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Abstract. There does not exist an isomorphism-invariant Borel version of

the Higman-Neumann-Neumann Embedding Theorem.

1. Introduction

The Higman-Neumann-Neumann Embedding Theorem [3] states that any count-

able group G can be embedded into a 2-generator group K. In the standard proof

of this classical theorem, the construction of the group K involves an enumeration

of a set {gn | n ∈ N} of generators of the group G; and it is clear that the isomor-

phism type of K usually depends upon both the generating set and the particular

enumeration that is used. Consequently, it is natural to ask whether there is a

more uniform construction with the property that the isomorphism type of K only

depends upon the isomorphism type of G. The main result of this paper implies

that no such construction exists.

Before we can give an exact statement of our main result, we first need to recall

how to represent the class of countably infinite groups by the elements of a standard

Borel space; i.e., a Polish space equipped with its associated σ-algebra of Borel

subsets. Let G be the set of countably infinite groups G with underlying set N;

and let 2N3
be the Polish space of all 3-ary functions f : N3 → {0, 1} with the

natural product topology. Then, identifying each group G ∈ G with the graph of

its multiplication operation mG ∈ 2N3
, it is easily checked that G is a Borel subset

of 2N3
. It follows that G is a standard Borel space; and since

Gfg = {G ∈ G | G is finitely generated }

is a Borel subset of G, it follows that Gfg is also a standard Borel space. (For more

details, see Hjorth-Kechris [5] or Thomas-Velickovic [9].)
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Theorem 1.1. There does not exist a Borel function ϕ : G → Gfg such that for all

G, H ∈ G,

(a) G embeds into ϕ(G); and

(b) if G ∼= H, then ϕ(G) ∼= ϕ(H).

Here a function ψ : X → Y between standard Borel spaces X, Y is said to be

Borel iff graph(ψ) is a Borel subset of X × Y . Equivalently, ψ : X → Y is a Borel

function iff ψ−1(B) is a Borel subset of X for every Borel subset B of Y .

Remark 1.2. The proof of Theorem 1.1 relies upon the fact that the isomorphism

relation on the space G of arbitrary countable groups is much more complicated

than that on the space Gfg of finitely generated groups. Hence, letting G2 be the

standard Borel space of 2-generator groups, it is natural to ask whether there exists

a Borel map ψ : Gfg → G2 such that:

• G embeds into ψ(G); and

• if G ∼= H, then ψ(G) ∼= ψ(H).

Perhaps surprisingly, such a map does indeed exist. More specifically, Friedman [1]

has constructed such a map into the space of 4-generator groups; and, making use

of the techniques of Galvin [2], it is easy to modify Friedman’s map so that it takes

values in G2.

Acknowledgements: I would like to thank Vladimir Kanovei for very helpful

discussions concerning the material in this paper.

2. Borel equivalence relations

In this section, we shall present the proof of Theorem 1.1, modulo a key lemma

which will be proved in Section 3. But first we need to recall some of the basic

notions from the theory of Borel equivalence relations.

Let X be a standard Borel space. Then an equivalence relation E on X is said

to be Borel iff E is a Borel subset of X2. More generally, E is said to be analytic

iff E is an analytic subset of X2. For example, the isomorphism relation on the

space Gfg of finitely generated groups is a Borel equivalence relation, while the

isomorphism relation on the space G of countable groups is analytic but not Borel.

Suppose that E, F are analytic equivalence relations on the standard Borel spaces
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X, Y respectively. Then a Borel map ψ : X → Y is said to be a homomorphism

from E to F iff xE y implies ψ(x)F ψ(y) for all x, y ∈ X. If ψ satisfies the stronger

condition that x E y iff ψ(x) F ψ(y) for all x, y ∈ X, then ψ is said to be a Borel

reduction and we write E ≤B F .

The following Borel equivalence relation will play a central role in the proof of

Theorem 1.1.

Definition 2.1. Let I(N, 2N) be the standard Borel space of all injective maps

z : N → 2N. Then Ecntble is the Borel equivalence relation on I(N, 2N) defined by

z Ecntble z
′ iff {z(n) | n ∈ N} = {z′(n) | n ∈ N}.

The following key lemma will be proved in Section 3.

Lemma 2.2. Suppose that θ : I(N, 2N) → Gfg is a Borel homomorphism from

Ecntble to the isomorphism relation ∼=. Then there exists a group G ∈ Gfg such that

for all x ∈ 2N, there exists z ∈ I(N, 2N) such that x ∈ {z(n) | n ∈ N} and θ(z) ∼= G.

The following lemma is implicitly contained in the classical paper [8] of B.H.

Neumann.

Lemma 2.3. There exists a Borel family {Hx | x ∈ 2N} ⊆ G of pairwise noniso-

morphic infinite 2-generator groups.

Proof. For each strictly increasing sequence d = 〈dn | n ∈ ω〉 of odd integers with

d0 ≥ 5, let Xn
d = {xn

1 , x
n
2 , · · · , xn

dn
} and let Γd be the subgroup of

∏
n∈ω Alt(Xn

d )

generated by the two permutations

αd =
∏
n∈ω

(xn
1 xn

2 xn
3 · · · xn

dn
)

βd =
∏
n∈ω

(xn
1 xn

2 xn
3 ).

