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Abstract. Using results on the structure of the topological full groups of

minimal subshifts, we prove that the isomorphism relation on the space of

finitely generated complete groups is not smooth.

1. Introduction

If G is a group and g ∈ G is any element, then the corresponding inner auto-

morphism ig ∈ Aut(G) is defined by

ig(x) = g x g−1, x ∈ G.

A group G is said to be complete if G is centerless and every automorphism of G

is inner. Let FG be the space of finitely generated groups and let

FGcmp = {G ∈ FG | G is complete }.

(Here FG denotes the Polish space of marked finitely generated groups, which was

introduced by Grigorchuk [10]; i.e. the elements of FG are the isomorphism types

of marked groups (G, c ), where G is a finitely generated group and c is a finite

sequence of generators.) Then it is easily checked that FGcmp is a Borel subset

of FG and hence FGcmp is a standard Borel space. The main result of this paper

constitutes the first step in the project of analyzing the Borel complexity of the

isomorphism relation on FGcmp.

Theorem 1.1. The isomorphism relation on the space FGcmp of finitely generated

complete groups is not smooth.

The proof of Theorem 1.1 makes use of results on the structure of the topological

full groups of minimal subshifts. More precisely, if (X,T ) is a minimal subshift and
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[[T ]] is the corresponding topological full group, then the commutator subgroup

[[T ]]′ is an infinite finitely generated simple group and hence Aut([[T ]]′) is a (not

necessarily finitely generated) complete group. Furthermore, if (Y, S ) is another

minimal subshift, then Aut([[T ]]′) ∼= Aut([[S ]]′) if and only if (X,T ) and (Y, S )

are flip conjugate. (A fuller discussion, including the relevant definitions, will be

presented in Section 3.) Hence, in order to prove Theorem 1.1, it is enough to find

a standard Borel space M of minimal subshifts such that the following conditions

are satisfied:

• Aut([[T ]]′) is finitely generated for each (X,T ) ∈M.

• The flip conjugacy relation on M is nonsmooth.

In [3], Clemens showed that the topological conjugacy relation for arbitrary sub-

shifts is a universal countable Borel equivalence relation. Unfortunately, it is cur-

rently not known whether or not the topological conjugacy relation for minimal

subshifts is strictly more complex than the Vitali equivalence relation E0. However,

it seems reasonable to conjecture that the following strengthening of Theorem 1.1

should be true. (Of course, it would be far more interesting if Conjecture 1.2 turned

out to be false.)

Conjecture 1.2. The isomorphism relation on the space FGcmp of finitely gener-

ated complete groups is countable universal.

This paper is organized as follows. In Section 2, we will recall some basic notions

and results from the theory of countable Borel equivalence relations, including the

definition of the space FG of (marked) finitely generated groups. In Section 3, we

will discuss the basic strategy that will be employed in the proof of Theorem 1.1 and

we will recall some results concerning the structure of the topological full groups

[[T ]] of Cantor minimal systems. In Sections 4 and 5, we will discuss the structure

of Aut([[T ]]′); and, in particular, we will present some criteria which are sufficient

to ensure that Aut([[T ]]′) is finitely generated. Finally, in Section 6, we will present

the proof of Theorem 1.1.
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2. Preliminaries

In this section, we will recall some basic notions and results from the theory of

countable Borel equivalence relations, and we will present a brief discussion of the

Polish space FG of marked finitely generated groups.

2.1. Countable Borel equivalence relations. In this subsection, we will recall

some basic notions and results from the theory of countable Borel equivalence rela-

tions. (A detailed development of the theory can be found in Dougherty-Jackson-

Kechris [4] and Jackson-Kechris-Louveau [14].)

If E, F are Borel equivalence relations on the standard Borel spaces X, Y , then

a Borel map f : X → Y is a homomorphism from E to F if for all x, y ∈ X,

x E y =⇒ f(x) F f(y).

If f satisfies the stronger property that for all x, y ∈ X,

x E y ⇐⇒ f(x) F f(y),

then f is said to be a Borel reduction and we write E ≤B F . If both E ≤B F and

F ≤B E, then E and F are said to be Borel bireducible and we write E ∼B F .

Finally we write E <B F if both E ≤B F and F �B E.

In this paper, we will only be concerned with countable Borel equivalence re-

lations; i.e. Borel equivalence relations E such that every E-equivalence class is

countable. With respect to Borel reducibility, the least complex countable Borel

equivalence relations are those which are smooth; i.e. those countable Borel equiv-

alence relations E on a standard Borel space X such that E is Borel reducible to

the identity relation IdY on some (equivalently every) uncountable standard Borel

space Y . Next in complexity come those countable Borel equivalence relations E

which are Borel bireducible with the Vitali equivalence relation E0, which is defined

on the space 2N of infinite binary sequences by

x E0 y ⇐⇒ x(n) = y(n) for all but finitely many n.

More precisely, by Harrington-Kechris-Louveau [12], if E is any (not necessarily

countable) Borel equivalence relation, then E is nonsmooth if and only if E0 ≤B E.

It turns out that there is also a most complex countable Borel equivalence relation

E∞, which is universal in the sense that F ≤B E∞ for every countable Borel
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equivalence relation F . (Clearly this universality property uniquely determines E∞

up to Borel bireducibility.) Furthermore, E∞ is strictly more complex than E0.

The universal countable Borel relation E∞ has a number of natural realizations in

many areas of mathematics, including algebra, topology and recursion theory. In

particular, by Thomas-Velickovic [20], the isomorphism relation ∼= on the space FG

of finitely generated groups is a universal countable Borel equivalence relation.

Finally, recall that if E, F are countable Borel equivalence relations on the

standard Borel spaces X, Y , then E is said to be weakly Borel reducible to F if

there exists a countable-to-one Borel homomorphism f : X → Y from E to F . In

this case, we write E ≤wB F . In the proof of Theorem 1.1, we will make use of the

following observation. (For example, see Thomas [19, Proposition 2.1].)

Proposition 2.1. Suppose that E, F are countable Borel equivalence relations and

that E ≤wB F . If E is nonsmooth, then F is also nonsmooth.

