TOPOLOGICAL FULL GROUPS OF MINIMAL SUBSHIFTS AND
THE CLASSIFICATION PROBLEM FOR FINITELY GENERATED
COMPLETE GROUPS

SIMON THOMAS

ABSTRACT. Using results on the structure of the topological full groups of
minimal subshifts, we prove that the isomorphism relation on the space of

finitely generated complete groups is not smooth.

1. INTRODUCTION

If G is a group and g € G is any element, then the corresponding inner auto-
morphism iy € Aut(G) is defined by

ig(x):g:vgfl, z € G.

A group G is said to be complete if G is centerless and every automorphism of G

is inner. Let FG be the space of finitely generated groups and let
FGemp ={G € FG | G is complete }.

(Here FG denotes the Polish space of marked finitely generated groups, which was
introduced by Grigorchuk [10]; i.e. the elements of FG are the isomorphism types
of marked groups (G,¢), where G is a finitely generated group and ¢ is a finite
sequence of generators.) Then it is easily checked that FGcn, is a Borel subset
of 7G and hence FG.y,, is a standard Borel space. The main result of this paper
constitutes the first step in the project of analyzing the Borel complexity of the

isomorphism relation on FGcp,p.

Theorem 1.1. The isomorphism relation on the space FGcmyp of finitely generated

complete groups is not smooth.

The proof of Theorem 1.1 makes use of results on the structure of the topological

full groups of minimal subshifts. More precisely, if ( X, T") is a minimal subshift and
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[[T]] is the corresponding topological full group, then the commutator subgroup
[[T]) is an infinite finitely generated simple group and hence Aut([[T']]') is a (not
necessarily finitely generated) complete group. Furthermore, if (Y,.S) is another
minimal subshift, then Aut([[T']]") = Aut([[S]]’) if and only if (X,T) and (Y,S)
are flip conjugate. (A fuller discussion, including the relevant definitions, will be
presented in Section 3.) Hence, in order to prove Theorem 1.1, it is enough to find
a standard Borel space M of minimal subshifts such that the following conditions

are satisfied:

o Aut([[T])) is finitely generated for each (X,T) € M.

e The flip conjugacy relation on M is nonsmooth.

In [3], Clemens showed that the topological conjugacy relation for arbitrary sub-
shifts is a universal countable Borel equivalence relation. Unfortunately, it is cur-
rently not known whether or not the topological conjugacy relation for minimal
subshifts is strictly more complex than the Vitali equivalence relation Ey. However,
it seems reasonable to conjecture that the following strengthening of Theorem 1.1
should be true. (Of course, it would be far more interesting if Conjecture 1.2 turned

out to be false.)

Conjecture 1.2. The isomorphism relation on the space FG,, of finitely gener-

ated complete groups is countable universal.

This paper is organized as follows. In Section 2, we will recall some basic notions
and results from the theory of countable Borel equivalence relations, including the
definition of the space FG of (marked) finitely generated groups. In Section 3, we
will discuss the basic strategy that will be employed in the proof of Theorem 1.1 and
we will recall some results concerning the structure of the topological full groups
[[T]] of Cantor minimal systems. In Sections 4 and 5, we will discuss the structure
of Aut([[T']]’); and, in particular, we will present some criteria which are sufficient
to ensure that Aut([[7']]’) is finitely generated. Finally, in Section 6, we will present
the proof of Theorem 1.1.
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2. PRELIMINARIES

In this section, we will recall some basic notions and results from the theory of
countable Borel equivalence relations, and we will present a brief discussion of the

Polish space FG of marked finitely generated groups.

2.1. Countable Borel equivalence relations. In this subsection, we will recall
some basic notions and results from the theory of countable Borel equivalence rela-
tions. (A detailed development of the theory can be found in Dougherty-Jackson-
Kechris [4] and Jackson-Kechris-Louveau [14].)

If E, F are Borel equivalence relations on the standard Borel spaces X, Y, then

a Borel map f: X — Y is a homomorphism from E to F if for all z, y € X,
tEy = [f(@)F fy)

If f satisfies the stronger property that for all z, y € X,
zEy < [f(x)F[(y),

then f is said to be a Borel reduction and we write E <g F. If both E <p F and
F <p F, then E and F are said to be Borel bireducible and we write E ~g F.
Finally we write E <p F if both E <p F and F £5 E.

In this paper, we will only be concerned with countable Borel equivalence re-
lations; i.e. Borel equivalence relations E such that every F-equivalence class is
countable. With respect to Borel reducibility, the least complex countable Borel
equivalence relations are those which are smooth; i.e. those countable Borel equiv-
alence relations E on a standard Borel space X such that E is Borel reducible to
the identity relation Idy on some (equivalently every) uncountable standard Borel
space Y. Next in complexity come those countable Borel equivalence relations F
which are Borel bireducible with the Vitali equivalence relation Eg, which is defined

on the space 2V of infinite binary sequences by
zEyy <= z(n)=y(n) for all but finitely many n.

