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ABSTRACT. There does not exist an isomorphism-invariant Borel version of

the Higman-Neumann-Neumann Embedding Theorem.

1. INTRODUCTION

The Higman-Neumann-Neumann Embedding Theorem [3] states that any count-
able group G can be embedded into a 2-generator group K. In the standard proof
of this classical theorem, the construction of the group K involves an enumeration
of a set {g,, | n € N} of generators of the group G; and it is clear that the isomor-
phism type of K usually depends upon both the generating set and the particular
enumeration that is used. Consequently, it is natural to ask whether there is a
more uniform construction with the property that the isomorphism type of K only
depends upon the isomorphism type of G. The main result of this paper implies
that no such construction exists.

Before we can give an exact statement of our main result, we first need to recall
how to represent the class of countably infinite groups by the elements of a standard
Borel space; i.e., a Polish space equipped with its associated o-algebra of Borel
subsets. Let G be the set of countably infinite groups G with underlying set N;
and let 2 be the Polish space of all 3-ary functions f : N3 — {0,1} with the
natural product topology. Then, identifying each group G € G with the graph of
its multiplication operation mg € 2N3, it is easily checked that G is a Borel subset

of 2. Tt follows that G is a standard Borel space; and since
Gy = {G € G| G is finitely generated }

is a Borel subset of G, it follows that G, is also a standard Borel space. (For more

details, see Hjorth-Kechris [5] or Thomas-Velickovic [9].)
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Theorem 1.1. There does not exist a Borel function ¢ : G — G4 such that for all
G, H € G,

(a) G embeds into o(G); and

(b) if G2 H, then p(G) = o(H).

Here a function ¢ : X — Y between standard Borel spaces X, Y is said to be
Borel iff graph(t)) is a Borel subset of X x Y. Equivalently, ¢ : X — Y is a Borel
function iff 1»~1(B) is a Borel subset of X for every Borel subset B of Y.

Remark 1.2. The proof of Theorem 1.1 relies upon the fact that the isomorphism
relation on the space G of arbitrary countable groups is much more complicated
than that on the space Gy, of finitely generated groups. Hence, letting Go be the
standard Borel space of 2-generator groups, it is natural to ask whether there exists

a Borel map ¢ : Gy4 — Ga such that:

e G embeds into ¥(G); and

o if G H, then ¥(G) = y(H).
Perhaps surprisingly, such a map does indeed exist. More specifically, Friedman [1]
has constructed such a map into the space of 4-generator groups; and, making use
of the techniques of Galvin [2], it is easy to modify Friedman’s map so that it takes

values in Gs.
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2. BOREL EQUIVALENCE RELATIONS

In this section, we shall present the proof of Theorem 1.1, modulo a key lemma
which will be proved in Section 3. But first we need to recall some of the basic
notions from the theory of Borel equivalence relations.

Let X be a standard Borel space. Then an equivalence relation F on X is said
to be Borel iff E is a Borel subset of X2. More generally, E is said to be analytic
iff F is an analytic subset of X2. For example, the isomorphism relation on the
space Gyg of finitely generated groups is a Borel equivalence relation, while the
isomorphism relation on the space G of countable groups is analytic but not Borel.

Suppose that F, I’ are analytic equivalence relations on the standard Borel spaces
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X, Y respectively. Then a Borel map v : X — Y is said to be a homomorphism
from F to F iff x E'y implies ¥ (x) F(y) for all z, y € X. If 4 satisfies the stronger
condition that z E y iff ¢(x) F ¢(y) for all 2, y € X, then ¢ is said to be a Borel
reduction and we write £ <p F.

The following Borel equivalence relation will play a central role in the proof of

Theorem 1.1.

Definition 2.1. Let I(N,2Y) be the standard Borel space of all injective maps
z: N — 2N, Then E..1p is the Borel equivalence relation on I(N, ZN) defined by

2 Eeptpe 2/ iff - {2(n) | n € N} = {2'(n) | n € N}.
The following key lemma will be proved in Section 3.

Lemma 2.2. Suppose that 6 : I(N,2Y) — Gtg is a Borel homomorphism from
Ecnivie to the isomorphism relation =. Then there exists a group G € Gyg such that

for all x € 2V there exists z € I(N, 2Y) such that x € {z(n) | n € N} and 0(z) = G.

The following lemma is implicitly contained in the classical paper [8] of B.H.

Neumann.

Lemma 2.3. There exists a Borel family {H, | x € 2N} C G of pairwise noniso-

morphic infinite 2-generator groups.

Proof. For each strictly increasing sequence d = (d,, | n € w) of odd integers with

do > 5, let Xg = {z7,23, -,y } and let I'q be the subgroup of [, o, Alt(X])

new

generated by the two permutations

aa =[xt a5 a5 - )
new

Ba=[[ (a7 =5 =3).
new

Then by B.H. Neumann [8], the groups I'q are infinite and pairwise nonisomorphic.

The result follows easily. O

We are now ready to present the proof of Theorem 1.1. Suppose that ¢ : G — Gy,
is a Borel map such that for all G, H € G,

(a) G embeds into ¢(G); and
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(b) if G = H, then o(G) = ¢(H).
Let {H, | = € 2N} C G be the Borel family of pairwise nonisomorphic 2-generator
groups given by Lemma 2.3 and let ¢ : I(N,2Y) — G be the Borel map defined by

V() = Hy0) X Hoyy X oo X Hyy X -

i.e. 1(z) is the restricted direct product of the sequence (H(,) | n € N). Clearly
if 2 Ecpgpie 2, then (z) = ¢(2'). It follows that the map 6 = ¢ o9 is a Borel
homomorphism from E.,e to the isomorphism relation = on Gy4. By Lemma 2.2,
there exists a group G € Gy, such that for all z € 2V, there exists z € I(N,2")
such that z € {z(n) | n € N} and 0(z) = G. But this means that H, embeds into
G for every z € 2V, which is impossible since G has only countably many finitely
generated subgroups. This completes the proof of Theorem 1.1, modulo the proof

of Lemma 2.2.