2.2. The space of marked finitely generated groups. In this subsection, we

will present a brief discussion of the Polish space FG of (marked) finitely generated

groups, which is defined as follows. A marked group (G, s̄) consists of a finitely gen-

erated group with a distinguished sequence s̄ = (s1, · · · , sm) of generators. (Here

the sequence s̄ is allowed to contain repetitions and we also allow the possibility that

the sequence contains the identity element.) Two marked groups (G, (s1, · · · , sm))

and (H, (t1, · · · , tn)) are said to be isomorphic if m = n and the map si 7→ ti

extends to a group isomorphism between G and H.

Definition 2.2. For each m ≥ 2, let FGm be the set of isomorphism types of

marked groups (G, (s1, · · · , sm)) with m distinguished generators.

Let Fm be the free group on the generators {x1, · · · , xm}. Then for each marked

group (G, (s1, · · · , sm)), we can define an associated epimorphism θG,s̄ : Fm → G

by θG,s̄(xi) = si. It is easily checked that two marked groups (G, (s1, · · · , sm))

and (H, (t1, · · · , tm)) are isomorphic if and only if ker θG,s̄ = ker θH,t̄. Thus we can

naturally identify FGm with the compact space Nm of normal subgroups of Fm;

and hence, via this identification, we can regard FGm as a compact space.

For each m ≥ 2, there is a natural embedding of Nm into Nm+1 defined by

N 7→ the normal closure of N ∪ {xm+1} in Fm+1.
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Thus we can identify Nm with the clopen subset {N ∈ Nm+1 | xm+1 ∈ N }

of Nm+1 and form the locally compact Polish space N =
⋃
Nm. Note that N

can be identified with the space of normal subgroups N of the free group F∞ on

countably many generators such that N contains all but finitely many elements of

the basis B = {xi | i ∈ N+}. Similarly, we can form the locally compact Polish

space FG =
⋃
FGm of finitely generated groups via the corresponding natural

embedding

(G, (s1, · · · , sm)) 7→ (G, (s1, · · · , sm, 1))

From now on, we will identify FGm and Nm with the corresponding clopen subsets

of FG and N . If Γ ∈ FG, then we will write Γ = (G, (s1, · · · , sm)), where m is the

least integer such that Γ ∈ Gm. Following the usual convention, we will completely

identify the Polish spaces FG and N ; and we will work with whichever space is

most convenient in any given context.

In the remaining sections of this paper, the symbol ∼= will always denote the

usual isomorphism relation on the space FG of finitely generated groups; i.e. two

marked groups are ∼=-equivalent if their underlying groups (obtained by forgetting

about the distinguished sequences of generators) are isomorphic. Clearly ∼= is a

countable Borel equivalence relation on FG. (This is one of the many advantages

of working with the space FG of marked finitely generated groups rather than with

the space FG ′ associated with the logic action.)

Finally, we should mention that we will often slightly abuse notation and denote

the elements of FG by G, H, etc. instead of the more accurate (G, c ), (H, d ), etc.

3. Full groups of Cantor minimal systems

In this section, we will discuss the basic strategy that will be employed in the

proof of Theorem 1.1. First it is necessary to say a few words on the structure of

the topological full groups of Cantor minimal systems. Let (X,T ) be a Cantor

dynamical system; i.e. X is a Cantor set and T : X → X is a homeomorphism.

Then (X,T ) is said to be a Cantor minimal system if X has no nonempty proper

closed T -invariant subsets.

Definition 3.1. If (X,T ) is a Cantor minimal system, then the topological full

group [[T ]] is the group of all homeomorphisms π : X → X such that there exists
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a partition X = C1 t · · · t Cm into clopen subsets and `1, · · · , `m ∈ Z such that

π � Ci = T `i � Ci for each 1 ≤ i ≤ m.

The Cantor minimal systems (X,T ) and (Y, S ) are said to be topologically

conjugate if there exists a homeomorphism π : X → Y such that π ◦ T = S ◦ π.

If (X,T ) is topologically conjugate to either (Y, S ) or (Y, S−1 ), then (X,T ) and

(Y, S ) are said to be flip conjugate. The following theorem combines the work of

Giordano-Putnam-Skau [8] and Bezuglyi-Medynets [1].

Theorem 3.2. If (X,T ), (Y, S ) are Cantor minimal systems, then the following

statements are equivalent.

(i) (X,T ), (Y, S ) are flip conjugate.

(ii) The topological full groups [[T ]], [[S ]] are isomorphic as abstract groups.

(iii) The commutator subgroups [[T ]]′, [[S ]]′ are isomorphic as abstract groups.

If n ≥ 2, then the shift transformation σ on the Cantor space nZ is defined by

σ(x)k = xk+1. An infinite subset X ⊆ nZ is said to be a subshift if X is a closed σ-

invariant subset. The subshift X is minimal if the corresponding Cantor dynamical

system (X,T ) is minimal, where T = σ � X. In this case, we also say that (X,T )

is a minimal subshift. The following result is due to Matui [15, Theorem 5.4].

Theorem 3.3. Let (X,T ) be a Cantor minimal system.

(a) The commutator subgroup [[T ]]′ is an infinite simple group.

(b) The commutator subgroup [[T ]]′ is finitely generated if and only if (X,T )

is topologically conjugate to a minimal subshift over a finite alphabet.

Remark 3.4. In the statements of his results in [15], Matui always refers to [[T ]]′0

rather than [[T ]]′. (The subgroup [[T ]]0 6 [[T ]] will be defined in Section 4.)

However, as Matui points out in the proof of [15, Corollary 5.5], the quotient group

[[T ]]/[[T ]]′0 is abelian and so it follows that [[T ]]′0 = [[T ]]′.

The proof of Theorem 1.1 is based upon the following two easy corollaries of

Theorems 3.2 and 3.3.

Corollary 3.5. If (X,T ) is a Cantor minimal system, then the automorphism

group Aut([[T ]]′) is complete.
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Proof. By a classical result of Burnside, if S is a nonabelian simple group, then

Aut(S) is complete. (For example, see Robinson [16, 13.5.10].) �

Corollary 3.6. If (X,T ), (Y, S ) are Cantor minimal systems, then the following

are equivalent.