More precisely, by Harrington-Kechris-Louveau [12], if F is any (not necessarily
countable) Borel equivalence relation, then E is nonsmooth if and only if Ey <p E.
It turns out that there is also a most complex countable Borel equivalence relation

FE, which is universal in the sense that F' <p F., for every countable Borel
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equivalence relation F. (Clearly this universality property uniquely determines E,
up to Borel bireducibility.) Furthermore, E. is strictly more complex than Ej.
The universal countable Borel relation E., has a number of natural realizations in
many areas of mathematics, including algebra, topology and recursion theory. In
particular, by Thomas-Velickovic [20], the isomorphism relation = on the space FG
of finitely generated groups is a universal countable Borel equivalence relation.
Finally, recall that if E, F' are countable Borel equivalence relations on the
standard Borel spaces X, Y, then F is said to be weakly Borel reducible to F' if
there exists a countable-to-one Borel homomorphism f: X — Y from F to F. In
this case, we write £ <% F. In the proof of Theorem 1.1, we will make use of the

following observation. (For example, see Thomas [19, Proposition 2.1].)

Proposition 2.1. Suppose that E, F' are countable Borel equivalence relations and

that E <% F. If E is nonsmooth, then F is also nonsmooth.

2.2. The space of marked finitely generated groups. In this subsection, we
will present a brief discussion of the Polish space FG of (marked) finitely generated
groups, which is defined as follows. A marked group (G, 3) consists of a finitely gen-
erated group with a distinguished sequence 5§ = (s1, -+ , 8;,) of generators. (Here
the sequence § is allowed to contain repetitions and we also allow the possibility that
the sequence contains the identity element.) Two marked groups (G, (s1, - ,8m))
and (H,(t1, - ,t,)) are said to be isomorphic if m = n and the map s; — ¢;

extends to a group isomorphism between G and H.

Definition 2.2. For each m > 2, let FG,, be the set of isomorphism types of

marked groups (G, (s1,- -, $m)) with m distinguished generators.
Let F,,, be the free group on the generators {xy,- - , 2, }. Then for each marked
group (G, (s1, -+ ,Sm)), we can define an associated epimorphism 0g 5 : F,,, = G

by ¢ s(z;) = s;. It is easily checked that two marked groups (G, (s1,- - ,Sm))
and (H, (t1,--- ,tm)) are isomorphic if and only if ker ¢ s = ker 65 7. Thus we can
naturally identify FG,, with the compact space N, of normal subgroups of F,,;
and hence, via this identification, we can regard FG,, as a compact space.

For each m > 2, there is a natural embedding of NV,, into Nj,11 defined by

N — the normal closure of N U {41} in Fyppi1.
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Thus we can identify N, with the clopen subset {N € Njyi1 | Tmy1 € N}
of Mpny1 and form the locally compact Polish space N' = |JN,,. Note that A
can be identified with the space of normal subgroups N of the free group F,, on
countably many generators such that NV contains all but finitely many elements of
the basis B = {z; | i« € N*}. Similarly, we can form the locally compact Polish
space FG = |JFG,, of finitely generated groups via the corresponding natural
embedding

(G, (81, ,8m)) — (G, (81, ,8m, 1))

From now on, we will identify 7G,,, and N, with the corresponding clopen subsets
of FG and N. If T € FG, then we will write I' = (G, (s1,- - , Sm)), where m is the
least integer such that I € G,,,. Following the usual convention, we will completely
identify the Polish spaces FG and N; and we will work with whichever space is
most convenient in any given context.

In the remaining sections of this paper, the symbol & will always denote the
usual isomorphism relation on the space FG of finitely generated groups; i.e. two
marked groups are ~-equivalent if their underlying groups (obtained by forgetting
about the distinguished sequences of generators) are isomorphic. Clearly 2 is a
countable Borel equivalence relation on FG. (This is one of the many advantages
of working with the space FG of marked finitely generated groups rather than with
the space FG' associated with the logic action.)

Finally, we should mention that we will often slightly abuse notation and denote

the elements of G by G, H, etc. instead of the more accurate (G,¢), (H,d), etc.

3. FuLL GrROUPS OF CANTOR MINIMAL SYSTEMS

In this section, we will discuss the basic strategy that will be employed in the
proof of Theorem 1.1. First it is necessary to say a few words on the structure of
the topological full groups of Cantor minimal systems. Let (X,T) be a Cantor
dynamical system; i.e. X is a Cantor set and T : X — X is a homeomorphism.
Then (X, T) is said to be a Cantor minimal system if X has no nonempty proper

closed T-invariant subsets.

Definition 3.1. If (X,T) is a Cantor minimal system, then the topological full
group [[T']] is the group of all homeomorphisms 7 : X — X such that there exists
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a partition X = C; U --- U C,, into clopen subsets and ¢y, -- ,{,, € Z such that
7w | C; =T% | C; for each 1 < i < m.

The Cantor minimal systems (X,T) and (Y,S) are said to be topologically
conjugate if there exists a homeomorphism 7 : X — Y such that roT = S o .
If (X, T) is topologically conjugate to either (Y,S) or (Y,S~1), then (X, T) and
(Y,S) are said to be flip conjugate. The following theorem combines the work of
Giordano-Putnam-Skau [8] and Bezuglyi-Medynets [1].

Theorem 3.2. If (X,T), (Y,S) are Cantor minimal systems, then the following
statements are equivalent.

(i) (X,T), (Y,S5) are flip conjugate.

(ii) The topological full groups [[T]], [[ S]] are isomorphic as abstract groups.

(iii) The commutator subgroups [[T]), [[ S]]’ are isomorphic as abstract groups.

If n > 2, then the shift transformation ¢ on the Cantor space n” is defined by
o(x)r = Tr41. An infinite subset X C n” is said to be a subshift if X is a closed o-
invariant subset. The subshift X is minimal if the corresponding Cantor dynamical
system (X, 7T) is minimal, where T'= o [ X. In this case, we also say that (X, T")

is a minimal subshift. The following result is due to Matui [15, Theorem 5.4].