3. PINNED EQUIVALENCE RELATIONS

As we shall see, Lemma 2.2 is an easy consequence of the basic theory of pinned
equivalence relations. Throughout this section, we shall work within a fixed base
universe V' of set theory and consider extensions of analytic equivalence relations in
various generic extensions VF. Suppose that F is an analytic equivalence relation
on the Polish space X. If VP is a generic extension, then X VY and BV will
denote the sets obtained by applying the definitions of X, E within VF. By the
Shoenfield Absoluteness Theorem [6, Theorem 25.20], it follows that X Vinv =X,
EV'NV = E and that EV is an analytic equivalence relation on X Ve

The following notion of a pinned equivalence relation was abstracted by Kanovei-

Reeken [7] from an argument in Hjorth [4, Section 5].

Definition 3.1 (Kanovei-Reeken [7]). Working in the base universe V, suppose
that F is an analytic equivalence relation on the Polish space X. If P is a notion

of forcing, then a virtual E-class is a P-name 7 such that:

(i) Fp 7€ XV and
(i) IFpxp Tiefs EV™Y Tright-
Here Tier, and Tyigny are the (P x P)-names such that if G x H is (P x P)-generic,

then T |G X H] = 7[G] and Tigni[G X H| = T[H].
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The analytic equivalence relation E on the Polish space X is said to be pinned
iff for every forcing notion PP and every virtual E-class T, there exists an element

z € X such that IFp x EV' r.

Example 3.2. By Hjorth [4, Section 5], if E is a countable Borel equivalence
relation, then F is pinned. (Recall that a Borel equivalence relation E is said to be

countable iff every E-equivalence class is countable.)

~

It is well-known that the isomorphism relation = on the space Gy, of finitely
generated groups is essentially countable; i.e. there exists a countable Borel equiv-
alence relation E such that 2 <p FE. (For example, see Hjorth-Kechris [5].) By
Kanovei-Reeken [7, Lemma 20], it follows that = is also pinned. Hence Lemma 2.2
is an immediate consequence of the following result. (It should be stressed that
Theorem 3.3 is implicitly contained within the proofs of both Hjorth [4, Section 5]
and Kanovei-Reeken [7, Section 4].)

Theorem 3.3. Suppose that F is a pinned analytic equivalence relation on the
standard Borel space Y and that 0 : I(N,2Y) — Y is a Borel homomorphism from
E.niie to F. Then there exists an element y € Y such that for all x € 2N, there
exists z € I(N, 2N) such that z € {z(n) | n € N} and 0(z) F y.

Proof. Working in the base universe V, suppose that 6 : I(N,2Y) — Y is a Borel
homomorphism from E.,:pe to F. Let P be the notion of forcing consisting of all
finite injective partial functions p : N — 2N, Then if G is P-generic, it follows that
g = |JG is a bijection between N and 28NV Thus if 7 is the canonical P-name such
that 7[G] = g, then T is a virtual E.,pe-class. By the Shoenfield Absoluteness
Theorem, 0V is a Borel homomorphism from Eynﬂ;;p to V7 Hence, letting o
be a P-name for HVP(T), it follows that o is a virtual F-class. Since F' is pinned,

there exists an element y € Y such that IFp y F Vg, In particular, for each

ze2Nnv,
VP E (32 € I(N, QN)V]P) (IneN)(z(n) =z A HVP(Z) v ).

Applying the Shoenfield Absoluteness Theorem, it follows that y satisfies our re-

quirements. (I



6 SIMON THOMAS

REFERENCES

[1] H. M. Friedman, New Borel independence results, preprint (2007).

[2] F. Galvin, Embedding Countable Groups in 2-generator Groups, Amer. Math. Monthly 100
(1993), 578-580.

[3] G. Higman, B. H. Neumann and H. Neumann, Embedding theorems for groups, J. London
Math. Soc. 24 (1949), 247-254.

[4] G. Hjorth, Orbit cardinals: on the effective cardinalities arising as quotient spaces of the
form X/G where G acts on a Polish space X, Israel J. Math. 111 (1999), 221-261.

[5] G. Hjorth and A. S. Kechris, Borel equivalence relations and classification of countable
models, Ann. Pure Appl. Logic 82 (1996), 221-272.

[6] T. Jech, Set Theory: The Third Millennium Edition, Revised and Expanded, Springer Mono-
graphs in Mathematics, Springer-Verlag, Berlin, 2003.

[7] V. G. Kanovei and M. Reeken, Some new results on the Borel irreducibility of equivalence
relations, Izv. Math. 67 (2003), 55-76.

[8] B. H. Neumann, Some remarks on infinite groups, J. London Math. Soc. 12 (1937), 120-127.

[9] S. Thomas and B. Velickovic, On the complexity of the isomorphism relation for finitely
generated groups, J. Algebra 217 (1999), 352-373.

MATHEMATICS DEPARTMENT, RUTGERS UNIVERSITY, 110 FRELINGHUYSEN ROAD, PISCATAWAY,
NEW JERSEY 08854-8019, USA

E-mail address: sthomas@math.rutgers.edu