(i) (X,T ), (Y, S ) are flip conjugate.

(iii) The automorphism subgroups Aut([[T ]]′), Aut([[S ]]′) are isomorphic as

abstract groups.

Proof. It is well-known that if S is a simple nonabelian group, then S is the unique

minimal nontrivial normal subgroup of Aut(S). (For example, once again, see

Robinson [16, 13.5.10].) Hence if π : Aut([[T ]]′)→ Aut([[S ]]′) is an isomorphism,

then π([[T ]]′) = [[S ]]′, and so the result follows from Theorem 3.2. �

Let M2 be the set of minimal subshifts X ⊆ 2Z. Then M2 is a Borel subset of

the standard Borel space K(2Z) of closed subspaces of 2Z and thusM2 is a standard

Borel space. By Clemens [3, Lemma 9], the topological conjugacy relation Etc is a

countable Borel equivalence relation onM2; and, of course, this implies that the flip

conjugacy relation Efp is also a countable Borel equivalence relation. Furthermore,

by Thomas [19, Section 4], the relations Etc and Efp are both nonsmooth. This

suggests that it should be possible to prove the nonsmoothness of the isomorphism

relation on the space FGcmp of finitely generated complete groups by a consideration

of the groups Aut([[TX ]]′) for suitably chosen X ∈ M2, where TX = σ � X. This

will indeed turn out to be the case. However, there is a complication; namely,

there exist examples of minimal subshifts X ∈ M2 such that the complete group

Aut([[TX ]]′) is not finitely generated. (For example, see Salo [17].)

4. The structure of Aut([[T ]]′)

Let (X,T ) be a Cantor minimal system. In this section, we will discuss the

structure of Aut([[T ]]′); and, in particular, we will present some criteria which are

sufficient to ensure that Aut([[T ]]′) is finitely generated.

Let H = Homeo(X) be the group of all homeomorphisms of the Cantor set X.

Then the following result is implicitly contained in Bezuglyi-Medynets [1].
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Theorem 4.1. If (X,T ) is a Cantor minimal system, then

Aut([[T ]]′) ∼= NH([[T ]]).

Proof. By Bezuglyi-Medynets [1, Theorem 5.8], if Γ is either [[T ]] or [[T ]]′ and

π ∈ Aut(Γ), then there exists h ∈ H such that π(g) = h g h−1 for all g ∈ Γ. Thus, in

both cases, we can identify Aut(Γ) with NH(Γ). Since [[T ]]′ is a characteristic sub-

group of [[T ]], it follows thatNH([[T ]]) 6 NH([[T ]]′). On the other hand, applying

Bezuglyi-Medynets [1, Lemma 5.12], it follows that NH([[T ]]′) 6 NH([[T ]]). �

Let C(X,Z) be the space of continuous maps f : X → Z and let µ be any T -

invariant probability measure on X. For each g ∈ [[T ]], let ng ∈ C(X,Z) be the

continuous map defined by g(x) = Tng (x) for each x ∈ X. Then the index map is

defined by

I(g) =

∫
ng dµ, g ∈ [[T ]].

By Giordano-Putnam-Skau [8, Section 5], the index map is a group homomorphism

I : [[T ]]→ Z. Furthermore, the index map I does not depend on the choice of the

T -invariant probability measure µ.

Definition 4.2. The kernel of the index map I is denoted by [[T ]]0.

Of course, we have that [[T ]]′ 6 [[T ]]0.

Definition 4.3. If (X,T ) is a Cantor minimal system, then:

• C(T ) = {h ∈ Homeo(X) | hTh−1 = T }.

• Cε(T ) = {h ∈ Homeo(X) | hTh−1 = T or hTh−1 = T−1 }.

The following result is due to Giordano-Putnam-Skau [8, Corollary 5.12].

Theorem 4.4. If (X,T ) is a Cantor minimal system, then

NH([[T ]]) ∼= [[T ]]0 o Cε(T ).

In particular, if [[T ]]0 and Cε(T ) are both finitely generated, then Aut([[T ]]′)

is also finitely generated.

Definition 4.5. If (X,T ) is a Cantor minimal system, then the corresponding

K0-group is defined to be

K0(X,T ) = C(X,Z)/BT ,
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where BT = { f − f ◦ T−1 | f ∈ C(X,Z) }.

The following result is also due to Matui [15, Theorem 4.8].

Theorem 4.6. If (X,T ) is a Cantor minimal system, then

[[T ]]0/[[T ]]′ ∼= K0(X,T )/2K0(X,T ).

In particular, if (X,T ) is topologically conjugate to a minimal subshift over a

finite alphabet and K0(X,T )/2K0(X,T ) is a finite group, then [[T ]]0 is finitely

generated.

5. The structure of K0(X,T )/2K0(X,T )

In this section, we will explain how to compute the group K0(X,T )/2K0(X,T );

and, in the case when K0(X,T )/2K0(X,T ) is a finite group, we will explain how

to find a finite subset S ⊆ [[T ]]0 such that [[T ]]′ ∪ S generates [[T ]]0. First it is

necessary to describe how to associate a Bratteli diagram with any Cantor minimal

system (X,T ).

Definition 5.1. A Bratteli diagram (V,E) consists of a set V (B) =
⊔
n∈N Vn of

vertices, where each Vn is a finite nonempty set, and a set E(B) =
⊔
n∈N+ Ei of

edges, where each En is a finite nonempty set, with the following properties:

(i) V0 = { v0 } consists of a single vertex.

(ii) There exist a source map s : E → V and a range map r : E → V such that

• r(En) ⊆ Vn and s(En) ⊆ Vn−1;

• s−1(v) 6= ∅ for all v ∈ V ;

• r(v) 6= ∅ for all v ∈ V r V0.

If s(e) = u and r(e) = v, then we say that the edge e connects the vertices u and v.