Theorem 3.3. Let (X,T) be a Cantor minimal system.

(a) The commutator subgroup [[T]] is an infinite simple group.
(b) The commutator subgroup [[T']]" is finitely generated if and only if (X, T)

1s topologically conjugate to a minimal subshift over a finite alphabet.

/

Remark 3.4. In the statements of his results in [15], Matui always refers to [[T']];
rather than [[T']). (The subgroup [[T']]o < [[T']] will be defined in Section 4.)
However, as Matui points out in the proof of [15, Corollary 5.5], the quotient group
[T/ T]]; is abelian and so it follows that [T]]; = [[T']].

The proof of Theorem 1.1 is based upon the following two easy corollaries of

Theorems 3.2 and 3.3.

Corollary 3.5. If (X,T) is a Cantor minimal system, then the automorphism
group Aut([[T']]’) is complete.
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Proof. By a classical result of Burnside, if S is a nonabelian simple group, then

Aut(S) is complete. (For example, see Robinson [16, 13.5.10].) O

Corollary 3.6. If (X,T), (Y,S) are Cantor minimal systems, then the following
are equivalent.
(i) (X,T), (Y,S8) are flip conjugate.
(iii) The automorphism subgroups Aut([[T]]"), Aut([[S]]) are isomorphic as

abstract groups.

Proof. 1t is well-known that if S is a simple nonabelian group, then S is the unique
minimal nontrivial normal subgroup of Aut(S). (For example, once again, see
Robinson [16, 13.5.10].) Hence if 7 : Aut([[T']]") — Aut([[S]]") is an isomorphism,
then 7([[T']]") = [[S]]’, and so the result follows from Theorem 3.2. O

Let Mo be the set of minimal subshifts X C 2%. Then M, is a Borel subset of
the standard Borel space K (2%) of closed subspaces of 2# and thus My is a standard
Borel space. By Clemens [3, Lemma 9], the topological conjugacy relation Ey. is a
countable Borel equivalence relation on Ms; and, of course, this implies that the flip
conjugacy relation E, is also a countable Borel equivalence relation. Furthermore,
by Thomas [19, Section 4], the relations E;. and Ej, are both nonsmooth. This
suggests that it should be possible to prove the nonsmoothness of the isomorphism
relation on the space F G, of finitely generated complete groups by a consideration
of the groups Aut([[Tx |]") for suitably chosen X € My, where Ty = o [ X. This
will indeed turn out to be the case. However, there is a complication; namely,
there exist examples of minimal subshifts X € My such that the complete group

Aut([[Tx ]]’) is not finitely generated. (For example, see Salo [17].)

4. THE STRUCTURE OF Aut([[T]]")

Let (X,T) be a Cantor minimal system. In this section, we will discuss the
structure of Aut([[T']]"); and, in particular, we will present some criteria which are
sufficient to ensure that Aut([[7']]") is finitely generated.

Let H = Homeo(X) be the group of all homeomorphisms of the Cantor set X.
Then the following result is implicitly contained in Bezuglyi-Medynets [1].
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Theorem 4.1. If (X,T) is a Cantor minimal system, then
Aut([[T])) = Nu([T]).

Proof. By Bezuglyi-Medynets [1, Theorem 5.8], if I' is either [[T']] or [[T']]" and
7 € Aut(T), then there exists h € H such that 7(g) = hgh~! for all g € T'. Thus, in
both cases, we can identify Aut(I") with Ny (T'). Since [[T']]’ is a characteristic sub-
group of [ T']], it follows that Ny ([[T']]) < Nu([[T']]’). On the other hand, applying
Bezuglyi-Medynets [1, Lemma 5.12], it follows that Ng([[T']]) < Ng([[T]]). O

Let C(X,Z) be the space of continuous maps f : X — Z and let u be any T-
invariant probability measure on X. For each g € [[T']], let n, € C(X,Z) be the
continuous map defined by g(z) = T™s(x) for each € X. Then the index map is
defined by

I<g>=/ngdu, ge[[T])

By Giordano-Putnam-Skau [8, Section 5], the index map is a group homomorphism
I:[[T]] = Z. Furthermore, the index map I does not depend on the choice of the

T-invariant probability measure u.
Definition 4.2. The kernel of the index map I is denoted by [[T']]o-
Of course, we have that [[T']]" < [[T']]o-

Definition 4.3. If ( X,T) is a Cantor minimal system, then:
e O(T) = {h € Homeo(X) | \Th™* =T}.
e C°(T) = {h € Homeo(X) | \Th™' =T or h,Th™* =T"'}.

The following result is due to Giordano-Putnam-Skau [8, Corollary 5.12].
Theorem 4.4. If (X,T) is a Cantor minimal system, then
Nu([T1) = [T]]o x C(T).

In particular, if [[T']]op and C*(T) are both finitely generated, then Aut([[T']]")

is also finitely generated.

Definition 4.5. If (X,7T) is a Cantor minimal system, then the corresponding

KPO-group is defined to be

K%X,T)=C(X,7)/Br,



TOPOLOGICAL FULL GROUPS AND FINITELY GENERATED COMPLETE GROUPS 9

where Br = {f — foT ' | fe O(X,Z)}.
The following result is also due to Matui [15, Theorem 4.8].

Theorem 4.6. If (X,T) is a Cantor minimal system, then
[T1o/([T)) = K°(X,T)/2K°(X,T).