Then by B.H. Neumann [8], the groups Γd are infinite and pairwise nonisomorphic.

The result follows easily. �

We are now ready to present the proof of Theorem 1.1. Suppose that ϕ : G → Gfg

is a Borel map such that for all G, H ∈ G,

(a) G embeds into ϕ(G); and
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(b) if G ∼= H, then ϕ(G) ∼= ϕ(H).

Let {Hx | x ∈ 2N} ⊆ G be the Borel family of pairwise nonisomorphic 2-generator

groups given by Lemma 2.3 and let ψ : I(N, 2N) → G be the Borel map defined by

ψ(z) = Hz(0) ×Hz(1) × · · · ×Hz(n) × · · ·

i.e. ψ(z) is the restricted direct product of the sequence 〈Hz(n) | n ∈ N〉. Clearly

if z Ecntble z
′, then ψ(z) ∼= ψ(z′). It follows that the map θ = ϕ ◦ ψ is a Borel

homomorphism from Ecntble to the isomorphism relation ∼= on Gfg. By Lemma 2.2,

there exists a group G ∈ Gfg such that for all x ∈ 2N, there exists z ∈ I(N, 2N)

such that x ∈ {z(n) | n ∈ N} and θ(z) ∼= G. But this means that Hx embeds into

G for every x ∈ 2N, which is impossible since G has only countably many finitely

generated subgroups. This completes the proof of Theorem 1.1, modulo the proof

of Lemma 2.2.

3. Pinned equivalence relations

As we shall see, Lemma 2.2 is an easy consequence of the basic theory of pinned

equivalence relations. Throughout this section, we shall work within a fixed base

universe V of set theory and consider extensions of analytic equivalence relations in

various generic extensions V P. Suppose that E is an analytic equivalence relation

on the Polish space X. If V P is a generic extension, then XV P
and EV P

will

denote the sets obtained by applying the definitions of X, E within V P. By the

Shoenfield Absoluteness Theorem [6, Theorem 25.20], it follows that XV P ∩V = X,

EV P ∩ V = E and that EV P
is an analytic equivalence relation on XV P

.

The following notion of a pinned equivalence relation was abstracted by Kanovei-

Reeken [7] from an argument in Hjorth [4, Section 5].

Definition 3.1 (Kanovei-Reeken [7]). Working in the base universe V , suppose

that E is an analytic equivalence relation on the Polish space X. If P is a notion

of forcing, then a virtual E-class is a P-name τ such that:

(i) 
P τ ∈ XV P
; and

(ii) 
P×P τ left E
V P×P

τright.

Here τ left and τright are the (P × P)-names such that if G ×H is (P × P)-generic,

then τ left[G×H] = τ [G] and τright[G×H] = τ [H].
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The analytic equivalence relation E on the Polish space X is said to be pinned

iff for every forcing notion P and every virtual E-class τ , there exists an element

x ∈ X such that 
P x E
V P

τ .

Example 3.2. By Hjorth [4, Section 5], if E is a countable Borel equivalence

relation, then E is pinned. (Recall that a Borel equivalence relation E is said to be

countable iff every E-equivalence class is countable.)

It is well-known that the isomorphism relation ∼= on the space Gfg of finitely

generated groups is essentially countable; i.e. there exists a countable Borel equiv-

alence relation E such that ∼=≤B E. (For example, see Hjorth-Kechris [5].) By

Kanovei-Reeken [7, Lemma 20], it follows that ∼= is also pinned. Hence Lemma 2.2

is an immediate consequence of the following result. (It should be stressed that

Theorem 3.3 is implicitly contained within the proofs of both Hjorth [4, Section 5]

and Kanovei-Reeken [7, Section 4].)

Theorem 3.3. Suppose that F is a pinned analytic equivalence relation on the

standard Borel space Y and that θ : I(N, 2N) → Y is a Borel homomorphism from

Ecntble to F . Then there exists an element y ∈ Y such that for all x ∈ 2N, there

exists z ∈ I(N, 2N) such that x ∈ {z(n) | n ∈ N} and θ(z) F y.

Proof. Working in the base universe V , suppose that θ : I(N, 2N) → Y is a Borel

homomorphism from Ecntble to F . Let P be the notion of forcing consisting of all

finite injective partial functions p : N → 2N. Then if G is P-generic, it follows that

g =
⋃
G is a bijection between N and 2N∩V . Thus if τ is the canonical P-name such

that τ [G] = g, then τ is a virtual Ecntble-class. By the Shoenfield Absoluteness

Theorem, θV P×P
is a Borel homomorphism from EV P×P

cntble to FV P×P
. Hence, letting σ

be a P-name for θV P
(τ ), it follows that σ is a virtual F -class. Since F is pinned,

there exists an element y ∈ Y such that 
P y FV P
σ. In particular, for each

x ∈ 2N ∩ V ,

V P � (∃z ∈ I(N, 2N)V P
) (∃n ∈ N) (z(n) = x ∧ θV P

(z) FV P
y).

Applying the Shoenfield Absoluteness Theorem, it follows that y satisfies our re-

quirements. �
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