If Vn = {u1, · · · , uk } and Vn+1 = { v1, · · · , vm }, then we define the correspond-

ing nth incidence matrix to be the m × k matrix Mn = (mji ), where mji is the

number of edges connecting ui and vj . For each n ∈ N, let ZVn be the free group

on the set Vn. Then the abelian group K0(V,E) is the inductive limit of

ZV0
ϕ0→ ZV1

ϕ1→ ZV2
ϕ2→ · · · ϕn−1→ ZVn

ϕn→ ZVn+1
ϕn+1→ · · ·
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where the homomorphism ϕn is given by matrix multiplication by the nth incidence

matrix Mn. (In fact, K0(V,E) comes equipped with the richer structure of an

ordered group with a distinguished order unit. However, we will not make use of

this richer structure in this paper.)

From now on, let (X,T ) be a fixed Cantor minimal system. Then, following

Herman-Putnam-Skau [13], we can associate a corresponding Bratteli diagram as

follows.

Definition 5.2. If {Ai ∈| i ∈ I } are clopen subsets of X and {hi | i ∈ I } are

positive integers such that

P = {T `(Ai) | 0 ≤ ` < hi, i ∈ I }

is a partition of X, then P is called a Kakutani-Rokhlin partition. The clopen set

B(P) =
⊔
i∈I Ai is called the base of P and the clopen set H(P) =

⊔
i∈I T

hi−1(Ai)

is called the top of P.

Warning 5.3. Here we follow the conventions of Gjerde-Johansen [9], Grigorchuk-

Medynets [11] and Skau [18]. On the other hand, in Giordano-Putnam-Skau [7]

and Herman-Putnam-Skau [13], the roles of the bases and tops are reversed. For

this reason, depending on the conventions adopted by the authors, it is occasionally

necessary to slightly re-word the results in the literature.

Fix any point x0 ∈ X. Then, by Herman-Putnam-Skau [13, Theorem 4.2], there

exists a sequence P = (Pn )n≥0 of Kakutani-Rokhlin partitions

Pn = {T `(A(n)
i ) | 0 ≤ ` < hi, i ∈ In }

satisfying the following conditions:

(a) P0 = {A0
0 } = {X };

(b) Pn+1 strictly refines Pn for each n ≥ 1;

(c)
⋃
n≥0 Pn generates the topology of X;

(d)
⋂
n≥0B(Pn) = {x0 }.

In addition, after deleting finitely many partitions, P1, · · · ,Pr if necessary, we can

suppose that P = (Pn )n≥0 also satisfies the following condition:

(e) For all n ≥ 1 and i ∈ In, the integer hi ≥ 5.
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Given such a sequence P = (Pn )n≥0 of Kakutani-Rokhlin partitions, we can

define a corresponding Bratteli diagram (VP , EP ) with vertex set VP =
⊔
n≥0 Vn

such that:

• Vn = {A(n)
i | i ∈ In }.

• If A
(n)
i ∈ Vn and A

(n+1)
j ∈ Vn+1, then the number of edges from A

(n)
i to

A
(n+1)
j is equal to the number of elements A ∈ {T `(A(n+1)

j ) | 0 ≤ ` < hj }

such that A ⊆ A(n)
i .

The following result is due to Herman-Putnam-Skau [13, Theorem 5.4].

Theorem 5.4. With the above notation, K0(X,T ) ∼= K0(VP , EP).

In the remainder of this section, we will collect together some results which, in

the case when K0(X,T )/2K0(X,T ) is a finite group, will enable us to find a finite

subset S ⊆ [[T ]]0 such that [[T ]]′ ∪ S generates [[T ]]0. We will continue to work

with a fixed sequence P = (Pn )n≥0 of Kakutani-Rokhlin partitions as above.

Definition 5.5. Let n ≥ 1. Then an element g ∈ [[T ]] is an n-permutation if for

each i ∈ In and 0 ≤ ` < hi, there exists an integer ki` ∈ Z such that:

(a) g � T `(A(n)
i ) = T ki` � T `(A(n)

i );

(b) 0 ≤ ki` + ` < hi.

Remark 5.6. It follows that for each i ∈ In, there exists a permutation πi of

{ 0, 1, · · · , hi − 1 } such that ki` + ` = πi(`) and hence g(T `(A
(n)
i )) = Tπi(`)(A

(n)
i ).

Thus g permutes the atoms of the partition Pn. It also follows that
∑

0≤`<hi
ki` = 0

for each i ∈ In and this easily implies that g ∈ [[T ]]0.

For each n ≥ 1, let Gn be the group of n-permutations. Then Gn 6 [[T ]]0 and

it is easily seen that Gn 6 Gn+1. More precisely, for each n ≥ 1 and i ∈ In, let

∆i = {T `(A(n)
i ) | 0 ≤ ` < hi }.

Then Gn =
∏
i∈In Sym(∆i); and, letting Mn = (mji ) be the nth incidence matrix

of the Bratteli diagram (VP , EP ), the inclusion Gn 6 Gn+1 is the block diagonal

embedding
∏
i∈In Sym(∆i) ↪→

∏
j∈In+1

Sym(∆j) such that:

• for each j ∈ In+1 and Gn-orbit Σ ⊆ ∆j , there exists a unique i ∈ In such

that Sym(∆i) acts naturally on Σ and Sym(∆i′) acts trivially on Σ for each

i′ ∈ In r { i };
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• if i ∈ In and j ∈ In+1, then Sym(∆i) has mji natural orbits on ∆j .

Definition 5.7. GP =
⋃
n≥1Gn is the group of permutations associated with the

sequence P = (Pn )n≥0 of Kakutani-Rokhlin partitions.

Next, for each n ≥ 1, let Hn =
∏
i∈In Alt(∆i) E Gn. Since hi = |∆i| ≥ 5 for

all n ≥ 1 and i ∈ In, it follows that Hn = G′n and hence Gn/G
′
n
∼= ZIn2

∼= ZVn
2 .