In particular, if (X,T) is topologically conjugate to a minimal subshift over a
finite alphabet and K°(X,T)/2K°(X,T) is a finite group, then [[T]]o is finitely

generated.

5. THE STRUCTURE OF K°(X,T)/2K"(X,T)

In this section, we will explain how to compute the group K°(X,T)/2K°(X,T);
and, in the case when K°(X,T)/2K°(X,T) is a finite group, we will explain how
to find a finite subset S C [[T']]p such that [[T']] U S generates [T ]]o. First it is
necessary to describe how to associate a Bratteli diagram with any Cantor minimal

system (X, 7).

Definition 5.1. A Bratteli diagram (V, E) consists of a set V(B) = || .y Vn of

neN
vertices, where each V;, is a finite nonempty set, and a set E(B) = ||yt Ei of

edges, where each F, is a finite nonempty set, with the following properties:

(i) Vo = {wo} consists of a single vertex.

(ii) There exist a source map s : E — V and a range map r : E — V such that
e r(E,) CV,and s(E,) CV,_1;
e s (v) # () forall v e V;
o r(v) £ forallveV V.

If s(e) = w and r(e) = v, then we say that the edge e connects the vertices v and v.

IfV, ={uy, - ,ur}and V41 = {v1, -+ , 0 }, then we define the correspond-
ing nth incidence matriz to be the m x k matrix M, = (m;; ), where m;; is the
number of edges connecting u; and v;. For each n € N, let ZV» be the free group

on the set V,,. Then the abelian group K(V, E) is the inductive limit of

Pn—1 Pntl
ZVo B gVi B Ve £ P Ve & gVen P



10 SIMON THOMAS

where the homomorphism ¢, is given by matrix multiplication by the nth incidence
matrix M,. (In fact, Ko(V,E) comes equipped with the richer structure of an
ordered group with a distinguished order unit. However, we will not make use of
this richer structure in this paper.)

From now on, let (X,T) be a fixed Cantor minimal system. Then, following
Herman-Putnam-Skau [13], we can associate a corresponding Bratteli diagram as

follows.

Definition 5.2. If { A; €| ¢ € I} are clopen subsets of X and {h; | i € I} are

positive integers such that
P={TY(A)|0<l<hyicl}

is a partition of X, then P is called a Kakutani-Rokhlin partition. The clopen set
B(P) =|];c; Ai is called the base of P and the clopen set H(P) = | |;c; T" " (A:)
is called the top of P.

Warning 5.3. Here we follow the conventions of Gjerde-Johansen [9], Grigorchuk-
Medynets [11] and Skau [18]. On the other hand, in Giordano-Putnam-Skau [7]
and Herman-Putnam-Skau [13], the roles of the bases and tops are reversed. For
this reason, depending on the conventions adopted by the authors, it is occasionally

necessary to slightly re-word the results in the literature.

Fix any point g € X. Then, by Herman-Putnam-Skau [13, Theorem 4.2], there

exists a sequence P = (P, )n>0 of Kakutani-Rokhlin partitions
P ={TA™)j0<t<hicl,}

satisfying the following conditions:
(a) Po={A}={X}
(b) Pp41 strictly refines P, for each n > 1;
(c) Un>0 » generates the topology of X;
(@) Nuzo BPA) = {0}
In addition, after deleting finitely many partitions, Py, --- , P, if necessary, we can

suppose that P = (P, )n>0 also satisfies the following condition:

(e) For all n > 1 and ¢ € I,,, the integer h; > 5.
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Given such a sequence P = (P, )n>0 of Kakutani-Rokhlin partitions, we can
define a corresponding Bratteli diagram (Vp, Ep ) with vertex set Vp = |_|n20 Vi
such that:

oV, ={A" licI,}.

o If Agn) €V, and A§n+l) € V41, then the number of edges from AZ(-") to
A;nﬂ) is equal to the number of elements A € {T"(A?LH)) |0<{<hj}
such that A € A™.

The following result is due to Herman-Putnam-Skau [13, Theorem 5.4].
Theorem 5.4. With the above notation, K°(X,T) = Ko(Vp, Ep).

In the remainder of this section, we will collect together some results which, in
the case when K°(X,T)/2K°(X,T) is a finite group, will enable us to find a finite
subset S C [[T]]o such that [[T']) U S generates [T ]]o.- We will continue to work

with a fixed sequence P = (P, )n>0 of Kakutani-Rokhlin partitions as above.

Definition 5.5. Let n > 1. Then an element g € [[T']] is an n-permutation if for
each ¢ € I, and 0 < ¢ < h;, there exists an integer k;y € Z such that:

(a) g | THAM) = Thie | TLAM);

(b) 0 <kiy+L<h;.
Remark 5.6. It follows that for each ¢ € I,, there exists a permutation m; of
{0,1,--- ,h; — 1} such that ks + £ = m;(¢) and hence g(T*(A™)) = T (A™).
Thus g permutes the atoms of the partition P,,. It also follows that Zogkm kie=0
for each i € I,, and this easily implies that g € [T ]]o.

