = (g 950)(gim - 95°) "', € Gy

If s # s = (&/,) € 2V and n is the least natural number such that ¢, # ¢/, then
ws | Gp, # @s | Gy. Since G has only countably many inner automorphisms, it

follows that there exist 2% locally inner autmorphisms ¢ € Aut(G) ~ Inn(G). O

Definition 3.3. A group G is strongly centerless if there exists a finite subset

X C G such that Cg(X) = 1.

Corollary 3.4. If G is a countably infinite complete group, then G is strongly

centerless.

Convention 3.5. From now on, we will regard each element of G as an ordered
pair (G,e), where G is a countably infinite group and e = (g, | n € N) is an

enumeration of G such that eg = 1.

Definition 3.6. For cach (G,e) € G, let T§ be the tree consisting of the finite
injective partial functions f : G — @, partially ordered by inclusion, such that

either f = (1,1), or else

dom f = {go, -+ ,gn yU{ S (90),- -+, f (gn) }

for some n € N and the following conditions hold:
(i) The partial function f extends to an embedding of the subgroup generated
by dom f into G.
(ii) For all h € G, there exists a € dom f such that f(a) # h~'ah.

Lemma 3.7. If (G,e) € G is strongly centerless, then G is complete if and only if

T¢ is well-founded.
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Proof. First suppose that G is not complete and let ¢ € Aut(G) \ Inn(G) be an

outer automorphism. For each n € N| let

en=01{90,+9n, 0 "(g0)s ¢ "(gn) }.

By Proposition 3.2, the outer automorphism ¢ is not locally inner, and hence there
exists ng € N such that ¢, € T& for all n > ng. Thus T is not well-founded.
Conversely, suppose that T¢ is not well-founded and let B be an infinite branch
of T&. Then it is clear that ¢ = (J B is an automorphism of G. Furthermore, by
considering any element f € B, we see that ¢ ¢ Inn(G). O

Definition 3.8. Let p : Gepnp — Ord be the function defined by p(G, €) = rank(T§).
Theorem 3.9. p: G.pp — Ord is a T} -rank.

Proof. If (H,c) € Gemp and (G, e) € G, then the following conditions are equivalent:
(i) (G,e) € Gemp and p(G,e) < p(H,c).
(ii) G is strongly centerless and rank(T&) < rank(77;).

It is easily checked that the map (G, e) — T§ is Borel. The result follows. O
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