(Here Z2 is the cyclic group of order 2.) Furthermore, the natural homomorphism

Gn/G
′
n → Gn+1/G

′
n+1 corresponds to the homomorphism

ZVn
2 = ZVn/2ZVn → ZVn+1/2ZVn+1 = ZVn+1

2

induced by the homomorphism ZVn
ϕn→ ZVn+1 , where ϕn is given by matrix multi-

plication by the nth incidence matrix Mn. Hence the quotient GP/G
′
P is equal to

the inductive limit

ZV1
2 → ZV2

2 → · · · → ZVn
2 → ZVn+1

2 → · · ·

and it follows that

(5.8) GP/G
′
P
∼= K0(VP , EP)/2K0(VP , EP) ∼= K0(X,T )/2K0(X,T );

and thus, applying Theorem 4.6, we obtain that GP/G
′
P
∼= [[T ]]0/[[T ]]′. In fact,

as we will next explain, the isomorphism between GP/G
′
P and [[T ]]0/[[T ]]′ is

completely canonical. Recall that GP 6 [[T ]]0 and that [[T ]]′ = [[T ]]′0.

Proposition 5.9. GP ∩ [[T ]]′ = G′P and the canonical induced injection

GP/G
′
P ↪→ [[T ]]0/[[T ]]′

is an isomorphism.

Proof sketch. Let Orb+(x0) = {T r(x0) | r ≥ 0 } be the forward orbit of x0 and let

[[T ]]x0
= { g ∈ [[T ]] | g( Orb+(x0) ) = Orb+(x0) }.

Then, by Grigorchuk-Medynets [11, Section 5], we have that GP = [[T ]]x0
. Let

sgn : [[T ]]x0
= GP → K0(X,T )/2K0(X,T )
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be the composition of the quotient map GP → GP/G
′
P and the isomorphism (5.8).

Then, by Matui [15, Section 4], the surjective homomorphism sgn extends to a

surjective homomorphism

sgn : [[T ]]0 → K0(X,T )/2K0(X,T )

such that ker sgn = [[T ]]′0 = [[T ]]′. The result follows. �

Let g 7→ ḡ be the quotient map GP → GP/G
′
P .

Corollary 5.10. If S ⊆ GP is a subset such that { s̄ | s ∈ S } generates GP/G
′
P ,

then [[T ]]′ ∪ S generates [[T ]]0.

6. The proof of Theorem 1.1

The basic idea of the proof of Theorem 1.1 is easily explained. Let Ec(2N) be the

set of eventually constant sequences z ∈ 2N and let Nec(2N) = 2N r Ec(2N). Also

let T = { 2m+1 − 1 | m ∈ N+ } and let

Thin(2N) = { z ∈ Nec(2N) | z(n) = 0 for all n ∈ Nr T }.

Then it is easily checked that E0 � Thin(2N) is Borel bireducible with E0 and hence

E0 � Thin(2N) is nonsmooth. Finally, recall thatM2 is the standard Borel space of

minimal subshifts of 2Z. Then Theorem 1.1 is a consequence of the following result.

Lemma 6.1. There exist Borel maps z
ϕ7→ Xz from Thin(2N) to M2 and z

ψ7→ Gz

from Thin(2N) to FG such that, letting Tz = σ � Xz, the following conditions are

satisfied:

(i) z
ϕ7→ Xz is an injective Borel homomorphism from E0 � Thin(2N) to the

topological conjugacy relation Etc on M2;

(ii) Gz ∼= Aut([[Tz ]]′) for each z ∈ Thin(2N).

Proof of Theorem 1.1. By Proposition 2.1, since E0 � Thin(2N) is nonsmooth, it is

enough to show that the map z
ψ7→ Gz is a weak Borel reduction from E0 � Thin(2N)

to the isomorphism relation on the space FGcmp of finitely generated complete

groups. To see this, first recall that by Corollary 3.5, if (X,T ) is any Cantor

minimal system, then Aut([[T ]]′) is a complete group. Hence, since Gz ∈ FG and

Gz ∼= Aut([[Tz ]]′), it follows that Gz ∈ FGcmp for each z ∈ Thin(2N).
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Next note that if y, z ∈ Thin(2N) and y E0 z, then the Cantor minimal systems

(Xy, Ty) and (Xz, Tz) are topologically conjugate; and hence, by Corollary 3.6,

Gy ∼= Aut([[Ty ]]′) ∼= Aut([[Tz ]]′) ∼= Gz.

Thus, the map z
ψ7→ Gz is a Borel homorphism from E0 � Thin(2N) to the isomor-

phism relation on FGcmp.

Finally, again by Corollary 3.6, if y, z ∈ Thin(2N) and Gy = Gz, then (Xy, Ty)

and (Xz, Tz) are flip conjugate. Using the facts that flip conjugacy is a countable

Borel equivalence relation on M2 and that the map z 7→ Xz is injective, it follows

that ψ is countable-to-one. Thus ψ is a weak Borel reduction from E0 � Thin(2N)

to the isomorphism relation on FGcmp �

The remainder of this section is devoted to the proof of Lemma 6.1. In fact,

we will show that the construction in Thomas [19], which associates a Toeplitz

flow Xz ∈ M2 to each z ∈ Thin(2N), satisfies our requirements. Throughout this

section, if Y ⊆ 2Z, then its closure will be denoted by Y .

Definition 6.2. An element x ∈ 2Z is said to be a Toeplitz sequence if for all a ∈ Z,

there exists b ∈ N+ such that x(a+ kb) = x(a) for all k ∈ Z.

It is well-known that if x is a nonperiodic Toeplitz sequence, then the Toeplitz

flow X = {σn(x) | n ∈ Z } is a minimal subshift of 2Z. (For the basic theory of

Toeplitz flows, see Downarowicz [5].) For each z ∈ 2N, let z̃ ∈ 2Z be the Toeplitz

sequence defined as follows.

• For each m ≥ 1, let Bm = [ 0, 2m − 1 ] and suppose inductively that we

have defined the value z̃(`) for all integers ` ∈ Bm r { am, bm }, where

0 ≤ am < bm ≤ 2m− 1. Let cm = am if m is odd and cm = bm if m is even.

Then for all k ∈ Z, we define

z̃(cm + k 2m) = z(m− 1).