For each n > 1, let G,, be the group of n-permutations. Then G,, < [T ]]o and

it is easily seen that G,, < G,,+1. More precisely, for each n > 1 and ¢ € I, let
A ={TAM)|0< < h}

Then G,, =[]
of the Bratteli diagram (Vp, Ep), the inclusion G,, < G471 is the block diagonal
embedding [[;c; Sym(A;) < [[;¢;,,, Sym(A;) such that:

ier, Sym(A;); and, letting M,, = (my; ) be the nth incidence matrix

e for each j € I,,11 and G-orbit ¥ C Aj, there exists a unique ¢ € I,, such
that Sym(A;) acts naturally on ¥ and Sym(A;/) acts trivially on X for each
i'el,~{i};
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o if i € I, and j € I,,4+1, then Sym(A;) has m;; natural orbits on A;.

Definition 5.7. Gp = J,,~, G» is the group of permutations associated with the
sequence P = (P, )n>o of Kakutani-Rokhlin partitions.

Next, for each n > 1, let H, = [[;c; Alt(A;) < G,. Since h; = [A;] > 5 for
all n > 1 and i € I, it follows that H,, = G, and hence G, /G’ = Zi = 7.
(Here Zs is the cyclic group of order 2.) Furthermore, the natural homomorphism

Gn/G), — Gny1/G, .y corresponds to the homomorphism
Zyr =2V )22V — Vo[22V = 7y

induced by the homomorphism Z"» ¢ ZVa+1 | where ©n is given by matrix multi-
plication by the nth incidence matrix M,,. Hence the quotient Gp/G’% is equal to

the inductive limit
ZY = LY o LY o Z;/"“ —
and it follows that
(5.8) Gp/Gp = Ko(Vp, Ep)[2Ko(Vp, Ep) = K°(X,T)/2K°(X,T);

and thus, applying Theorem 4.6, we obtain that Gp/G% = [T |]o/[[T]]’. In fact,
as we will next explain, the isomorphism between Gp/G% and [[T']]o/[[T]]" is

completely canonical. Recall that Gp < [T ]]o and that [[T']] = [T ]]5-
Proposition 5.9. Gp N[[T']] = G} and the canonical induced injection
Gp/Gp = [T/ T
is an isomorphism.
Proof sketch. Let Orb™ (zo) = {T"(x0) | » > 0} be the forward orbit of ¢ and let
[T = {g € [[T]] | 9(Orb* (x0) ) = Orb* (zo) }.

Then, by Grigorchuk-Medynets [11, Section 5], we have that Gp = [[T']]+,. Let

0°

sgn : [T]]ze = Gp — K°(X,T)/2K°(X,T)



TOPOLOGICAL FULL GROUPS AND FINITELY GENERATED COMPLETE GROUPS 13

be the composition of the quotient map Gp — Gp/G% and the isomorphism (5.8).
Then, by Matui [15, Section 4], the surjective homomorphism sgn extends to a

surjective homomorphism
sgn: [T]o — K%X,T)/2K°(X,T)
such that kersgn = [[T']]; = [[T']). The result follows. O
Let g — g be the quotient map Gp — Gp/G.

Corollary 5.10. If S C Gp is a subset such that {5|s € S} generates Gp/G’p,
then [[T]) U S generates [T ]]o-

6. THE PROOF OF THEOREM 1.1

The basic idea of the proof of Theorem 1.1 is easily explained. Let Ec(2") be the
set of eventually constant sequences z € 2% and let Nec(2V) = 2V \ Ec(2V). Also

let T={2m* —1|m e NT} and let
Thin(2") = {2 € Nec(2V) | z2(n) =0 for all n € N\ T'}.

Then it is easily checked that Ey | Thin(2Y) is Borel bireducible with Fy and hence
Eo | Thin(2") is nonsmooth. Finally, recall that M is the standard Borel space of

minimal subshifts of 2%. Then Theorem 1.1 is a consequence of the following result.

Lemma 6.1. There exist Borel maps z BX, from Thin(2Y) to My and z A G,
from Thin(2V) to FG such that, letting T, = o | X., the following conditions are
satisfied:

(i) z & X, is an injective Borel homomorphism from Ey | Thin(2V) to the

topological conjugacy relation Ei. on Mo;

(i) G, = Aut([[T.])") for each z € Thin(2Y).

Proof of Theorem 1.1. By Proposition 2.1, since Ey | Thin(2Y) is nonsmooth, it is
enough to show that the map z A G, is a weak Borel reduction from Ey | Thin(2V)
to the isomorphism relation on the space FGcpm, of finitely generated complete
groups. To see this, first recall that by Corollary 3.5, if (X,T) is any Cantor
minimal system, then Aut([[7]]") is a complete group. Hence, since G, € FG and
G, 2 Aut([[T]]), it follows that G, € FGepm, for each z € Thin(2V).
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Next note that if y, 2 € Thin(2Y) and y Ej z, then the Cantor minimal systems
(Xy,Ty) and (X, T.) are topologically conjugate; and hence, by Corollary 3.6,

Gy = Aut([[T, ]]) = Aut([[T2]]') = G..

Thus, the map z A G is a Borel homorphism from Ey | Thin(2Y) to the isomor-
phism relation on FGcpp.

Finally, again by Corollary 3.6, if y, z € Thin(2V) and G, = G, then (X,,T,)
and (X,,T,) are flip conjugate. Using the facts that flip conjugacy is a countable
Borel equivalence relation on My and that the map z — X, is injective, it follows
that 1 is countable-to-one. Thus v is a weak Borel reduction from Ej | Thin(2V)

to the isomorphism relation on FG .y, [l

The remainder of this section is devoted to the proof of Lemma 6.1. In fact,
we will show that the construction in Thomas [19], which associates a Toeplitz
flow X, € My to each z € Thin(2V), satisfies our requirements. Throughout this

section, if Y C 2%, then its closure will be denoted by Y.

Definition 6.2. An element x € 2% is said to be a Toeplitz sequence if for all a € Z,

there exists b € NT such that z(a + kb) = z(a) for all k € Z.

It is well-known that if z is a nonperiodic Toeplitz sequence, then the Toeplitz
flow X = {o"(z) |n € Z} is a minimal subshift of 2%. (For the basic theory of
Toeplitz flows, see Downarowicz [5].) For each z € 2V, let Z € 2% be the Toeplitz

sequence defined as follows.

e For each m > 1, let B,, = [0,2"™ — 1] and suppose inductively that we
have defined the value Z(¢) for all integers ¢ € By, ~ {am,bn }, where
0<ay, <b, <2™—-1. Let ¢, = a,, if m is odd and ¢,, = b,, if m is even.

Then for all k& € Z, we define
Z(em +k2™) = z(m —1).
For example, at the beginning of stage 3 of the construction, z [ B3 is given by

2(0) * 2(0) 2(1) 2(0) = 2(0) 2(1)
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where the * indicates that the value has not yet been defined. We then define
Z(1 + 8k) = 2(2) for all k € Z and hence obtain that for all k € Z,

Z 18k, 8(k+1))=2(0)2(2)2(0) 2(1) 2(0) * 2(0) 2(1)
Remark 6.3. For later use, note that lim,, . min{ a,,,2™ — 1 — b, } = 0.

It is easily checked that if z € 2N, then Z is a periodic sequence if and only
z € Ec(2V) is an eventually constant sequence. For each sequence z € Nec(2V), let
X, = {0™(2) | n € Z} be the corresponding Toeplitz flow and let T, = o | X,.

The following results were proved in Thomas [19, Section 4].

Proposition 6.4. Ify, z € Nec(2Y) and y Ey 2, then the Toeplitz flows ( X,,T,)
and (X,,T,) are topologically conjugate.

Proposition 6.5. The Borel map z — X, is injective on Thin(2V).

Combining these results, we see that the map z — X, is an injective Borel
homomorphism from Ey | Thin(2Y) to the topological conjugacy relation Ej. on
M. (It is not clear whether the map z — X, is countable-to-one on the whole of
Nec(2M).)

Until further notice, we will fix some sequence z € Nec(2V). We will begin
our analysis of the structure of Aut([[7.]]) = [[T:]]o x C°(T:) by computing
C#(T.) = { h € Homeo(X,) | AT,h™' =T, or hT,h=* =T, ' }.

Lemma 6.6. C(T,)={T' | (€ Z}.

Proof. Recall that at the end of stage m of the construction of z, we have that
% By =¢éxdand 2 | By,41 = €*dé* d for some finite binary sequences ¢, d. Then
during stage m + 1, one of the x in Z [ B,,4+1 is replaced by the value z(m). Hence
each of the subsequences (Z | By,11) [ [0,2™ —1] and (2 | Byy1) | [27,2MF —1]
either remains unchanged as ¢ * d or else is completely filled in as ¢z(m)d. Thus
Z satisfies condition (x) of Bulatek-Kwiatkowski [2, Theorem 1] and so the result
follows by Bulatek-Kwiatkowski [2, Theorem 1]. (Toeplitz sequences satisfying

condition () are sometimes called generalized Oxtoby sequences. For example, see

Downarowicz-Kwiatkowski-Lacroix [6].) O

Definition 6.7. Let 7 : 22 — 2% be the flip map defined by () = (z_g).
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Clearly To77! = 67! and so the following result implies that 77,771 = T 1.

Lemma 6.8. X, is 7-invariant.

Proof. At the end of stage 3 of the construction, for all k € Z,
21 [8k, 8k + 7] = 2(0) 2(2) 2(0) 2(1) 2(0) * 2(0) 2(1),
and hence Z | [8k — 1,8k + 11] is given by
2(1) 2(0) 2(2) 2(0) 2(1) 2(0) * 2(0) 2(1)2(0) 2(2) 2(0) z(1).

Furthermore, since z is not eventually constantly 1, for some k € Z, we must at some

later stage replace the symbol % by 0. Thus Z contains the following subsequence:
2(1) 2(0) 2(2) 2(0) z(1) 2(0) 0 2(0) 2(1)2(0) 2(2) 2(0) 2(1).

Continuing in this fashion, we see that s € X,, where s = (s(¢)) € 2% is the

sequence such that s(0) = 0 and
s(2" 4+ k2" = s(— (2" + k2"T1)) = z(n)
for each n, k > 0. Clearly 7(s) = s. Hence, for each ¢ € Z, we have that
0'(s) = (ro~ 171 (s) = (107")(s) € T(X.),
and it follows that X, = 7(X,). O

Thus we obtain the following explicit pair of generators for C¢(T,).
Lemma 6.9. C°(T,) = (T,,7,), where T, =7 | X,.

Proof. We have already seen that (7T,,7,) < C°(T,). On the other hand, notice
that if S € C°(T,) ~ C(T,), then ST, S™! = T, 1 = 7,T,7 ! and hence we have
that 7715 € O(T,) = {T' | L€ Z}. O

Next we will compute K°(X,,T,)/2K°(X,,T.). First we need to recall some of

the basic notions from the theory of Toeplitz flows.

Definition 6.10. Suppose that = € 2% is a Toeplitz sequence.

(i) For each a € Z, the corresponding minimal period per,(a) is the least
integer b > 1 such that x(a + kb) = x(a) for all k € Z.