For example, at the beginning of stage 3 of the construction, z̃ � B3 is given by

z(0) ∗ z(0) z(1) z(0) ∗ z(0) z(1)
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where the ∗ indicates that the value has not yet been defined. We then define

z̃(1 + 8k) = z(2) for all k ∈ Z and hence obtain that for all k ∈ Z,

z̃ � [ 8k, 8(k + 1) ) = z(0) z(2) z(0) z(1) z(0) ∗ z(0) z(1)

Remark 6.3. For later use, note that limm→∞min{ am, 2m − 1− bm } =∞.

It is easily checked that if z ∈ 2N, then z̃ is a periodic sequence if and only

z ∈ Ec(2N) is an eventually constant sequence. For each sequence z ∈ Nec(2N), let

Xz = {σn(z̃) | n ∈ Z } be the corresponding Toeplitz flow and let Tz = σ � Xz.

The following results were proved in Thomas [19, Section 4].

Proposition 6.4. If y, z ∈ Nec(2N) and y E0 z, then the Toeplitz flows (Xy, Ty )

and (Xz, Tz ) are topologically conjugate.

Proposition 6.5. The Borel map z 7→ Xz is injective on Thin(2N).

Combining these results, we see that the map z 7→ Xz is an injective Borel

homomorphism from E0 � Thin(2N) to the topological conjugacy relation Etc on

M2. (It is not clear whether the map z 7→ Xz is countable-to-one on the whole of

Nec(2N).)

Until further notice, we will fix some sequence z ∈ Nec(2N). We will begin

our analysis of the structure of Aut([[Tz ]]′) ∼= [[Tz ]]0 o Cε(Tz) by computing

Cε(Tz) = {h ∈ Homeo(Xz) | hTzh−1 = Tz or hTzh
−1 = T−1

z }.

Lemma 6.6. C(Tz) = {T `z | ` ∈ Z }.

Proof. Recall that at the end of stage m of the construction of z̃, we have that

z̃ � Bm = c̄ ∗ d̄ and z̃ � Bm+1 = c̄ ∗ d̄ c̄ ∗ d̄ for some finite binary sequences c̄, d̄. Then

during stage m+ 1, one of the ∗ in z̃ � Bm+1 is replaced by the value z(m). Hence

each of the subsequences (z̃ � Bm+1) � [ 0, 2m− 1 ] and (z̃ � Bm+1) � [ 2m, 2m+1− 1 ]

either remains unchanged as c̄ ∗ d̄ or else is completely filled in as c̄ z(m) d̄. Thus

z̃ satisfies condition (∗) of Bu latek-Kwiatkowski [2, Theorem 1] and so the result

follows by Bu latek-Kwiatkowski [2, Theorem 1]. (Toeplitz sequences satisfying

condition (∗) are sometimes called generalized Oxtoby sequences. For example, see

Downarowicz-Kwiatkowski-Lacroix [6].) �

Definition 6.7. Let τ : 2Z → 2Z be the flip map defined by (x`)
τ7→ (x−`).
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Clearly τστ−1 = σ−1 and so the following result implies that τTzτ
−1 = T−1

z .

Lemma 6.8. Xz is τ -invariant.

Proof. At the end of stage 3 of the construction, for all k ∈ Z,

z̃ � [ 8k, 8k + 7 ] = z(0) z(2) z(0) z(1) z(0) ∗ z(0) z(1),

and hence z̃ � [ 8k − 1, 8k + 11 ] is given by

z(1) z(0) z(2) z(0) z(1) z(0) ∗ z(0) z(1)z(0) z(2) z(0) z(1).

Furthermore, since z is not eventually constantly 1, for some k ∈ Z, we must at some

later stage replace the symbol ∗ by 0. Thus z̃ contains the following subsequence:

z(1) z(0) z(2) z(0) z(1) z(0) 0 z(0) z(1)z(0) z(2) z(0) z(1).

Continuing in this fashion, we see that s ∈ Xz, where s = ( s(`) ) ∈ 2Z is the

sequence such that s(0) = 0 and

s(2n + k2n+1) = s(−(2n + k2n+1) ) = z(n)

for each n, k ≥ 0. Clearly τ(s) = s. Hence, for each ` ∈ Z, we have that

σ`(s) = (τσ−`τ−1)(s) = (τσ−`)(s) ∈ τ(Xz),

and it follows that Xz = τ(Xz). �

Thus we obtain the following explicit pair of generators for Cε(Tz).

Lemma 6.9. Cε(Tz) = 〈Tz, τz 〉, where τz = τ � Xz.

Proof. We have already seen that 〈Tz, τz 〉 6 Cε(Tz). On the other hand, notice

that if S ∈ Cε(Tz) r C(Tz), then S Tz S
−1 = T−1

z = τzTzτ
−1
z and hence we have

that τ−1
z S ∈ C(Tz) = {T `z | ` ∈ Z }. �

Next we will compute K0(Xz, Tz)/2K
0(Xz, Tz). First we need to recall some of

the basic notions from the theory of Toeplitz flows.

Definition 6.10. Suppose that x ∈ 2Z is a Toeplitz sequence.

(i) For each a ∈ Z, the corresponding minimal period perx(a) is the least

integer b ≥ 1 such that x(a+ kb) = x(a) for all k ∈ Z.

(ii) The set of essential periods of x is { perx(a) | a ∈ Z }.
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The following result was proved in Thomas [19, Lemma 4.5]. For the sake of

completeness, we include the proof here.

Lemma 6.11. If z ∈ Nec(2N), then the set of essential periods of z̃ is given by

{ 2m | m ∈ N+ }

Proof. With the above notation, it is enough to show that each cm ∈ Bm has

minimal period 2m. This is clear when m = 1. So suppose that m > 1. Then at

the beginning of stage m of the construction, z̃ � Bm has the form ā ∗ b̄ ā ∗ b̄, where

ā ∗ b̄ has length 2m−1; and at the end of stage m, we know that z̃ has the form

· · · ā ∗ b̄ ā z(m− 1) b̄ ā ∗ b̄ ā z(m− 1) b̄ ā ∗ b̄ ā z(m− 1) b̄ · · ·

Clearly 2m is a period of cm. Also, since z is not eventually constant, we must

eventually replace some ∗ by a value z(`) 6= z(m− 1) and so 2m−1 is not a period

of cm. Thus cm has minimal period 2m. �

Definition 6.12. For each z ∈ Nec(2N), and m ∈ N+, let Wm(z̃) be the set of

subsequences of z̃ of the form z̃ � [ k 2m, (k + 1)2m ) for some k ∈ Z.