(ii) The set of essential periods of x is { per(a) | a € Z}.
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The following result was proved in Thomas [19, Lemma 4.5]. For the sake of

completeness, we include the proof here.

Lemma 6.11. If z € Nec(2Y), then the set of essential periods of Z is given by
{2™|meNT}

Proof. With the above notation, it is enough to show that each ¢,, € B,, has
minimal period 2™. This is clear when m = 1. So suppose that m > 1. Then at
the beginning of stage m of the construction, Z | B,, has the form @ *ba * b, where

@ * b has length 2~ 1; and at the end of stage m, we know that Z has the form
v axbazim—1)ba x baz(m—1)ba * bazim—1)b ---

Clearly 2™ is a period of ¢,,. Also, since z is not eventually constant, we must

2m—1

eventually replace some * by a value 2(¢) # z(m — 1) and so is not a period

of ¢,,. Thus ¢,;, has minimal period 2™. O

Definition 6.12. For each 2z € Nec(2"), and m € NT, let W,,(Z) be the set of
subsequences of Z of the form Z [ [k 2™, (k4 1)2™ ) for some k € Z.

The following result was proved in Thomas [19, Lemma 4.7].
Lemma 6.13. If z € Nec(2Y), then |W,,(2)| = 2 for all m € N*.

Proof. If at the end of stage m of the construction, 2 | B,, has the form ¢ d, then

Wn(2) ={e0d,c1d}. O

We are now ready to begin our construction of a suitable sequence P = ( Py, )n>0
of Kakutani-Rokhlin partitions of X,. First, for each m € Nt and 0 < k < 2™,
let A7 ={T7(2) |n=%k mod 2™ }. Then, by Williams [21, Lemma 2.3], we have
that:

(i) {A7* |0 <k < 2™} is a partition of X, into clopen subsets.
(ii) If m < n and k = ¢ mod 2™, then A" D A7,
(i) T, (A7) = A7 if k < 2™ — 1 and T2 (A7, ;) = A7

In addition, the following condition is also satisfied:

(V) Mm=r AT = {2}
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To see this, let m > 1 and suppose that at the end of stage m of the construction,
Z | B, has the form ¢ *d. Then for each n =0 mod 2™, there exist 4,,, j,, € {0,1}
such that

T(Z) | [-2™,2™ — 1] = i, dEjnd.
Let t,, = min{ a,, 2™ — 1 — b, }. Then for each n =k mod 2™,

2 [t — 1] = T™(Z) | [~tms tm — 1]

By Remark 6.3, lim;, 0 t,, = 00 and hence (v) holds.

For each m € N, we can now define a corresponding Kakutani-Rohlin partition
P of X, as follows. First let Py = { X, } be the trivial Kakutani-Rohlin partition.
Also define Wy(2) = {0} and B} = X,. Next suppose that m € N*. For each
w € Wi (2), let

Bl'={ze€ A7 |z [[0,2" —1] =w}.
Then { B | w € W,,(Z) } is a partition of A7* into 2 clopen subsets. It follows
that
P = {TFB?) | w € W,(3),0 < k< 2™}
is a Kakutani-Rohlin partition with base A" = | { B™ | w € W,,(2) }. Using (iii),

it is easily checked that

AT = AT T (A7,

and it follows that Pp,41 is a refinement of P,,. We have already shown that
Noo_; Ar = {Z}. Finally, we must check that Um>0 m generates the topology;
i.e. we must show that if z € ﬂm21Tka(BZ’m), then (>, Thn(Bm ) = {=z}.
(Here we adapt an argument from the proof of Gjerde-Johansen [9, Theorem 8].)
There are three cases to consider.
Case 1: Suppose that there exists an integer k¥ > 0 and an infinite subset M C NT
such that k,,, = k for all m € M. Then

N 7o (B ) = () The(Bm) CTH () A7) ={T5E) )

m>1 meM meM
Case 2: Next suppose that there exists an integer & > 0 and an infinite subset
M C Nt such that 2™ — k,,, = k for all m € M. Then

B = () 72" "By, ST () A7) ={T-"(3) }-

m>1 meM meM
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Case 3: Finally suppose that lim,, o ky, = limg,—o0 2™ — kyy = oo, Then,

since x € TF= (B ) uniquely determines = | [—kp,2™ — ky,), it follows that

s T (B ) = { )
As in Section 5, we can now define a corresponding Bratteli diagram (Vp, Ep )
with vertex set Vp = |_|mZO V,n such that:
o V., ={BI'l weW,(2)}
o If we W, (%) and u € Wy,,11(Z), then the number of edges from B[’ to
B! is equal to the number of elements B € { B!, 72" (B™+1) } such

that B C B™.

Lemma 6.14. If m > 0, then with respect to suitable orderings of the vertexr sets

Vi and V41, the corresponding incidence matrix is given by

Proof. Suppose that at the end of stage m of the construction, z | B,, has the form
¢ xd. Then W,,(2) = {¢0d,c1d}; and, at the beginning of stage m +1, Z [ By, 11
has the form ¢ * dé * d. Suppose, for example, that m is even and that z(m) = 1.

Then at the end of stage m + 1, Z | B,,,41 has the form ¢1d¢é * d. Thus
Wi1(2) ={clde0d,eldc1d}
and the result follows. The other cases are similar. O

Remark 6.15. It is not the case that there is a simultaneous ordering of all of the

vertex sets V,,, with this property.
We now easily obtain the following result.
Lemma 6.16. K°(X,,T.)/2K°(X.,T.) is cyclic of order 2.
Proof. Recall that Ko(Vp, Ep) is the inductive limit of
ZVo B gVi & gV B Prngt gVm Py gVmen Pt

where the homomorphism ¢,, is given by matrix multiplication by the mth incidence

matrix M,,. Applying Lemma 6.14, it follows that for each m > 0,

([om(Z7) ¢ o (Z¥m) N 2ZYr1 ] = 2.
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Together with Theorem 5.4, this implies that
K%(X.,T.))2K°(X.,T.) = Ko(Vp, Ep)/2Ko(Vp, Bp) = Zs.
O

In particular, since [T, ]]o/[[T:])] = K°(X.,T.)/2K°(X.,T,), it follows that if
I, € [[T.]] is any element such that II, € [[T:]]o ~ [[Z:]], then [[T:]] U{IL, }
generates [[T% ]]o. We will next describe how to find such an element II,.

For each m > 1 and w € W, (%), let A, = {TF(B™") | 0 < k < 2™}, Let
Gp = U,n>1 Gm be the group of permutations associated with P = (Pn )n>0,

where

Gm= J] Sym(Au,).

wEW,, (2)
Let w = 2(0)0 € Wy(2). Then B NT.(Bl) = 0 and hence we can define a
1-permutation II, € Sym(A,) < G; by

T. () if x € BL;

w?

IL(r) = T () ifz e T.(BL);

z

T otherwise.

Lemma 6.17. 11, € [T ]]o ~ [[T:]] -

Proof. Since IT, € Gp < [[T% ]]o, it is enough to show that II, ¢ [[T.]]’. To see this,
note that IT, is an odd permutation when regarded as an element of Sym(A,,) < Gy
and so II, ¢ G|. Applying Lemma 6.14, we inductively see that IT, ¢ G’ for each
m > 1and so I, ¢ G. Hence, by Proposition 5.9, we obtain that II, ¢ [[7.]]. O

Corollary 6.18. [[T,]]o is generated by [T, ]]' U {1l }.
Proof. Applying Theorem 4.6 and Lemma 6.16, we obtain that
([Tl : ([ T2])'] = [K°(X:, T2) - 2K°(X,, T2) ] = 2.
Since I, € [[T% ]]o ~ [[T:]]’, the result follows. O

We will next explicitly describe a finite generating set for [[ 7 ]]’. (The following
generators were originally extracted from the proof of Matui [15, Theorem 5.4] by

Grigorchuk-Medynets in an early version of their paper [11].)
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Definition 6.19. Suppose that A C X, is a clopen subset such that the sets A,
o(A) and 0?(A) are pairwise disjoint. Then the homeomorphism v4 € [[T]] is
defined by

o(z) ifxe AUo(A);

ya(®) = Qo 2(z) if z € o2(A);
x otherwise.

By Matui [15, Section 5], each such homeomorphism 4 is an element of [T} ]]’;
and, furthermore, [[T]]’ is generated by a suitably chosen finite subset of these
homeomorphisms. In more detail, for each m > 1, let B,,(X,) be the set of all

m-blocks that occur in sequences r € X,; i.e. the words of the form
x [ [kk+m—1] =2 xps1 Thtm—1
for some z € X, and k € Z. And for each w € B,,(X,) and k € Z, let
Sp(w)y={ze X, |z|kk+m—-1=w}

Then there exists an integer m, > 1 such that for each w € B,,_(X.), k € Z and
1<i<A4,

o' (Sk(w)) N Sk(w) = Sp—i(w) N Sg(w) = 0.
(If not, then an easy compactness argument yields an element 2 € X, such that
Ji(x) = ¢ for some 1 < ¢ < 4, which contradicts the fact that minimal subshifts

contain no periodic points.) Finally, the proof of Matui [15, Theorem 5.4] shows

that the following result holds.
Lemma 6.20. [[1.]]" is generated by Dy = { Vso(w) | W € B, +3(X2) }.

Combining Lemma 6.9, Corollary 6.18 and Lemma 6.20, we obtain the following
explicit finite generating set for [T} |]o @ C=(T%).

Proposition 6.21. [T, ]]o x C¢(T}) is generated by Dy, U{T,,1,,1I, }.

Combined with Proposition 6.5, the following result completes the proof of

Lemma 6.1.

Lemma 6.22. There exists a Borel map z — G from Nec(2Y) to FG such that

G, = Aut([[T.]]).
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Proof. Let z € Nec(2Y). Then, in a Borel manner, we can choose an integer m, > 1
such that Dy, = {7Vsyw) | W € Bm_+3(X:) } generates [[T.]]’, together with an
ordering ¢1,--- , ;. of the elements of D,,.. Let z — N, € N;_13 C N be the
Borel map defined by letting IV, be the normal subgroup of the free group F;, 13

consisting of the words w(z1,- -+, Tt , Tt 41, Tt +2, 1, +3) such that
w(@h T 7<ptz7TZ7T27HZ)(O'n(2)) = O.n(g) for all n € Z.

Since {0™(Z) | n € Z} is dense in X, and each ¢;, T, 7,,II, is a homeomorphism

of X, it follows that
Fy43/N. = [[T: ]Jo x C°(T.) = Aut([[T.]]).
Thus the Borel map z — F:_13/N, € FG satisfies our requirements. [l

This completes the proof of Theorem 1.1.
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