The following result was proved in Thomas [19, Lemma 4.7].

Lemma 6.13. If z ∈ Nec(2N), then |Wm(z̃)| = 2 for all m ∈ N+.

Proof. If at the end of stage m of the construction, z̃ � Bm has the form c̄ ∗ d̄, then

Wm(z̃) = { c̄ 0 d̄ , c̄ 1 d̄ }. �

We are now ready to begin our construction of a suitable sequence P = (Pn )n≥0

of Kakutani-Rokhlin partitions of Xz. First, for each m ∈ N+ and 0 ≤ k < 2m,

let Amk = {Tnz (z̃) | n ≡ k mod 2m }. Then, by Williams [21, Lemma 2.3], we have

that:

(i) {Amk | 0 ≤ k < 2m } is a partition of Xz into clopen subsets.

(ii) If m < n and k ≡ ` mod 2m, then Amk ) An` .

(iii) Tz(Amk ) = Amk+1 if k < 2m − 1 and Tz(Am2m−1) = Am0 .

In addition, the following condition is also satisfied:

(v)
⋂∞
m=1A

m
0 = { z̃ }.
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To see this, let m ≥ 1 and suppose that at the end of stage m of the construction,

z̃ � Bm has the form c̄ ∗ d̄. Then for each n ≡ 0 mod 2m, there exist in, jn ∈ { 0, 1 }

such that

Tnz (z̃) � [−2m, 2m − 1] = c̄ in d̄ c̄ jn d̄.

Let tm = min{ am, 2m − 1− bm }. Then for each n ≡ k mod 2m,

z̃ � [−tm, tm − 1] = Tnz (z̃) � [−tm, tm − 1].

By Remark 6.3, limm→∞ tm =∞ and hence (v) holds.

For each m ∈ N, we can now define a corresponding Kakutani-Rohlin partition

Pm of Xz as follows. First let P0 = {Xz } be the trivial Kakutani-Rohlin partition.

Also define W0(z̃) = { ∅ } and B0
∅ = Xz. Next suppose that m ∈ N+. For each

w ∈Wm(z̃), let

Bmw = {x ∈ Am0 | x � [0, 2m − 1] = w }.

Then {Bmw | w ∈ Wm(z̃) } is a partition of Am0 into 2 clopen subsets. It follows

that

Pm = {T kz (Bmw ) | w ∈Wm(z̃), 0 ≤ k < 2m }

is a Kakutani-Rohlin partition with base Am0 =
⊔
{Bmw | w ∈Wm(z̃) }. Using (iii),

it is easily checked that

Am0 = Am+1
0 t T 2m

(Am+1
0 );

and it follows that Pm+1 is a refinement of Pm. We have already shown that⋂∞
m=1A

m
0 = { z̃ }. Finally, we must check that

⋃
m≥0 Pm generates the topology;

i.e. we must show that if x ∈
⋂
m≥1 T

km
z (Bmwm

), then
⋂
m≥1 T

km
z (Bmwm

) = {x }.

(Here we adapt an argument from the proof of Gjerde-Johansen [9, Theorem 8].)

There are three cases to consider.

Case 1: Suppose that there exists an integer k ≥ 0 and an infinite subset M ⊆ N+

such that km = k for all m ∈M . Then⋂
m≥1

T kmz (Bmwm
) =

⋂
m∈M

T kmz (Bmwm
) ⊆ T kz (

⋂
m∈M

Am0 ) = {T kz (z̃) }.

Case 2: Next suppose that there exists an integer k ≥ 0 and an infinite subset

M ⊆ N+ such that 2m − km = k for all m ∈M . Then⋂
m≥1

T kmz (Bmwm
) =

⋂
m∈M

T 2m−k
z (Bmwm

) ⊆ T−kz (
⋂
m∈M

Am0 ) = {T−kz (z̃) }.
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Case 3: Finally suppose that limm→∞ km = limm→∞ 2m − km = ∞. Then,

since x ∈ T kmz (Bmwm
) uniquely determines x � [−km, 2m − km), it follows that⋂

m≥1 T
km
z (Bmwm

) = {x }.

As in Section 5, we can now define a corresponding Bratteli diagram (VP , EP )

with vertex set VP =
⊔
m≥0 Vm such that:

• Vm = {Bmw | w ∈Wm(z̃)}.

• If w ∈ Wm(z̃) and u ∈ Wm+1(z̃), then the number of edges from Bmw to

Bm+1
u is equal to the number of elements B ∈ {Bm+1

u , T 2m

z (Bm+1
u ) } such

that B ⊆ Bmw .

Lemma 6.14. If m > 0, then with respect to suitable orderings of the vertex sets

Vm and Vm+1, the corresponding incidence matrix is given by

Mm =

2 0

1 1


Proof. Suppose that at the end of stage m of the construction, z̃ � Bm has the form

c̄ ∗ d̄. Then Wm(z̃) = { c̄ 0 d̄ , c̄ 1 d̄ }; and, at the beginning of stage m+ 1, z̃ � Bm+1

has the form c̄ ∗ d̄ c̄ ∗ d̄. Suppose, for example, that m is even and that z(m) = 1.

Then at the end of stage m+ 1, z̃ � Bm+1 has the form c̄ 1d̄ c̄ ∗ d̄. Thus

Wm+1(z̃) = { c̄ 1d̄ c̄ 0d̄, c̄ 1d̄ c̄ 1d̄ }

and the result follows. The other cases are similar. �

Remark 6.15. It is not the case that there is a simultaneous ordering of all of the

vertex sets Vm with this property.

We now easily obtain the following result.

Lemma 6.16. K0(Xz, Tz)/2K
0(Xz, Tz) is cyclic of order 2.

Proof. Recall that K0(VP , EP) is the inductive limit of

ZV0
ϕ0→ ZV1

ϕ1→ ZV2
ϕ2→ · · · ϕm−1→ ZVm

ϕm→ ZVm+1
ϕm+1→ · · ·

where the homomorphism ϕn is given by matrix multiplication by the mth incidence

matrix Mm. Applying Lemma 6.14, it follows that for each m > 0,

[ϕm(ZVm) : ϕm(ZVm) ∩ 2ZVm+1 ] = 2.
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Together with Theorem 5.4, this implies that

K0(Xz, Tz)/2K
0(Xz, Tz) ∼= K0(VP , EP)/2K0(VP , EP) ∼= Z2.

�

In particular, since [[Tz ]]0/[[Tz ]]′ ∼= K0(Xz, Tz)/2K
0(Xz, Tz), it follows that if

Πz ∈ [[Tz ]] is any element such that Πz ∈ [[Tz ]]0 r [[Tz ]]′, then [[Tz ]]′ ∪ {Πz }

generates [[Tz ]]0. We will next describe how to find such an element Πz.

For each m ≥ 1 and w ∈ Wm(z̃), let ∆w = {T kz (Bmw ) | 0 ≤ k < 2m }. Let

GP =
⋃
m≥1Gm be the group of permutations associated with P = (Pn )n≥0,

where

Gm =
∏

w∈Wm(z̃)

Sym(∆w).

Let w = z(0) 0 ∈ W1(z̃). Then B1
w ∩ Tz(B1

z ) = ∅ and hence we can define a

1-permutation Πz ∈ Sym(∆w) 6 G1 by

Πz(x) =


Tz(x) if x ∈ B1

w;

T−1
z (x) if x ∈ Tz(B1

w);

x otherwise.

Lemma 6.17. Πz ∈ [[Tz ]]0 r [[Tz ]]′.

Proof. Since Πz ∈ GP 6 [[Tz ]]0, it is enough to show that Πz /∈ [[Tz ]]′. To see this,

note that Πz is an odd permutation when regarded as an element of Sym(∆w) 6 G1

and so Πz /∈ G′1. Applying Lemma 6.14, we inductively see that Πz /∈ G′m for each

m > 1 and so Πz /∈ G′P . Hence, by Proposition 5.9, we obtain that Πz /∈ [[Tz ]]′. �

Corollary 6.18. [[Tz ]]0 is generated by [[Tz ]]′ ∪ {Πz }.

Proof. Applying Theorem 4.6 and Lemma 6.16, we obtain that

[ [[Tz ]]0 : [[Tz ]]′ ] = [K0(Xz, Tz) : 2K0(Xz, Tz) ] = 2.

Since Πz ∈ [[Tz ]]0 r [[Tz ]]′, the result follows. �

We will next explicitly describe a finite generating set for [[Tz ]]′. (The following

generators were originally extracted from the proof of Matui [15, Theorem 5.4] by

Grigorchuk-Medynets in an early version of their paper [11].)
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Definition 6.19. Suppose that A ⊆ Xz is a clopen subset such that the sets A,

σ(A) and σ2(A) are pairwise disjoint. Then the homeomorphism γA ∈ [[Tz ]] is

defined by

γA(x) =


σ(x) if x ∈ A ∪ σ(A);

σ−2(x) if x ∈ σ2(A);

x otherwise.

By Matui [15, Section 5], each such homeomorphism γA is an element of [[Tz ]]′;

and, furthermore, [[Tz ]]′ is generated by a suitably chosen finite subset of these

homeomorphisms. In more detail, for each m ≥ 1, let Bm(Xz) be the set of all

m-blocks that occur in sequences x ∈ Xz; i.e. the words of the form

x � [k, k +m− 1] = xk xk+1 · · ·xk+m−1

for some x ∈ Xz and k ∈ Z. And for each w ∈ Bm(Xz) and k ∈ Z, let

Sk(w) = {x ∈ Xz | x � [k, k +m− 1] = w }.

Then there exists an integer mz ≥ 1 such that for each w ∈ Bmz
(Xz), k ∈ Z and

1 ≤ i ≤ 4,

σi(Sk(w) ) ∩ Sk(w) = Sk−i(w) ∩ Sk(w) = ∅.

(If not, then an easy compactness argument yields an element x ∈ Xz such that

σi(x) = x for some 1 ≤ i ≤ 4, which contradicts the fact that minimal subshifts

contain no periodic points.) Finally, the proof of Matui [15, Theorem 5.4] shows

that the following result holds.

Lemma 6.20. [[Tz ]]′ is generated by Dmz
= { γS0(w) | w ∈ Bmz+3(Xz) }.

Combining Lemma 6.9, Corollary 6.18 and Lemma 6.20, we obtain the following

explicit finite generating set for [[Tz ]]0 o Cε(Tz).

Proposition 6.21. [[Tz ]]0 o Cε(Tz) is generated by Dmz
∪ {Tz, τz,Πz }.

Combined with Proposition 6.5, the following result completes the proof of

Lemma 6.1.

Lemma 6.22. There exists a Borel map z 7→ Gz from Nec(2N) to FG such that

Gz ∼= Aut([[Tz ]]′).
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Proof. Let z ∈ Nec(2N). Then, in a Borel manner, we can choose an integer mz ≥ 1

such that Dmz
= { γS0(w) | w ∈ Bmz+3(Xz) } generates [[Tz ]]′, together with an

ordering ϕ1, · · · , ϕtz of the elements of Dmz
. Let z 7→ Nz ∈ Ntz+3 ⊆ N be the

Borel map defined by letting Nz be the normal subgroup of the free group Ftz+3

consisting of the words w(x1, · · · , xtz , xtz+1, xtz+2, xtz+3) such that

w(ϕ1, · · · , ϕtz , Tz, τz,Πz)(σ
n(z̃) ) = σn(z̃) for all n ∈ Z.

Since {σn(z̃) | n ∈ Z } is dense in Xz and each ϕi, Tz, τz,Πz is a homeomorphism

of Xz, it follows that

Ftz+3/Nz ∼= [[Tz ]]0 o Cε(Tz) ∼= Aut([[Tz ]]′).

Thus the Borel map z 7→ Ftz+3/Nz ∈ FG satisfies our requirements. �

This completes the proof of Theorem 1.1.
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